JP2002246031A - Lead acid battery - Google Patents

Lead acid battery

Info

Publication number
JP2002246031A
JP2002246031A JP2001041588A JP2001041588A JP2002246031A JP 2002246031 A JP2002246031 A JP 2002246031A JP 2001041588 A JP2001041588 A JP 2001041588A JP 2001041588 A JP2001041588 A JP 2001041588A JP 2002246031 A JP2002246031 A JP 2002246031A
Authority
JP
Japan
Prior art keywords
lead
electrode substrate
tin
acid battery
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001041588A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Yasuyuki Nehei
靖之 根兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2001041588A priority Critical patent/JP2002246031A/en
Publication of JP2002246031A publication Critical patent/JP2002246031A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead acid battery which uses an electrode substrate superior in anticorrosion, having superior adhesion between the electrode substrate and an active material and improved recovery capacity after being left discharged. SOLUTION: The lead acid battery comprises a positive electrode plate, formed by immersing in an alkaline water solution the electrode substrate formed of a lead-calcium-tin-aluminum alloy or a lead-calcium-tin-aluminum- barium alloy and given drying thereto, followed by filling and aging the treated electrode substrate with the active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は自動車用、据え置き用等
の液式あるいはシール式鉛蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid-type or sealed-type lead-acid battery for automobiles, stationary use, and the like.

【0002】[0002]

【従来の技術】鉛―カルシウム―錫―アルミニウム系合
金を正極基板とした鉛蓄電池は従来からメンテナンスフ
リーの液式あるいはシール式の据え置き型鉛蓄電池に広
く用いられている。しかし、かかる正極基板は、鉛―ア
ンチモン系合金を正極基板とした鉛蓄電池と比較すると
次のような欠点があった。即ち、 1.過放電状態で放置すると容量の回復性が悪い。 2.鉛合金組成によっては耐食性は向上するが、このよ
うに耐食性を向上させると、それとは逆に活物質との密
着性が悪化し、電池寿命を短くする。
2. Description of the Related Art A lead-acid battery using a lead-calcium-tin-aluminum-based alloy as a positive electrode substrate has been widely used for a maintenance-free liquid or sealed stationary lead-acid battery. However, such a positive electrode substrate has the following disadvantages as compared with a lead-acid battery using a lead-antimony alloy as a positive electrode substrate. That is, 1. If left in an overdischarged state, the capacity recovery is poor. 2. Corrosion resistance is improved depending on the lead alloy composition, but if the corrosion resistance is improved in this way, on the contrary, the adhesion to the active material is deteriorated, and the battery life is shortened.

【0003】[0003]

【発明が解決しようとする課題】前記回復性能の悪化
は、鉛―カルシウム―錫―アルミニウム系合金を電極基
板として用いた場合の特徴的な現象で、深い放電を行う
と活物質と電極基板の格子の界面に緻密だが導電性の低
い酸化鉛(PbO)層が形成され、次に充電を行っても
分極が増大して十分な充電が行われず、その結果容量が
回復しないものと考えられている。この現象を解決する
ために、基板表面にPbよりもイオン化傾向の大きいS
n等の金属を付着させたり、あるいはSnO2皮膜を設
ける等の提案がなされている(特開昭55−39141
号公報、特公平2−12386号公報、特公平7−24
224号公報、特開平1−186759号公報)が、こ
れらの方法はいずれも容量回復の効果が認められるもの
の、基板表面に異種金属を付着させる工程にはコストが
かかり、製品が高価となる欠点がある。
The deterioration of the recovery performance is a characteristic phenomenon when a lead-calcium-tin-aluminum alloy is used as an electrode substrate. It is thought that a dense but low-conductivity lead oxide (PbO) layer is formed at the interface of the lattice, and the polarization is increased even if charging is performed next time, so that sufficient charging is not performed, and as a result, the capacity is not recovered. I have. In order to solve this phenomenon, the surface of the substrate should be made of S having a higher ionization tendency than Pb.
It has been proposed to attach a metal such as n or to provide a SnO2 film (Japanese Patent Application Laid-Open No. 55-39141).
JP, JP-B2-12386, JP-B7-24
No. 224, JP-A-1-186759), all of these methods have the effect of recovering the capacity, but the process of attaching a dissimilar metal to the substrate surface is costly and the product is expensive. There is.

