JP2006114235A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2006114235A
JP2006114235A JP2004297432A JP2004297432A JP2006114235A JP 2006114235 A JP2006114235 A JP 2006114235A JP 2004297432 A JP2004297432 A JP 2004297432A JP 2004297432 A JP2004297432 A JP 2004297432A JP 2006114235 A JP2006114235 A JP 2006114235A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
storage battery
negative electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004297432A
Other languages
Japanese (ja)
Other versions
JP4923399B2 (en
Inventor
Shozo Murochi
省三 室地
Tsunenori Yoshimura
恒典 吉村
Michio Kurematsu
道男 榑松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004297432A priority Critical patent/JP4923399B2/en
Publication of JP2006114235A publication Critical patent/JP2006114235A/en
Application granted granted Critical
Publication of JP4923399B2 publication Critical patent/JP4923399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead acid storage battery having superior life characteristics and high reliability by suppressing movement of Sb to a negative electrode in the lead acid storage battery which is stored for a long period as a stock such as more than six months from the manufacturing till actual use. <P>SOLUTION: The lead acid storage battery comprises a positive electrode plate 1 in which a positive electrode active material 3 is filled in positive electrode grid 2, a negative electrode plate in which a negative electrode active material is filled in a negative electrode grid, and a separator which is installed between the positive electrode plate and the negative electrode plate. The positive electrode grid is constructed of Pb-Ca-Sn alloy matrix and a surface layer 4 made of Pb-Sb-Ba alloy is provided at least at a part of a face where the positive electrode grid contacts the positive electrode active material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

車両のエンジン始動用やバックアップ電源用といった様々な用途に鉛蓄電池が用いられている。その中でも始動用鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給する。エンジン始動後、電池はオルタネータによって充電される。ここで、電池の充電と放電とがバランスし、電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。このような始動用鉛蓄電池はサイクルサービス用の鉛蓄電池とは異なり、比較的高いSOCで用いられる。   Lead-acid batteries are used for various purposes such as vehicle engine starting and backup power supply. Among them, the start lead-acid battery supplies power to various electric and electronic devices mounted on the vehicle as well as power to the engine start cell motor. After the engine is started, the battery is charged by the alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the battery are balanced and the SOC (charged state) of the battery is maintained at 90 to 100%. Such a lead acid battery for starting is different from a lead acid battery for cycle service, and is used at a relatively high SOC.

一方、始動用鉛蓄電池の主な劣化モードの一つに過充電による正極板の劣化がある。この劣化は主に、過充電によって正極格子体が腐食するものであり、この腐食によって格子体の集電効率が低下したり、また、腐食による格子体の体積膨張によって、正極が伸長し、負極と短絡する等の現象が引き起こされる。   On the other hand, one of the main deterioration modes of the lead acid battery for starting is deterioration of the positive electrode plate due to overcharge. This deterioration is mainly due to corrosion of the positive electrode grid body due to overcharge, and this corrosion reduces the current collection efficiency of the grid body, and the positive electrode extends due to the volume expansion of the grid body due to corrosion. Cause a short circuit.

このような、正極格子における腐食を抑制するために、正極格子合金組成の検討が従来から行われてきた。特に、自己放電および減液量を抑制したいわゆるメンテナンスフリーの始動用鉛蓄電池の分野では、正極格子中にSbを含まない、Pb−Ca−Sn合金中のCa、Sn添加量やBi、Ba等の合金成分の検討が行われている。その中でも、例えば特許文献1に記載されるような、Caを0.03〜0.08wt%、Snを0.5〜1.8wt%含むPb−Ca−Sn合金の圧延体から得た格子体は耐食性に優れ、鉛蓄電池の正極格子に用いることにより、長寿命の鉛蓄電池を得ることができる。   In order to suppress such corrosion in the positive grid, the positive grid alloy composition has been studied conventionally. In particular, in the field of so-called maintenance-free start-up lead storage batteries in which self-discharge and liquid reduction are suppressed, Sb is not included in the positive electrode lattice, Ca, Sn addition amount, Bi, Ba, etc. in the Pb-Ca-Sn alloy The alloy components are being studied. Among them, for example, as described in Patent Document 1, a lattice body obtained from a rolled body of a Pb—Ca—Sn alloy containing 0.03 to 0.08 wt% Ca and 0.5 to 1.8 wt% Sn. Is excellent in corrosion resistance and can be used for a positive electrode grid of a lead storage battery to obtain a long-life lead storage battery.

