JP2000077076A - Lead base alloy for storage battery - Google Patents

Lead base alloy for storage battery

Info

Publication number
JP2000077076A
JP2000077076A JP10247941A JP24794198A JP2000077076A JP 2000077076 A JP2000077076 A JP 2000077076A JP 10247941 A JP10247941 A JP 10247941A JP 24794198 A JP24794198 A JP 24794198A JP 2000077076 A JP2000077076 A JP 2000077076A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
corrosion
weight
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10247941A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kusama
和幸 草間
Yasushi Yamazawa
靖 山沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10247941A priority Critical patent/JP2000077076A/en
Publication of JP2000077076A publication Critical patent/JP2000077076A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent short circuit caused by corrosion and to prevent short battery life caused by short circuit when used in a positive electrode grid of a storage battery. SOLUTION: At least one of 0.01-0.3% Li, 0.01-3% Sr, and 0.01-0.3% Ba is added to an Sn-based lead base alloy of 0.05-0.20% Pb, 0.5-2.00% Ca, or an Sb-based lead base alloy of 0.50-2.00% Pb. By adding Li, Sr, and Ba, corrosion resistance of the lead base alloy is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池の極板格
子に使用される鉛基合金に関するものであり、詳しく
は、陽極格子に使用した時の格子腐食を防止できる、耐
食性に優れた鉛基合金組成に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-based alloy used for an electrode grid of a lead-acid battery, and more particularly, to a lead excellent in corrosion resistance which can prevent grid corrosion when used for an anode grid. It relates to the base alloy composition.

【0002】[0002]

【従来の技術】鉛蓄電池は、鉛合金からなる格子体に活
物質を塗布したものが電極として多く使用されている。
従来最も多く使用されている鉛蓄電池の格子用合金は、
Pb−Sb系とPb−Ca系の合金である。Pb−Sb
系は機械的性質に優れ、作業性及び応力腐食性に優れて
いるために使用されている。また、Pb−Ca系合金は
機械的強度もあり、自己放電が少ないために多く使用さ
れている。
2. Description of the Related Art In a lead-acid battery, a grid material made of a lead alloy coated with an active material is often used as an electrode.
The most commonly used lead-acid battery grid alloys are:
It is a Pb-Sb-based and Pb-Ca-based alloy. Pb-Sb
The system is used because of its excellent mechanical properties, excellent workability and stress corrosion. In addition, Pb-Ca alloys are often used because of their high mechanical strength and low self-discharge.

【0003】鉛蓄電池の劣化原因の一つとして鉛合金か
らなる極板格子の腐食がある。特に陽極の格子で腐食が
起こると、PbがPbOやPbSOに変化すること
で、極板格子の体積が膨張する。この体積膨張により、
陽極の極板格子が上下方向に伸びて、陽極・陰極格子を
隔離するセパレータの上端から上方に突出すると、陽極
の極板格子と陰極の極板格子の耳部や陰極ストラップと
が接触して、短絡が発生する虞がある。このような短絡
が発生すると、鉛蓄電池の放電電圧が徐々に低下して寿
命となる。また、格子の電気抵抗も大きくなるため、I
Rドロップにより高率放電特性も低下する。
One of the causes of deterioration of a lead storage battery is corrosion of an electrode grid made of a lead alloy. In particular, when corrosion occurs in the grid of the anode, Pb changes to PbO or PbSO 4 , thereby expanding the volume of the grid of the electrode plate. Due to this volume expansion,
When the anode plate grid extends vertically and protrudes upward from the upper end of the separator that separates the anode and cathode grids, the anode plate grid contacts the ears of the cathode plate grid and the cathode strap, There is a possibility that a short circuit may occur. When such a short circuit occurs, the discharge voltage of the lead storage battery gradually decreases to reach the end of its life. In addition, since the electric resistance of the lattice increases, I
The high-rate discharge characteristics also deteriorate due to the R drop.

【0004】そこで、従来はこの陽極の格子腐食が起き
ないように、Pb−Sb系及びPb−Ca系の鉛合金にS
n、As、Seその他の第三元素を添加し、組成を改良
することで、腐食を抑制するように工夫されてきた。例
えば、特開昭53−76327号公報ではPb−Ca合
金にLi、In、Cu、Zn、Cd、La、Ce、Tl
及びBiからなる群より選択した少なくとも1種の金属
を添加した合金からなる極板格子を備えた鉛蓄電池を開
示している。添加量はLiにおいて0.03〜0.1重
量%、その他の元素においては0.1〜1.0重量%で
あり、Ca量は実施例において0.1重量%である。
Conventionally, Pb-Sb-based and Pb-Ca-based lead alloys have been used in order to prevent lattice corrosion of the anode.
It has been devised to suppress corrosion by adding n, As, Se, and other third elements to improve the composition. For example, in JP-A-53-76327, Li, In, Cu, Zn, Cd, La, Ce, Tl are added to a Pb-Ca alloy.
And a lead-acid battery provided with an electrode grid made of an alloy to which at least one metal selected from the group consisting of Bi and Bi is added. The addition amount of Li is 0.03 to 0.1% by weight, that of other elements is 0.1 to 1.0% by weight, and the amount of Ca is 0.1% by weight in Examples.

