JP3099328B2 - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JP3099328B2
JP3099328B2 JP01118931A JP11893189A JP3099328B2 JP 3099328 B2 JP3099328 B2 JP 3099328B2 JP 01118931 A JP01118931 A JP 01118931A JP 11893189 A JP11893189 A JP 11893189A JP 3099328 B2 JP3099328 B2 JP 3099328B2
Authority
JP
Japan
Prior art keywords
alloy
battery
lattice
lead
maintenance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01118931A
Other languages
Japanese (ja)
Other versions
JPH02299155A (en
Inventor
直人 星原
康彦 鈴井
宣行 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01118931A priority Critical patent/JP3099328B2/en
Publication of JPH02299155A publication Critical patent/JPH02299155A/en
Application granted granted Critical
Publication of JP3099328B2 publication Critical patent/JP3099328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池に関するものであり、とくに、自動
車用メンテナンスフリー形鉛蓄電池の、深い放電を含む
充放電サイクルでの充電効率を高め、寿命の向上を図る
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-acid battery, and more particularly to a maintenance-free lead-acid battery for automobiles, which increases the charging efficiency in a charge / discharge cycle including deep discharge and improves the life. It is intended.

従来の技術 自動車、とくに一般乗用車の普及とともに、自動車用
鉛蓄電池に対しても保守管理の不要なメンテナンスフリ
ー化が要求されるようになってきた。その為、自己放電
が少なく、液べりの少ないメンテナンスフリー形電池用
の格子合金として、Pb−Ca系合金が実用化されてきた。
2. Description of the Related Art With the spread of automobiles, particularly general passenger cars, lead-free batteries for automobiles have been required to be maintenance-free without maintenance. For this reason, Pb-Ca alloys have been put into practical use as lattice alloys for maintenance-free batteries with less self-discharge and less liquid leakage.

また、近年のカーエレクトロニクスの発展により、電
装品の装着が増え、電池に対する負荷が増大してきてい
る。さらに、エンジンルーム内が緻密になるとともに、
自動車の増加で交通渋滞が重なり、電源電池が高温状態
下で使用されることが多くなってきた。このように、自
動車用鉛蓄電池は電気負荷が増加し、環境温度が高くな
り、非常に苛酷な条件で使われるようになってきた。
Also, with the development of car electronics in recent years, the mounting of electrical components has increased, and the load on batteries has been increasing. Furthermore, as the engine room becomes denser,
The traffic congestion is increasing due to the increase in the number of automobiles, and the power supply batteries are often used under high temperature conditions. Thus, lead-acid batteries for automobiles have been used under extremely severe conditions due to an increase in electric load and an increase in environmental temperature.

そのため、Pb−Ca系合金を格子に用いてメンテナンス
フリー性を有しながら、耐久力を高めるために、Pb−Ca
−Sn三元合金製の圧延シートを格子に用いて耐食性を高
めたり、格子断面積を大きくしたり、活物質量を増やし
さらに活物質で格子を包み込む構造を採るなどの手段が
開発されてきた。
Therefore, while using a Pb-Ca-based alloy for the grid and having maintenance-free properties, in order to increase the durability, Pb-Ca
Means have been developed, such as using a rolled sheet made of Sn ternary alloy for the grid to increase corrosion resistance, increase the grid cross-sectional area, increase the amount of active material, and adopt a structure that wraps the grid with active material. .

一方、高温雰囲気中の電池のダメージを抑制するため
に、レギュレータの設定電圧を低くして過充電になるの
を防ぐ手立てが取られることもある。なお、レギュレー
タの電圧は周囲温度が高くなると、センサでこれを検知
して自動的に低下するような補正が働くようになってき
た。さらに、高温になる車両では電池が高温になるのを
防ぐために、遮蔽板を採用しているものもある。
On the other hand, in order to prevent the battery from being damaged in a high-temperature atmosphere, a measure may be taken to reduce the set voltage of the regulator to prevent overcharging. Incidentally, when the ambient temperature increases, the voltage of the regulator is detected by a sensor, and a correction has been made to automatically lower the voltage. Further, some vehicles that have a high temperature employ a shielding plate to prevent the battery from becoming high in temperature.

発明が解決しようとする課題 このように市場の強い要望であるメンテナンスフリー
性能をPb−Ca系合金の開発で達成するとともに、苛酷な
使用条件に対する耐久力が高められてきた。そして、車
両設計からも工夫が施されてきた。
Problems to be Solved by the Invention As described above, maintenance-free performance, which is a strong demand of the market, has been achieved by the development of Pb-Ca-based alloys, and durability against severe use conditions has been enhanced. And the device has been devised from the vehicle design.

