JP3099330B2 - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JP3099330B2
JP3099330B2 JP01170139A JP17013989A JP3099330B2 JP 3099330 B2 JP3099330 B2 JP 3099330B2 JP 01170139 A JP01170139 A JP 01170139A JP 17013989 A JP17013989 A JP 17013989A JP 3099330 B2 JP3099330 B2 JP 3099330B2
Authority
JP
Japan
Prior art keywords
lattice
alloy
battery
lead
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01170139A
Other languages
Japanese (ja)
Other versions
JPH0337962A (en
Inventor
直人 星原
康彦 鈴井
宣行 高見
勝弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01170139A priority Critical patent/JP3099330B2/en
Publication of JPH0337962A publication Critical patent/JPH0337962A/en
Application granted granted Critical
Publication of JP3099330B2 publication Critical patent/JP3099330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池に関するものであり、とくに、自動
車用メンテナンスフリー形鉛蓄電池の高温耐久性を改善
し、充放電サイクル寿命の向上を図るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-acid battery, and more particularly, to improving the high-temperature durability of a maintenance-free lead-acid battery for automobiles and improving the charge / discharge cycle life. .

従来の技術 一般乗用車の普及とともに、自動車用鉛蓄電池に対し
ても保守管理の不要なメンテナンスフリー化が要求され
るようになってきた。その為、自己放電が少なく、液べ
りの少ないメンテナンスフリー形電池用の格子合金とし
て、Pb−Ca系合金が実用化されてきた。
2. Description of the Related Art With the spread of general passenger cars, there has been a demand for lead-acid batteries for automobiles to be maintenance-free without maintenance. For this reason, Pb-Ca alloys have been put into practical use as lattice alloys for maintenance-free batteries with less self-discharge and less liquid leakage.

また、近年のカーエレクトロニクスの発展により電装
品の装着が増え、電池に対する負荷が増大してきた。さ
らに、エンジンルーム内が緻密になるとともに、自動車
の増加で渋滞が重なり、電池が高温状態で使用されるこ
とが多くなってきた。このように、電気負荷が増加し、
環境温度が高くなり非常に苛酷な条件で使われるように
なってきた。
In addition, due to the recent development of car electronics, the mounting of electrical components has increased, and the load on batteries has increased. In addition, the engine room becomes denser, traffic congestion increases due to an increase in the number of automobiles, and batteries are often used in a high temperature state. Thus, the electrical load increases,
As the environmental temperature has risen, it has come to be used under very severe conditions.

そのため、Pb−Ca系合金を格子に用いてメンテナンス
フリー性を有しながら、耐久力を高めるために、Pb−Ca
−Sn三元合金製の圧延シートを格子に用いて耐食性を高
めたり、格子断面積を大きくしたり、活物質量を増やし
さらに活物質で格子を包み込む構造を構成させるなどの
手段が開発されてきた。
Therefore, while using a Pb-Ca-based alloy for the grid and having maintenance-free properties, in order to increase the durability, Pb-Ca
Means have been developed, such as using a rolled sheet made of Sn ternary alloy for the grid to increase corrosion resistance, increase the grid cross-sectional area, increase the amount of active material, and configure a structure that wraps the grid with active material. Was.

このように市場の強い要望であるメンテナンスフリー
性能をPb−Ca系合金の開発で達成するとともに、苛酷な
使用条件に対する耐久力を高めるために、種々な改善方
法が開発されてきた。
As described above, various improvement methods have been developed in order to achieve maintenance-free performance, which is a strong demand of the market, by developing Pb-Ca-based alloys and to increase durability under severe use conditions.

また、市場の苛酷な条件が進むに連れて、電池の劣化
モードも変化している。そこで、苛酷な使用条件を克服
するように、寿命モードを変えるような改善を図り、市
場の要望に対応する必要がある。
Also, as the harsh conditions of the market progress, the deterioration mode of the battery is also changing. Therefore, it is necessary to meet the needs of the market by improving the life mode so as to overcome the severe use conditions.

発明が解決しようとする課題 本発明はメンテナンスフリー性を維持しながら、高温
雰囲気中での耐久性を高めて長寿命化を図るものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to enhance durability in a high-temperature atmosphere and extend the service life while maintaining maintenance-free properties.