【0005】また、特開平5−1341号公報ではPb
−Sb系合金においてSbを0.2〜4.0重量%、A
sを0.01〜2.0重量%、Seを0.001〜0.
15重量%、Sを0.001〜0.10重量%、Cuを
0.005〜0.15重量%、Biを0.001〜0.
60重量%、Snを0.505〜5.50重量%、残部
Pbからなる蓄電池用鉛合金を開示している。
In Japanese Patent Application Laid-Open No. 5-1341, Pb
-0.2 to 4.0% by weight of Sb in an Sb-based alloy,
s is 0.01 to 2.0% by weight, Se is 0.001 to 0.
15% by weight, 0.001 to 0.10% by weight of S, 0.005 to 0.15% by weight of Cu, 0.001 to 0.1% of Bi.
A lead alloy for a storage battery comprising 60% by weight, 0.505 to 5.50% by weight of Sn, and the balance Pb is disclosed.

【0006】その他、Pb−Ca2元系合金の特性を改
善したPb−Ca−Sn系合金も、蓄電池用の鉛合金と
して知られている。
[0006] In addition, a Pb-Ca-Sn-based alloy obtained by improving the properties of a Pb-Ca binary alloy is also known as a lead alloy for a storage battery.

【0007】このように、Pb−Sb系及びPb−Ca系
の鉛合金組成を基に、種々の成分改良がなされている。
As described above, various component improvements have been made based on the Pb-Sb-based and Pb-Ca-based lead alloy compositions.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これま
で提案されてきた材料組成では、陽極の腐食抑制にはま
だ不十分であった。
However, the material compositions proposed so far are still insufficient for suppressing corrosion of the anode.

【0009】例えば、Pb−Ca合金は粒界腐食しやす
く、粒界腐食を起こすと、結晶粒子の脱落により腐食速
度が大きくなる。Snが添加されても、その腐食形態は
十分改良されず、やはり粒界腐食の形態である。
For example, a Pb-Ca alloy is susceptible to intergranular corrosion, and if intergranular corrosion occurs, the corrosion rate increases due to the dropout of crystal grains. Even if Sn is added, the form of corrosion is not sufficiently improved, and is still a form of intergranular corrosion.

【0010】Pb−Sb系合金は均一腐食の形態ではあ
るが、腐食量が十分小さくはない。
[0010] Although the Pb-Sb alloy is in the form of uniform corrosion, the amount of corrosion is not sufficiently small.

【0011】従って、本発明は、従来陽極格子に使用さ
れているPb−Sb系、Pb−Ca系の鉛合金の組成を
改良することにより、特に陽極に使用した場合に耐腐食
性を向上させることを課題とする。
Accordingly, the present invention improves the corrosion resistance of a Pb-Sb-based or Pb-Ca-based lead alloy which has been conventionally used for an anode grid, particularly when used for an anode. That is the task.

【0012】[0012]

【課題を解決するための手段】本発明者は上記課題を解
決するために、Pb−Sb系、Pb−Ca系の鉛合金を
ベースに種々の元素を添加し、その特性を詳細に調べ
た。その結果、耐食性が比較的優れていると言われてい
る従来のPb−Sb系合金以上の耐食性を示す合金組成
に至り、本発明を完成した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventor added various elements based on Pb-Sb-based and Pb-Ca-based lead alloys and examined the characteristics thereof in detail. . As a result, an alloy composition showing corrosion resistance higher than that of a conventional Pb-Sb-based alloy, which is said to have relatively excellent corrosion resistance, was completed, and the present invention was completed.

【0013】すなわち、請求項1に記載の第1の発明
は、Ca:0.05〜0.20重量%、Sn:0.50〜
2.00重量%に加え、さらにLi:0.01〜0.3
重量%、Sr:0.01〜3重量%、Ba:0.01〜
0.3重量%の少なくとも1種または2種以上を含み、
残部がPbと不可避不純物とからなる蓄電池用鉛基合金
である。
That is, the first aspect of the present invention is characterized in that Ca: 0.05 to 0.20% by weight, Sn: 0.50 to 50% by weight.
In addition to 2.00% by weight, Li: 0.01 to 0.3
% By weight, Sr: 0.01 to 3% by weight, Ba: 0.01 to
0.3% by weight of at least one or more kinds,
The balance is a lead-based alloy for a storage battery comprising Pb and unavoidable impurities.