このように、Pb−Ca−Sn合金の圧延材から得た正極格子は耐食性に優れるといった利点があるものの、一方では、格子中にSbを含まないがために、Sbの利点であった、正極活物質同士および正極格子−活物質間の結合力向上の効果が得られない。また圧延材は従来の鋳造格子と比較して、その表面が非常に平滑であり、前記のような正極格子−活物質間の物理的な結合力も低下するという状況にあった。   Thus, although the positive electrode lattice obtained from the rolled material of the Pb—Ca—Sn alloy has the advantage of being excellent in corrosion resistance, on the other hand, since the lattice does not contain Sb, the positive electrode was an advantage of Sb. The effect of improving the bonding force between the active materials and between the positive electrode lattice and the active material cannot be obtained. In addition, the rolled material has a very smooth surface as compared with the conventional cast lattice, and the physical bonding force between the positive electrode lattice and the active material is reduced as described above.

このような状況において、鉛蓄電池の充放電サイクルを繰り返して行った場合、正極活物質の微細化と極板からの脱落が進行し、容量低下し、寿命にいたるという課題があった。このような正極に起因する鉛蓄電池の寿命特性を改善するために、例えば特許文献2には正極格子の活物質と接する界面にSbを含む層を形成することが示されている。正極格子−活物質界面に存在するSbはその一部が正極活物質に移行して、前記のような正極活物質同士および、正極格子−活物質間の結合力を改善し、前記のような正極に起因する寿命低下を抑制することが知られている。   In such a situation, when the charge / discharge cycle of the lead-acid battery is repeated, there is a problem that the positive electrode active material is further refined and detached from the electrode plate, the capacity is reduced, and the life is reached. In order to improve the life characteristics of the lead-acid battery resulting from such a positive electrode, for example, Patent Document 2 shows that a layer containing Sb is formed at the interface in contact with the active material of the positive electrode grid. Part of the Sb present at the positive electrode lattice-active material interface is transferred to the positive electrode active material, improving the bonding strength between the positive electrode active materials as described above and between the positive electrode lattice and the active material, as described above. It is known to suppress a decrease in life caused by the positive electrode.

このように、Pb−Ca−Sn正極格子表面上にSbを配置する構成は、正極格子に最適な耐食性にすぐれたPb−Ca−Sn格子の特徴を生かしつつ、従来のPb−Sb系合金格子においてSbによりもたらされる正極の改質効果を両立でき、比較的低コストで鉛蓄電池の寿命特性を改善できることから有用である。
特開平5−343070号公報 特開昭63−148556号公報
As described above, the configuration in which Sb is arranged on the surface of the Pb—Ca—Sn positive electrode lattice utilizes the characteristics of the Pb—Ca—Sn lattice excellent in corrosion resistance optimum for the positive electrode lattice, and the conventional Pb—Sb alloy lattice. It is useful because it can achieve both the positive electrode reforming effect brought about by Sb and improve the life characteristics of the lead-acid battery at a relatively low cost.
Japanese Patent Laid-Open No. 5-343070 JP-A 63-148556

しかしながら、正極格子表面上に配置したSbは除々に正極活物質に溶出して正極活物質の特性を改善するものの、溶出したSbの一部は電解液中に溶出し、負極に移行することによって、自己放電特性を低下させたり、電解液中の水分減少量(以下、減液量)を増加させるため、時間の経過とともに、正極格子表面上のSbが正極活物質を経由して負極に移行することによってSbによる正極改質の効果が低下するという問題があった。   However, although Sb arranged on the surface of the positive electrode lattice gradually elutes into the positive electrode active material to improve the characteristics of the positive electrode active material, a part of the eluted Sb is eluted into the electrolyte and moves to the negative electrode. Over time, Sb on the surface of the positive electrode lattice moves to the negative electrode via the positive electrode active material in order to reduce the self-discharge characteristics or increase the amount of water decrease in the electrolyte (hereinafter referred to as “liquid reduction amount”). As a result, there is a problem that the effect of the positive electrode reforming by Sb is lowered.