以上のように、市場の苛酷な条件が進むにつれて、電
池の劣化状態も変化している。そのため使用条件にあっ
た改善を図り、市場の要望に対応する必要がある。
As described above, as the severe market conditions progress, the state of deterioration of the battery also changes. Therefore, it is necessary to improve the use conditions and respond to market demands.

本発明はメンテナンスフリー性を維持しながら、深い
放電を含む充放電サイクルでの充電効率を高めて長寿命
化を図るものである。
The present invention aims to increase the charging efficiency in a charge / discharge cycle including deep discharge and maintain the maintenance-free property, thereby extending the life.

すなわち、交通カーエレクトロニクスの発展につれて
電気負荷が増大し、深い放電を伴う反面、交通渋滞が増
えて走行による十分な充電ができにくくなってきた。そ
こで、充電受入れ性を一層高めるとともに、深い放電に
対する耐久性を改善して寿命性能を向上させるものであ
る。
That is, with the development of traffic car electronics, the electric load has increased and deep discharge has occurred, but on the other hand, traffic congestion has increased and it has become difficult to perform sufficient charging by traveling. In view of this, the charge acceptability is further improved, and the durability against deep discharge is improved to improve the life performance.

課題を解決するための手段 本発明は、カルシウム(Ca)を0.02〜0.15wt%、スズ
(Sn)を0〜5.0wt%含み、残部が鉛(Pb)からなるPb
−Ca系合金製の格子体表面に、アンチモン(Sb)を0.8
〜50wt%、Snを1.0〜10wt%、ビスマス(Bi)を0.001〜
0.1wt%含み、残部がPbからなるPb−Sb−Sn−Bi合金層
を有する格子体を用いることにより、Pb−Ca系合金のメ
ンテナンスフリー性能を維持しながら、充電受入れ性を
改善し、さらに深い放電に対する耐久力を向上させるも
のである。
Means for Solving the Problems The present invention provides Pb comprising 0.02 to 0.15% by weight of calcium (Ca), 0 to 5.0% by weight of tin (Sn), and the balance of lead (Pb).
-Antimony (Sb) 0.8% on the surface of the Ca alloy lattice
~ 50wt%, Sn 1.0-10wt%, bismuth (Bi) 0.001 ~
By using a lattice having a Pb-Sb-Sn-Bi alloy layer containing 0.1 wt% and a balance of Pb, while maintaining the maintenance-free performance of the Pb-Ca-based alloy, the charge acceptability is improved, and This is to improve the durability against deep discharge.

とくに、Caを0.05〜0.12wt%、Snを0.1〜1wt%含み、
残部がPbのPb−Ca−Sn合金を母材として、その片面ある
いは両面に、Pb−Sb−Sn−Bi合金層を上記Pb−Ca−Sn合
金母材厚みに対する比率が1%以下の厚さに形成された
鉛合金シートをエキスバンド加工して、格子体に用いる
ことにより、Pb−Ca−Sn合金の優れたメンテナンスフリ
ー性能を維持して、充電受入れ性を向上させ、さらに長
寿命を達成する耐久力の向上をはかるものである。
In particular, containing 0.05-0.12wt% of Ca and 0.1-1wt% of Sn,
A Pb-Ca-Sn alloy having a balance of Pb as a base material, and a Pb-Sb-Sn-Bi alloy layer having a thickness of 1% or less with respect to the thickness of the Pb-Ca-Sn alloy base material on one or both surfaces thereof. By using the lead alloy sheet formed in the above as an ex-band process and using it as a lattice, the excellent maintenance-free performance of the Pb-Ca-Sn alloy is maintained, the charge acceptance is improved, and a longer life is achieved. It is intended to improve durability.

格子体表面層に異種合金製の薄層を形成する方法とし
ては、母材合金板と異種合金箔とを重ね合わせて冷間又
は熱間圧延する方法、あるいは母材合金格子体に異種合
金を電析させるなどの方法がある。
As a method of forming a thin layer made of a dissimilar alloy on the lattice body surface layer, a method of laminating a base material alloy plate and a dissimilar alloy foil and performing cold or hot rolling, or a method of dissimilar alloy on a base material alloy lattice body There is a method such as electrodeposition.