すなわち、カーエレクトロニクスの発展で車両に付加
される電装品が増大し、エンジンルーム内が緻密にな
り、一方では道路事情も渋滞が増加しエンジンルーム内
が高温状態になる傾向が急増してきた。そこで、電池に
対しても、耐食性を高め格子の変形を防ぎ、高温耐久性
を改善して、寿命性能を向上させるものである。
In other words, with the development of car electronics, the number of electrical components added to vehicles has increased and the interior of the engine room has become denser. On the other hand, road conditions have also increased traffic congestion, and the tendency for the interior of the engine room to have a high temperature has rapidly increased. Therefore, the present invention also enhances the corrosion resistance, prevents the deformation of the lattice, improves the high-temperature durability, and improves the life performance of the battery.

課題を解決するための手段 本発明は、カルシウム(Ca)を0.02wt%〜0.15wt%,
スズ(Sn)を0〜5.0wt%、残部が鉛(Pb)からなるPb
−Ca系合金製の格子体表面に、アンチモン(Sb)を0.8w
t%〜50wt%、Snを1.0wt〜10wt%、残部がPbからなるPb
−Sb−Sn合金層を有し、格子目の1目の横の長さが縦の
長さより長い格子体を有する格子を用いることにより、
Pb−Ca系合金のメンテナンスフリー性能を維持しながら
高温に対する耐久力を向上させるものである。
Means for Solving the Problems The present invention provides calcium (Ca) at 0.02 wt% to 0.15 wt%,
Pb consisting of tin (Sn) from 0 to 5.0 wt%, with the balance being lead (Pb)
-0.8w antimony (Sb) on the surface of the lattice body made of Ca alloy
Pb consisting of t% to 50% by weight, Sn of 1.0% to 10% by weight, and the balance being Pb
By using a lattice having a -Sb-Sn alloy layer and having a lattice body in which the horizontal length of the first grid is longer than the vertical length,
This is to improve the durability against high temperatures while maintaining the maintenance-free performance of the Pb-Ca-based alloy.

とくに、Caを0.05wt%〜0.12wt%、Snを0.1wt%〜1wt
%、残部がPbからなるPb−Ca−Sn合金を母材シートと
し、その片面あるいは両面にPb−Sb−Sn合金層を有する
鉛合金シートを用い、上記鉛合金シートを加工してエキ
スパンド格子とするものである。上記エキスパンド格子
の菱形格子目の横の長さが縦よりも長く、かつ、極板の
寸法も横の寸法のほうが縦の寸法よりも長い極板を用い
ることにより、高温下での寿命性能を改善するものであ
る。
Especially, 0.05wt% ~ 0.12wt% of Ca, 0.1wt% ~ 1wt of Sn
%, The rest being Pb-Ca-Sn alloy composed of Pb as a base material sheet, using a lead alloy sheet having a Pb-Sb-Sn alloy layer on one or both sides thereof, processing the lead alloy sheet, and forming an expanded lattice. Is what you do. The horizontal length of the rhombic lattice of the expanded lattice is longer than the vertical one, and the dimension of the electrode plate is longer than the vertical one. It will improve.

さらにPb−Ca−Sn合金の母材表面に、厚みが母材合金
の1.0%以下の薄い層からなるPb−Sb−Sn合金層を有す
るエキスパンド格子を用いることにより、Pb−Ca−Sn合
金の優れたメンテナンスフリー性能を維持して、さらに
長寿命を達成するために高温耐久力の向上をはかるもの
である。
Further, by using an expanded lattice having a Pb-Sb-Sn alloy layer composed of a thin layer having a thickness of 1.0% or less of the base metal alloy on the base material surface of the Pb-Ca-Sn alloy, It is intended to improve high-temperature durability in order to maintain excellent maintenance-free performance and achieve a longer service life.

格子表面層に異種合金製の薄層を形成する方法として
は、母材合金板と異種合金箔とを重ね合わせて圧延する
方法、あるいは母材合金格子に異種合金を電析させるな
どの方法がある。
As a method of forming a thin layer made of a dissimilar alloy on the lattice surface layer, a method in which a base material alloy plate and a dissimilar alloy foil are overlapped and rolled, or a method in which a dissimilar alloy is electrodeposited on a base material alloy lattice is used. is there.