【0004】一方、活物質との密着性については、電極
基板表面に活物質を充填した後のアルカリ雰囲気中での
熟成工程で、硫酸鉛を3塩基性鉛、あるいは4塩基性鉛
に変化させるとともに電極基板と活物質の界面で電極基
板を腐蝕させ、電極基板と活物質との密着性を向上させ
ることが期待できるが、耐食性を向上した合金を用いる
と、耐食性故に腐食し難く、密着性は期待した程向上さ
せることができていない。特に、鉛―カルシウム―錫―
アルミニウム系合金の場合、結晶粒が大きく、腐蝕が粒
界だけで進む傾向にあるため、密着性は更に低くなる。
中でもバリウムを含んだ鉛―カルシウム―錫―アルミニ
ウム系合金は粒界に限らず全体に耐食性が優れているた
め、密着性の低下が顕著である。
On the other hand, regarding the adhesion to the active material, lead sulfate is changed to tribasic lead or tetrabasic lead in an aging step in an alkaline atmosphere after filling the electrode substrate surface with the active material. At the same time, it can be expected that the electrode substrate will be corroded at the interface between the electrode substrate and the active material, thereby improving the adhesion between the electrode substrate and the active material.However, when an alloy having improved corrosion resistance is used, it is hardly corroded due to the corrosion resistance. Has not been able to improve as expected. In particular, lead-calcium-tin-
In the case of an aluminum-based alloy, since the crystal grains are large and the corrosion tends to proceed only at the grain boundaries, the adhesion is further reduced.
Above all, lead-calcium-tin-aluminum alloys containing barium have excellent corrosion resistance not only at the grain boundaries but as a whole, so that the adhesion is remarkably reduced.

【0005】従って、従来はこのような耐食性に優れた
鉛合金電極基板に対しては電極基板表面にブラスト処理
を施して凹凸を形成する技術も開発提案されている(特
開昭57−148875号公報)。しかしながら、かか
る技術でも多少の効果は期待できるものの、本質的な解
決手段とはなっていなかった。本発明はこのような課題
を解決するもので、電極基板と活物質との密着性に優
れ、品質の安定した液式、或いはシール式鉛蓄電池を提
供することを目的とする。
[0005] Therefore, a technique of forming undulations by subjecting the surface of the electrode substrate to blasting has been conventionally proposed for such a lead alloy electrode substrate having excellent corrosion resistance (Japanese Patent Application Laid-Open No. 57-148875). Gazette). However, although such technology can be expected to have some effects, it has not been an essential solution. An object of the present invention is to solve such a problem, and an object of the present invention is to provide a liquid-type or sealed-type lead-acid battery that has excellent adhesion between an electrode substrate and an active material and has stable quality.

【0006】[0006]

【課題を解決するための手段】このような課題、問題点
を解決するために、本発明の第一の鉛蓄電池は、鉛―カ
ルシウム―錫―アルミニウム系合金からなる電極基板を
アルカリ水溶液に浸漬したのち、乾燥する処理操作を行
って後、該処理済み電極基板に活物質を充填・熟成して
正極板としてなることを特徴とする鉛蓄電池である。
In order to solve these problems and problems, a first lead-acid battery of the present invention comprises immersing an electrode substrate made of a lead-calcium-tin-aluminum alloy in an alkaline aqueous solution. A lead-acid battery is characterized in that after performing a drying operation, the processed electrode substrate is filled with an active material and aged to form a positive electrode plate.

【0007】本第一発明の鉛―カルシウム―錫―アルミ
ニウム系合金は、カルシウムが0.04〜0.10%、
錫が0.1〜2.0%、アルミニウムが0.005〜
0.05%、残部が鉛からなる組成の鉛合金とすること
が好ましい。
The lead-calcium-tin-aluminum alloy of the first invention has a calcium content of 0.04 to 0.10%,
Tin is 0.1-2.0%, aluminum is 0.005-
It is preferable to use a lead alloy having a composition of 0.05%, with the balance being lead.