【0014】さらに、請求項2に記載の第2の発明は、
Sb:0.50〜2.00重量%に加え、さらにLi:
0.01〜0.3重量%、Sr:0.01 〜3重量%、
Ba:0.01〜0.3重量%の少なくとも1種または2
種以上を含み、残部がPbと不可避不純物とからなる蓄
電池用鉛基合金である。
[0014] Further, the second invention according to claim 2 provides:
Sb: In addition to 0.50 to 2.00% by weight, Li:
0.01 to 0.3% by weight, Sr: 0.01 to 3% by weight,
Ba: 0.01 to 0.3% by weight of at least one or 2
This is a lead-based alloy for a storage battery that contains at least one species and the balance is composed of Pb and unavoidable impurities.

【0015】尚、本願においては特に断りがない限り、
%は重量%を表す。
In the present application, unless otherwise specified,
% Represents% by weight.

【0016】[0016]

【発明の実施の形態】(第1発明)第1の鉛基合金は、
Pb−Ca−Sn−X系の合金であり、X元素としては
Li、Sr、Baの少なくとも1種または2種以上から選
ばれて添加される。ベースとなる合金はPb−Ca−S
n系である。Pb−Ca系合金は機械的強度もあり自己
放電が少ないため、以前は陽極用格子として一般に使用
されたこともあるが、さらに機械的性質と耐食性を強
め、また、鋳造で格子を製造するために、湯流れ性を高
めることを目的としてSnが添加されたものが使用され
ることが多い。
DETAILED DESCRIPTION OF THE INVENTION (First Invention) A first lead-based alloy is
This is a Pb-Ca-Sn-X alloy, and the X element is added by being selected from at least one or two or more of Li, Sr, and Ba. The base alloy is Pb-Ca-S
It is n-type. Pb-Ca-based alloys also have a mechanical strength and low self-discharge, so they have been generally used before as grids for anodes.However, in order to further enhance mechanical properties and corrosion resistance, and to manufacture grids by casting, In addition, a material to which Sn is added for the purpose of increasing the flow of hot water is often used.

【0017】そこで、本発明は、そのPb−Ca−Sn
系3元系合金をベースにLi、Sr、Baを添加するこ
とで特性を改善したものである。
Accordingly, the present invention provides a method for preparing Pb-Ca-Sn
The characteristics are improved by adding Li, Sr, and Ba to a base ternary alloy.

【0018】Liは、耐食性を向上させるので添加され
ている。0.01%より少ないと耐食性向上効果が十分
ではなく、電極格子の寿命が短くなる。一方、0.3%
を越えると、従来比較的耐食性が優れているとされてい
るPb−Sb合金の耐食性と同等以下になってしまう。
そこでLiの添加量を0.01%〜0.3%とした。
[0018] Li is added to improve the corrosion resistance. If it is less than 0.01%, the effect of improving corrosion resistance is not sufficient, and the life of the electrode grid is shortened. On the other hand, 0.3%
When it exceeds, the corrosion resistance of a Pb-Sb alloy, which is conventionally considered to be relatively excellent in corrosion resistance, is equal to or less than that.
Therefore, the addition amount of Li is set to 0.01% to 0.3%.

【0019】Srは、合金の耐食性を向上させるので添
加されている。0.01%より少ないと耐食性向上効果
が十分ではなく、3%を越えると合金成分を調整する
際、溶湯中に溶解できず合金とすることができない。そ
こで、Srの添加量を0.01%〜3%とした。
Sr is added to improve the corrosion resistance of the alloy. If it is less than 0.01%, the effect of improving corrosion resistance is not sufficient, and if it exceeds 3%, when adjusting alloy components, it cannot be dissolved in the molten metal and cannot be alloyed. Therefore, the addition amount of Sr is set to 0.01% to 3%.

【0020】Baは、やはり耐食性を向上させるために
添加されている。0.01%より少ないと耐食性向上効
果が十分ではなく、0.3%を越えると、従来比較的耐
食性が優れているとされているPb−Sb合金の耐食性
と同等以下になってしまう。そこで、Baの添加量を
0.01〜0.3%とした。
Ba is also added to improve the corrosion resistance. If it is less than 0.01%, the effect of improving corrosion resistance is not sufficient, and if it exceeds 0.3%, the corrosion resistance becomes lower than or equal to the corrosion resistance of a Pb-Sb alloy, which is conventionally considered to be relatively excellent in corrosion resistance. Therefore, the addition amount of Ba is set to 0.01 to 0.3%.