このような問題は、例えば、鉛蓄電池を製造後、長期間在庫等により放置してから使用する場合に深刻であった。すなわち、正極格子表面からSbが長期間の在庫中に溶出し、電解液中に拡散した場合、正極格子表面にSbを配置したことによる効果、すなわち、寿命伸長効果が十分に得られないという課題があった。昨今、始動用の鉛蓄電池は市場において様々な流通形態を有しており、場合によっては鉛蓄電池の製造から実際に使用される期間が半年を越えるような長期間となることがあり、このような、流通期間が長くなった場合には、当初目論んだ寿命性能が得られない、というものである。   Such a problem has been serious when, for example, a lead storage battery is used after being left in stock for a long time after manufacturing. That is, when Sb is eluted from the positive electrode lattice surface into the stock for a long time and diffuses into the electrolyte, the effect of arranging Sb on the positive electrode lattice surface, that is, the life extension effect cannot be obtained sufficiently. was there. Nowadays, lead-acid batteries for starting have various distribution forms in the market, and in some cases, the period of actual use from the production of lead-acid batteries may be longer than half a year. If the distribution period is long, the intended life performance cannot be obtained.

本発明は、このような長期間在庫した鉛蓄電池においても、優れた寿命特性を有した信頼性の高い鉛蓄電池を提供することを目的とする。   An object of the present invention is to provide a highly reliable lead storage battery having excellent life characteristics even in such a lead storage battery stocked for a long period of time.

本発明は上記目的を達成するために、鉛蓄電池において、Pb−Ca−Sn合金基材で構成された正極格子の正極活物質と接する表面の一部にPb−Sb−Ba合金の表面層を形成したことを特徴とする。   In order to achieve the above object, the present invention provides a lead-acid battery in which a surface layer of a Pb-Sb-Ba alloy is formed on a part of the surface in contact with the positive electrode active material of a positive electrode lattice made of a Pb-Ca-Sn alloy base material. It is formed.

また前記表面層中に含まれるBa量を0.3〜7.0wt%とすることが好ましく、さらに前記表面層中に含まれるBa量を3.5〜7.0wt%とすることがより好ましい。   Further, the amount of Ba contained in the surface layer is preferably 0.3 to 7.0 wt%, and the amount of Ba contained in the surface layer is more preferably 3.5 to 7.0 wt%. .

このような本発明の構成により、鉛蓄電池の放置期間が長期にわたっても寿命特性の劣化を抑制することができる。特にSbを含む層にBaを添加することにより、放置期間中における含むSb層からのSbの溶出を抑制し、長期放置後においても、Sbを正極中に保持することにより、上記のような効果を得ることができる。また、これにより、Sbの負極への移行が抑制されるため、長期放置後の減液性能をも向上させることができる。   With such a configuration of the present invention, it is possible to suppress the deterioration of the life characteristics even when the lead storage battery is left for a long period. In particular, by adding Ba to the Sb-containing layer, Sb elution from the Sb layer included during the standing period is suppressed, and Sb is retained in the positive electrode even after being left for a long period of time. Can be obtained. Moreover, since this suppresses the transition of Sb to the negative electrode, it is possible to improve the liquid reduction performance after standing for a long time.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の鉛蓄電池に用いる正極格子2はPb−Ca−Sn合金を基材とする。なお、基材はPb−Ca−Sn合金の圧延材であってもよい。正極格子中のCaの量としては格子強度の観点から、0.03〜0.10wt%、Snの量としては格子強度および耐腐食性の観点より、1.00〜2.00wt%が適切である。   The positive grid 2 used in the lead storage battery of the present invention is based on a Pb—Ca—Sn alloy. The base material may be a rolled material of a Pb—Ca—Sn alloy. The amount of Ca in the positive electrode lattice is suitably 0.03 to 0.10 wt% from the viewpoint of lattice strength, and the amount of Sn is suitably 1.00 to 2.00 wt% from the viewpoint of lattice strength and corrosion resistance. is there.

本発明では、正極板1に用いる正極格子2の正極活物質3と接する表面の少なくとも一部にPb−Sb−Ba合金の表面層4を形成する。ここで表面層4中に含まれるSbは正極格子−活物質界面に存在させることによって、正極活物質間および正極格子−活物質間の結合力を確保する目的で添加するものである。これらの効果を得るためにSbの量は1.0〜7.0wt%の範囲が適切である。   In the present invention, the surface layer 4 of Pb—Sb—Ba alloy is formed on at least a part of the surface of the positive electrode grid 2 used for the positive electrode plate 1 in contact with the positive electrode active material 3. Here, Sb contained in the surface layer 4 is added for the purpose of ensuring the bonding force between the positive electrode active materials and between the positive electrode lattices and the active material by being present at the positive electrode lattice-active material interface. In order to obtain these effects, the amount of Sb is suitably in the range of 1.0 to 7.0 wt%.