なお、本発明の格子体は正極,負極両方に用いてもよ
いが、正極だけに用いたほうがメンテナンス性能の低下
がほとんど見られないので、メンテナンス性能を重視す
る場合は、異種合金層を有する格子体は正極用に用い、
負極用はPb−Ca−Sn合金格子体を用いるとよい。
Note that the grid body of the present invention may be used for both the positive electrode and the negative electrode. However, the maintenance performance is hardly reduced when only the positive electrode is used. The body is used for the positive electrode,
For the negative electrode, a Pb-Ca-Sn alloy lattice may be used.

作用 このように本発明は、Pb−Ca系合金格子体の表面層に
Pb−Sb−Sn−Bi合金層を有した格子体を用いることによ
り、Pb−Ca系合金格子体のメンテナンス性能を維持しな
がら、充電受入れ性を向上させるとともに、深い放電に
対する耐久力を高めるものである。
Action As described above, the present invention provides a Pb-Ca-based alloy lattice
By using a lattice having a Pb-Sb-Sn-Bi alloy layer, while maintaining the maintenance performance of the Pb-Ca-based alloy lattice, it improves charge acceptability and enhances durability against deep discharge. It is.

格子体表面に形成されたPb−Sb−Sn−Bi合金層中のS
b,Biは使用中に正極活物質に吸着されて、活物質の粗大
化を抑制し、微細な結晶構造を構成する。この微細な結
晶を保つことにより、高効率で充電されるものと考えら
れる。
S in the Pb-Sb-Sn-Bi alloy layer formed on the lattice body surface
During use, b and Bi are adsorbed by the positive electrode active material, thereby suppressing coarsening of the active material and forming a fine crystal structure. It is considered that by keeping these fine crystals, the battery is charged with high efficiency.

また、充放電サイクルをくり返し行うと、負極活物質
は収縮して、表面積が小さくなっていく。その結果、一
定電圧で充電する場合の正極の充電効率を阻害する傾向
がある。このような現象に対しても、極くわずかな量の
Sb,Biが負極活物質に析出することにより、正極の充電
効率への影響を抑制する働きがあるものと考えられる。
When the charge and discharge cycle is repeated, the negative electrode active material shrinks and the surface area decreases. As a result, the charging efficiency of the positive electrode when charging at a constant voltage tends to be impaired. Even for such phenomena, a very small amount
It is considered that the precipitation of Sb and Bi on the negative electrode active material has a function of suppressing the influence on the charging efficiency of the positive electrode.

さらに、正極活物質に吸着されたSb,Biは、活物質同
志の結合力を高めるとともに、格子体と活物質との密着
性を高め、深い放電のくり返しによる活物質の軟化を抑
制する働きがあると考えられる。
In addition, Sb and Bi adsorbed on the positive electrode active material not only increase the bonding force between the active materials but also enhance the adhesion between the lattice and the active material, thereby suppressing the softening of the active material due to repeated deep discharges. It is believed that there is.

以上のように、本発明は格子体表面に配置されたSbお
よびBiが正極活物質あるいは負極活物質に分散されて、
充電効率を高めていると思われる。この格子体表面の合
金にSnが含まれることで一層高効率な充電受入れ性が認
められた。合金中にSnを存在させることにより、Sb,Bi
の遊離を促進するような働きがあると思われる。
As described above, in the present invention, Sb and Bi disposed on the lattice body surface are dispersed in the positive electrode active material or the negative electrode active material,
It seems that charging efficiency has been improved. The inclusion of Sn in the alloy on the surface of this lattice body confirmed a more efficient charge acceptability. By the presence of Sn in the alloy, Sb, Bi
It seems to have the effect of promoting the release of

一方、格子体表面の合金層は非常に薄く、その比率は
Pb−Ca系合金母材の厚みに対して1%以下である。格子
体の電気化学特性はPb−Ca系合金の特性を有しており、
高い水素過電圧を有している。そのため、本発明の電池
は自己放電が少なく、電解液の減少も少ないPb−Ca系合
金のもつ優れたメンテナンスフリー性能を維持してい
る。
On the other hand, the alloy layer on the lattice surface is very thin, and its ratio is
It is 1% or less with respect to the thickness of the Pb-Ca alloy base material. The electrochemical properties of the lattice have the properties of a Pb-Ca-based alloy,
It has a high hydrogen overpotential. Therefore, the battery of the present invention maintains the excellent maintenance-free performance of the Pb-Ca-based alloy with less self-discharge and less decrease in electrolyte.