【0021】(第2発明)第2の鉛基合金は、Pb−S
b−X系の合金であり、X元素としてはLi、Sr、Ba
の少なくとも1種または2種以上から選ばれて添加され
る。ベースとなる合金はPb−Sb系である。この合金
系においては粒界腐食を起こしにくく、均一腐食の形態
を示す。従って、本発明はPb−Ca系のように第三元
素を添加することなく、Pb−Sb系2元系合金をベー
スに、Li、Sr、Baを添加することで特性を改善し
たものである。
(Second Invention) The second lead-based alloy is Pb-S
b-X based alloy, and the X element is Li, Sr, Ba
Selected from at least one kind or two or more kinds. The base alloy is a Pb-Sb system. In this alloy system, intergranular corrosion is unlikely to occur and shows a form of uniform corrosion. Therefore, the present invention improves the characteristics by adding Li, Sr, and Ba based on a Pb-Sb-based binary alloy without adding a third element as in the Pb-Ca-based alloy. .

【0022】Liは、耐食性を向上させるので添加され
ている。0.01%より少ないと耐食性向上効果が十分
ではなく、電極格子の寿命が短くなる。一方、0.3%
を越えると、従来比較的耐食性が優れているとされてい
るPb−Sb合金の耐食性と同等以下になってしまう。
そこでLiの添加量を0.01%〜0.3%とした。
Li is added to improve the corrosion resistance. If it is less than 0.01%, the effect of improving corrosion resistance is not sufficient, and the life of the electrode grid is shortened. On the other hand, 0.3%
When it exceeds, the corrosion resistance of a Pb-Sb alloy, which is conventionally considered to be relatively excellent in corrosion resistance, is equal to or less than that.
Therefore, the addition amount of Li is set to 0.01% to 0.3%.

【0023】Srは、合金の耐食性を向上させるので添
加されている。0.01%より少ないと耐食性向上効果
が十分ではなく、3%を越えると従来比較的耐食性が優
れているとされているPb−Sb合金の耐食性と同等以
下になってしまう。そこで、Srの添加量を0.01%
〜3%とした。
Sr is added to improve the corrosion resistance of the alloy. If it is less than 0.01%, the effect of improving the corrosion resistance is not sufficient, and if it exceeds 3%, it becomes lower than or equal to the corrosion resistance of the Pb-Sb alloy, which is conventionally considered to be relatively excellent in corrosion resistance. Therefore, the amount of Sr added is reduced to 0.01%.
To 3%.

【0024】Baは、やはり耐食性を向上させるために
添加されている。0.01%より少ないと耐食性向上効
果が十分ではなく、0.3%を越えると、従来比較的耐
食性が優れているとされているPb−Sb合金の耐食性
と同等以下になってしまう。そこで、Baの添加量を
0.01〜0.3%とした。
Ba is also added for improving the corrosion resistance. If it is less than 0.01%, the effect of improving corrosion resistance is not sufficient, and if it exceeds 0.3%, the corrosion resistance becomes lower than or equal to the corrosion resistance of a Pb-Sb alloy, which is conventionally considered to be relatively excellent in corrosion resistance. Therefore, the addition amount of Ba is set to 0.01 to 0.3%.

【0025】(第1発明、第2発明の共通事項)第1発
明、第2発明の各合金は、平板状に鋳造し、その後圧延
し、エキスパンド加工して格子形状に形成されるのが好
ましい。従って、合金に要求される特性としては耐食性
ばかりではなく、湯流れ性等の鋳造性や、圧延性も要求
される。しかし、電極極板の製造方法はこれに限られて
いる訳ではなく、例えば、鋳造により格子形状を構成す
ることもできる。この場合には、圧延性はあまり要求さ
れない。
(Matters common to the first invention and the second invention) It is preferable that each alloy of the first invention and the second invention is cast into a flat plate, then rolled, and expanded to form a lattice shape. . Therefore, the properties required for the alloy include not only corrosion resistance, but also castability such as melt flowability and rollability. However, the manufacturing method of the electrode plate is not limited to this, and for example, the grid shape can be formed by casting. In this case, the rollability is not so required.

【0026】ペースト式極板の場合には、この格子体
に、陽極活物質粉末を希硫酸で練り合わせたペーストを
充填して用いる。また、クラッド式ではガラス繊維また
は合成繊維などで形成されたチューブの中に鉛合金製の
芯金を挿入し、活物質を充填するので、この芯金に本発
明の鉛合金を適用する。
In the case of a paste type electrode plate, the grid body is filled with a paste obtained by kneading the anode active material powder with dilute sulfuric acid. Further, in the clad type, a lead alloy made of a lead alloy is inserted into a tube formed of glass fiber or synthetic fiber and filled with an active material, so that the lead alloy of the present invention is applied to this core.