【0008】本発明の第二の鉛蓄電池は、鉛―カルシウ
ム―錫―アルミニウム―バリウム系合金からなる電極基
板をアルカリ水溶液に浸漬したのち、乾燥する処理操作
を行って後、該処理済み電極基板に活物質を充填・熟成
して正極板としてなることを特徴とする鉛蓄電池であ
る。
[0008] The second lead-acid battery of the present invention is characterized in that an electrode substrate made of a lead-calcium-tin-aluminum-barium alloy is immersed in an aqueous alkaline solution, dried, and then dried. A lead-acid battery characterized by being filled with an active material and aged to form a positive electrode plate.

【0009】本第二発明の前記鉛―カルシウム―錫―ア
ルミニウム系合金は、カルシウムが0.04〜0.10
%、錫が0.1〜2.0%、アルミニウムが0.005
〜0.05%、バリウムが0.002〜0.015%、
残部が鉛からなる組成の鉛合金であることが好ましい。
In the lead-calcium-tin-aluminum alloy according to the second aspect of the present invention, calcium may be 0.04 to 0.10.
%, Tin is 0.1-2.0%, aluminum is 0.005%
~ 0.05%, barium 0.002-0.015%,
The balance is preferably a lead alloy having a composition of lead.

【0010】前記第一、第二発明の鉛蓄電池の製造過程
において、鉛合金電極基板をアルカリ水溶液に浸漬した
後に乾燥する処理操作を、一回以上行い、電極基板と活
物質との密着性を向上させることが望ましい。
In the production process of the lead-acid battery of the first or second invention, the lead alloy electrode substrate is immersed in an aqueous alkaline solution and then dried one or more times to improve the adhesion between the electrode substrate and the active material. It is desirable to improve.

【0011】また、前記第一、第ニの発明の鉛蓄電池の
製造過程において使用するアルカリ水溶液は、LiO
H、KOH、NaOHの少なくとも一種の水溶液を使用
すると良い。
The alkaline aqueous solution used in the production process of the lead storage battery according to the first and second aspects of the invention is LiO
It is preferable to use at least one aqueous solution of H, KOH, and NaOH.

【0012】[0012]

【作用】本発明は、耐蝕性の鉛合金を使用し、しかも電
極基板と活物質との密着性を向上したものである。本発
明で使用する鉛合金で作成した電極基板は耐蝕性が高
く、該基板に活物質を充填後、単にアルカリ水溶液中で
熟成しただけでは電極基板表面を十分に腐食できず、電
極基板と活物質との十分な密着性は得られない。本発明
は電極基板を予めアルカリ水溶液に所定時間浸漬して基
板表面を溶解させ、次いでアルカリ水溶液を付着したま
まの状態で空気中で乾燥する。このように空気中で乾燥
することにより基板表面にアルカリカチオンを含むPb
Ox層が生成される。このPbOx層はアルカリカチオ
ンを含み、不定比組成であることから、PbOよりも半
導体的な性質を持つと予想される。
According to the present invention, a lead alloy having corrosion resistance is used, and the adhesion between the electrode substrate and the active material is improved. The electrode substrate made of the lead alloy used in the present invention has high corrosion resistance, and the surface of the electrode substrate cannot be sufficiently corroded merely by aging in an alkaline aqueous solution after filling the substrate with the active material, and the electrode substrate is not activated. Sufficient adhesion to the substance cannot be obtained. In the present invention, the electrode substrate is immersed in an alkaline aqueous solution in advance for a predetermined time to dissolve the substrate surface, and then dried in the air with the alkaline aqueous solution still attached. By drying in the air in this way, Pb containing alkali cations is
An Ox layer is created. Since this PbOx layer contains an alkali cation and has a non-stoichiometric composition, it is expected that the PbOx layer has semiconductor properties more than PbO.