なお、格子体表面層のSbの量は0.8wt%未満では本発
明の充電効率を高める顕著な効果が認められなかった。
また、50wt%を越えると、Sbの負極への析出量が急増す
るなどにより、減液速度が増加し、メンテナンス性能が
低下するので、メンテナンスフリーを要望される分野へ
は適していない。
When the amount of Sb in the lattice layer surface layer was less than 0.8 wt%, no remarkable effect of increasing the charging efficiency of the present invention was observed.
On the other hand, if it exceeds 50 wt%, the amount of Sb deposited on the negative electrode will increase rapidly, and the rate of liquid reduction will increase, resulting in a decrease in maintenance performance. Therefore, it is not suitable for fields requiring maintenance free.

さらに、0.001〜0.1wt%と微量のBiを含有すること
で、とくに充放電をくり返したときの負極の充電電位を
一定に保って寿命末期まで優れた充電効率を維持させる
ものと考えられる。その量が0.001wt%未満では充放電
サイクル中の効果は確認できなかった。また、逆に0.1w
t%を越えるとメンテナンス性能が減少するので好まし
くない。
Further, by containing a very small amount of Bi of 0.001 to 0.1 wt%, it is considered that the charge potential of the negative electrode is kept constant, especially when charge and discharge are repeated, and excellent charge efficiency is maintained until the end of life. If the amount is less than 0.001 wt%, no effect during the charge / discharge cycle can be confirmed. Also, conversely, 0.1w
Exceeding t% is undesirable because maintenance performance is reduced.

母材合金には0.02〜0.15wt%のCaを含有させることで
優れたメンテナンス性能を発揮する。0.15wt%を越える
と耐食性が低下するので好ましくない。また、5.0wt%
以下のSnを加えることにより、さらに耐食性が向上す
る。とくに、0.05wt%〜0.12wt%のCaと0.1wt%〜1.0wt
%のSnを有するPb合金製の冷間圧延シートを加工したエ
キスパンド格子体を用いることで、優れたメンテナンス
フリー性能を発揮する。
Excellent maintenance performance is achieved by incorporating 0.02 to 0.15 wt% Ca into the base metal alloy. If it exceeds 0.15% by weight, corrosion resistance is undesirably reduced. Also, 5.0wt%
By adding the following Sn, the corrosion resistance is further improved. In particular, 0.05wt% ~ 0.12wt% Ca and 0.1wt% ~ 1.0wt
By using an expanded lattice processed from a cold-rolled sheet made of a Pb alloy having a Sn content of 5%, excellent maintenance-free performance is exhibited.

実施例 つぎに、実施例により本発明の構成と効果について説
明する。
EXAMPLES Next, the configuration and effects of the present invention will be described with reference to examples.

Pb−0.07wt%Ca−0.25wt%Sn合金を用いて、厚さ10m
m,幅80mmの連続鋳造板をつくり、母材とした。
Using Pb-0.07wt% Ca-0.25wt% Sn alloy, thickness 10m
m, a continuous cast plate with a width of 80 mm was made and used as a base material.

この母材合金板に厚さ0.1mmのPb−5.0wt%Sb−5.0wt
%Sn−0.02wt%Biの合金箔を重ね合わせて、冷間圧延を
行い、表面に異種合金層を有する圧延シートを作った。
そして上記圧延シートをエキスパンド加工して活物質を
充填し、正極板を作った。
0.1mm thick Pb-5.0wt% Sb-5.0wt
% Sn-0.02 wt% Bi alloy foil was overlapped and cold rolled to produce a rolled sheet having a dissimilar alloy layer on the surface.
The rolled sheet was expanded and filled with an active material to produce a positive electrode plate.

上記正極板とPb−0.07wt%Ca−0.25wt%Snの合金母材
を用いた負極板とをポリエチレンの多孔性シートセパレ
ータを介して、極板群を構成し、電池Aを組み立てた。
Battery A was assembled by forming a group of electrodes from the above positive electrode plate and a negative electrode plate using an alloy base material of Pb-0.07 wt% Ca-0.25 wt% Sn with a polyethylene porous sheet separator interposed therebetween.

なお、電池は5時間率容量が48AHとした。 The battery had a 5-hour rate capacity of 48 AH.

比較例として、Pb−0.07wt%Ca−0.25wt%Snの合金母
材を用いた正極板と負極板を使って、電池Bを組み立て
た。
As a comparative example, a battery B was assembled using a positive electrode plate and a negative electrode plate using an alloy base material of Pb-0.07 wt% Ca-0.25 wt% Sn.