【0027】[0027]

【実施例】具体的な実施例を用いて、本発明をさらに詳
細に説明する。
The present invention will be described in more detail with reference to specific examples.

【0028】(実施例1)従来からのPb−Ca−Sn
3元合金に、Li、Sr、Baをそれぞれ添加した合金
について耐食性を検討した。
(Example 1) Conventional Pb-Ca-Sn
The corrosion resistance of the alloy obtained by adding Li, Sr, and Ba to the ternary alloy was examined.

【0029】供試材は、表1の組成になるように成分調
整を行った溶湯を鋳造し、その鋳造品に機械加工を行っ
て、縦30mm×横20mm×厚さ3mmの矩形のテス
トピースを作製した。このテストピースの内、20mm
×20mm×3mmの部分を電解液に浸漬し、高温・高
濃度の電解液中で通電溶解した際の重量変化量を比較し
た。腐食が進むに連れて腐食生成物が付着し、そのた
め、テストピースの重量が増加する。電解液の種類は硫
酸であり、温度は90℃、濃度は60%、電圧は約3
V、電流は0.4A、通電時間は100時間である。な
お、この試験は定電流試験なので、腐食の進行に伴い皮
膜が形成され、電圧は徐々に上昇する。その結果を表1
に合わせて示す。なお、表1中の溶出とは硫酸中での通
電によりテストピースが溶けてなくなる(腐食量が大、
すなわち耐食性が悪い)という意味である。また、図1
はそれをグラフ上にプロットしたものであり、横軸はL
i、Sr、Baの添加量を示し、縦軸は単位面積当たり
の重量変化量を示す。なお、本実施例では、Ca量を
0.10%、Sn量を1.00%に固定しているが、C
aを0.05〜0.20%、Sn量を0.5〜2.0%
の範囲で変化させても耐食性に影響がないことを確認し
ている。
As the test material, a molten metal whose components were adjusted to have the composition shown in Table 1 was cast, and the cast product was machined to obtain a rectangular test piece of 30 mm long × 20 mm wide × 3 mm thick. Was prepared. 20mm of this test piece
A portion of × 20 mm × 3 mm was immersed in an electrolytic solution, and the amount of change in weight when the material was dissolved in a high-temperature, high-concentration electrolytic solution by current distribution was compared. As the corrosion progresses, corrosion products adhere, thereby increasing the weight of the test piece. The type of electrolyte is sulfuric acid, the temperature is 90 ° C., the concentration is 60%, and the voltage is about 3%.
V, the current is 0.4 A, and the energizing time is 100 hours. Since this test is a constant current test, a film is formed with the progress of corrosion, and the voltage gradually increases. Table 1 shows the results.
Shown along with. The elution in Table 1 means that the test piece is not melted by energization in sulfuric acid (the amount of corrosion is large,
That is, the corrosion resistance is poor). FIG.
Is plotted on a graph, and the horizontal axis is L
The addition amounts of i, Sr, and Ba are shown, and the vertical axis shows the weight change per unit area. In this embodiment, the amount of Ca is fixed at 0.10% and the amount of Sn is fixed at 1.00%.
a 0.05 to 0.20%, Sn amount 0.5 to 2.0%
It has been confirmed that there is no effect on the corrosion resistance even if it is changed within the range.

【0030】[0030]

【表1】 従来、耐食性が比較的良いとされているPb−Sb合金
の耐食性レベルを図1に合わせて示すが、その値は単位
面積当たりの重量変化で、0.9g/cmである。
[Table 1] Conventionally, the corrosion resistance level of a Pb-Sb alloy, which is considered to be relatively good, is shown in FIG. 1, and the value is 0.9 g / cm 2 in weight change per unit area.