なお、本発明は正極、負極両方に用いてもよいが、正
極だけに用いたほうがメンテナンスフリー性能の低下が
ほとんど見られないので、メンテナンスフリー性能を重
視する場合は、異種合金層を有する格子は正極用に用
い、負極用はPb−Ca−Sn合金格子を用いるとよい。
Although the present invention may be used for both the positive electrode and the negative electrode, the use of only the positive electrode hardly causes a decrease in maintenance-free performance. It is preferable to use a Pb-Ca-Sn alloy lattice for the positive electrode and for the negative electrode.

作用 本発明はPb−Ca系合金格子の表面層にPb−Sb−Sn合金
層を有し、格子目の大きさが縦よりも横が長い格子体を
備えることにより、Pb−Ca系合金格子のメンテナンスフ
リー性能を維持しながら、高温中で使用されたときの耐
食性を向上させるとともに、極板の上部への伸びを抑制
して、ショートを防ぐ。そして、結果的に長寿命化を図
るものである。
Action The present invention has a Pb-Ca-based alloy lattice having a Pb-Sb-Sn alloy layer on the surface layer of the Pb-Ca-based alloy lattice, and having a lattice body whose lattice size is longer than the vertical one. While maintaining the maintenance-free performance of this product, it improves corrosion resistance when used in high temperatures and suppresses elongation to the upper part of the electrode plate to prevent short circuits. As a result, the life is extended.

すなわち、格子表面に形成されたPb−Sb−Sn合金層中
のSbは使用中に正極活物質に吸着されて、活物質の粗大
化を抑制し、微細な結晶構造を保つとともに活物質同志
の結合力を高める働きがあると考えられる。そのため、
苛酷な使用条件に対しても容量低下を極力押さえる効果
がある。
In other words, Sb in the Pb-Sb-Sn alloy layer formed on the lattice surface is adsorbed by the positive electrode active material during use, suppresses coarsening of the active material, maintains a fine crystal structure, and maintains the fineness of the active material. It is thought that it has the function of increasing the bonding force. for that reason,
It has the effect of minimizing the capacity reduction even under severe operating conditions.

一般に高温状態で使用されると、格子強度は低下する
傾向になり、腐食も進みやすくなる。そして、腐食が大
きくなると生成した腐食酸化層の体積膨張により、極板
寸法が増長する。とくに、エキスパンド格子の場合極板
の高さ方向に伸びる傾向がある。これは両サイズに枠骨
がないので高さ方向へ増長すると考えられる。そこで本
発明を用いると、格子表面のPb−Sb−Sn合金層の耐食性
がすぐれているので極板寸法の増長を防ぐことができ
る。また、格子表面で鉛合金シート面に対応する面の片
方もしくは両方にPb−Sb−Sn合金層を、エキスパンド加
工時の切断面に対応する面にPb−Ca系合金層を配置させ
るために、格子の表面状態によって腐食の浸食状態が異
なる。このことが極板の高さ方向への寸法増長を抑制す
る働きがある。
Generally, when used in a high temperature state, the lattice strength tends to decrease, and corrosion tends to progress. When the corrosion increases, the dimensions of the electrode plate increase due to the volume expansion of the generated corrosion oxide layer. In particular, in the case of an expanded lattice, it tends to extend in the height direction of the electrode plate. This is considered to increase in the height direction because there is no frame bone in both sizes. Therefore, when the present invention is used, the corrosion resistance of the Pb-Sb-Sn alloy layer on the lattice surface is excellent, so that it is possible to prevent the electrode plate from increasing in size. Further, to arrange the Pb-Sb-Sn alloy layer on one or both of the surfaces corresponding to the lead alloy sheet surface on the lattice surface, and to arrange the Pb-Ca-based alloy layer on the surface corresponding to the cut surface during the expanding process, The erosion state of corrosion differs depending on the surface state of the lattice. This has the function of suppressing the dimensional increase in the height direction of the electrode plate.

従来、エキスパンド格子の高さ方向への耐久強度を高
めるために、格子目の形状を縦長にする傾向があった。
しかしながら、本発明は上記したように、格子表面の一
部分にPb−Sb−Sn合金層を形成させることにより、極板
の高さ方向への寸法増長を抑制するとともに、格子目の
形状を従来の発想とは逆に、横長にすることにより、極
板寸法の横方向へ増長させ、また極板自体の形状も高さ
よりも横の長さを長くすることで、より一層横方向へ寸
法を増長させるものである。
Conventionally, in order to increase the durability of the expanded grid in the height direction, the grids have tended to be vertically long.
However, as described above, the present invention forms a Pb-Sb-Sn alloy layer on a part of the lattice surface, thereby suppressing the dimensional increase in the height direction of the electrode plate, and changing the lattice shape to the conventional shape. Contrary to the idea, by increasing the width of the electrode plate in the horizontal direction by making it horizontally long, and further increasing the size of the electrode plate itself in the horizontal direction by making it longer than the height It is to let.