これらの電池A,Bを用いて充放電サイクル寿命試験を
行った。
A charge / discharge cycle life test was performed using these batteries A and B.

試験は放電を25Aで1時間行い、充電を14.5Vの低電圧
で2時間(最大電流25A)行う充放電を1サイクルとし
た。そして、40サイクルごとに300Aで30秒間放電した。
この30秒目の電圧が7.2V以下になったときを寿命とし
た。
In the test, discharging was performed at 25 A for 1 hour, and charging and discharging in which charging was performed at a low voltage of 14.5 V for 2 hours (maximum current 25 A) was defined as one cycle. Then, the battery was discharged at 300 A for 30 seconds every 40 cycles.
The life was defined as the time when the voltage at the 30th second became 7.2 V or less.

第1図に充放電サイクル寿命試験の結果を示す。 FIG. 1 shows the results of the charge / discharge cycle life test.

図から明らかなように本発明の電池Aは優れた寿命性
能を有している。一方、比較に用いた従来電池Bは短寿
命であった。この寿命になった従来電池Bを10Aの定電
流で8時間充電した後、300Aで放電を行った。その結
果、30秒目電圧が8.6Vで同じサイクルでの本発明の電池
Aの9.0Vに比べれば、低下しているが、まだ十分使用で
きる容量があった。
As is clear from the figure, the battery A of the present invention has excellent life performance. On the other hand, the conventional battery B used for comparison had a short life. The conventional battery B having reached the end of its life was charged at a constant current of 10 A for 8 hours, and then discharged at 300 A. As a result, the voltage at the 30th second was 8.6 V, which was lower than 9.0 V of the battery A of the present invention in the same cycle, but was still sufficiently usable.

つぎに、これらの電池A,Bを分解し、極板の劣化状態
を調べた。本発明の電池Aの極板は活物質の軟化が進行
しており、寿命状態であった。ところが、従来電池Bの
極板は劣化が少なく使用可能な状態であった。
Next, these batteries A and B were disassembled and the state of deterioration of the electrode plates was examined. In the electrode plate of the battery A of the present invention, softening of the active material was progressing, and the battery A was in a life state. However, the electrode plate of the conventional battery B was in a usable state with little deterioration.

上記試験結果から、本発明の電池Aは深い放電のサイ
クルのくり返しにより、活物質が劣化して寿命になるま
で極板を十分に活用していた。
From the above test results, in the battery A of the present invention, the electrode plate was fully utilized until the end of the life due to the deterioration of the active material due to the repeated deep discharge cycles.

しかし、従来電池Bは極板の劣化ではなく、充電不足
による容量低下であった。
However, in the conventional battery B, the capacity was reduced due to insufficient charging, not deterioration of the electrode plate.

なお、充放電サイクル中の電解液の減少量は本発明の
電池Aも従来電池Bと同様に少なかった。
It should be noted that the amount of decrease in the electrolytic solution during the charge / discharge cycle was small in the battery A of the present invention as in the conventional battery B.

