WO2018025837A1 - Lead storage cell - Google Patents

Lead storage cell Download PDF

Info

Publication number
WO2018025837A1
WO2018025837A1 PCT/JP2017/027816 JP2017027816W WO2018025837A1 WO 2018025837 A1 WO2018025837 A1 WO 2018025837A1 JP 2017027816 W JP2017027816 W JP 2017027816W WO 2018025837 A1 WO2018025837 A1 WO 2018025837A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
mass
electrode material
lead
Prior art date
Application number
PCT/JP2017/027816
Other languages
French (fr)
Japanese (ja)
Inventor
賢 稲垣
真観 京
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201780047806.8A priority Critical patent/CN109565040B/en
Priority to JP2018531906A priority patent/JP6844622B2/en
Publication of WO2018025837A1 publication Critical patent/WO2018025837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead-acid battery.
  • lead-acid batteries in an incompletely charged state (PSOC (Partial state of charge)
  • PSOC Partial state of charge
  • IS idling stop
  • lead-acid batteries are often placed in an insufficiently charged state because charging to the lead-acid batteries is avoided in order to improve energy efficiency, and moreover, the power taken out from the lead-acid batteries is increasing.
  • Patent Document 1 in a lead storage battery using a paste type negative electrode plate in which a paste-like active material made of lead powder as a raw material is held in a lead alloy current collector, a carbonaceous material is contained in the negative electrode active material.
  • a lead acid battery containing (a) a bisphenol sulfonic acid polymer and (b) sodium lignin sulfonate and characterized by the following points regarding the amount of (a) and (b): (a) and (b ) Is 100 parts by mass, the blending ratio of (a) is 50 to 80 parts by mass, and (a) and (b) are added to the mass of the raw material lead powder of the negative electrode active material.
  • the blended mass is 0.05 mass% or more and 0.3 mass% or less.
  • the average primary particle diameter is 10 ⁇ m or more as a carbonaceous material.
  • the flaky graphite is contained. 4.
  • Patent Document 2 discloses "a shrinkage-preventing agent for a storage battery paste for a storage battery electrode plate for a lead storage battery, which contains barium sulfate; a high concentration of carbon and / or graphite; and an organic substance.” (Claim 1), "High The invention according to claim 1, wherein the concentration of carbon and / or graphite reduces lead sulfate accumulation on the surface of the negative electrode active material in the lead acid battery. Yes.
  • Patent Document 3 describes the invention of “an expansion agent for a storage battery paste characterized by containing barium sulfate, carbon, and an organic material, and the organic material is heat-decomposable.”
  • (Claim 1) Represents any of carbon black, activated carbon or graphite, and mixtures thereof ”(paragraph [0029]).
  • a positive electrode plate made of a positive electrode active material and a positive electrode lattice, a negative electrode plate made of a negative electrode active material and a negative electrode lattice, a separator separating the positive electrode plate and the negative electrode plate, a positive electrode plate and a negative electrode plate are disclosed.
  • the density of the positive electrode active material is 4.4 g / cm 3 or more and 4.8 g in the already formed state. / Cm 3 or less, and Sn is converted into metal Sn and contained 0.05 mass% or more and 1.0 mass% or less.
  • the invention of “Liquid lead storage battery” (Claim 1) is described. ing.
  • an object of the present invention is to provide a lead-acid battery with improved PSOC life performance and suppressed occurrence of permeation short circuit.
  • a lead storage battery includes a positive electrode plate, a negative electrode plate, and an electrolyte solution.
  • the negative electrode material of the negative electrode plate is graphite or carbon fiber, and a barium element of 1.1 mass% or more in terms of barium sulfate.
  • the positive electrode material of the positive electrode plate contains a tin element.
  • Characteristic chart showing influence of graphite content (barium content 1.0 mass% in terms of barium sulfate, positive electrode active material density 4.8 g / cm 3 , tin content 0 mass%) Characteristic diagram showing the effect of barium content (graphite content 1.0 mass%, tin content 0 mass%) Characteristic diagram showing influence of barium content and tin content (graphite content: 1.0 mass%, positive electrode active material density: 4.2 g / cm 3 ) Characteristic diagram showing influence of barium content and tin content (graphite content: 1.0 mass%, positive electrode active material density: 4.2 g / cm 3 ) Characteristic diagram showing influence of positive electrode active material density (graphite content: 1.0 mass%, barium content in terms of barium sulfate: 1.2 mass%) Characteristic diagram showing influence of positive electrode active material density (graphite content: 1.0 mass%, barium content in terms of barium sulfate: 1.2 mass%) Characteristic diagram showing influence of positive electrode active material density (
  • a lead storage battery includes a positive electrode plate, a negative electrode plate, and an electrolyte solution.
  • the negative electrode material of the negative electrode plate is graphite or carbon fiber, and a barium element of 1.1 mass% or more in terms of barium sulfate.
  • the positive electrode material of the positive electrode plate contains a tin element. Details will be described below.
  • the negative electrode plate is composed of a negative electrode current collector and a negative electrode material
  • the positive electrode plate is composed of a positive electrode current collector and a positive electrode material
  • solid components other than the current collector belong to the electrode material.
  • the content of graphite, the content of carbon fiber, the content of barium element, and the content of carbon black are the content (mass%) with respect to the negative electrode material in a fully charged state after chemical conversion.
  • the content of tin element is the content (mass%) relative to the positive electrode material in a fully charged state after chemical conversion.
