JP2005044760A - Manufacturing method of lead-acid storage battery positive electrode plate lattice - Google Patents

Manufacturing method of lead-acid storage battery positive electrode plate lattice Download PDF

Info

Publication number
JP2005044760A
JP2005044760A JP2003280484A JP2003280484A JP2005044760A JP 2005044760 A JP2005044760 A JP 2005044760A JP 2003280484 A JP2003280484 A JP 2003280484A JP 2003280484 A JP2003280484 A JP 2003280484A JP 2005044760 A JP2005044760 A JP 2005044760A
Authority
JP
Japan
Prior art keywords
mass
lead
electrode plate
less
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003280484A
Other languages
Japanese (ja)
Inventor
Masanori Ozaki
正則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003280484A priority Critical patent/JP2005044760A/en
Publication of JP2005044760A publication Critical patent/JP2005044760A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Pb-Ca-Sn-Ba group alloy electrode plate lattice suitable for a lead-acid storage battery for an automobile or various kinds of lead-acid storage batteries for a backup use, excellent in mechanical strength and corrosion resistance. <P>SOLUTION: On the manufacturing method of the lead-acid storage battery electrode plate lattice, a rolling process with a total draft ratio of 50 to 97%, an expanding process, and an age-hardening process adding heat for 0.5 hours or longer at 80 to 160°C are applied in this order to a lead alloy material containing Ca by not less than 0.02 mass% and less than 0.05 mass%, Ba by not less than 0.002 mass% and not more than 0.014 mass%, Sn by not less than 0.4 mass% and not more than 2.5 mass%, with the rest part concsisting of Pb and inevitable impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車用鉛蓄電池または各種バックアップ用鉛蓄電池などに適したエキスパンド加工による極板格子(以下、エキスパンド極板格子と記す)の製造方法に関する。   The present invention relates to a method for manufacturing an electrode plate grid (hereinafter referred to as an expanded plate grid) that is suitable for an automotive lead storage battery or various backup lead storage batteries.

鉛蓄電池は、電解液中に、活物質を充填した正極と負極の極板格子を交互に配して構成されている。前記極板格子は充放電時の導電機構と活物質を保持する役目を果たすもので、従来から鋳造品が使用されているが、近年、電極の軽量化および高性能化を目的にエキスパンド加工による薄肉の極板格子が実用されつつある。   A lead storage battery is configured by alternately arranging positive and negative electrode grids filled with an active material in an electrolyte. The plate grid plays the role of holding the conductive mechanism and active material during charge and discharge, and cast products have been used in the past, but in recent years, it has been expanded by the expansion process for the purpose of reducing the weight and improving the performance of the electrodes. Thin plate grids are being put into practical use.

エキスパンド極板格子は、鋳造→圧延→エキスパンド加工の工程により製造されるため、極板格子を構成する鉛合金には、鋳造性、圧延加工性、エキスパンド加工性が要求され、エキスパンド極板格子には、活物質充填時やハンドリング時に変形しない機械的強度が要求される。   Since the expanded electrode plate lattice is manufactured by a process of casting → rolling → expanding, the lead alloy constituting the electrode plate lattice is required to have castability, rolling workability, and expandability. Requires mechanical strength that does not deform when filled with an active material or during handling.

エキスパンド極板格子には、従来からCaを0.06〜0.10質量%、Snを1.0〜2.0質量%、Alを0.005〜0.04質量%含む鉛合金が用いられてきたが、この鉛合金の極板格子は、自動車用などの苛酷な条件で使用される鉛蓄電池には、機械的強度、耐グロース性および耐食性の点で十分対応できなかった。   Conventionally, lead alloy containing 0.06 to 0.10 mass% of Ca, 1.0 to 2.0 mass% of Sn and 0.005 to 0.04 mass% of Al is used for the expanded electrode plate lattice. However, this lead alloy electrode grid has not been sufficiently compatible with lead-acid batteries used under severe conditions such as for automobiles in terms of mechanical strength, growth resistance and corrosion resistance.

前記機械的強度および耐食性を改善した極板格子として、例えば、特許文献1にはCaを0.05〜0.12質量%、Snを3質量%以下、Alを0.002〜0.04質量%、Baを0.02質量%以下含む鉛合金からなり、前記CaとBaの特定組織により高度の機械的強度が安定維持される極板格子が開示されている。   As an electrode plate lattice with improved mechanical strength and corrosion resistance, for example, Patent Document 1 discloses that Ca is 0.05 to 0.12 mass%, Sn is 3 mass% or less, and Al is 0.002 to 0.04 mass. An electrode plate lattice made of a lead alloy containing 0.02% by mass of Ba and Ba and having a high mechanical strength stably maintained by the specific structure of Ca and Ba is disclosed.

更に、本出願人はこれを改良したCaを0.02質量%以上0.05質量%未満、Baを0.002質量%以上0.014質量%以下、Snを0.4質量%以上2.5質量%以下含み、残部がPbと不可避不純物からなる鉛合金およびこれら合金にさらにAg0.005質量%以上0.07質量%以下、Bi0.01質量%以上0.10質量%以下、Tl0.001質量%以上0.05質量%以下のうちの少なくとも1種を添加した鉛合金を提案した。   Furthermore, the present applicant has improved Ca by 0.02 mass% or more and less than 0.05 mass%, Ba by 0.002 mass% or more and 0.014 mass% or less, and Sn by 0.4 mass% or more. Lead alloys containing 5% by mass or less, the balance being Pb and inevitable impurities, and these alloys are further added to Ag 0.005% by mass to 0.07% by mass, Bi 0.01% by mass to 0.10% by mass, Tl0.001 The lead alloy which added at least 1 sort (s) of the mass% or more and 0.05 mass% or less was proposed.

国際公開第97/30183号パンフレットInternational Publication No. 97/30183 Pamphlet

エキスパンド極板格子は、薄肉のため、寿命に及ぼす腐食の影響が大きく、また正極
格子においてはグロースが起き易いという問題がある。
Since the expanded electrode plate lattice is thin, the influence of corrosion on the life is large, and there is a problem that growth is likely to occur in the positive electrode lattice.