【0031】耐食性試験の結果、Liを添加した合金、
およびBaを添加した合金では、Li、Baの添加量が
0.01%〜0.3%の範囲で従来のPb−Sb合金よ
り優れた耐食性を示した。また、Srを添加した合金で
は、試験した範囲では添加量が多くなってもすべて従来
のPb−Sb合金より優れた耐食性を示したが、5%添
加では、溶湯の成分調整をしようとしても溶解せず、テ
ストピースが作製できなかった。また、実施例、比較例
の各合金の腐食形態は、従来のPb−Ca−Sn合金の
粒界腐食とは異なり、均一腐食であり、腐食形態の面で
も改善が見られた。また、合金強度、鋳造性、圧延性に
関しても確認したが、従来のPb−Ca−Sn3元合金
と同等の特性であった。
As a result of the corrosion resistance test, an alloy to which Li was added,
And the alloys to which Ba was added showed superior corrosion resistance to the conventional Pb-Sb alloy when the amounts of Li and Ba added were in the range of 0.01% to 0.3%. In addition, in the alloys to which Sr was added, even when the amount of addition was large in the tested range, all exhibited superior corrosion resistance to the conventional Pb-Sb alloy. No test piece could be made. Moreover, unlike the conventional intergranular corrosion of the Pb-Ca-Sn alloy, the corrosion form of each alloy of the example and the comparative example was uniform corrosion, and the corrosion form was also improved. In addition, although the alloy strength, castability, and rollability were also confirmed, the characteristics were equivalent to those of a conventional Pb-Ca-Sn ternary alloy.

【0032】(実施例2)従来からのPb−Sb2元合
金に、実施例1と同様に、Li、Sr、Baをそれぞれ
添加した合金について耐食性を検討した。
Example 2 In the same manner as in Example 1, the corrosion resistance of an alloy obtained by adding Li, Sr, and Ba to a conventional Pb-Sb binary alloy was examined.

【0033】供試材は、表2の組成になるように成分調
整を行った溶湯を鋳造し、実施例1と同様のテストピー
ス形状で、実施例1と同様の条件で耐食性試験を行っ
た。その結果を表2に合わせて示す。なお、表2中の溶
出とは硫酸中での通電によりテストピースが溶けてなく
なる(腐食量が大、すなわち耐食性が悪い)という意味
である。また、図2はそれをグラフ上にプロットしたも
のであり、横軸はLi、Sr、Baの添加量を示し、縦
軸は単位面積当たりの重量変化量を示す。なお、本実施
例では、Sbの組成は1.70%に固定しているが、S
bを0.5〜2%の範囲で変化させても耐食性に影響が
ないことを確認している。
As the test material, a molten metal whose components were adjusted so as to have the composition shown in Table 2 was cast and subjected to a corrosion resistance test in the same test piece shape as in Example 1 under the same conditions as in Example 1. . The results are shown in Table 2. The term “elution” in Table 2 means that the test piece is not melted by energization in sulfuric acid (the amount of corrosion is large, that is, the corrosion resistance is poor). FIG. 2 is a graph plotted on the graph. The horizontal axis indicates the amounts of Li, Sr, and Ba added, and the vertical axis indicates the weight change per unit area. In the present embodiment, the composition of Sb is fixed at 1.70%,
It has been confirmed that changing b in the range of 0.5 to 2% does not affect the corrosion resistance.

【0034】[0034]

【表2】 従来、耐食性が比較的良いとされているPb−Sb合金
の耐食性レベルを図2に合わせて示す。
[Table 2] FIG. 2 shows the corrosion resistance level of a Pb-Sb alloy, which is conventionally considered to have relatively good corrosion resistance.

【0035】耐食性試験の結果、Liを添加した合金、
およびBaを添加した合金では、Li、Baの添加量が
0.01%〜0.3%の範囲で従来のPb−Sb合金よ
り優れた耐食性を示した。また、Srを添加した合金で
は、Srの添加量が0.01%〜3%の範囲で従来のP
b−Sb合金より優れた耐食性を示した。
As a result of the corrosion resistance test, an alloy to which Li was added,
And the alloys to which Ba was added showed superior corrosion resistance to the conventional Pb-Sb alloy when the amounts of Li and Ba added were in the range of 0.01% to 0.3%. In addition, in the case of the alloy to which Sr is added, the conventional P
It showed better corrosion resistance than the b-Sb alloy.

【0036】また、実施例、比較例の各合金の腐食形態
は、従来のPb−Sb合金と同様に均一腐食であり、腐
食形態の面でも問題ない。また、合金強度、鋳造性、圧
延性に関しても確認したが、従来のPb−Sb2元合金
と同等の特性であった。
The corrosion form of each of the alloys of Examples and Comparative Examples is uniform corrosion as in the case of the conventional Pb-Sb alloy, and there is no problem in terms of the form of corrosion. In addition, although the alloy strength, castability, and rollability were also confirmed, the characteristics were equivalent to those of a conventional Pb-Sb binary alloy.

【0037】(試験例1)前記実施例1、2では、テス
トピースによる耐食性試験を行ったものであるが、本試
験例では、実際に蓄電池の陽極格子として使用し、電池
寿命を調べたものである。
(Test Example 1) In Examples 1 and 2, the corrosion resistance test was performed using a test piece. In this test example, the battery life was examined by actually using it as an anode grid of a storage battery. It is.