このような構成により、極板の高さ方向への増長を抑
制し、格子と活物質との結合力を維持して、寿命の向上
を図り、さらに極板の高さ方向への伸びを抑制し、極板
上部でのショートを防ぐものである。
With such a configuration, the height of the electrode plate is suppressed from increasing, the bonding force between the grid and the active material is maintained, the life is improved, and the elongation of the electrode plate in the height direction is suppressed. In addition, a short circuit at the upper part of the electrode plate is prevented.

一方、格子表面の合金層は非常に薄く、Pb−Ca系合金
母材の厚みに対して10%以下である。格子体の電気化学
特性はPb−Ca系合金の特性を有しており、高い水素過電
圧を有している。そのため、本発明の電池は自己放電が
少なく、電解液の減少も少ないPb−Ca系合金のもつ優れ
たメンテナンスフリー性能を維持している。
On the other hand, the alloy layer on the lattice surface is very thin, which is 10% or less of the thickness of the Pb-Ca-based alloy base material. The electrochemical properties of the lattice body are the same as those of a Pb-Ca alloy, and have a high hydrogen overvoltage. Therefore, the battery of the present invention maintains the excellent maintenance-free performance of the Pb-Ca-based alloy with less self-discharge and less decrease in electrolyte.

なお、格子表面積のSbの量は0.8wt%未満では本発明
の充電効率を高める顕著な効果が認められなかった。ま
た、50wt%を越えると、Sbの負極への析出量が急増する
などにより、減液速度が増加し、メンテナンスフリー性
能が低下するので、メンテナンスフリーを要望される分
野へは適していない。
If the amount of Sb in the lattice surface area is less than 0.8 wt%, no remarkable effect of increasing the charging efficiency of the present invention was observed. On the other hand, if it exceeds 50 wt%, the amount of Sb deposited on the negative electrode will increase rapidly, and the rate of liquid reduction will increase, and the maintenance-free performance will decrease, so it is not suitable for fields requiring maintenance-free.

母材合金には0.02wt%〜0.15wt%のCaを含有させるこ
とで優れたメンテナンスフリー性能を発揮する。Caは0.
15wt%を越えると耐食性が低下するので好ましくない。
また、5.0wt%以下のSnを加えることにより、さらに耐
食性が向上する。とくに、0.05wt%〜0.12wt%のCaと0.
1wt%〜1.0wt%のSnを含有するPb合金製の冷間圧延シー
トを加工したエキスパンド格子を用いることで優れたメ
ンテナンスフリー性能を発揮する。
Excellent maintenance-free performance is achieved by incorporating 0.02 wt% to 0.15 wt% Ca into the base metal alloy. Ca is 0.
If it exceeds 15% by weight, the corrosion resistance is undesirably reduced.
Further, by adding Sn of 5.0 wt% or less, the corrosion resistance is further improved. In particular, 0.05 wt% to 0.12 wt% Ca and 0.1 wt%.
Excellent maintenance-free performance is achieved by using an expanded lattice processed from a cold-rolled sheet made of a Pb alloy containing 1 wt% to 1.0 wt% Sn.

実施例 つぎに、実施例により本発明の構成と効果について説
明する。
EXAMPLES Next, the configuration and effects of the present invention will be described with reference to examples.

Pb−0.07wt%Ca−0.25wt%Sn合金を用いて、厚さ10m
m,幅80mmの連続鋳造板をつくり、母材とした。
Using Pb-0.07wt% Ca-0.25wt% Sn alloy, thickness 10m
m, a continuous cast plate with a width of 80 mm was made and used as a base material.

この母材合金板に厚さ0.1mmのPb−5.0wt%Sb−5.0wt
%Sn合金箔を重ね合わせて冷間圧延を行い、表面に異種
合金層を有する圧延シートを作った。
0.1mm thick Pb-5.0wt% Sb-5.0wt
% Sn alloy foil was overlapped and cold rolled to produce a rolled sheet having a dissimilar alloy layer on the surface.