前記グロースは電池使用時に生成する腐食物が原因で起きる伸び変形(クリープ)であり、極板格子の強度が低いほど起き易い。グロ−スが起きると極板格子と活物質との間の電気的接合性が悪化して電池容量が低下し、さらには極板が変形して短絡などの重大事故を引き起こす恐れがある。このため、エキスパンド極板格子には機械的強度と耐食性の向上が強く求められている。   The growth is elongation deformation (creep) caused by corrosive substances generated when the battery is used, and the growth is more likely as the strength of the electrode plate lattice is lower. When the gloss occurs, the electrical connection between the electrode plate lattice and the active material deteriorates and the battery capacity decreases, and the electrode plate may be deformed to cause a serious accident such as a short circuit. For this reason, the expanded electrode plate lattice is strongly required to improve mechanical strength and corrosion resistance.

一方、自動車用鉛蓄電池は、装備の増加と余分な空間の排除により温度上昇の激しいエンジンルーム内に配され、しかも常に過充電状態におかれる。また環境問題や燃費節減に対応し得るハイブリッド車用鉛蓄電池にあっては、エネルギー密度向上のため12Vから36Vへの高電圧化が予定され、大電流の充放電を高温下で行えるように極板をさらに薄くして表面積を大きくすることが検討されている。また利便性の点からメンテナンスフリー化も要求されている。   On the other hand, lead-acid batteries for automobiles are placed in the engine room where the temperature rises rapidly due to the increase in equipment and the elimination of extra space, and they are always overcharged. For lead-acid batteries for hybrid vehicles that can cope with environmental problems and fuel economy, a high voltage from 12V to 36V is planned to improve energy density, so that large currents can be charged and discharged at high temperatures. It has been studied to further reduce the thickness of the plate to increase the surface area. In addition, maintenance-free is also required for convenience.

このような状況下にあって、自動車用鉛蓄電池のエキスパンド極板格子には機械的強度および耐食性の一層の向上が課題とされているが、これらの課題はIT用バックアップ鉛蓄電池やエネルギー貯蔵用鉛蓄電池などにも共通するものである。   Under such circumstances, the expanded electrode plate grid for lead-acid batteries for automobiles has been required to further improve mechanical strength and corrosion resistance. However, these problems are related to backup lead-acid batteries for IT and energy storage. This is common to lead-acid batteries.

しかし、特許文献1に示されるPb−Ca−Ba−Sn−Al系鉛合金等からなる極板格子は鋳造によって得られる鋳造極板格子としては良好であるが、これをエキスパンド極板格子として用いる場合は前記課題が十分には解決されておらず、更なる改良が要望されている。   However, the electrode plate lattice made of Pb—Ca—Ba—Sn—Al-based lead alloy shown in Patent Document 1 is good as a cast electrode plate lattice obtained by casting, but this is used as an expanded electrode plate lattice. In such a case, the above problem has not been sufficiently solved, and further improvement is desired.

本発明の目的は、自動車用鉛蓄電池などに十分適用できる、機械的強度および耐食性に優れるエキスパンド極板格子を製造することにある。   An object of the present invention is to produce an expanded electrode plate lattice excellent in mechanical strength and corrosion resistance that can be satisfactorily applied to lead-acid batteries for automobiles and the like.

請求項1記載発明は、Pb−Ca−Ba−Sn系鉛合金または前記鉛合金にAg、Bi、Tlのうちの少なくとも1種を適量含有させた鉛合金の素材に、総圧下率50〜97%の圧延加工、エキスパンド加工、80〜160℃で0.5時間以上加熱する時効硬化処理をこの順に施すことを特徴とする鉛蓄電池極板格子の製造方法である。   The invention according to claim 1 is a Pb—Ca—Ba—Sn based lead alloy or a lead alloy material containing an appropriate amount of at least one of Ag, Bi, and Tl in the lead alloy. % Rolling processing, expanding processing, and age hardening treatment in which heating is performed at 80 to 160 ° C. for 0.5 hours or more in this order.

請求項2記載発明は、Caを0.02質量%以上0.05質量%未満、Baを0.002質量%以上0.014質量%以下、Snを0.4質量%以上2.5質量%以下含み、残部がPbと不可避不純物からなる鉛合金素材に、総圧下率50〜97%の圧延加工、エキスパンド加工、80〜160℃で0.5時間以上加熱する時効硬化処理をこの順に施すことを特徴とする鉛蓄電池極板格子の製造方法である。   The invention according to claim 2 is such that Ca is 0.02 mass% or more and less than 0.05 mass%, Ba is 0.002 mass% or more and 0.014 mass% or less, and Sn is 0.4 mass% or more and 2.5 mass% or less. Including the following, the lead alloy material consisting of Pb and inevitable impurities is subjected to rolling processing with a total rolling reduction of 50 to 97%, expansion processing, and age hardening treatment in which heating is performed at 80 to 160 ° C. for 0.5 hours or more in this order. A method for manufacturing a lead-acid battery plate grid characterized by the following.

請求項3記載発明は、Caを0.02質量%以上0.05質量%未満、Baを0.002質量%以上0.014質量%以下、Snを0.4質量%以上2.5質量%以下含み、さらにAg0.005質量%以上0.07質量%以下、Bi0.01質量%以上0.10質量%以下、Tl0.001質量%以上0.05質量%以下のうちの少なくとも1種を含み、残部がPbと不可避不純物からなる鉛合金素材に、総圧下率50〜97%の圧延加工、エキスパンド加工、80〜160℃の温度で0.5時間以上加熱する時効硬化処理をこの順に施すことを特徴とする鉛蓄電池極板格子の製造方法である。   According to a third aspect of the present invention, Ca is 0.02 mass% or more and less than 0.05 mass%, Ba is 0.002 mass% or more and 0.014 mass% or less, and Sn is 0.4 mass% or more and 2.5 mass% or less. In addition, it contains at least one of Ag 0.005 mass% to 0.07 mass%, Bi 0.01 mass% to 0.10 mass%, and Tl 0.001 mass% to 0.05 mass%. In addition, the lead alloy material consisting of Pb and inevitable impurities in the balance is subjected to rolling processing with a total rolling reduction of 50 to 97%, expanding processing, and age hardening treatment in which heating is performed at a temperature of 80 to 160 ° C. for 0.5 hours or more in this order. A method for manufacturing a lead-acid battery plate grid characterized by the following.