【0013】このように予めアルカリカチオンを含むP
bOx層(腐食層)を電極基板表面に設けることで該基
板と活物質との密着性は向上する。なお、前記アルカリ
水溶液浸漬、空気中乾燥の工程は1回で十分な表面腐食
が得られない場合には2回、3回と、必要回数繰り返す
ことで十分に表面を腐食させ(アルカリカチオンを含む
PbOx層を生成させ)、活物質との密着性を高めるこ
とが好ましい。アルカリ水溶液としては、鉛合金電極基
板表面に半導体的効果を有するアルカリカチオンを含む
PbOx層を形成するものが好ましく、半導体効果は原
子半径の小さいものほど期待できることから、Li+、
K+、Na+イオンが適しており、Rb+、Cs+は半
導体的効果がそれ程期待できない上に高価でもあり、推
奨できない。
As described above, P containing alkali cations in advance
By providing the bOx layer (corrosion layer) on the surface of the electrode substrate, the adhesion between the substrate and the active material is improved. In addition, if the surface immersion and drying in the air are performed only once and sufficient surface corrosion cannot be obtained, the surface is sufficiently corroded by repeating the necessary number of times, twice or three times (including alkali cations). It is preferable to form a PbOx layer) and to enhance the adhesion with the active material. As the alkaline aqueous solution, it is preferable to form a PbOx layer containing an alkali cation having a semiconductor effect on the surface of the lead alloy electrode substrate, and since the semiconductor effect can be expected as the atomic radius becomes smaller, Li +,
K + and Na + ions are suitable, and Rb + and Cs + are expensive and expensive, and cannot be recommended.

【0014】本発明で使用する鉛合金は、耐蝕性に優れ
た鉛―カルシウム―錫―アルミニウム系合金、あるいは
鉛―カルシウム―錫―アルミニウム−バリウム系合金が
適している。これらの合金の配合割合は強いて規定しな
いが、添加量としては次のような配合割合が好ましい。
カルシウムは0.04〜0.10%の範囲が好ましい。
カルシウムは合金の強度を増す効果があり、その配合量
が0.04%以下では目的とする充分な強度が得られ
ず、0.10%を超えると合金の腐蝕が問題となるた
め、添加量は0.10%以下とすることが好ましい。
As the lead alloy used in the present invention, a lead-calcium-tin-aluminum alloy or a lead-calcium-tin-aluminum-barium alloy excellent in corrosion resistance is suitable. The compounding ratio of these alloys is not strictly specified, but the following compounding ratio is preferable as the amount of addition.
Calcium is preferably in the range of 0.04 to 0.10%.
Calcium has the effect of increasing the strength of the alloy. If the amount is less than 0.04%, the desired strength cannot be obtained, and if it exceeds 0.10%, corrosion of the alloy becomes a problem. Is preferably 0.10% or less.

【0015】錫は0.1〜2.0%の範囲が好ましい。
錫は強度を増し、耐食性を向上する。錫の配合量が0.
1%以下では錫を添加した効果がなく、2.0%以上を
添加してもその効果は飽和し、多く添加すると脆くなる
弊害も現れるため、。添加量は2.0%以下とすること
が好ましい。アルミニウムは0.005〜0.05%の
範囲が好ましい。アルミニウムは合金の酸化を抑える効
果があり、その配合量が0.005%以下ではアルミニ
ウムを添加した効果がなく、0.05%以上を添加して
も合金とならず、ロスとして消失するため、添加量は
0.05%以下とすることが好ましい。バリウムは0.
002〜0.015%の範囲が好ましい。バリウムは機
械的強度を増し、耐食性を向上する効果があり、その配
合量が0.002%以下ではバリウムを添加した効果が
なく、0.015%以上を添加してもその効果は飽和
し、多く添加すると腐蝕しやすくなるという弊害も現れ
るため、添加量は0.015%以下とすることが好まし
い。
[0015] Tin is preferably in the range of 0.1 to 2.0%.
Tin increases strength and improves corrosion resistance. The tin content is 0.
If it is 1% or less, there is no effect of adding tin, and even if 2.0% or more is added, the effect is saturated, and if it is added in a large amount, there is an adverse effect of becoming brittle. It is preferable that the addition amount be 2.0% or less. Aluminum is preferably in the range of 0.005 to 0.05%. Aluminum has the effect of suppressing the oxidation of the alloy, and if the compounding amount is 0.005% or less, there is no effect of adding aluminum, and even if 0.05% or more is added, it does not become an alloy and disappears as a loss. It is preferable that the addition amount is 0.05% or less. Barium is 0.
The range of 002 to 0.015% is preferable. Barium has the effect of increasing the mechanical strength and improving the corrosion resistance. When the compounding amount is 0.002% or less, there is no effect of adding barium, and even when 0.015% or more is added, the effect is saturated, If a large amount is added, there is a problem that corrosion is liable to occur, so that the addition amount is preferably 0.015% or less.