発明の効果 このように本発明の鉛蓄電池は優れたメンテナンス性
能を有しながら、深い放電サイクルの耐久性を大幅に改
善するとともに優れた充電効率を発揮するものである。
As described above, the lead storage battery of the present invention has excellent maintenance performance, significantly improves the durability of a deep discharge cycle, and exhibits excellent charging efficiency.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の鉛蓄電池の充放電サイクル試験の結果
を示す図である。 A……本発明の電池、B……従来例の電池。
FIG. 1 is a diagram showing the results of a charge / discharge cycle test of the lead storage battery of the present invention. A: battery of the present invention; B: battery of conventional example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 4/74 H01M 4/74 B (56)参考文献 特開 昭63−148556(JP,A) 特開 昭53−76327(JP,A) 特開 昭61−188861(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/68 - 4/74 C22C 11/00 - 12/00 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H01M4 / 74 H01M4 / 74B JP, A) JP-A-61-188861 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/68-4/74 C22C 11/00-12/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】カルシウム(Ca)を0.02〜0.15wt%、スズ
(Sn)を0〜5.0wt%含み、残部が鉛(Pb)からなるPb
−Ca系合金製の格子体表面に、アンチモン(Sb)を0.8
〜50wt%、Snを1.0〜10wt%、ビスマス(Bi)を0.001〜
0.1wt%含み、残部がPbからなるPb−Sb−Sn−Bi合金層
を前記格子体の厚みの1%以下の厚みで形成した格子体
を少なくとも正極に用いたことを特徴とした鉛蓄電池。
1. Pb comprising 0.02 to 0.15% by weight of calcium (Ca) and 0 to 5.0% by weight of tin (Sn), with the balance being lead (Pb)
-Antimony (Sb) 0.8% on the surface of the Ca alloy lattice
~ 50wt%, Sn 1.0-10wt%, bismuth (Bi) 0.001 ~
A lead-acid battery characterized by using at least a positive electrode as a lattice body including a Pb-Sb-Sn-Bi alloy layer containing 0.1 wt% and a balance of Pb with a thickness of 1% or less of the lattice body.
【請求項2】Caを0.05〜0.12wt%、Snを0.1〜1wt%含
み、残部がPbからなるPb−Ca−Sn合金を母材とし、この
母材表面に前記母材厚みの1%以下の厚みでアンチモン
(Sb)を0.8〜50wt%、Snを1.0〜10wt%、ビスマス(B
i)を0.001〜0.1wt%含み、残部がPbからなるPb−Sb−S
n−Bi合金層を有する鉛合金製エキスパンド格子体を用
いたことを特徴とする鉛蓄電池。
2. A Pb-Ca-Sn alloy containing 0.05 to 0.12% by weight of Ca and 0.1 to 1% by weight of Sn and a balance of Pb as a base material, and the base material surface has a thickness of 1% or less of the base material thickness. 0.8 to 50 wt% of antimony (Sb), 1.0 to 10 wt% of Sn, and bismuth (B
Pb-Sb-S containing 0.001 to 0.1 wt% of i) with the balance being Pb
A lead-acid battery using a lead alloy expanded lattice body having an n-Bi alloy layer.
JP01118931A 1989-05-12 1989-05-12 Lead storage battery Expired - Lifetime JP3099328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01118931A JP3099328B2 (en) 1989-05-12 1989-05-12 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01118931A JP3099328B2 (en) 1989-05-12 1989-05-12 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH02299155A JPH02299155A (en) 1990-12-11
JP3099328B2 true JP3099328B2 (en) 2000-10-16

Family

ID=14748758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01118931A Expired - Lifetime JP3099328B2 (en) 1989-05-12 1989-05-12 Lead storage battery

Country Status (1)

Country Link
JP (1) JP3099328B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073403B2 (en) * 2007-07-31 2012-11-14 古河電池株式会社 Lead-acid battery grid and lead-acid battery using the grid
JP5115107B2 (en) * 2007-09-06 2013-01-09 新神戸電機株式会社 Lead acid battery
CN102082257B (en) * 2010-12-22 2013-10-30 风帆股份有限公司 Lead pipe of lead-acid battery for starting automobile and manufacturing method
CN102747408A (en) * 2012-07-12 2012-10-24 内蒙古第一机械集团有限公司 Lead-based multivariant alloy electroplating anode
CN115233033A (en) * 2022-07-14 2022-10-25 铅锂智行(北京)科技有限公司 Lead-based alloy and product thereof

Also Published As

Publication number Publication date
JPH02299155A (en) 1990-12-11

Similar Documents

Publication Publication Date Title
EP2330676B1 (en) Lead acid storage battery
KR100305423B1 (en) Expanded Grid For Electrode Plate of Lead-Acid Battery
US5120620A (en) Binary lead-tin alloy substrate for lead-acid electrochemical cells
EP0213203B1 (en) Grid for lead storage batteries and a method of producing the same
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP3099330B2 (en) Lead storage battery
JP7296016B2 (en) Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system
JP3987370B2 (en) Positive electrode plate for lead acid battery and lead acid battery using the same
JP3099328B2 (en) Lead storage battery
JP2002175798A (en) Sealed lead-acid battery
JP3099329B2 (en) Lead storage battery
JP2006114417A (en) Lead-acid storage battery
JPH02297864A (en) Lead storage battery
JP4894211B2 (en) Lead acid battery
JPH0212386B2 (en)
Tsubota et al. Characteristics of valve-regulated lead/acid batteries for automotive applications under deep-discharge duty
JP3052629B2 (en) Sealed lead-acid battery
JP4364054B2 (en) Lead acid battery
JPS63148556A (en) Paste type lead acid battery
JP4904686B2 (en) Lead acid battery
JP3094423B2 (en) Lead storage battery
JPH02299154A (en) Lead-acid battery
JP5909974B2 (en) Lead acid battery
JP3036235B2 (en) Expanded grid of lead-acid battery
Takahashi et al. Techniques to reduce failure in lead-calcium batteries using expanded type grids

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9