以上に述べたように、本発明によれば、活物質の充填性および保持性、耐グロース性、耐食性などに優れる薄肉のエキスパンド極板格子が得られ、この極板格子を用いた鉛蓄電池は、軽量化、高電圧化、高温下での大電流充放電などに対応可能であり、従って自動車(特にハイブリッド車)用、UPS(無停電電源装置)用、IT産業用などの鉛蓄電池に十分適用できる。依って、工業上顕著な効果を奏する。   As described above, according to the present invention, a thin-walled expanded electrode plate grid excellent in filling and holding properties of active material, growth resistance, corrosion resistance, etc. is obtained, and a lead-acid battery using this electrode plate grid is , Light weight, high voltage, high current charging / discharging at high temperature, etc., so it is enough for lead-acid batteries for automobiles (especially hybrid vehicles), UPS (uninterruptible power supply), IT industry etc. Applicable. Therefore, there is an industrially significant effect.

請求項1記載発明は、Ca、Ba、Snを適量含む鉛合金または前記鉛合金にAg、Bi、Tlの少なくとも1種を適量含む鉛合金の素材(鋳塊など)に、圧延加工、エキスパンド加工、時効硬化処理をこの順に施す鉛蓄電池極板格子の製造方法であり、前記合金元素は、鉛合金素材を極板格子に加工する製造加工性を高め、また極板格子に要求される機械的強度、耐食性、導電性、活物質の充填性、保持性、品質などを高め、以て、電池寿命を向上させる作用を果たす。   According to the first aspect of the present invention, a lead alloy material containing an appropriate amount of Ca, Ba, Sn, or a lead alloy material (such as an ingot) containing an appropriate amount of at least one of Ag, Bi, and Tl in the lead alloy is rolled or expanded. , A lead-acid battery plate grid manufacturing method in which the age hardening treatment is performed in this order, and the alloy element enhances the manufacturing processability of processing a lead alloy material into a plate grid and is required for the electrode grid Strength, corrosion resistance, electrical conductivity, fillability of active material, retention, quality, etc. are enhanced, thereby improving the battery life.

請求項1記載発明において、鉛合金素材の圧延加工における総圧下率を50〜97%に規定する理由は、前記総圧下率が50%未満でも97%を超えても鉛合金条の機械的強度が低くなり、その結果、平坦性が低下し、それに伴い格子目に変形が生じるためである。総圧下率が50〜97%であれば、素条は適度な機械的強度を有してエキスパンド加工材は平坦な形状となり、格子目は均一な形状に形成される。それにより、極板格子の変形による短絡事故が防止され、また極板格子に活物質が良好に充填される。   In the first aspect of the present invention, the reason why the total rolling reduction in the rolling process of the lead alloy material is defined as 50 to 97% is that the mechanical strength of the lead alloy strip is not limited even if the total rolling reduction is less than 50% or more than 97%. As a result, the flatness is lowered, and as a result, the lattice is deformed. If the total rolling reduction is 50 to 97%, the strip has an appropriate mechanical strength, the expanded material has a flat shape, and the lattice is formed in a uniform shape. Thereby, a short circuit accident due to deformation of the electrode plate grid is prevented, and the active material is satisfactorily filled in the electrode plate grid.

本発明において、エキスパンド加工材に時効硬化処理を施す理由は、時効硬化処理により機械的強度を高めて、活物質充填時或いはハンドリング時に極板格子が変形して短絡事故が起きたり、活物質保持性が低下したりするのを防止するためである。前記時効硬化処理条件を80〜160℃に規定する理由は、80℃未満でも160℃を超えても変形防止に必要な機械的強度が十分に得られないためである。   In the present invention, the reason why the expanded material is subjected to age hardening treatment is that the mechanical strength is increased by age hardening treatment, and the electrode plate lattice is deformed at the time of filling or handling the active material, causing a short circuit accident or holding the active material. This is to prevent the performance from deteriorating. The reason for prescribing the age-hardening treatment condition to 80 to 160 ° C. is that sufficient mechanical strength necessary for preventing deformation cannot be obtained even when the temperature is less than 80 ° C. or exceeds 160 ° C.

この発明で、時効処理時間を0.5時間以上に規定する理由は、0.5時間未満では機械的強度のバラツキが大きくなり安定性に欠けるためである。時効処理時間の上限は生産性の面から5時間程度とするのが望ましい。   In the present invention, the reason for setting the aging treatment time to 0.5 hours or more is that when the aging treatment time is less than 0.5 hours, the mechanical strength varies greatly and the stability is lacking. The upper limit of the aging treatment time is preferably about 5 hours from the viewpoint of productivity.

請求項2記載発明は、前記請求項1記載発明のPb−Ca−Ba−Sn系合金の組成を規定した鉛蓄電池用極板格子の製造方法である。
Caは機械的強度の向上に寄与する。
Caの含有量が0.02質量%未満ではその効果が十分に得られず、0.05質量%以上では耐食性が低下する。このためCaの含有量は0.02質量%以上0.05質量%未満が望ましい。
Caのより望ましい含有量は0.03〜0.045質量%である。
A second aspect of the present invention is a method for manufacturing a lead grid for a lead storage battery in which the composition of the Pb-Ca-Ba-Sn alloy of the first aspect of the invention is defined.
Ca contributes to improvement of mechanical strength.
If the Ca content is less than 0.02% by mass, the effect is not sufficiently obtained, and if it is 0.05% by mass or more, the corrosion resistance is lowered. For this reason, the content of Ca is preferably 0.02% by mass or more and less than 0.05% by mass.
The more desirable content of Ca is 0.03 to 0.045% by mass.