【0016】[0016]

【発明の実施の形態】以下、本発明を実施形態により詳
細に説明する。 実施例1.カルシウムが0.06%、錫が1.6%、ア
ルミニウムが0.02%、残部が鉛からなる鉛合金を使
用してブックモールド方式により正極基板を鋳造し、そ
の後100°Cで1時間時効硬化を行った。この正極基
板を30%の水酸化カリウム水溶液に30秒間浸漬して
取り出し、80°Cの空気中で3分間乾燥させた。次
に、この乾燥させた正極基板に公知の正極ペーストを充
填し、40°C、湿度95%の雰囲気で24時間熟成
し、その後乾燥して未化成正極板とした。この未化成正
極板につき電極基板と活物質との密着性につき評価し
た。評価は未化成正極板を30cmの高さから木製の板
上に落下させ、活物質の80%が剥離するのに要した回
数を数え、数が多いほど密着性に優れているとした。結
果を表1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. Embodiment 1 FIG. A positive electrode substrate is cast by a book mold method using a lead alloy consisting of 0.06% of calcium, 1.6% of tin, 0.02% of aluminum and the balance being lead, and then aged at 100 ° C. for 1 hour. Curing was performed. The positive electrode substrate was immersed in a 30% aqueous solution of potassium hydroxide for 30 seconds, taken out, and dried in air at 80 ° C. for 3 minutes. Next, the dried positive electrode substrate was filled with a known positive electrode paste, aged at 40 ° C. and a humidity of 95% for 24 hours, and then dried to obtain an unformed positive electrode plate. The unformed positive electrode plate was evaluated for adhesion between the electrode substrate and the active material. The evaluation was performed by dropping an unformed positive electrode plate onto a wooden plate from a height of 30 cm and counting the number of times required for 80% of the active material to peel off. The larger the number, the better the adhesion. Table 1 shows the results.

【0017】次に、作成した未化成正極板を正極板と
し、公知の方法により製造した負極板並びにガラスセパ
レータを組み合わせて電極群とし、比重1.280の希
硫酸により電槽化成を行い、シール式鉛蓄電池を製造し
た。この電池の5時間率容量は20Ahであった。この
ようにして製造した電池に25°Cにおいて5時間率の
電流で1.2Vまで放電し、次に15Wの電球を取付
け、40°Cで48時間放電した。その後25°Cに戻
して10時間率の電流で150%充電し、1時間休止し
た後、5時間率容量を測定し、初期容量に対する回復率
を評価した。結果を表2に示す。
Next, the prepared unformed positive electrode plate is used as a positive electrode plate, a negative electrode plate and a glass separator manufactured by a known method are combined to form an electrode group, and a battery case is formed using dilute sulfuric acid having a specific gravity of 1.280. A lead-acid battery was manufactured. The 5-hour capacity of this battery was 20 Ah. The battery thus produced was discharged at 25 ° C. at a 5-hour rate current to 1.2 V, then a 15 W light bulb was attached, and discharged at 40 ° C. for 48 hours. After that, the temperature was returned to 25 ° C., the battery was charged 150% at a current of 10 hours, and after resting for 1 hour, the capacity at 5 hours was measured to evaluate the recovery rate from the initial capacity. Table 2 shows the results.

【0018】実施例2 実施例1における水酸化カリウムに浸漬、乾燥する工程
を2回繰り返した他は実施例1と同様の工程で未化成正
極板、鉛蓄電池を製造し、それぞれを評価した。その結
果を表1、2に併記する。
Example 2 An unformed positive electrode plate and a lead storage battery were manufactured in the same manner as in Example 1 except that the steps of dipping and drying in potassium hydroxide in Example 1 were repeated twice, and each was evaluated. The results are also shown in Tables 1 and 2.

【0019】実施例3 実施例1における水酸化カリウムに浸漬、乾燥する工程
を3回繰り返した他は実施例1と同様の工程で未化成正
極板、鉛蓄電池を製造し、それぞれを評価した。その結
果を表1、2に併記する。
Example 3 An unformed positive electrode plate and a lead storage battery were produced in the same manner as in Example 1 except that the steps of dipping and drying in potassium hydroxide in Example 1 were repeated three times, and each was evaluated. The results are also shown in Tables 1 and 2.

【0020】実施例4 実施例1における水酸化カリウムの代わりに水酸化ナト
リウムを用いた他は実施例1と同様の工程で未化成正極
板、鉛蓄電池を製造し、それぞれを評価した。その結果
を表1、2に併記する。
Example 4 An unformed positive electrode plate and a lead storage battery were manufactured in the same steps as in Example 1 except that sodium hydroxide was used instead of potassium hydroxide in Example 1, and each was evaluated. The results are also shown in Tables 1 and 2.

【0021】実施例5 実施例1における30%水酸化カリウム水溶液の代わり
に10%水酸化リチウム水溶液を用いた他は実施例1と
同様の工程で未化成正極板、鉛蓄電池を製造し、それぞ
れを評価した。その結果を表1、2に併記する。
Example 5 An unformed positive electrode plate and a lead storage battery were manufactured in the same manner as in Example 1 except that a 10% aqueous solution of lithium hydroxide was used instead of the 30% aqueous solution of potassium hydroxide in Example 1. Was evaluated. The results are also shown in Tables 1 and 2.

【0022】実施例6.カルシウムが0.06%、錫が
1.6%、アルミニウムが0.02%、バリウムが0.
004%、残部が鉛からなる鉛合金を使用した他は実施
例1と同様の工程で未化成正極板、鉛蓄電池を製造し、
それぞれを評価した。その結果を表1、2に併記する。
Embodiment 6 FIG. 0.06% calcium, 1.6% tin, 0.02% aluminum, and 0.2% barium.
An unformed positive electrode plate and a lead storage battery were manufactured in the same steps as in Example 1 except that a lead alloy consisting of 004% and the balance of lead was used.
Each was evaluated. The results are also shown in Tables 1 and 2.

【0023】比較例1 実施例1の未化成極板製造工程において、アルカリ浸漬
工程を省略した他は実施例1と同様の工程で未化成正極
板、鉛蓄電池を製造し、それぞれを評価した。その結果
を表1、2に併記する。
Comparative Example 1 An unformed positive electrode plate and a lead storage battery were manufactured in the same steps as in Example 1 except that the alkali immersion step was omitted in the manufacturing step of the unformed electrode plate of Example 1, and each was evaluated. The results are also shown in Tables 1 and 2.

【0024】比較例2 実施例6と同一の鉛合金を使用し、アルカリ浸漬工程を
省略した他は実施例1と同様の工程で未化成正極板、鉛
蓄電池を製造し、それぞれを評価した。その結果を表
1、2に併記する。
Comparative Example 2 An unformed positive electrode plate and a lead storage battery were manufactured in the same steps as in Example 1 except that the same lead alloy as in Example 6 was used and the alkali immersion step was omitted, and each was evaluated. The results are also shown in Tables 1 and 2.

【0025】 [0025]

【0026】 [0026]

【0027】表1で実証されるように、本発明の鉛蓄電
池における正極板は、電極基板と活物質との密着性は共
に140回を越え、比較例に示す従来方法で製造した正
極板とは比較にならない程の耐剥離性を有する。また、
蓄電池としての回復性能についても表2に示すように、
90%以上の容量回復性を有し、蓄電池として優れた性
能を有することが実証された。
As demonstrated in Table 1, the positive electrode plate in the lead-acid battery of the present invention had an adhesion between the electrode substrate and the active material of more than 140 times, and was compared with the positive electrode plate manufactured by the conventional method shown in the comparative example. Has an incomparable peel resistance. Also,
As shown in Table 2 for the recovery performance of the storage battery,
It has been demonstrated that the battery has a capacity recovery of 90% or more and has excellent performance as a storage battery.

【0028】[0028]

【発明の効果】上述するように、本発明は耐蝕性に優れ
た鉛合金を使用し、鉛合金電極基板をアルカリ水溶液に
浸漬、空気中での乾燥工程を追加するという極めた簡単
な操作を行うことで電極基板と活物質との密着性を向上
でき、放電放置後の容量回復性をも向上でき、自動車
用、据置用として優れた性能を有る液式あるいはシール
式鉛蓄電池を提供することができ、工業的に優れた効果
を有するものである。
As described above, the present invention uses a lead alloy having excellent corrosion resistance, immerses the lead alloy electrode substrate in an aqueous alkali solution, and adds a drying step in the air. The present invention provides a liquid or sealed lead-acid battery that can improve the adhesion between the electrode substrate and the active material, improve the capacity recovery after discharge, and have excellent performance for automobiles and stationary. And has an industrially superior effect.

フロントページの続き Fターム(参考) 5H017 AA01 AS10 BB13 BB14 BB16 EE03 HH01 5H050 AA01 BA09 CA06 CB15 DA02 DA05 GA02 GA14 GA23 GA26 HA02 Continued on the front page F term (reference) 5H017 AA01 AS10 BB13 BB14 BB16 EE03 HH01 5H050 AA01 BA09 CA06 CB15 DA02 DA05 GA02 GA14 GA23 GA26 HA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鉛―カルシウム―錫―アルミニウム系合
金からなる電極基板をアルカリ水溶液に浸漬したのち、
乾燥する処理操作を行って後、該処理済み電極基板に活
物質を充填・熟成して正極板としてなることを特徴とす
る鉛蓄電池。
An electrode substrate made of a lead-calcium-tin-aluminum alloy is immersed in an aqueous alkaline solution,
A lead-acid battery, wherein after performing a drying operation, the treated electrode substrate is filled with an active material and aged to form a positive electrode plate.
【請求項2】 前記鉛―カルシウム―錫―アルミニウム
系合金は、カルシウムが0.04〜0.10%、錫が
0.1〜2.0%、アルミニウムが0.005〜0.0
5%、残部が鉛からなる鉛合金であることを特徴とする
請求項1に記載の鉛蓄電池。
2. The lead-calcium-tin-aluminum alloy contains 0.04 to 0.10% of calcium, 0.1 to 2.0% of tin, and 0.005 to 0.0% of aluminum.
The lead-acid battery according to claim 1, wherein the lead-acid battery is 5%, with the balance being lead.
【請求項3】 鉛―カルシウム―錫―アルミニウム―バ
リウム系合金からなる電極基板をアルカリ水溶液に浸漬
したのち、乾燥する処理操作を行って後、該処理済み電
極基板に活物質を充填・熟成して正極板としてなること
を特徴とする鉛蓄電池。
3. An electrode substrate made of a lead-calcium-tin-aluminum-barium alloy is immersed in an aqueous alkali solution, and then subjected to a drying operation. Then, the processed electrode substrate is filled with an active material and matured. A lead-acid battery characterized by being used as a positive electrode plate.
【請求項4】 前記鉛―カルシウム―錫―アルミニウム
―バリウム系合金は、カルシウムが0.04〜0.10
%、錫が0.1〜2.0%、アルミニウムが0.005
〜0.05%、バリウムが0.002〜0.015%、
残部が鉛からなる鉛合金であることを特徴とする請求項
3に記載の鉛蓄電池。
4. The lead-calcium-tin-aluminum-barium alloy contains 0.04 to 0.10 of calcium.
%, Tin is 0.1-2.0%, aluminum is 0.005%
~ 0.05%, barium 0.002-0.015%,
The lead storage battery according to claim 3, wherein the balance is a lead alloy made of lead.
【請求項5】 前記アルカリ水溶液に浸漬したのち、乾
燥する処理操作を1回以上行うことを特徴とする請求項
1乃至4の何れかに記載の鉛蓄電池。
5. The lead-acid battery according to claim 1, wherein a treatment operation of immersing in the alkaline aqueous solution and then drying is performed one or more times.
【請求項6】 前記アルカリ水溶液はLiOH、KO
H、NaOHの少なくとも一種の水溶液であることを特
徴とする請求項1乃至5の何れかに記載の鉛蓄電池。
6. The alkaline aqueous solution is LiOH, KO
The lead-acid battery according to any one of claims 1 to 5, wherein the lead-acid battery is at least one aqueous solution of H and NaOH.
JP2001041588A 2001-02-19 2001-02-19 Lead acid battery Pending JP2002246031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041588A JP2002246031A (en) 2001-02-19 2001-02-19 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041588A JP2002246031A (en) 2001-02-19 2001-02-19 Lead acid battery

Publications (1)

Publication Number Publication Date
JP2002246031A true JP2002246031A (en) 2002-08-30

Family

ID=18904010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041588A Pending JP2002246031A (en) 2001-02-19 2001-02-19 Lead acid battery

Country Status (1)

Country Link
JP (1) JP2002246031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088385A1 (en) * 2002-04-18 2003-10-23 The Furukawa Battery Co., Ltd. Lead-based alloy for lead storage battery, plate for lead storage battery and lead storage battery
JP2005044760A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Manufacturing method of lead-acid storage battery positive electrode plate lattice
CN104466190A (en) * 2014-12-05 2015-03-25 淄博明泰电器科技有限公司 Optimized thin-type and electrode-tube-type seal power lead-acid storage battery and manufacturing method thereof
CN104485460A (en) * 2014-11-24 2015-04-01 天能电池集团(安徽)有限公司 Grid alkali soaking treating fluid and alkali soaking process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030714A (en) * 1998-07-09 2000-01-28 Ube Ind Ltd Collector for lead-acid battery and its manufacture
JP2000504783A (en) * 1996-02-16 2000-04-18 メタローロップ、ソシエテ、アノニム Lead-calcium alloy especially for battery grid
JP2000315519A (en) * 1999-04-30 2000-11-14 Furukawa Battery Co Ltd:The Lead acid storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504783A (en) * 1996-02-16 2000-04-18 メタローロップ、ソシエテ、アノニム Lead-calcium alloy especially for battery grid
JP2000030714A (en) * 1998-07-09 2000-01-28 Ube Ind Ltd Collector for lead-acid battery and its manufacture
JP2000315519A (en) * 1999-04-30 2000-11-14 Furukawa Battery Co Ltd:The Lead acid storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088385A1 (en) * 2002-04-18 2003-10-23 The Furukawa Battery Co., Ltd. Lead-based alloy for lead storage battery, plate for lead storage battery and lead storage battery
US7862931B2 (en) 2002-04-18 2011-01-04 The Furukawa Battery Co., Ltd. Lead-based alloy for lead-acid battery, substrate for lead-acid battery and lead-acid battery
JP2005044760A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Manufacturing method of lead-acid storage battery positive electrode plate lattice
CN104485460A (en) * 2014-11-24 2015-04-01 天能电池集团(安徽)有限公司 Grid alkali soaking treating fluid and alkali soaking process
CN104485460B (en) * 2014-11-24 2016-08-24 天能电池集团(安徽)有限公司 Grid natron treatment fluid and natron technique
CN104466190A (en) * 2014-12-05 2015-03-25 淄博明泰电器科技有限公司 Optimized thin-type and electrode-tube-type seal power lead-acid storage battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4926356B2 (en) Alloys for thin positive grids for lead-acid batteries and methods for making this grid
CA2681563C (en) Lead-tin-silver-bismuth containing alloy for positive grid of lead acid batteries
JP2004349197A (en) Lead-base alloy for lead storage battery and lead storage battery using it
AU783324B2 (en) Alloy for thin positive grid for lead acid batteries and method for manufacture of grid
JP2002246031A (en) Lead acid battery
JP2003306733A (en) Lead based alloy for lead storage battery, and lead storage battery using the same
JPH0212385B2 (en)
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
US10637044B2 (en) Corrosion resistant positive grid for lead-acid batteries
JPH0212386B2 (en)
JP2002008644A (en) Production method of positive electrode plate for lead storage battery
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
JPH0213425B2 (en)
JP5223327B2 (en) Lead acid battery
JP4423837B2 (en) Rolled lead alloy for storage battery and lead storage battery using the same
JP4503358B2 (en) Lead acid battery
JP2943572B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPH07147160A (en) Lead-acid battery
JP2005044703A (en) Manufacturing method of control valve type lead storage battery
JPH04345756A (en) Manufacture of lead storage battery electrode
JPH0837002A (en) Manufacture of positive electrode plate for lead-acid battery
JPH0652654B2 (en) Lead acid battery electrode plate manufacturing method
JP2000353518A (en) Lead-acid battery and manufacture thereof
JPH10112311A (en) Manufacture of sealed lead-acid battery
JPH01187771A (en) Manufacture of positive electrode plate for lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619