上記圧延シートをエキスパンド加工して第2図に示す
格子Gとした。格子目の形状は、aで示す横の長さと、
bで示す縦の長さがそれぞれ横20mm,縦10mmの形状
(A)と、横20mm,縦15mmの形状(B)、横20mm,縦20mm
の形状(C)と、横20mm,縦25mmの形状(D)の4種類
を作った。
The rolled sheet was expanded to form a lattice G shown in FIG. The shape of the lattice has a horizontal length indicated by a,
The shape shown in b is 20 mm wide and 10 mm long (A) and the shape of 20 mm wide and 15 mm long (B), 20 mm wide and 20 mm long
(C) and a shape (D) having a width of 20 mm and a length of 25 mm (D).

上記4種類のエキスパンド格子Gを用いて、それぞれ
正極板をつくった。上記正極板とPb−0.07wt%Ca−0.25
wt%Sn合金母材を用いた負極板とをポリエチレンの多孔
性シートからなるセパレータを介して、極板群を構成
し、それぞれ電池(A,B,C,D)を組み立てた。
Positive electrode plates were formed using the four types of expanded lattices G described above. The above positive electrode plate and Pb-0.07wt% Ca-0.25
A battery plate (A, B, C, D) was formed by forming a group of electrode plates with a negative electrode plate using a wt% Sn alloy base material via a separator made of a porous sheet of polyethylene.

電池は電圧12V、5時間率容量が48AHとした。 The battery had a voltage of 12 V and a 5-hour capacity of 48 AH.

比較例として、Pb−0.07wt%Ca−0.25wt%Sn合金母材
を用い、電池(A)と同じ格子体の正極板と負極板を使
って、電池(E)を組み立てた。
As a comparative example, a battery (E) was assembled using a Pb-0.07 wt% Ca-0.25 wt% Sn alloy base material and a positive electrode plate and a negative electrode plate having the same lattice as the battery (A).

これらの電池(A〜E)を用いて充放電サイクル寿命
試験を行った。
A charge / discharge cycle life test was performed using these batteries (A to E).

試験は放電を25Aで4分間行い、充電を15.5Vの定電圧
で10分間(最大電流25A)行う充放電を1サイクルとし
た。そして、500サイクルごとに300Aで30秒間放電し
た。この30秒目の電圧が7.2V以下になったときを寿命と
した。なお、試験は80℃の雰囲気中で行った。
In the test, discharging was performed at 25 A for 4 minutes, and charging and discharging in which charging was performed at a constant voltage of 15.5 V for 10 minutes (maximum current 25 A) was defined as one cycle. Then, the battery was discharged at 300 A for 30 seconds every 500 cycles. The life was defined as the time when the voltage at the 30th second became 7.2 V or less. The test was performed in an atmosphere at 80 ° C.

第1図にその充放電サイクル寿命試験結果を示す。 FIG. 1 shows the results of the charge / discharge cycle life test.

図から明らかなように本発明の電池(A,B)は優れた
寿命性能を有している。一方、格子目の形状を縦横同じ
とした電池(C)、縦を長くした電池(D)は、比較例
として用いた従来電池(E)に比べて寿命回数は長かっ
たが、本発明の電池(A,B)よりは短寿命であった。
As is clear from the figure, the batteries (A, B) of the present invention have excellent life performance. On the other hand, the battery (C) and the battery (D) having the same grid shape in the vertical and horizontal directions had a longer life cycle than the conventional battery (E) used as the comparative example. The life was shorter than (A, B).