【0038】まず、常法に従ってJIS規格の95D3
1相当の鉛蓄電池を作製し、JISD5301の軽負荷
寿命試験を85℃の気槽にて実施した。なお、寿命の判
定は放電電圧が7.2Vをきる回数とした。供試蓄電池
の陽極格子組成は、 Pb−0.1%Ca−1%Sn(従来合金) Pb−0.1%Ca−1%Sn−0.03%Li Pb−0.1%Ca−1%Sn−0.03%Sr Pb−0.1%Ca−1%Sn−3%Sr Pb−0.1%Ca−1%Sn−0.03%Ba の5種類である。
First, JIS standard 95D3
A lead-acid battery equivalent to 1 was manufactured, and the light load life test of JISD5301 was performed in an air tank at 85 ° C. The life was determined by the number of times the discharge voltage exceeded 7.2V. The anode grid composition of the test storage battery was Pb-0.1% Ca-1% Sn (conventional alloy) Pb-0.1% Ca-1% Sn-0.03% Li Pb-0.1% Ca-1 % Sn-0.03% SrPb-0.1% Ca-1% Sn-3% SrPb-0.1% Ca-1% Sn-0.03% Ba.

【0039】試験結果の電池寿命は、それぞれ500
0回、5500回、8000回、9100回、
7700回であり、からの本発明合金を使用した電
池は、いずれもの従来のPb−Ca−Sn3元合金よ
り電池寿命が延びていた。これは、Li、Sr、Baの
添加により陽極格子の耐食性が向上したことによる。
The battery life of the test results was 500
0 times, 5500 times, 8000 times, 9100 times,
The battery using the alloy of the present invention was 7,700 times, and the battery life was longer than any conventional Pb-Ca-Sn ternary alloy. This is because the corrosion resistance of the anode grid was improved by adding Li, Sr, and Ba.

【0040】(試験例2)本試験例2は、前記試験例1
と同様にして実際の電池で電池寿命を調べたものであ
る。
(Test Example 2) The present Test Example 2 is the same as the Test Example 1 described above.
In the same manner as in the above, the battery life was examined with an actual battery.

【0041】供試蓄電池の陽極格子組成は、 Pb−1.7%Sb(従来合金) Pb−1.7%Sb−0.03%Li Pb−1.7%Sb−0.03%Sr Pb−1.7%Sb−0.03%Ba の4種類である。The anode grid composition of the test storage battery was Pb-1.7% Sb (conventional alloy) Pb-1.7% Sb-0.03% Li Pb-1.7% Sb-0.03% Sr Pb -1.7% Sb-0.03% Ba.

【0042】試験結果の電池寿命は、それぞれ450
0回、5200回、7300回、6900回、で
あり、からの本発明合金を使用した電池は、いずれ
もの従来のPb−Sb3元合金より電池寿命が延びて
いた。これは、Li、Sr、Baの添加により陽極格子
の耐食性が向上したことによる。
The battery life of the test results was 450
The batteries using the alloy of the present invention from 0 times, 5200 times, 7300 times, and 6900 times had a longer battery life than any conventional Pb-Sb ternary alloy. This is because the corrosion resistance of the anode grid was improved by adding Li, Sr, and Ba.

【0043】[0043]

【発明の効果】第1発明のPb−Ca−Sn系合金にL
i、Sr、Baを添加した蓄電池用鉛基合金では、L
i、Sr、Baの作用効果により、耐食性が大幅に向上
し、ひいては電池寿命の向上につながる。
The Pb-Ca-Sn based alloy of the first invention has L
In a lead-based alloy for a storage battery to which i, Sr, and Ba are added, L
Due to the effects of i, Sr, and Ba, the corrosion resistance is significantly improved, which leads to an improvement in battery life.

【0044】また、第2発明のPb−Sb系合金にL
i、Sr、Baを添加した蓄電池用鉛基合金でも、やは
りLi、Sr、Baの作用効果により、耐食性が大幅に
向上し、ひいては電池寿命の向上につながる。
The Pb-Sb-based alloy of the second invention has L
Even in a lead-based alloy for a storage battery to which i, Sr, and Ba are added, the effect of Li, Sr, and Ba also greatly improves corrosion resistance, and thus leads to an improvement in battery life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の鉛基合金の、Li、Sr、Baの添
加量と試験片の単位面積当たりの重量変化の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the amounts of Li, Sr, and Ba added and the change in weight per unit area of a test piece in the lead-based alloy of Example 1.