Baは機械的強度の向上に寄与する。
Baの含有量が0.002質量%未満ではその効果が十分に得られず、0.014質量%を超えると耐食性が低下する。従って0.002〜0.014質量%が望ましい。
Ba contributes to improvement of mechanical strength.
If the content of Ba is less than 0.002% by mass, the effect cannot be sufficiently obtained, and if it exceeds 0.014% by mass, the corrosion resistance decreases. Therefore, 0.002 to 0.014 mass% is desirable.

CaとBaが共存することにより耐食性が向上し、また極板格子と活物質との界面が緻密化して、腐食層を介した極板格子と活物質との間の導電性が長期に安定して維持されるという新たな効果が発現し電池寿命が一層向上する。   The coexistence of Ca and Ba improves the corrosion resistance, and the interface between the electrode plate lattice and the active material is densified, so that the conductivity between the electrode plate lattice and the active material through the corroded layer is stable for a long time. A new effect of being maintained is developed and the battery life is further improved.

Snは湯流れ性を改善して鋳塊品質を高め、また極板格子の機械的強度を向上させる。さらにSnは充放電時に格子界面に溶出して腐食層にドープされ、腐食層に半導体効果を生じさせ極板格子の導電性を高め、電池寿命を向上させる。Snの含有量が0.4質量%未満ではその効果が十分に得られず、2.5質量%を超えると結晶粒が粗大化して見かけの腐食以上に粒界腐食が進行する。従ってSnの含有量は0.4〜2.5質量%が望ましい。Snのより望ましい含有量は0.6〜2.5質量%である。   Sn improves the molten metal flow and improves the quality of the ingot, and improves the mechanical strength of the electrode plate lattice. Furthermore, Sn elutes at the lattice interface during charge and discharge and is doped into the corrosion layer, causing a semiconductor effect in the corrosion layer, increasing the conductivity of the electrode plate lattice, and improving the battery life. If the Sn content is less than 0.4% by mass, the effect cannot be sufficiently obtained. If the Sn content exceeds 2.5% by mass, the crystal grains become coarse and intergranular corrosion proceeds more than apparent corrosion. Accordingly, the Sn content is preferably 0.4 to 2.5 mass%. A more desirable content of Sn is 0.6 to 2.5% by mass.

請求項3記載発明は、請求項2記載の鉛合金にAg、Bi、Tlの少なくとも1種を適量含有させたものである。前記Ag、Bi、Tlはいずれも機械的強度、特に高温での耐クリープ特性(耐グロース性)を著しく高める効果を有する。   According to a third aspect of the present invention, an appropriate amount of at least one of Ag, Bi, and Tl is contained in the lead alloy according to the second aspect. Ag, Bi, and Tl all have the effect of remarkably improving mechanical strength, particularly creep resistance (growth resistance) at high temperatures.

Agの含有量は、0.005質量%未満ではその効果が十分に得られず、0.07質量%を超えると鋳造時に鋳塊にクラックが生じ易くなる。
従ってAgの含有量は0.005〜0.07質量%が望ましい。
Agのより望ましい含有量は0.01〜0.05質量%である。
If the content of Ag is less than 0.005% by mass, the effect cannot be sufficiently obtained, and if it exceeds 0.07% by mass, cracks are likely to occur in the ingot during casting.
Therefore, the content of Ag is preferably 0.005 to 0.07% by mass.
A more desirable content of Ag is 0.01 to 0.05% by mass.

Biの含有量は、0.01質量%未満ではその効果が十分に得られず、0.10質量%を超えると耐食性が低下する。従ってBiの含有量は0.01〜0.10質量%が望ましい。
Biのより望ましい含有量は0.03〜0.05質量%である。
If the Bi content is less than 0.01% by mass, the effect cannot be sufficiently obtained. If the Bi content exceeds 0.10% by mass, the corrosion resistance decreases. Accordingly, the Bi content is preferably 0.01 to 0.10% by mass.
The more desirable content of Bi is 0.03 to 0.05% by mass.

Tlの含有量は、0.001質量%未満ではその効果が十分に得られず、0.05質量%を超えると耐食性が低下する。従ってTlの含有量は0.001〜0.05質量%が望ましい。
Tlのより望ましい含有量は0.005〜0.05質量%である。
なお、BiおよびTlはAgより安価で経済的である。
If the content of Tl is less than 0.001% by mass, the effect is not sufficiently obtained, and if it exceeds 0.05% by mass, the corrosion resistance is lowered. Therefore, the content of Tl is preferably 0.001 to 0.05% by mass.
A more desirable content of Tl is 0.005 to 0.05% by mass.
Bi and Tl are cheaper and more economical than Ag.

請求項2、3記載発明において、鉛合金素材の総圧下率を50〜97%に規定する理由、およびエキスパンド加工材に施す時効硬化処理条件を80〜160℃で0.5時間以上に規定する理由は、前記請求項1記載発明の場合と同じ理由である(段落0014〜0016参照)。   In the inventions according to claims 2 and 3, the reason for prescribing the total reduction ratio of the lead alloy material to 50 to 97% and the age hardening treatment condition applied to the expanded material are prescribed to 80 to 160 ° C. for 0.5 hour or more. The reason is the same as the case of the first aspect of the invention (see paragraphs 0014 to 0016).

以下に、本発明を実施例により詳細に説明する。
(実施例1)
表1に示す本請求項2、3記載発明で規定した組成の鉛合金を常法により溶解鋳造して鋳塊とし、この鋳塊を総圧下率75%で圧延して厚さ0.9mmの素条とした。次に、前記素条をエキスパンド加工し、これを所定寸法の極板格子に切り出した。
Hereinafter, the present invention will be described in detail with reference to examples.
(Example 1)
The lead alloy having the composition defined in the inventions according to claims 2 and 3 shown in Table 1 is melt-cast by an ordinary method to form an ingot, and the ingot is rolled at a total rolling reduction of 75% to a thickness of 0.9 mm. It was made into a strip. Next, the strip was expanded, and this was cut into an electrode plate lattice having a predetermined size.