また、表面層4中に含まれるBa量は0.3〜7.0wt%、好ましくは3.5〜7.0wt%の範囲とする。表面層4中に含まれるBaは表面層4の耐食性を向上させる作用を有する。表面層4の耐食性が向上することにより、Sbの正極活物質へ溶出速度が減じ
られ、溶出によって、Sbが早期に正極活物質、電解液および負極へと散逸することを抑制する。その結果、Sbは比較的長期間、正極格子表面上に残存し、除々に正極活物質へ移行するため、Sbによる正極改質効果とこれによる寿命伸長効果をより、持続的に得ることができる。
Further, the amount of Ba contained in the surface layer 4 is in the range of 0.3 to 7.0 wt%, preferably 3.5 to 7.0 wt%. Ba contained in the surface layer 4 has an action of improving the corrosion resistance of the surface layer 4. By improving the corrosion resistance of the surface layer 4, the elution rate of Sb to the positive electrode active material is reduced, and Sb is prevented from dissipating to the positive electrode active material, the electrolytic solution, and the negative electrode at an early stage due to the elution. As a result, Sb remains on the surface of the positive electrode lattice for a relatively long period of time and gradually moves to the positive electrode active material, so that the positive electrode reforming effect by Sb and the life extension effect by this can be obtained more continuously. .

なお、正極格子2の製造方法としては、基材合金のスラブにPb−Sb−Ba合金シートを重ね合わせ、両者を圧延一体化して得た圧延シートを用いることにより、生産性よく得ることができる。この圧延シートにパンチング加工やエキスパンド加工等の穴あけ加工を施し、活物質ペーストを充填し、単一極板に切断加工することにより、本発明の鉛蓄電池に用いる正極板を得ることができる。   In addition, as a manufacturing method of the positive electrode grid 2, it can obtain with good productivity by using a rolled sheet obtained by superimposing a Pb—Sb—Ba alloy sheet on a base alloy slab and rolling and integrating the two. . A positive electrode plate used in the lead storage battery of the present invention can be obtained by subjecting this rolled sheet to a punching process such as a punching process or an expanding process, filling it with an active material paste, and cutting it into a single electrode plate.

また、高出力の鉛蓄電池を得るために、超薄型、例えば0.1〜0.5mm程度の正極格子を採用する場合、この圧延シートに穴あけ加工を施さず、圧延シート上にそのまま、活物質ペーストあるいは活物質スラリーを塗布しても良い。   In addition, in order to obtain a high output lead-acid battery, when an ultra-thin type, for example, a positive electrode grid having a thickness of about 0.1 to 0.5 mm is adopted, the rolled sheet is not subjected to drilling, and is directly applied on the rolled sheet. A material paste or an active material slurry may be applied.

そして、本発明の鉛蓄電池はこの正極板を用い、定法により鉛蓄電池として組みたてたものである。なお、特に本発明ではメンテナンスフリー性を考慮して正極格子2の基材にPb−Ca−Sn合金を用いているため、負極においても、格子中にSbを含まない、Pb−Ca合金、Pb−Ca−Sn合金といったPb合金もしくはPbを用いることが好ましいことは、言うまでもない。   And the lead acid battery of this invention is assembled as a lead acid battery by the usual method using this positive electrode plate. In particular, in the present invention, since the Pb—Ca—Sn alloy is used for the base material of the positive electrode lattice 2 in consideration of maintenance-free property, the Pb—Ca alloy, Pb containing no Sb in the lattice also in the negative electrode. Needless to say, it is preferable to use Pb alloy such as -Ca-Sn alloy or Pb.

なお、正極活物質ペーストには、従来知られたものを用いることができる。例えば化成効率の向上を目的とした鉛丹や、初期容量特性向上を目的とした、硫酸スズ、酸化スズ等のスズ化合物あるいはカーボン等を添加したものを用いることができることも、言うまでもない。   A conventionally known positive electrode active material paste can be used. Needless to say, for example, a red lead for the purpose of improving chemical conversion efficiency, a tin compound such as tin sulfate or tin oxide, or a carbon added for the purpose of improving the initial capacity characteristics can be used.