【図2】実施例2の鉛基合金の、Li、Sr、Baの添
加量と試験片の単位面積当たりの重量変化の関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the amounts of Li, Sr, and Ba added to the lead-based alloy of Example 2 and changes in weight per unit area of a test piece.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Ca:0.05〜0.20重量%、Sn:
0.50〜2.00重量%に加え、さらにLi:0.0
1〜0.3重量%、Sr:0.01〜3重量%、Ba:
0.01〜0.3重量%の少なくとも1種または2種以
上を含み、残部がPbと不可避不純物とからなる蓄電池
用鉛基合金。
1. Ca: 0.05 to 0.20% by weight, Sn:
In addition to 0.50 to 2.00% by weight, Li: 0.0
1 to 0.3% by weight, Sr: 0.01 to 3% by weight, Ba:
A lead-based alloy for a storage battery containing at least one or two or more of 0.01 to 0.3% by weight, with the balance being Pb and inevitable impurities.
【請求項2】Sb:0.50〜2.00重量%に加え、
さらにLi:0.01〜0.3重量%、Sr:0.01
〜3重量%、Ba:0.01〜0.3重量%の少なくと
も1種または2種以上を含み、残部がPbと不可避不純物
とからなる蓄電池用鉛基合金。
2. In addition to Sb: 0.50 to 2.00% by weight,
Further, Li: 0.01 to 0.3% by weight, Sr: 0.01
A lead-based alloy for a storage battery containing at least one or more of Ba and 0.01 to 0.3% by weight, with the balance being Pb and unavoidable impurities.
JP10247941A 1998-09-02 1998-09-02 Lead base alloy for storage battery Pending JP2000077076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247941A JP2000077076A (en) 1998-09-02 1998-09-02 Lead base alloy for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247941A JP2000077076A (en) 1998-09-02 1998-09-02 Lead base alloy for storage battery

Publications (1)

Publication Number Publication Date
JP2000077076A true JP2000077076A (en) 2000-03-14

Family

ID=17170838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247941A Pending JP2000077076A (en) 1998-09-02 1998-09-02 Lead base alloy for storage battery

Country Status (1)

Country Link
JP (1) JP2000077076A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044761A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Lattice board for lead-acid battery, and lead-acid battery using it
JP2005044760A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Manufacturing method of lead-acid storage battery positive electrode plate lattice
JP2005093305A (en) * 2003-09-19 2005-04-07 Furukawa Battery Co Ltd:The Electrode substrate for lead storage battery
JP2006114235A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Lead acid storage battery
CN1323449C (en) * 2004-03-31 2007-06-27 新神户电机株式会社 Lead alloy and lead storage battery using it
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044761A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Lattice board for lead-acid battery, and lead-acid battery using it
JP2005044760A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Manufacturing method of lead-acid storage battery positive electrode plate lattice
JP4515055B2 (en) * 2003-07-25 2010-07-28 古河電池株式会社 Lattice substrate for lead storage battery and lead storage battery using the same
JP2005093305A (en) * 2003-09-19 2005-04-07 Furukawa Battery Co Ltd:The Electrode substrate for lead storage battery
CN1323449C (en) * 2004-03-31 2007-06-27 新神户电机株式会社 Lead alloy and lead storage battery using it
JP2006114235A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Lead acid storage battery
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Similar Documents

Publication Publication Date Title
JP3555877B2 (en) Alloy for battery grid
JP2000077076A (en) Lead base alloy for storage battery
JP2004349197A (en) Lead-base alloy for lead storage battery and lead storage battery using it
JP4646572B2 (en) Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
JP2002175798A (en) Sealed lead-acid battery
US4158563A (en) Low antimonial lead alloy for making grids for use in maintenance free batteries
US2694628A (en) Grid metal alloy
US4170470A (en) High strength lead alloy
JP3113895B2 (en) Lead alloy for storage battery
JP2720029B2 (en) Lead alloy for storage battery
US4007056A (en) Lead base cadmium-tin alloy useful for forming battery components
JP4868847B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
CN1055321C (en) Fully closed maintenance-free lead-acid accumulator super-low antimoney grid alloy material
JP4502346B2 (en) Lead-based alloys for lead-acid batteries
US4169192A (en) Lead-acid storage battery having Pb-Cd-Zn-Sn plate straps
JPS63141263A (en) Lead-base alloy for storage battery
GB1569317A (en) Lead alloys
JPH01189859A (en) Lead-acid battery
US3296028A (en) Lead storage battery electrode alloy composition
JPH08339794A (en) Lead acid battery
JP2000021413A (en) Positive electrode lattice body for lead-acid battery
JP3658871B2 (en) Lead acid battery
GB2058836A (en) Lead based alloys and battery grids made therefrom
JPH0770321B2 (en) Sealed lead acid battery