前記素条について引張強さを調べた。また前記極板格子について平坦度および格子目形状を目視観察して良好(○)または不良(×)を判定した。さらに前記素条について140℃1時間時効硬化処理後の引張強さおよび耐クリープ特性を調べ、前記極板格子の時効硬化処理後の特性を推定した。   The tensile strength of the raw strip was examined. Further, the flatness and the lattice shape of the electrode plate lattice were visually observed to determine whether they were good (◯) or defective (×). Further, the tensile strength and creep resistance characteristics after age-hardening treatment at 140 ° C. for 1 hour were examined for the strips, and the characteristics after age-hardening treatment of the electrode plate lattice were estimated.

前記引張試験は、素条から13号B試験片を切り出し、ISO6892に準拠して調べた。耐クリープ特性は素条から幅15mm、長さ150mmの試験片を切り出し、標点間距離80mm、荷重16.4MPa、温度100℃の条件で試験し、500時間経過後の伸び率から良否を判定した。   In the tensile test, a No. 13 B test piece was cut out from the strip and examined in accordance with ISO6892. For the creep resistance, a test piece with a width of 15 mm and a length of 150 mm was cut out from the strip and tested under the conditions of a distance between gauge points of 80 mm, a load of 16.4 MPa, and a temperature of 100 ° C. did.

(比較例1)
従来のPb−Ca−Sn−Al系鉛合金について実施例1と同じ条件により素条および極板格子を製造し、実施例1と同じ調査を行った。
結果を表2に示す。
(Comparative Example 1)
For the conventional Pb—Ca—Sn—Al-based lead alloy, strips and electrode plate lattices were produced under the same conditions as in Example 1, and the same investigation as in Example 1 was performed.
The results are shown in Table 2.

Figure 2005044760
Figure 2005044760

Figure 2005044760
Figure 2005044760

表2から明らかなように、実施例1(本発明例、No.1〜10)の素条はいずれも引張強さが高く、従って極板格子は平坦度および格子目形状が良好となりた。また前記時効硬化処理後の素条(極板格子)は引張強さおよび耐クリープ特性に優れた。中でもAg、BiまたはTlのいずれかを含むもの(No.8〜10)は耐クリープ特性(耐グロース性)に優れた。   As is apparent from Table 2, all of the strips of Example 1 (examples of the present invention, Nos. 1 to 10) have high tensile strength, and thus the electrode plate lattice has good flatness and lattice shape. The strip (electrode plate lattice) after the age hardening treatment was excellent in tensile strength and creep resistance. Among them, those containing any of Ag, Bi, or Tl (Nos. 8 to 10) were excellent in creep resistance (growth resistance).

これに対し、比較例1(従来材、No.11)は素条の引張強さが低く、従って極板格子は平坦度および格子目形状が不良となり、時効硬化処理後の素条は引張強さおよび耐クリープ特性が劣った。   On the other hand, Comparative Example 1 (conventional material, No. 11) has a low tensile strength of the strip, so that the electrode plate lattice has poor flatness and lattice shape, and the strip after the age hardening treatment has a tensile strength. Inferior in thickness and creep resistance.

(実施例2)
表1に示した本発明規定組成のNo.Gの鉛合金を常法により溶解鋳造して鋳塊とし、この鋳塊に、圧延→エキスパンド加工→極板格子切り出しの工程を施した。前記圧延での総圧下率は本発明規定値内で種々に変化させた。前記圧延材(素条)について引張強さを調べ、また極板格子について平坦度および格子目形状を実施例1と同じ方法により調べ、良好(○)または不良(×)を判定した。
(Example 2)
No. of the composition prescribed in the present invention shown in Table 1. The lead alloy of G was melt-cast by an ordinary method to form an ingot, and this ingot was subjected to the steps of rolling → expanding → electrode grid cutting. The total rolling reduction in the rolling was variously changed within the specified values of the present invention. The tensile strength of the rolled material (strands) was examined, and the flatness and lattice shape of the electrode plate lattice were examined by the same method as in Example 1 to determine whether it was good (◯) or defective (×).

(比較例2)
前記圧延での総圧下率を本発明規定値外(40、98%)とした他は、実施例2と同じ条件により圧延材(素条)および極板格子を製造し、実施例2と同じ調査、判定を行った。
結果を表3に示す。
(Comparative Example 2)
A rolled material (strand) and an electrode plate lattice were manufactured under the same conditions as in Example 2 except that the total rolling reduction in the rolling was outside the specified value of the present invention (40, 98%). Investigation and judgment were performed.
The results are shown in Table 3.

Figure 2005044760
Figure 2005044760

表3から明らかなように、実施例2(本発明例、No.21〜24)の素条はいずれも引張強さが37〜40MPaとなり、極板格子の平坦度および格子目形状が良好となった。   As is clear from Table 3, all the strips of Example 2 (examples of the present invention, Nos. 21 to 24) had a tensile strength of 37 to 40 MPa, and the flatness and grid shape of the electrode plate grid were good. became.

比較例2(No.25、26)では総圧下率が本発明規定値外のため素条の引張強さが低下し、極板格子は平坦度および格子目形状が不良となった。   In Comparative Example 2 (Nos. 25 and 26), the total rolling reduction was outside the specified value of the present invention, so that the tensile strength of the strip was lowered, and the electrode plate lattice was poor in flatness and lattice shape.

(実施例3)
実施例2で用いたNo.22の極板格子切り出し材に、本発明規定条件で時効硬化処理を施し、引張強さ、耐クリープ特性および活物質充填性を調べ、その良否を判定した。
(Example 3)
No. used in Example 2 The electrode plate lattice cut material of No. 22 was subjected to age hardening treatment under the conditions specified in the present invention, and the tensile strength, creep resistance and active material filling property were examined, and the quality was judged.

活物質充填性は活物質充填後の極板格子の変形有無により判定した。
即ち、全く変形しないものは極めて良好(◎)、幾分変形したが実用上支障ないものは良好(○)、実用不可な程度に変形したものは不良(×)と判定した。
The active material filling property was determined by the presence or absence of deformation of the electrode plate lattice after filling the active material.
That is, it was determined that a material that was not deformed at all was very good ()), a material that was deformed somewhat but that did not interfere with practical use was good (○), and a material that was deformed to an unusable level was defective (×).