表1に示される各種電池を作製した。なお、電池はJIS D5301(1999)で規定する55D23形の始動用鉛蓄電池である。   Various batteries shown in Table 1 were produced. The battery is a 55D23 type lead storage battery for start-up specified by JIS D5301 (1999).

Figure 2006114235
次いで表1に示される電池について、寿命試験、放置後の寿命試験、減液性能試験を行い、その結果を表2に示す。
Figure 2006114235
Subsequently, the battery shown in Table 1 was subjected to a life test, a life test after being left to stand, and a liquid reduction performance test. The results are shown in Table 2.

Figure 2006114235
ここで、寿命試験は、75℃気相中で、25A、4分間放電を行った後14.8V(最大電流25A)、10分間充電を行ったものを一サイクルとし、前記サイクルの480サイクル毎に25℃気相中で、356A、30秒放電時の放電末期電圧を測定し、前記放電末期電圧が7.2Vに低下するまでのサイクル数を寿命サイクル数とした。
Figure 2006114235
Here, the life test is performed in a gas phase of 75 ° C. for 25 A for 4 minutes and then 14.8 V (maximum current 25 A) and charged for 10 minutes as one cycle, and every 480 cycles of the above cycle. In the gas phase at 25 ° C., the end-of-discharge voltage at the time of 356 A, 30-second discharge was measured, and the number of cycles until the end-of-discharge voltage decreased to 7.2 V was defined as the number of life cycles.

また、減液性能試験(減液量の測定)は、40℃水槽中で、14.4V(定電圧)、500時間充電を行った後、充電前後における質量減少を減液量とした。   Further, in the liquid reduction performance test (measurement of the liquid reduction amount), after charging in a 40 ° C. water tank for 14.4 V (constant voltage) for 500 hours, the decrease in mass before and after charging was defined as the liquid reduction amount.

なお、表2における放置した電池の寿命サイクル試験および減液性能試験は、40℃の環境下で4ヶ月間開路状態で放置した後、15.0V定電圧充電、最大電流25A、25℃環境下の条件で6時間補充電した電池に対して、上記の条件で寿命試験および減液性能試験を行ったものである。   In addition, the life cycle test and the liquid reduction performance test of the left battery in Table 2 were conducted in an open circuit state at 40 ° C. for 4 months, and then charged at 15.0 V constant voltage, maximum current 25 A, 25 ° C. environment. A life test and a liquid reduction performance test were performed under the above conditions for the battery that was supplemented for 6 hours under the above conditions.

表2の結果から明らかなように表面層を有さない電池Aでは、寿命サイクル数の減少が認められる。また、表面層を有している電池であっても正極格子基材にBaが含まれていない電池Bでは減液量が大幅に増加しているため、所定期間毎に定期的な液面管理を行っていても、この期間中に液面が最低液面を下回り、負極ストラップや極板が電解液から露出し、容量低下が急激に進行したり、負極ストラップで腐食が発生するため好ましくない。   As is clear from the results of Table 2, in the battery A having no surface layer, a decrease in the number of life cycles is recognized. Further, even in the case of a battery having a surface layer, since the amount of liquid reduction is greatly increased in the battery B in which Ba is not included in the positive electrode lattice base material, the liquid level is regularly controlled every predetermined period. Even during this period, the liquid level falls below the minimum liquid level during this period, the negative electrode strap and the electrode plate are exposed from the electrolyte, and the capacity decrease proceeds rapidly, and corrosion occurs in the negative electrode strap. .

一方、表面層としてPb−Sb−Ba合金を用いている電池(電池C〜電池I)では、寿命サイクル特性、減液性能ともに良好なものとなっており、特にBa量が0.3〜7.0wt%では減液性能がより向上し、さらには3.5〜7.0wt%の電池では寿命特性がさらに向上するという好ましい結果が得られた。   On the other hand, in the battery (battery C to battery I) using the Pb—Sb—Ba alloy as the surface layer, both the life cycle characteristics and the liquid reducing performance are good, and in particular, the Ba amount is 0.3 to 7 A preferable result was obtained that the liquid reduction performance was further improved at 0.0 wt%, and that the life characteristics were further improved with a battery of 3.5 to 7.0 wt%.

本発明に係る鉛蓄電池は、優れた寿命特性を有するので、長期間在庫として保管されるような鉛蓄電池として有用である。   Since the lead storage battery according to the present invention has excellent life characteristics, it is useful as a lead storage battery that is stored as a long-term inventory.