つぎに、この寿命になった電池(A,B,C,D,E)を分解
し、極板の劣化状態を調べた。各電池の正極板は変形が
見られ、格子と活物質との剥離が容量低下の大きな原因
であった。とくに、本発明の電池(A,B)の極板は縦方
向には1.5%と小さな伸びであり、横が2.5%と大きかっ
た。一方、電池(C,D)は横の伸びは2%と本発明の電
池(A,B)よりも小さかったが、縦のほうは6.5%と大き
な伸びを示した。また、従来電池(E)も横は2%と小
さいが、縦は7%と大きく伸びていた。本実施例の電池
ではショートは見られなかった。しかし、電池(C,D,
E)は縦の伸びが大きく、セパレータ上部で負極とショ
ートする危険性が非常に高い。
Next, the batteries (A, B, C, D, and E) having reached the end of their life were disassembled, and the state of deterioration of the electrode plates was examined. The positive electrode plate of each battery was deformed, and the separation between the grid and the active material was a major cause of the decrease in capacity. In particular, the electrodes of the batteries (A, B) of the present invention had a small elongation of 1.5% in the vertical direction and a large elongation of 2.5% in the horizontal direction. On the other hand, the batteries (C, D) exhibited a lateral elongation of 2%, which was smaller than that of the batteries (A, B) of the present invention, but the vertical exhibited a larger elongation of 6.5%. In addition, the conventional battery (E) had a small width of 2% but a large length of 7%. No short circuit was observed in the battery of this example. However, batteries (C, D,
E) has a large vertical elongation and a very high risk of short-circuit with the negative electrode at the upper part of the separator.

上記試験結果から、本発明の電池(A,B)は高温雰囲
気で充放電サイクルをくり返しても、格子と活物質との
密着性を保ち、長寿命を達成するとともに、極板上部で
のショートの発生を防いでいる。しかし、従来電池
(E)をはじめ比較に用いた電池(C,D)は極板の縦方
向への伸びが大きく、格子と活物質との剥離が促進され
る。さらに、上部ショートの危険性もある。
From the above test results, the batteries (A, B) of the present invention maintain the adhesion between the grid and the active material, achieve a long service life, and have a short circuit at the top of the electrode plate, even after repeated charge and discharge cycles in a high-temperature atmosphere. The occurrence of is prevented. However, the batteries (C, D) used for comparison, including the conventional battery (E), have a large extension in the longitudinal direction of the electrode plate, and the separation between the grid and the active material is promoted. In addition, there is a risk of a top short.

なお、放電サイクル中の電解液の減少量は本発明の電
池(A)も従来電池(E)と同様に少なかった。
The amount of decrease in the electrolyte during the discharge cycle was small in the battery (A) of the present invention as in the conventional battery (E).

発明の効果 このように本発明は優れたメンテナンスフリー性能を
有しながら、高温耐久性を大幅に改善するものであり、
近年の車両のエンジンルーム高温化傾向に適した電池を
供給するものである。
As described above, the present invention significantly improves high-temperature durability while having excellent maintenance-free performance,
It is intended to supply a battery suitable for a recent tendency to increase the temperature of an engine room of a vehicle.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の電池の充放電サイクル試験結果を示す
図、第2図は本発明の格子の一例を示す図である。 A,B……本発明の電池、C,D……比較例の電池、E……従
来例の電池。
FIG. 1 is a diagram showing the results of a charge / discharge cycle test of the battery of the present invention, and FIG. 2 is a diagram showing an example of the grid of the present invention. A, B: battery of the present invention, C, D: battery of comparative example, E: battery of conventional example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 4/73 H01M 4/73 Z (72)発明者 高橋 勝弘 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−148556(JP,A) 特開 昭64−10574(JP,A) 特開 昭61−188861(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/68 - 4/73 C22C 11/00 - 12/00 ────────────────────────────────────────────────── ─── Continuing on the front page (51) Int.Cl. 7 Identification symbol FI H01M 4/73 H01M 4/73 Z (72) Inventor Katsuhiro Takahashi 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 56) References JP-A-63-148556 (JP, A) JP-A-64-10574 (JP, A) JP-A-61-188861 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) H01M 4/68-4/73 C22C 11/00-12/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アンチモン(Sb)を0.8wt%〜50wt%、Sn
を1.0wt%〜10wt%、残部がPbからなるPb−Sb−Sn合金
層をカルシウム(Ca)を0.02wt%〜0.15wt%、スズ(S
n)を0〜5.0wt%含む残部が鉛(Pb)からなるPb−Ca系
合金母材シートの片方もしくは両方の表面に形成した鉛
合金シートをエキスパンド加工して得た正極エキスパン
ド格子を備え、前記Pb−Sb−Sn合金層は前記母材シート
の厚みの1%以下であって、前記正極エキスパンド格子
の菱形格子目の1目の横の長さが縦の長さより長いこと
を特徴とする鉛蓄電池。
(1) 0.8 wt% to 50 wt% of antimony (Sb),
Pb-Sb-Sn alloy layer consisting of 1.0 wt% to 10 wt%, the balance being Pb, and 0.02 wt% to 0.15 wt% of calcium (Ca), tin (S
a) a positive electrode expanded lattice obtained by expanding a lead alloy sheet formed on one or both surfaces of a Pb-Ca-based alloy base material sheet containing the balance of lead (Pb) containing 0 to 5.0 wt% of n); The Pb-Sb-Sn alloy layer is 1% or less of the thickness of the base material sheet, and the horizontal length of the first rhombic lattice of the positive electrode expanded lattice is longer than the vertical length. Lead storage battery.
【請求項2】極板の横寸法を縦寸法より大としたことを
特徴とする特許請求の範囲第1項記載の鉛蓄電池。
2. The lead-acid battery according to claim 1, wherein the horizontal dimension of the electrode plate is larger than the vertical dimension.
JP01170139A 1989-06-30 1989-06-30 Lead storage battery Expired - Lifetime JP3099330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01170139A JP3099330B2 (en) 1989-06-30 1989-06-30 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01170139A JP3099330B2 (en) 1989-06-30 1989-06-30 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH0337962A JPH0337962A (en) 1991-02-19
JP3099330B2 true JP3099330B2 (en) 2000-10-16

Family

ID=15899389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01170139A Expired - Lifetime JP3099330B2 (en) 1989-06-30 1989-06-30 Lead storage battery

Country Status (1)

Country Link
JP (1) JP3099330B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243958A (en) * 2000-02-28 2001-09-07 Matsushita Electric Ind Co Ltd Lead storage battery
TWI251365B (en) 2004-04-02 2006-03-11 Matsushita Electric Ind Co Ltd Lead-acid battery
TWI254478B (en) 2004-04-08 2006-05-01 Matsushita Electric Ind Co Ltd Lead-acid battery
US7597998B2 (en) 2004-04-28 2009-10-06 Panasonic Corporation Lead acid battery including antimony
TWI333290B (en) 2004-06-16 2010-11-11 Panasonic Corp Lead-acid battery
JP5061451B2 (en) * 2004-11-08 2012-10-31 株式会社Gsユアサ Anode current collector for lead acid battery
JP2008034167A (en) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP5073403B2 (en) * 2007-07-31 2012-11-14 古河電池株式会社 Lead-acid battery grid and lead-acid battery using the grid
JP5228601B2 (en) * 2008-04-24 2013-07-03 新神戸電機株式会社 Lead acid battery
JP5630716B2 (en) * 2011-09-21 2014-11-26 株式会社Gsユアサ Lead acid battery
JP5935069B2 (en) * 2012-12-03 2016-06-15 パナソニックIpマネジメント株式会社 Lead-acid battery grid and lead-acid battery
JP6836315B2 (en) * 2015-03-19 2021-02-24 株式会社Gsユアサ Control valve type lead acid battery

Also Published As

Publication number Publication date
JPH0337962A (en) 1991-02-19

Similar Documents

Publication Publication Date Title
US4906540A (en) Lead-acid battery having a grid base of a lead-calcium alloy and a layer of lead-antimony-stannum alloy roll-bonded to the grid base
US6037081A (en) Expanded grid for electrode plate of lead-acid battery
JP3099330B2 (en) Lead storage battery
EP0213203B1 (en) Grid for lead storage batteries and a method of producing the same
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
Prengaman Wrought lead-calcium-tin alloys for tubular lead/acid battery grids
JP7296016B2 (en) Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system
JP3987370B2 (en) Positive electrode plate for lead acid battery and lead acid battery using the same
JP3099328B2 (en) Lead storage battery
JP3099329B2 (en) Lead storage battery
JPH10284085A (en) Grid for lead-acid battery
JP4894211B2 (en) Lead acid battery
JPS6039766A (en) Manufacture of electrode base body for lead storage battery
JP4292666B2 (en) Sealed lead acid battery
JPH02297864A (en) Lead storage battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP3094423B2 (en) Lead storage battery
JPS63148556A (en) Paste type lead acid battery
JPH10321236A (en) Lead-acid battery
JP4678117B2 (en) Lead acid battery
JP2004273305A (en) Lead-acid battery
JPH02299154A (en) Lead-acid battery
JPH0636763A (en) Lithium alloy negative electrode for secondary battery
JP3036235B2 (en) Expanded grid of lead-acid battery
JP2002260671A (en) Lead-acid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

EXPY Cancellation because of completion of term