(比較例3)
時効硬化処理を本発明規定外条件で施した他は、実施例3と同じ調査および判定を行った。
結果を表4に示す。
(Comparative Example 3)
The same investigation and determination as in Example 3 were performed, except that the age hardening treatment was performed under conditions outside the scope of the present invention.
The results are shown in Table 4.

Figure 2005044760
Figure 2005044760

表4から明らかなように、実施例3(本発明例、No.31〜34)の時効処理後の極板格子は引張強さ、耐クリープ特性および活物質充填性に優れた。   As is apparent from Table 4, the electrode plate lattice after the aging treatment of Example 3 (Examples of the present invention, Nos. 31 to 34) was excellent in tensile strength, creep resistance and active material filling.

これに対し、比較例3のNo.35、37は時効硬化処理温度が本発明規定値を外れたため引張強さ、耐クリープ特性および活物質充填性が劣った。またNo.36は時効硬化処理時間が短かったため特性のバラツキが大きくなった。   On the other hand, the comparative example 3 No. Nos. 35 and 37 were inferior in tensile strength, creep resistance and active material filling because the age-hardening treatment temperature deviated from the specified value of the present invention. No. Since the age hardening treatment time of 36 was short, the variation in characteristics became large.

(実施例5)
表1に示した本発明規定組成のNo.Gの鉛合金を常法により溶解鋳造して鋳塊とし、この鋳塊を総圧下率50〜97%の範囲内で圧延して厚さ0.9mmの素条とし、次に前記素条をエキスパンド加工し、これを所定寸法の極板格子に切り出し、前記極板格子に時効硬化処理(140℃×1.0時間)を施し、この極板格子に正極ペースト(活物質)を常法により充填し、これを40℃、湿度95%の雰囲気に24時間保持して熟成し、次いで乾燥して正極未化成板とした。次に前記正極未化成板に、従来法で製造した負極未化成板を、ポリエチレンセパレータを介して組み合わせ、さらに比重1.200の希硫酸を加えて電槽化成を行い、D23サイズ、5時間率容量が40Ahの液式鉛蓄電池を製造した。
(Example 5)
No. of the composition prescribed in the present invention shown in Table 1. The lead alloy of G is melt-cast by a conventional method to form an ingot, and the ingot is rolled within a range of a total rolling reduction of 50 to 97% to obtain a strip having a thickness of 0.9 mm. It is expanded, cut into a plate grid of a predetermined size, subjected to age hardening (140 ° C. × 1.0 hour), and a positive electrode paste (active material) is applied to the plate grid by a conventional method. This was filled and aged in an atmosphere of 40 ° C. and 95% humidity for 24 hours, and then dried to obtain a positive electrode unformed sheet. Next, the negative electrode unformed plate produced by the conventional method is combined with the positive electrode unformed plate through a polyethylene separator, and further, a dilute sulfuric acid having a specific gravity of 1.200 is added to form a battery case, and D23 size, 5 hour rate A liquid lead-acid battery with a capacity of 40 Ah was manufactured.

この鉛蓄電池についてJIS D 5301に準じた寿命試験(軽負荷試験)を試験温度75℃の加速条件で行った。   A life test (light load test) according to JIS D 5301 was conducted on this lead storage battery under accelerated conditions at a test temperature of 75 ° C.

(比較例5)
総圧下率を本発明規定外とした他は、実施例5と同じ方法により前記鉛蓄電池を製造し、実施例5と同じ寿命試験を行った。
(Comparative Example 5)
The lead storage battery was manufactured by the same method as in Example 5 except that the total rolling reduction was outside the scope of the present invention, and the same life test as in Example 5 was performed.

(比較例6)
表1に示す従来組成のNo.Kの鉛合金製極板格子を用いた他は、実施例5と同じ方法により前記鉛蓄電池を製造し、実施例5と同じ寿命試験を行った。
結果を表5に示す。
(Comparative Example 6)
No. 1 of the conventional composition shown in Table 1. The lead storage battery was manufactured by the same method as in Example 5 except that a lead alloy electrode grid of K was used, and the same life test as in Example 5 was performed.
The results are shown in Table 5.

Figure 2005044760
Figure 2005044760

表5から明らかなように、本発明方法で製造した極板格子を用いた鉛蓄電池(No.41〜45)は、サイクル寿命が5450〜6000回と高かった。   As is apparent from Table 5, the lead-acid battery (Nos. 41 to 45) using the electrode grid produced by the method of the present invention had a high cycle life of 5450 to 6000 times.

これに対し、比較例5の鉛蓄電池(No.46、47)は素条の総圧下率が本発明規定値外のため、また比較例6の鉛蓄電池(No.48)は合金組成にBaが含まれていないため、いずれも引張強さが低下し、その結果エキスパンド加工性、活物質の充填性、保持性、耐グロース性などが悪化し、サイクル寿命が低いものとなった。   On the other hand, the lead storage battery (No. 46, 47) of Comparative Example 5 has a total rolling reduction outside the specified value of the present invention, and the lead storage battery (No. 48) of Comparative Example 6 has an alloy composition of Ba. As a result, the tensile strength decreased, and as a result, expand processability, active material filling, retention, growth resistance, and the like deteriorated, resulting in a low cycle life.

前記寿命試験後の鉛蓄電池を解体し、極板格子の腐食状況を調べたが、本発明方法で製造した極板格子(No.41〜45)は、腐食の形跡は全く認められなかったが、比較例6の鉛蓄電池(No.48)は合金組成にBaが含まれていないため耐食性が低下し部分的に腐食が認められた。   The lead storage battery after the life test was disassembled and the corrosion state of the electrode plate grid was examined, but the electrode plate grid (No. 41 to 45) manufactured by the method of the present invention showed no evidence of corrosion. Since the lead storage battery (No. 48) of Comparative Example 6 did not contain Ba in the alloy composition, the corrosion resistance decreased and partial corrosion was observed.

(実施例6)
表1に示した本発明規定組成のNo.Iの鉛合金を常法により溶解鋳造して鋳塊とし、この鋳塊を総圧下率86%で圧延して厚さ0.9mmの素条とし、次に前記素条をエキスパンド加工し、これを所定寸法の極板格子に切り出し、前記極板格子に時効硬化処理(140℃×1.0時間)を施し、この極板格子に正極ペーストを常法により充填し、次いで40℃、湿度95%の雰囲気に24時間保持して熟成したのち乾燥して正極未化成板とした。次に前記正極未化成板に従来法で製造した負極未化成板を、ポリエチレン製セパレータを介して組み合わせ、さらに比重1.200の希硫酸を加えて電槽化成を行い、D26サイズの5時間率容量が20Ahの36Vシール式鉛蓄電池を製造した。
(Example 6)
No. of the composition prescribed in the present invention shown in Table 1. The lead alloy of I is melt-cast by a conventional method to form an ingot, and this ingot is rolled at a total reduction ratio of 86% to form a strip having a thickness of 0.9 mm, and then the strip is expanded. Is cut into an electrode plate lattice of a predetermined size, and the electrode plate lattice is subjected to age hardening (140 ° C. × 1.0 hour), and this electrode plate lattice is filled with a positive electrode paste in a usual manner, and then 40 ° C. and humidity 95 % Atmosphere for 24 hours, and then dried to obtain a positive electrode unformed sheet. Next, the negative electrode non-formed plate manufactured by the conventional method is combined with the positive electrode non-formed plate through a polyethylene separator, and further a dilute sulfuric acid having a specific gravity of 1.200 is added to form a battery case. A 36V sealed lead-acid battery with a capacity of 20 Ah was manufactured.

この鉛蓄電池についてハイブリッド車での使用パターンを模した寿命試験を試験温度60℃の加速条件で行った。   The lead storage battery was subjected to a life test simulating a usage pattern in a hybrid vehicle under accelerated conditions at a test temperature of 60 ° C.

(比較例7)
表1に示す従来組成のNo.Kの鉛合金を用いた他は、実施例6と同じ方法により前記鉛蓄電池を製造し、実施例6と同じ寿命試験を行った。
結果を表6に示す。
(Comparative Example 7)
No. 1 of the conventional composition shown in Table 1. The lead storage battery was manufactured by the same method as in Example 6 except that a lead alloy of K was used, and the same life test as in Example 6 was performed.
The results are shown in Table 6.

Figure 2005044760
Figure 2005044760

表6から明らかなように、本発明方法で製造した極板格子を用いた鉛蓄電池(No.51)はサイクル寿命が85000回と高かった。   As is clear from Table 6, the lead-acid battery (No. 51) using the electrode plate lattice produced by the method of the present invention had a high cycle life of 85,000 times.

これに対し、比較例7の鉛蓄電池(No.52)は合金組成にBaが含まれていないため、極板格子の引張強さが低下し、そのため活物質の保持性が悪化したりグロースが生じたりし、或いは腐食が生じたりしてサイクル寿命が低下した。   On the other hand, since the lead storage battery (No. 52) of Comparative Example 7 does not contain Ba in the alloy composition, the tensile strength of the electrode plate lattice is lowered, so that the retention of the active material is deteriorated or the growth is increased. The cycle life decreased due to the occurrence of corrosion or corrosion.

Claims (3)

Pb−Ca−Ba−Sn系鉛合金または前記鉛合金にAg、Bi、Tlのうちの少なくとも1種を適量含有させた鉛合金の素材に、総圧下率50〜97%の圧延加工、エキスパンド加工、80〜160℃で0.5時間以上加熱する時効硬化処理をこの順に施すことを特徴とする鉛蓄電池極板格子の製造方法。 Pb-Ca-Ba-Sn based lead alloy or a lead alloy material containing an appropriate amount of at least one of Ag, Bi, and Tl in the lead alloy is rolled and expanded with a total rolling reduction of 50 to 97%. , A method for producing a lead-acid battery electrode plate grid, comprising performing age hardening treatment in this order by heating at 80 to 160 ° C. for 0.5 hour or more. 鉛合金の素材が、Caを0.02質量%以上0.05質量%未満、Baを0.002質量%以上0.014質量%以下、Snを0.4質量%以上2.5質量%以下含み、残部がPbと不可避不純物からなることを特徴とする請求項1に記載の鉛蓄電池極板格子の製造方法。 The lead alloy material is Ca 0.02 mass% or more and less than 0.05 mass%, Ba is 0.002 mass% or more and 0.014 mass% or less, and Sn is 0.4 mass% or more and 2.5 mass% or less. The method for producing a lead-acid battery plate grid according to claim 1, wherein the balance is comprised of Pb and inevitable impurities. 鉛合金の素材が、Caを0.02質量%以上0.05質量%未満、Baを0.002質量%以上0.014質量%以下、Snを0.4質量%以上2.5質量%以下含み、さらにAg0.005質量%以上0.07質量%以下、Bi0.01質量%以上0.10質量%以下、Tl0.001質量%以上0.05質量%以下のうちの少なくとも1種を含み、残部がPbと不可避不純物からなることを特徴とする請求項1に記載の鉛蓄電池極板格子の製造方法。 The lead alloy material is Ca 0.02 mass% or more and less than 0.05 mass%, Ba is 0.002 mass% or more and 0.014 mass% or less, and Sn is 0.4 mass% or more and 2.5 mass% or less. Further including at least one of Ag 0.005 mass% to 0.07 mass%, Bi 0.01 mass% to 0.10 mass%, Tl 0.001 mass% to 0.05 mass%, The method for manufacturing a lead-acid battery plate grid according to claim 1, wherein the balance is made of Pb and inevitable impurities.
JP2003280484A 2003-07-25 2003-07-25 Manufacturing method of lead-acid storage battery positive electrode plate lattice Pending JP2005044760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003280484A JP2005044760A (en) 2003-07-25 2003-07-25 Manufacturing method of lead-acid storage battery positive electrode plate lattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003280484A JP2005044760A (en) 2003-07-25 2003-07-25 Manufacturing method of lead-acid storage battery positive electrode plate lattice

Publications (1)

Publication Number Publication Date
JP2005044760A true JP2005044760A (en) 2005-02-17

Family

ID=34266294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003280484A Pending JP2005044760A (en) 2003-07-25 2003-07-25 Manufacturing method of lead-acid storage battery positive electrode plate lattice

Country Status (1)

Country Link
JP (1) JP2005044760A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188702A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Manufacturing method of expanded lattice body for lead-acid battery and lead-acid battery
WO2009060926A1 (en) * 2007-11-05 2009-05-14 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery
WO2009060919A1 (en) * 2007-11-05 2009-05-14 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery
CN110474021A (en) * 2019-09-20 2019-11-19 南阳师范学院 A kind of polar plate of lead acid storage battery, lead-acid accumulator and the preparation method and application thereof
CN114883578A (en) * 2022-05-09 2022-08-09 浙江天能汽车电池有限公司 Preparation method of storage battery pole plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828171A (en) * 1981-08-13 1983-02-19 Yuasa Battery Co Ltd Lead storage battery
JPH11185764A (en) * 1997-12-17 1999-07-09 Yuasa Corp Sealed lead-acid battery of negative electrode absorbing type
JP2000077076A (en) * 1998-09-02 2000-03-14 Toyota Motor Corp Lead base alloy for storage battery
JP2002246031A (en) * 2001-02-19 2002-08-30 Furukawa Battery Co Ltd:The Lead acid battery
JP2002373661A (en) * 2001-06-04 2002-12-26 Enertec Comercial S De Rl De Cv Silver-barium lead alloy for lead-acid battery grid
JP2004200028A (en) * 2002-12-19 2004-07-15 Furukawa Battery Co Ltd:The Manufacturing method of lead acid storage battery electrode grid
JP2004349197A (en) * 2003-05-26 2004-12-09 Furukawa Battery Co Ltd:The Lead-base alloy for lead storage battery and lead storage battery using it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828171A (en) * 1981-08-13 1983-02-19 Yuasa Battery Co Ltd Lead storage battery
JPH11185764A (en) * 1997-12-17 1999-07-09 Yuasa Corp Sealed lead-acid battery of negative electrode absorbing type
JP2000077076A (en) * 1998-09-02 2000-03-14 Toyota Motor Corp Lead base alloy for storage battery
JP2002246031A (en) * 2001-02-19 2002-08-30 Furukawa Battery Co Ltd:The Lead acid battery
JP2002373661A (en) * 2001-06-04 2002-12-26 Enertec Comercial S De Rl De Cv Silver-barium lead alloy for lead-acid battery grid
JP2004200028A (en) * 2002-12-19 2004-07-15 Furukawa Battery Co Ltd:The Manufacturing method of lead acid storage battery electrode grid
JP2004349197A (en) * 2003-05-26 2004-12-09 Furukawa Battery Co Ltd:The Lead-base alloy for lead storage battery and lead storage battery using it

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188702A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Manufacturing method of expanded lattice body for lead-acid battery and lead-acid battery
WO2009060926A1 (en) * 2007-11-05 2009-05-14 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery
WO2009060919A1 (en) * 2007-11-05 2009-05-14 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery
JP2009117103A (en) * 2007-11-05 2009-05-28 Furukawa Battery Co Ltd:The Method for producing lead-base alloy grid for lead-acid battery
JP2009117102A (en) * 2007-11-05 2009-05-28 Furukawa Battery Co Ltd:The Method for producing lead-base alloy grid for lead-acid battery
AU2008325582B2 (en) * 2007-11-05 2010-10-28 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery
CN101627495B (en) * 2007-11-05 2012-07-18 古河电池株式会社 Method for producing lead-base alloy grid for lead-acid battery
US9093713B2 (en) 2007-11-05 2015-07-28 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery
CN110474021A (en) * 2019-09-20 2019-11-19 南阳师范学院 A kind of polar plate of lead acid storage battery, lead-acid accumulator and the preparation method and application thereof
CN114883578A (en) * 2022-05-09 2022-08-09 浙江天能汽车电池有限公司 Preparation method of storage battery pole plate
CN114883578B (en) * 2022-05-09 2023-02-10 浙江天能汽车电池有限公司 Preparation method of storage battery pole plate

Similar Documents

Publication Publication Date Title
JP5140704B2 (en) Alloys for thin positive grids for lead-acid batteries and methods for making this grid
US20050221191A1 (en) Lead alloy and lead storage battery using it
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP5399272B2 (en) Storage battery grid, storage positive electrode grid, and lead acid storage battery
WO2012043331A1 (en) Lead-acid storage battery and idling-stop vehicle whereupon said lead-acid storage battery is mounted
JP3987370B2 (en) Positive electrode plate for lead acid battery and lead acid battery using the same
JP2004527066A (en) Lead-acid batteries and anode plates and alloys therefor
JP6123943B2 (en) Method for producing lead-acid battery and method for producing electrode current collector for lead-acid battery
AU783324B2 (en) Alloy for thin positive grid for lead acid batteries and method for manufacture of grid
JP2004158433A (en) Base plate for lead storage battery, and lead storage battery using the same
JP2005044760A (en) Manufacturing method of lead-acid storage battery positive electrode plate lattice
JP2004200028A (en) Manufacturing method of lead acid storage battery electrode grid
JPH10284085A (en) Grid for lead-acid battery
JP5145644B2 (en) Lead acid battery
US20050158629A1 (en) Lead-based alloy for lead-acid battery, grid for lead-acid battery and lead-acid battery
JP4026259B2 (en) Sealed lead acid battery
JP4248446B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate
JPH10321236A (en) Lead-acid battery
JP4093749B2 (en) Lead-based alloys for lead-acid batteries
JP2006114416A (en) Lead-acid battery
JPH0629021A (en) Lead-based alloy containing calcium, tin and silver, electrode grid made of avobe alloy and lead-acid battery
JP2006196283A (en) Lead-acid battery
JP4503358B2 (en) Lead acid battery
JP2006196342A (en) Lead acid storage battery
Devitt et al. Deep Discharge Cycle Life of Cells Constructed with Wrought Antimonial Lead Grids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019