本発明の鉛蓄電池の正極板断面図Cross-sectional view of the positive electrode plate of the lead storage battery of the present invention

符号の説明Explanation of symbols

1 正極板
2 正極格子
3 正極活物質
4 表面層

DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode grid 3 Positive electrode active material 4 Surface layer

Claims (3)

正極格子体に正極活物質が充填された正極板と、負極格子体に負極活物質が充填された負極板と、前記正極板と前記負極板の間に設けられたセパレータとを備えた鉛蓄電池であって、
前記正極格子体がPb−Ca−Sn合金母材で構成され、
前記正極格子体の前記正極活物質と接する面の少なくとも一部にPb−Sb−Ba合金からなる表面層が備えられている鉛蓄電池。
A lead-acid battery comprising: a positive electrode plate in which a positive electrode grid is filled with a positive electrode active material; a negative electrode plate in which a negative electrode grid is filled with a negative electrode active material; and a separator provided between the positive electrode plate and the negative electrode plate. And
The positive electrode grid is composed of a Pb—Ca—Sn alloy base material,
A lead-acid battery in which a surface layer made of a Pb-Sb-Ba alloy is provided on at least a part of a surface of the positive electrode grid body in contact with the positive electrode active material.
前記表面層中におけるBa量が0.3〜7.0wt%である請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein an amount of Ba in the surface layer is 0.3 to 7.0 wt%. 前記表面層中におけるBa量が3.5〜7.0wt%である請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein an amount of Ba in the surface layer is 3.5 to 7.0 wt%.
JP2004297432A 2004-10-12 2004-10-12 Lead acid battery Expired - Fee Related JP4923399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297432A JP4923399B2 (en) 2004-10-12 2004-10-12 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297432A JP4923399B2 (en) 2004-10-12 2004-10-12 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006114235A true JP2006114235A (en) 2006-04-27
JP4923399B2 JP4923399B2 (en) 2012-04-25

Family

ID=36382596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297432A Expired - Fee Related JP4923399B2 (en) 2004-10-12 2004-10-12 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4923399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466190A (en) * 2014-12-05 2015-03-25 淄博明泰电器科技有限公司 Optimized thin-type and electrode-tube-type seal power lead-acid storage battery and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077076A (en) * 1998-09-02 2000-03-14 Toyota Motor Corp Lead base alloy for storage battery
JP2002164080A (en) * 2000-11-27 2002-06-07 Matsushita Electric Ind Co Ltd Lead-acid battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077076A (en) * 1998-09-02 2000-03-14 Toyota Motor Corp Lead base alloy for storage battery
JP2002164080A (en) * 2000-11-27 2002-06-07 Matsushita Electric Ind Co Ltd Lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466190A (en) * 2014-12-05 2015-03-25 淄博明泰电器科技有限公司 Optimized thin-type and electrode-tube-type seal power lead-acid storage battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP4923399B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
Yang et al. Review on the research of failure modes and mechanism for lead–acid batteries
JP5522444B2 (en) Lead acid battery
JP2008243487A (en) Lead acid battery
CN107579255A (en) A kind of positive electrode grid of lead storage battery alloy and preparation method thereof
JP2008243489A (en) Lead acid storage battery
JP4515902B2 (en) Lead acid battery
JP2016177909A (en) Control valve type lead-acid battery
JP2006114417A (en) Lead-acid storage battery
JP4509660B2 (en) Lead acid battery
JP4923399B2 (en) Lead acid battery
JP4892827B2 (en) Lead acid battery
Tsubota et al. Characteristics of valve-regulated lead/acid batteries for automotive applications under deep-discharge duty
JP4904675B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP4364054B2 (en) Lead acid battery
JP2006114236A (en) Lead acid storage battery
JP4529707B2 (en) Lead acid battery
JP2003346890A (en) Valve regulated lead-acid battery and its manufacturing method
Nann Improving the performance of deep-cycling, valve-regulated, lead/acid batteries
JP2005294142A (en) Lead storage battery
CN113782747B (en) High-calcium alloy for lead-acid storage battery grid and preparation method thereof
JP2004273305A (en) Lead-acid battery
JP2006114234A (en) Lead-acid battery
JP4503358B2 (en) Lead acid battery
JP4026257B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees