JP2006196283A - Lead-acid battery - Google Patents
Lead-acid battery Download PDFInfo
- Publication number
- JP2006196283A JP2006196283A JP2005005926A JP2005005926A JP2006196283A JP 2006196283 A JP2006196283 A JP 2006196283A JP 2005005926 A JP2005005926 A JP 2005005926A JP 2005005926 A JP2005005926 A JP 2005005926A JP 2006196283 A JP2006196283 A JP 2006196283A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- alloy
- positive electrode
- lattice
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
本発明は鉛蓄電池、特に正極格子に関するものである。 The present invention relates to lead-acid batteries, and in particular to positive grids.
従来から、鉛蓄電池用の正極格子合金は、格子の機械的強度や耐食性を向上する目的で、2.5質量%〜8.0質量%程度のSbを添加した、Pb−Sb系合金が用いられてきた。しかしながら、合金中に含まれるSbが負極に移行し、負極の水素過電圧が低下するため、電池の自己放電が進行しやすくなり、また、過充電状態で水の電気分解が促進され、電解液中の水分減少が著しくなる。 Conventionally, a positive electrode grid alloy for a lead-acid battery is a Pb—Sb-based alloy to which 2.5 mass% to 8.0 mass% of Sb is added for the purpose of improving the mechanical strength and corrosion resistance of the grid. Has been. However, since Sb contained in the alloy moves to the negative electrode and the hydrogen overvoltage of the negative electrode decreases, the self-discharge of the battery is likely to proceed, and the electrolysis of water is promoted in an overcharged state. The water loss becomes remarkable.
したがって、このような鉛蓄電池では、定期的に補充電したり、電解液に水分を補充する等のメンテナンスが必要であった。 Therefore, such lead storage batteries require maintenance such as periodically recharging or replenishing the electrolyte with water.
このような、鉛蓄電池に必要であったメンテナンスを軽減するため、正極格子合金として、Sbを0.0001質量%以下に制限し、Sbに起因する負極の水素過電圧低下を抑制することによって、実質的にSbを含まないPb合金が用いられている。 In order to reduce the maintenance required for such a lead storage battery, as the positive electrode lattice alloy, Sb is limited to 0.0001% by mass or less, and by suppressing the hydrogen overvoltage drop of the negative electrode caused by Sb, In particular, a Pb alloy containing no Sb is used.
Sbを含まないPb合金として、Pb−Ca−Sn合金が良く知られている。このような合金中のCaは合金の機械的強度に寄与し、Sbは合金の機械的強度とともに、耐食性向上に寄与する。 A Pb—Ca—Sn alloy is well known as a Pb alloy not containing Sb. Ca in such an alloy contributes to the mechanical strength of the alloy, and Sb contributes to an improvement in corrosion resistance together with the mechanical strength of the alloy.
この正極格子用として用いるPb−Ca−Sn合金において、Ca含有濃度が0.03質量%未満では、正極格子の機械的強度の面で不十分であり、0.10質量%を超える場合、Pb合金の耐食性が低下するため、Ca含有濃度は0.03質量%〜0.10質量%とすることが一般的である。 In the Pb—Ca—Sn alloy used for this positive electrode lattice, if the Ca content concentration is less than 0.03 mass%, the mechanical strength of the positive electrode lattice is insufficient, and if it exceeds 0.10 mass%, Pb Since the corrosion resistance of the alloy is lowered, the Ca content concentration is generally 0.03% to 0.10% by mass.
また、上記のPb−Ca−Sn合金において、Sn含有濃度が、1.0質量%未満では、正極格子で特に要求される耐食性が十分に確保することができない。また、2.2質量%を超える場合、正極格子体の製造工法によって、異なる課題が発生する。例えば鋳造法により正極格子体を作成する場合、結晶粒界が顕著になり、粒界腐食に対する耐食性が低下する。また、エキスパンド法により正極格子体を作成する場合、合金の伸び量が低下するため、格子体に骨切れが生じ易くなるという課題がある。したがって、Pb−Ca−Sn合金中のSn含有濃度は1.0質量%〜2.2質量%の範囲とすることが一般的である。 Further, in the Pb—Ca—Sn alloy described above, when the Sn content concentration is less than 1.0 mass%, the corrosion resistance particularly required for the positive electrode lattice cannot be sufficiently ensured. Moreover, when exceeding 2.2 mass%, a different subject generate | occur | produces with the manufacturing method of a positive electrode grid. For example, when a positive electrode grid is produced by a casting method, crystal grain boundaries become prominent, and corrosion resistance against intergranular corrosion decreases. Moreover, when producing a positive electrode grid by the expanding method, the elongation of the alloy is reduced, so that there is a problem that the grid is easily broken. Therefore, the Sn content concentration in the Pb—Ca—Sn alloy is generally in the range of 1.0 mass% to 2.2 mass%.
上記のような含有濃度でCaとSnを含む、合金組成の例として、例えば、特許文献1には、Pb−0.05質量Ca−1.3質量%Sn合金が示されている。
しかしながら、特に車両用の鉛蓄電池は、車両内のエンジンに隣接した位置に積載して使用されることによって、エンジンから放出される熱の影響を受け、特に正極格子腐食が起こり易い環境にある。また、このような車両用鉛蓄電池においても、小形軽量化が要求されている。そして、小形軽量化した場合においても、出力特性や放電容量を維持するために、より薄型化した格子を用い、電解液中の硫酸濃度を高めることが行われている。 However, lead-acid batteries for vehicles, in particular, are in an environment in which positive grid corrosion is likely to occur due to the influence of heat released from the engine by being used in a position adjacent to the engine in the vehicle. In addition, such a vehicle lead-acid battery is also required to be small and light. And even when it is reduced in size and weight, in order to maintain the output characteristics and discharge capacity, the concentration of sulfuric acid in the electrolytic solution is increased by using a thinner grid.
これらは、放電時の電圧をより高めたり、放電持続時間がより長くなるという効果があるものの、正極格子の腐食がより促進され、正極格子自体の集電性が低下したり、腐食によって変形した正極格子体が負極と短絡し、短期間で寿命となる課題があった。 These have the effect of increasing the voltage at the time of discharge and increasing the discharge duration, but the corrosion of the positive grid is further promoted and the current collection of the positive grid itself is reduced or deformed due to corrosion. There was a problem that the positive electrode grid was short-circuited with the negative electrode, resulting in a short life.
本発明は、このような鉛蓄電池の正極格子で進行する腐食を抑制し、長寿命で信頼性に優れた鉛蓄電池を得ることを目的とする。 It is an object of the present invention to obtain a lead storage battery that suppresses the corrosion that proceeds in the positive electrode grid of such a lead storage battery and has a long life and excellent reliability.
前記した課題を解決するために本発明の請求項1に係る発明は、Pb−Ca−Sn合金からなる正極格子体を備えた鉛蓄電池であり、前記Pb−Ca−Sn合金は0.001質量%〜0.03質量%のAlを含み、かつ0.001質量%〜0.05質量%のSeを含むことを特徴とする鉛蓄電池を示すものである。 In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention is a lead storage battery including a positive electrode lattice body made of a Pb—Ca—Sn alloy, and the Pb—Ca—Sn alloy is 0.001 mass. The lead acid battery is characterized by containing Al in an amount of 0.0% to 0.03% by mass and containing Se in an amount of 0.001% to 0.05% by mass.
Pb−Ca−Sn合金へのSeの添加は、Se単独では耐食性や強度を向上する効果がそれほど得られないものの、Alとともに添加し、かつ、SeとAlの含有濃度を上記した濃度とすることにより、Seが正極格子体内に均一に分散し、正極格子体の耐食性を顕著に向上させ、鉛蓄電池の寿命を改善する。 Addition of Se to the Pb-Ca-Sn alloy is not effective in improving corrosion resistance and strength with Se alone, but is added together with Al, and the concentration of Se and Al is set to the above concentration. As a result, Se is uniformly dispersed in the positive electrode lattice body, the corrosion resistance of the positive electrode lattice body is remarkably improved, and the life of the lead storage battery is improved.
また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、正極格子体は、前記Pb−Ca−Sn合金の圧延体をエキスパンド加工したエキスパンド格子体とすることを特徴とするものである。 Moreover, the invention according to claim 2 of the present invention is the lead-acid battery according to claim 1, wherein the positive electrode lattice is an expanded lattice obtained by expanding the rolled body of the Pb—Ca—Sn alloy. Is.
特に、Se分布が不均一である場合、合金強度に不均一が生じ、エキスパンド加工の際に、局部的にクラックが生じ、この部分から腐食が進行して寿命低下する場合がある。本発明によれば、Se分布を均一とし、合金強度が均質化されるため、エキスパンド加工の際の局部的なクラックの発生を抑制することができる。 In particular, when the Se distribution is non-uniform, non-uniformity in the alloy strength occurs, and cracks are locally generated during the expansion process. According to the present invention, the Se distribution is made uniform and the alloy strength is homogenized, so that the generation of local cracks during the expansion process can be suppressed.
上記した、本発明の構成による鉛蓄電池は、正極格子体の腐食を抑制することにより、腐食により生じる集電効率の低下や内部短絡が抑制され、長寿命の鉛蓄電池を得ることができる。 The above-described lead storage battery according to the configuration of the present invention suppresses the corrosion of the positive electrode grid body, thereby suppressing a decrease in current collection efficiency and an internal short circuit caused by the corrosion and obtaining a long-life lead storage battery.
以下、本発明の実施の形態による鉛蓄電池の構成を説明する。 Hereinafter, the structure of the lead acid battery by embodiment of this invention is demonstrated.
本発明の鉛蓄電池は、Pb−Ca−Sn合金の正極格子体を備える。このPb−Ca−Sn合金中には0.001質量%〜0.03質量%のAlを含み、かつ0.001質量%〜0.05質量%のSeを含む。 The lead acid battery of this invention is equipped with the positive electrode grid body of a Pb-Ca-Sn alloy. This Pb—Ca—Sn alloy contains 0.001% by mass to 0.03% by mass of Al and 0.001% by mass to 0.05% by mass of Se.
なお、このPb−Ca−Sn合金中のCa含有濃度としては、Ca含有濃度が0.03質量%未満では、正極格子の機械的強度の面で不十分であり、0.10質量%を超える場合、Pb合金の耐食性が低下するため、Ca含有濃度は0.03質量%〜0.10質量%が適切である。 In addition, as Ca content density | concentration in this Pb-Ca-Sn alloy, if Ca content density | concentration is less than 0.03 mass%, it is inadequate in terms of the mechanical strength of a positive electrode grid, and exceeds 0.10 mass%. In this case, since the corrosion resistance of the Pb alloy is reduced, the Ca content concentration is suitably 0.03% by mass to 0.10% by mass.
また、Sn含有濃度に関して、1.0質量%未満では、正極格子で特に要求される耐食性が十分に確保することができない。また、2.2質量%を超えた場合、鋳造法により正極格子体を作成する場合、結晶粒界が顕著になり、粒界腐食に対する耐食性が低下する。また同じく、Sn含有濃度が2.2質量%を超えた場合にエキスパンド法により正極格子体を作成すると、合金の伸び量低下により、格子体に骨切れが生じ易くなる。したがって、Pb−Ca−Sn合金中のSn含有濃度は1.0質量%〜2.2質量%の範囲で選択す
ることが適切である。
In addition, when the Sn concentration is less than 1.0% by mass, the corrosion resistance particularly required in the positive electrode lattice cannot be sufficiently ensured. Moreover, when it exceeds 2.2 mass%, when producing a positive electrode lattice body by a casting method, a crystal grain boundary becomes remarkable and the corrosion resistance with respect to intergranular corrosion falls. Similarly, when a positive electrode grid is prepared by the expanding method when the Sn content concentration exceeds 2.2% by mass, the lattice tends to be broken due to a decrease in the elongation of the alloy. Therefore, it is appropriate to select the Sn content concentration in the Pb—Ca—Sn alloy in the range of 1.0 mass% to 2.2 mass%.
このような、0.001質量%〜0.03質量%のAlを含み、かつ0.001質量%〜0.05質量%のSeを含むPb−Ca−Sn合金から得た正極格子体を用い、以降の工程は常法に従い、鉛蓄電池を構成することにより、本発明の鉛蓄電池を得ることができる。 Using such a positive electrode lattice body obtained from a Pb—Ca—Sn alloy containing 0.001% by mass to 0.03% by mass of Al and containing 0.001% by mass to 0.05% by mass of Se. In the subsequent steps, the lead storage battery of the present invention can be obtained by configuring the lead storage battery according to a conventional method.
正極格子体としては、鋳造格子体としても良いが、正極格子合金を圧延することによって得た圧延体をエキスパンド加工を施すことによって得た、エキスパンド格子体を用いるものの方が、本発明の寿命伸長効果をより顕著に得ることができるため、より好ましい。 As the positive electrode grid, a cast grid may be used. However, the use of the expanded grid obtained by subjecting a rolled product obtained by rolling a positive grid alloy to an expanded process is longer in the present invention. Since an effect can be acquired more notably, it is more preferable.
Pb−Ca−Sn−Al−Se合金中のCa含有濃度を0.04質量%および0.1質量%、Sn含有濃度を1.0質量%および2.2質量%、Al含有濃度を0質量%、0.0005質量%、0.001質量%、0.01質量%、0.03質量%および0.05質量%、Se含有濃度を0質量%、0.0005質量%、0.001質量%、0.05質量%および0.10質量%と種々変化させ、残部をPbとした正極格子合金を作成した。これらの正極格子合金の組成を表1、表2、表3および表4に示す。 The Ca content concentration in the Pb-Ca-Sn-Al-Se alloy is 0.04 mass% and 0.1 mass%, the Sn content concentration is 1.0 mass% and 2.2 mass%, and the Al content concentration is 0 mass%. %, 0.0005% by mass, 0.001% by mass, 0.01% by mass, 0.03% by mass and 0.05% by mass, and the Se-containing concentration is 0% by mass, 0.0005% by mass, 0.001% by mass. %, 0.05% by mass and 0.10% by mass, and positive electrode lattice alloys with the balance being Pb were prepared. The compositions of these positive electrode lattice alloys are shown in Table 1, Table 2, Table 3, and Table 4.
表1から表4に示すそれぞれの組成の合金を用いて、それぞれ鋳造格子体とエキスパンド格子体を作成した。鋳造格子体はブックモールドタイプの鋳型に流し込み、冷却凝固して作成した。また、エキスパンド格子体は、各合金を溶融し、冷却凝固して得た厚み10.0mmの鋳造スラブを厚み1.0mmまで段階的に圧延して得た圧延シートにエキスパンド加工を施すことにより得た。 Using the alloys having the respective compositions shown in Tables 1 to 4, cast lattice bodies and expanded lattice bodies were prepared. The cast grid was prepared by pouring into a mold of a book mold type and cooling and solidifying. The expanded lattice body is obtained by subjecting a rolled sheet obtained by stepwise rolling a cast slab having a thickness of 10.0 mm obtained by melting and cooling and solidifying each alloy to a thickness of 1.0 mm. It was.
上記の各正極格子合金から作成した鋳造格子体とエキスパンド格子体について、それぞれ同量の正極活物質ペーストを充填し、熟成乾燥することにより、未化成状態の正極板を得た。 The cast lattice body and the expanded lattice body prepared from each of the positive electrode lattice alloys described above were filled with the same amount of positive electrode active material paste and aged and dried to obtain an unformed positive electrode plate.
負極板については、Pb−0.07質量%Ca−0.25質量%Sn合金の鋳造スラブ(厚み10.0mm)を厚み0.6mmまで段階的に圧延して得た圧延シートをエキスパンド加工して作成したエキスパンド格子体に、負極活物質ペーストを充填し、熟成乾燥することにより、未化成状態の負極板を得た。 For the negative electrode plate, a rolled sheet obtained by gradually rolling a cast slab (thickness 10.0 mm) of Pb-0.07 mass% Ca-0.25 mass% Sn alloy to a thickness of 0.6 mm is expanded. The expanded lattice produced in this manner was filled with a negative electrode active material paste and aged and dried to obtain an unformed negative electrode plate.
セパレータとして、微孔を有したポリエチレンシートを袋状としたものを用いた。このセパレータは微孔を提供するために、セパレータ中に、多孔質シリカと、耐酸性を向上さ
せるための、パラフィン系の鉱物性オイルとカーボンを含むものを用いた。なお、本実施例では、多孔質シリカの含有濃度はセパレータ全体質量の60質量%、鉱物性オイルはセパレータ全体質量の15質量%とした。
As the separator, a polyethylene sheet having micropores in a bag shape was used. In order to provide micropores, the separator used was a separator containing porous silica, paraffinic mineral oil and carbon for improving acid resistance. In this example, the content concentration of porous silica was 60% by mass of the total mass of the separator, and the mineral oil was 15% by mass of the total mass of the separator.
この袋状のセパレータに負極板を収納し、正極板と組み合わせて鉛蓄電池を組み立て、希硫酸電解液を注液し、充電化成することにより、2V55Ahの液式の鉛蓄電池を作成した。 A negative electrode plate was accommodated in this bag-shaped separator, a lead storage battery was assembled in combination with the positive electrode plate, a dilute sulfuric acid electrolyte solution was injected, and charge formation was performed to prepare a 2V55Ah liquid lead storage battery.
これらの鉛蓄電池について、それぞれ以下の条件で寿命試験を行い、寿命特性を評価した。 About these lead acid batteries, the life test was performed on the following conditions, respectively, and the life characteristic was evaluated.
寿命試験条件(75℃気相中)
(1)放電 25A定電流,4分
(2)充電 2.45V定電圧(制限電流25A),10分
(3)上記(1)と(2)の放電−充電サイクルの480サイクル毎に判定放電。判定
放電は582A定電流で5秒間。寿命判定電圧1.2V
寿命試験は、(1)−(2)のサイクルの480サイクル毎に(3)の判定放電を行う。判定放電時の5秒目電圧が1.2V以下で寿命終了とする。5秒目電圧が1.2Vを超える場合、(2)の充電を行い、再度、(1)−(2)のサイクルを480サイクル行い、(3)の判定放電を行う操作を繰り返して行った。この寿命試験結果を前記した表1、表2、表3および表4に示した。
Life test conditions (in gas phase at 75 ° C)
(1) Discharge 25A constant current, 4 minutes (2) Charge 2.45V constant voltage (limit current 25A), 10 minutes (3) Determination discharge every 480 cycles of the discharge-charge cycle of (1) and (2) above . Judgment Discharge at 582A constant current for 5 seconds. Life judgment voltage 1.2V
In the life test, the judgment discharge (3) is performed every 480 cycles (1) to (2). The life ends when the voltage at the 5th second during the judgment discharge is 1.2 V or less. When the voltage at the 5th second exceeded 1.2 V, the charge of (2) was performed, the cycle of (1)-(2) was repeated for 480 cycles, and the operation of performing the judgment discharge of (3) was repeated. . The life test results are shown in Table 1, Table 2, Table 3, and Table 4 described above.
表1はCa含有濃度0.1質量%、Sn含有濃度2.2質量%のPb合金において、Al含有濃度とSe含有濃度を変化させた正極格子合金A1〜A30を用いて作成した鋳造格子体とエキスパンド格子体をそれぞれ用いた電池の寿命サイクル数を示している。 Table 1 shows cast lattice bodies prepared by using positive electrode lattice alloys A1 to A30 in which the Al content concentration and the Se content concentration are changed in a Pb alloy having a Ca content concentration of 0.1% by mass and a Sn content concentration of 2.2% by mass. And the life cycle number of the battery using the expanded grid and the expanded grid, respectively.
表1に示した結果から、Al含有濃度が0質量%とした正極格子合金A1〜A5を用いた電池は、鋳造格子体、エキスパンド格子体にかかわらずSe含有濃度が増加するに従い、寿命サイクル数が減少する結果となった。これらの各電池について、寿命終了後に分解調査したところ、いずれも正極格子の腐食により寿命に至っていた。 From the results shown in Table 1, the battery using the positive electrode lattice alloys A1 to A5 having an Al content concentration of 0% by mass increases the number of life cycles as the Se content concentration increases regardless of the cast lattice body and the expanded lattice body. Decreased. When each of these batteries was disassembled and investigated after the end of the lifetime, all of them reached the lifetime due to corrosion of the positive grid.
表1に示した正極格子合金において、Al含有濃度を0.0005質量%とした場合においても、Se含有濃度の増加にしたがい、寿命サイクル数が若干減少する傾向にあるものの、前記したAl含有濃度0質量%のものよりもその低下度合いは緩和されている。 In the positive electrode lattice alloy shown in Table 1, even when the Al content concentration is 0.0005% by mass, the number of life cycles tends to decrease slightly as the Se content concentration increases. The degree of decrease is less than that of 0% by mass.
表1に示した正極格子合金において、Al含有濃度を0.001質量%、0.01質量%および0.03質量%とした場合(正極格子合金A11からA25)、Se含有濃度を0.01質量%および0.05質量%とすることにより、顕著に寿命サイクル数の伸長が認められた。この傾向は鋳造格子、エキスパンド格子ともに認められるが、エキスパンド格子を用いた電池において特に寿命伸長効果が顕著であった。 In the positive electrode lattice alloy shown in Table 1, when the Al content concentration is 0.001 mass%, 0.01 mass% and 0.03 mass% (positive electrode lattice alloys A11 to A25), the Se content concentration is 0.01. By setting the mass% and 0.05 mass%, the extension of the life cycle number was recognized remarkably. This tendency is observed in both the cast lattice and the expanded lattice, but the effect of extending the life is particularly remarkable in the battery using the expanded lattice.
一方、Al含有濃度を0.001質量%〜0.03質量%とした場合であっても、Se含有濃度が0質量%、0.0005質量%および0.1質量%の場合は寿命伸長効果が殆ど得られなかった。 On the other hand, even when the Al content concentration is 0.001% by mass to 0.03% by mass, when the Se content concentration is 0% by mass, 0.0005% by mass, and 0.1% by mass, the life extension effect is achieved. Was hardly obtained.
さらに、表1に示した正極格子合金において、Al含有濃度を0.05質量%とした場合(A26〜A30)、寿命は急激に低下する結果となった。 Furthermore, in the positive electrode lattice alloy shown in Table 1, when the Al content concentration was set to 0.05 mass% (A26 to A30), the life decreased rapidly.
したがって、Al含有濃度0.001質量%〜0.03質量%、かつSe含有濃度0.001質量%〜0.05質量%の範囲で優れた寿命特性を得ることできる。効果のメカニ
ズムについて、Se添加により、結晶が微細化し、正極格子体の耐食性が向上することにより得られると考えられるが、その効果はAl含有濃度によって大きく影響を受ける。l含有濃度0.001質量%〜0.03質量%のAlはSeの合金中への分散を均一とし、耐食性を向上させると推測される。
Therefore, excellent life characteristics can be obtained in the range of Al content concentration of 0.001 mass% to 0.03 mass% and Se content concentration of 0.001 mass% to 0.05 mass%. Regarding the mechanism of the effect, it is considered that the addition of Se refines the crystal and improves the corrosion resistance of the positive electrode lattice, but the effect is greatly influenced by the Al-containing concentration. It is presumed that Al having an l-containing concentration of 0.001% by mass to 0.03% by mass makes the dispersion of Se uniform in the alloy and improves the corrosion resistance.
一方、Al含有濃度が0および0.0005質量%の場合には、Seの分散が均一ではなく、格子中に耐食性の不均一な部分が生じ、耐食性が劣る部分が局部的に優先的に腐食されるため、格子としての耐食性はSe添加によってかえって低下すると考えられる。 On the other hand, when the Al content concentration is 0 and 0.0005 mass%, the dispersion of Se is not uniform, and a non-uniform portion of corrosion resistance is generated in the lattice, and the portion having poor corrosion resistance is locally preferentially corroded. Therefore, it is considered that the corrosion resistance as a lattice is lowered by addition of Se.
鋳造格子体とエキスパンド格子体とを比較した場合、エキスパンド格子体の方が、鋳造格子体に比較して、本発明の効果がより顕著に得られることがわかる。圧延体を引き伸ばして得られるエキスパンド格子体の場合、圧延体の機械的特性に局部的に不均一な部分が存在すると、エキスパンド加工の際に、強度が局部的に低下した部分にクラックが生じ、この部分が優先的に腐食することにより、寿命特性が極端に低下するという問題があるからである。 When the cast lattice body and the expanded lattice body are compared, it can be seen that the expanded lattice body can achieve the effects of the present invention more significantly than the cast lattice body. In the case of an expanded lattice obtained by stretching a rolled product, if there is a locally non-uniform portion in the mechanical properties of the rolled product, cracks occur in the portion where the strength is locally reduced during the expansion process. This is because this part is preferentially corroded, resulting in a problem that the life characteristics are extremely lowered.
本発明では、Seの分散が均一となり、機械的強度も均質化されるため、局部的なクラックの発生を抑制し、エキスパンド格子体の耐食性を顕著に向上すると考えられる。 In the present invention, Se is uniformly dispersed and the mechanical strength is also homogenized. Therefore, it is considered that the occurrence of local cracks is suppressed and the corrosion resistance of the expanded lattice body is remarkably improved.
鋳造格子体は、エキスパンド格子体に比較して、本発明の効果が若干低下する傾向にあるが、エキスパンド格子体に比較して、鋳造格子体は製造設備がより簡便であり、少量多品種生産に適しているという利点がある。したがって、製造設備コスト等の制限により、鋳造格子体を採用せざるを得ない場合、本発明は鉛蓄電池の寿命改善に対して特に有効であると言える。 Cast grids tend to be slightly less effective than expanded grids, but cast grids are easier to manufacture and produce small quantities of many types of products than expanded grids. There is an advantage that it is suitable for. Therefore, it can be said that the present invention is particularly effective for improving the life of the lead-acid battery when it is necessary to employ a cast lattice body due to limitations on manufacturing equipment costs and the like.
次に、表2はCa含有濃度0.1質量%、Sn含有濃度1.0質量%のPb合金において、Al含有濃度とSe含有濃度を変化させた正極格子合金B1〜B30を用いて作成した鋳造格子体とエキスパンド格子体をそれぞれ用いた電池の寿命サイクル数を示している。 Next, Table 2 was prepared using positive electrode lattice alloys B1 to B30 in which the Al content concentration and the Se content concentration were changed in a Pb alloy having a Ca content concentration of 0.1% by mass and a Sn content concentration of 1.0% by mass. The life cycle number of the battery using each of the cast lattice body and the expanded lattice body is shown.
Sn含有濃度を2.2質量%から1.0質量%に低下させたことにより、寿命サイクル数は低下する傾向にあるものの、Sn含有濃度2.2質量%の場合と同様の傾向が得られている。すなわち、Al含有濃度0.001質量%〜0.03質量%、かつSe含有濃度0.001質量%〜0.05質量%の範囲で寿命特性を顕著に改善する効果が得られている。この効果も、Sn含有濃度2.2質量%の場合と同様のメカニズムで得られたと推測できる。 Although the number of life cycles tends to decrease by reducing the Sn-containing concentration from 2.2% by mass to 1.0% by mass, the same tendency as in the case of the Sn-containing concentration 2.2% by mass is obtained. ing. That is, the effect of remarkably improving the life characteristics is obtained in the range of Al content concentration of 0.001 mass% to 0.03 mass% and Se content concentration of 0.001 mass% to 0.05 mass%. It can be presumed that this effect was also obtained by the same mechanism as in the case of the Sn content concentration of 2.2% by mass.
正極格子合金中のSn含有濃度が増加するにしたがい、寿命が向上するが、これは、従来から知られているように、Sn添加による格子体の機械的強度改善と耐食性向上によるものである。Sn含有濃度をより高くすることで寿命が伸長するものの、SnはPbに比比較しても高価であり、1質量%程度の増量でも鉛蓄電池の製造コストを増加させる。 As the Sn content concentration in the positive electrode lattice alloy increases, the life is improved. This is due to the improvement of the mechanical strength and the corrosion resistance of the lattice by adding Sn, as is conventionally known. Although the life is extended by increasing the Sn-containing concentration, Sn is more expensive than Pb, and an increase of about 1% by mass increases the production cost of the lead storage battery.
したがって、より長寿寿命の鉛蓄電池を得る点においては、Sn含有濃度をより高くすることが好ましいが、製造コスト上、Sn含有濃度が制限される場合がある。このような製造コスト低減のためにSn含有濃度を制限した鉛蓄電池においても、本発明の構成を用いることにより、寿命の伸長効果を顕著に得ることができ、コストと寿命とを両立できる点で、本発明は極めて有効である。 Therefore, in order to obtain a lead-acid battery having a longer life span, it is preferable to increase the Sn-containing concentration, but the Sn-containing concentration may be limited in terms of manufacturing cost. Even in the lead storage battery in which the Sn content concentration is limited for the purpose of reducing the manufacturing cost, by using the configuration of the present invention, the effect of extending the life can be remarkably obtained, and both the cost and the life can be achieved. The present invention is extremely effective.
さらに、表3および表4は、Sn含有濃度を、それぞれ2.2質量%もしくは1.0質量%とし、Ca含有濃度を0.04質量%としたPb合金において、Al含有濃度とSe
含有濃度を変化させた正極格子合金C1〜C30およびD1〜D30を用いて作成した鋳造格子体とエキスパンド格子体をそれぞれ用いた電池の寿命サイクル数を示している。
Further, Tables 3 and 4 show that in the Pb alloy in which the Sn content concentration is 2.2% by mass or 1.0% by mass and the Ca content concentration is 0.04% by mass, the Al content concentration and Se
The life cycle number of the battery using each of the cast lattice body and the expanded lattice body prepared by using the positive electrode lattice alloys C1 to C30 and D1 to D30 with different content concentrations is shown.
表3および表4に示した結果と、前記した表1および表2に示した結果を比較することにより、Ca含有濃度を0.1質量%から0.04質量%に減少させた場合、若干の寿命低下が認められるが、Se含有濃度とAl含有濃度の変化に対しては、Ca含有濃度0.1質量%の場合と全く同様な寿命特性の変化を示す。Ca含有濃度を0.04質量%まで低下させた場合、格子体の強度に若干の低下が認められたことから、酸化腐食時での格子体の体積膨張による格子体の変形とこれによる活物質の格子体からの脱落が増加し、寿命特性の若干の低下が生じたと推測される。 By comparing the results shown in Tables 3 and 4 with the results shown in Tables 1 and 2 above, when the Ca concentration was decreased from 0.1% by mass to 0.04% by mass, However, the change in the life characteristics is exactly the same as the case of the Ca content of 0.1% by mass with respect to the change in the Se content and the Al content. When the Ca-containing concentration was reduced to 0.04% by mass, a slight decrease in the strength of the lattice was observed. Therefore, deformation of the lattice due to the volume expansion of the lattice during oxidative corrosion and the resulting active material It is presumed that the dropping of the metal from the lattice increased, and the life characteristics slightly decreased.
以上、説明してきたように、Pb−Ca−Sn合金を正極格子に用いた鉛蓄電池において、正極格子合金中にAlを0.001質量%〜0.03質量%、かつSeを0.001質量%〜0.05質量%の濃度で含有させることにより、正極格子体の腐食を抑制し、優れた寿命特性の鉛蓄電池を得ることができる。 As described above, in a lead storage battery using a Pb—Ca—Sn alloy for the positive electrode lattice, 0.001 mass% to 0.03% by mass of Al and 0.001 mass of Se in the positive electrode lattice alloy. By containing it at a concentration of from 0.05% to 0.05% by mass, corrosion of the positive electrode grid body can be suppressed, and a lead storage battery having excellent life characteristics can be obtained.
また、CaとSnの含有濃度については、正極格子体として通常用いられる、Sn:1.0〜2.2質量%、Ca:0.04〜0.10質量%の範囲において、本発明の効果を得ることができることが確認できた。 Moreover, about the content density | concentration of Ca and Sn, the effect of this invention in the range of Sn: 1.0-2.2 mass% and Ca: 0.04-0.10 mass% which are normally used as a positive electrode grid body. I was able to confirm that
本発明による鉛蓄電池は、高温使用時に課題となる、正極格子体の腐食による寿命低下を抑制し、長寿命の鉛蓄電池を得ることができることから、車両用鉛蓄電池等、高温で使用される鉛蓄電池に好適である。 Since the lead storage battery according to the present invention can prevent a decrease in life due to corrosion of the positive electrode grid, which is a problem when used at high temperatures, and can obtain a long-life lead storage battery, lead used in high temperatures such as a lead storage battery for vehicles Suitable for storage batteries.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005005926A JP2006196283A (en) | 2005-01-13 | 2005-01-13 | Lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005005926A JP2006196283A (en) | 2005-01-13 | 2005-01-13 | Lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006196283A true JP2006196283A (en) | 2006-07-27 |
Family
ID=36802189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005005926A Pending JP2006196283A (en) | 2005-01-13 | 2005-01-13 | Lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006196283A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109643804A (en) * | 2016-08-26 | 2019-04-16 | 日立化成株式会社 | Lead storage battery and casting grid and its manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10162834A (en) * | 1996-11-28 | 1998-06-19 | Japan Storage Battery Co Ltd | Lead-acid battery |
JP2005330516A (en) * | 2004-05-18 | 2005-12-02 | Furukawa Battery Co Ltd:The | Lead-based alloy for lead storage battery and lead storage battery in which the lead-based alloy is used for positive electrode substrate |
JP2006066283A (en) * | 2004-08-27 | 2006-03-09 | Furukawa Battery Co Ltd:The | Cathode plate for sealed lead-acid battery, and the sealed lead-acid battery using the cathode plate |
-
2005
- 2005-01-13 JP JP2005005926A patent/JP2006196283A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10162834A (en) * | 1996-11-28 | 1998-06-19 | Japan Storage Battery Co Ltd | Lead-acid battery |
JP2005330516A (en) * | 2004-05-18 | 2005-12-02 | Furukawa Battery Co Ltd:The | Lead-based alloy for lead storage battery and lead storage battery in which the lead-based alloy is used for positive electrode substrate |
JP2006066283A (en) * | 2004-08-27 | 2006-03-09 | Furukawa Battery Co Ltd:The | Cathode plate for sealed lead-acid battery, and the sealed lead-acid battery using the cathode plate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109643804A (en) * | 2016-08-26 | 2019-04-16 | 日立化成株式会社 | Lead storage battery and casting grid and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4160856B2 (en) | Lead-based alloy for lead-acid battery and lead-acid battery using the same | |
JP4148175B2 (en) | Lead alloy and lead storage battery using the same | |
JP5858048B2 (en) | Lead acid battery | |
JP6572918B2 (en) | Lead storage battery and electrode current collector for lead storage battery | |
JP4997948B2 (en) | Lead acid battery | |
JPWO2016110907A1 (en) | Positive electrode grid for lead acid battery, method for producing the same, and lead acid battery | |
JP2004527066A (en) | Lead-acid batteries and anode plates and alloys therefor | |
JP5168893B2 (en) | Lead acid battery | |
JP5137371B2 (en) | Rolled lead alloy sheet for expanded positive grid and lead-acid battery | |
JP2000077076A (en) | Lead base alloy for storage battery | |
JP2002175798A (en) | Sealed lead-acid battery | |
JP2006196283A (en) | Lead-acid battery | |
JP2008218258A (en) | Lead acid battery | |
JP6601654B2 (en) | Control valve type lead acid battery | |
JP4896392B2 (en) | Lead acid battery | |
JP2005044760A (en) | Manufacturing method of lead-acid storage battery positive electrode plate lattice | |
JP5903606B2 (en) | Lead plate for lead storage battery, lead storage battery, and method for manufacturing lead plate for lead storage battery | |
JP2006196342A (en) | Lead acid storage battery | |
JP2006114416A (en) | Lead-acid battery | |
JP2004200028A (en) | Manufacturing method of lead acid storage battery electrode grid | |
JP4026259B2 (en) | Sealed lead acid battery | |
JP7198890B1 (en) | lead acid battery | |
JP4793518B2 (en) | Lead acid battery | |
JP2007157610A (en) | Lead-acid battery | |
JP5375049B2 (en) | Lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080111 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080213 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111011 |