  • content of barium element is content in barium sulfate conversion
  • content of tin element is content in metal tin conversion.
  • a constant current / constant voltage charge is performed at a current of 5 hours in a 25 ° C. air tank at a rate of 2.23 V / cell, and the current value during constant voltage charge is 1 mCA or less.
  • the 5-hour rate current in this specification is a current value for discharging the nominal capacity of the lead storage battery in 5 hours. For example, if the battery has a nominal capacity of 30 Ah, the 5-hour rate current is 6 A, and 1 mCA is 30 mA. .
  • the lead-acid battery including the negative electrode material containing graphite or the like has improved PSOC life performance.
  • the content of graphite or the like in the negative electrode material is 0.5 mass% or more, the effect of improving the PSOC life performance is great. Therefore, the content of graphite or the like in the negative electrode material may be 0.5 mass% or more. preferable. If the content of graphite or the like in the negative electrode material is 1.0 mass% or more, the effect of improving the PSOC life performance is further increased. Therefore, the content of graphite or the like in the negative electrode material should be 1.0 mass% or more. Is more preferable.
  • the content of graphite or the like in the negative electrode material is 2.5 mass% or less, it becomes easy to fill the negative electrode current paste into the negative electrode current collector, so the content of graphite or the like in the negative electrode material is It is preferable to set it as 2.5 mass% or less, and it is more preferable to set it as 2.0 mass% or less.
  • graphite examples include scaly graphite, scaly graphite, earthy graphite, expanded graphite, expanded graphite, and artificial graphite.
  • Expanded graphite is expanded graphite.
  • Carbon fiber may be used instead of graphite.
  • Graphite and carbon fiber have a relatively high electrical conductivity and are common in that they are larger than carbon black and the like, and the action in the negative electrode material is considered to be the same.
  • the carbon fiber preferably has a length of 5 ⁇ m or more and 500 ⁇ m or less, and more preferably a length of 10 ⁇ m or more and 300 ⁇ m or less.
  • the graphite or the like is preferably flaky graphite or expanded graphite, and more preferably flaky graphite.
  • the average particle diameter of graphite When the average particle diameter of graphite is 300 ⁇ m or less, it is difficult for permeation short circuit to occur. Therefore, the average particle diameter of graphite is preferably 300 ⁇ m or less. Further, when the average particle diameter of graphite is 100 ⁇ m or more, the PSOC life performance is improved. Therefore, the average particle diameter of graphite is preferably 100 ⁇ m or more.
  • the average particle diameter of graphite means the value of the particle diameter (D50) at which the cumulative volume is 50% in the particle size distribution when analyzed with a laser diffraction particle size distribution analyzer.
  • the PSOC life performance is improved, but an infiltration short circuit is likely to occur. It has not been known so far that an infiltration short circuit is likely to occur by adding graphite or the like to the negative electrode material of a lead storage battery.
  • the inventors of the present invention have found that the occurrence of an infiltration short circuit can be suppressed by adding 1.1 mass% or more of barium element in terms of barium sulfate together with graphite or the like in the negative electrode material.
  • the effect that the penetration short circuit can be suppressed by adding 1.1 mass% or more of barium sulfate in addition to graphite or the like to the negative electrode material is unpredictable from the conventional technical common sense. This is because the problem that an osmotic short circuit is likely to occur by including graphite or the like in the negative electrode material has not been recognized so far, and the addition amount of barium element is selected to be 1.1 mass% or more in terms of barium sulfate. This is because the effect of suppressing the occurrence of the penetration short circuit has not been known so far.
  • the mechanism of action by which the addition of barium element to the negative electrode material suppresses the occurrence of permeation short circuit is not necessarily clear, but is presumed as follows.
  • the barium element in the negative electrode material is dispersed almost uniformly inside the negative electrode material as barium sulfate and functions as a lead sulfate nucleating material during discharge, thereby generating lead sulfate also in the negative electrode material.
  • lead sulfate is generated inside the negative electrode material, it is possible to suppress an increase in the amount of lead sulfate generated on the surface of the negative electrode plate.
  • the barium element content in the negative electrode material is preferably 1.2 mass% or more in terms of barium sulfate.
  • the content of barium element in the negative electrode material is 3.0 mass% or less in terms of barium sulfate, PSOC life performance is improved. Therefore, the content of barium element in the negative electrode material is 3.0 mass% in terms of barium sulfate.
  • the following is preferable. If the barium element content in the negative electrode material is 2.5 mass% or less in terms of barium sulfate, the PSOC life performance is greatly improved. Therefore, the barium element content in the negative electrode material is 2.5 mass in terms of barium sulfate. % Or less is more preferable.
  • single barium or a barium compound such as barium sulfate or barium carbonate may be added to the negative electrode material. Even if a single barium or barium compound other than barium sulfate is added to the negative electrode material, it is considered that it changes to barium sulfate after the addition.
  • the barium sulfate in the negative electrode material preferably has an average secondary particle size of 1 to 10 ⁇ m, for example. Further, the barium sulfate in the negative electrode material preferably has an average primary particle size of, for example, 0.3 to 2.0 ⁇ m.
  • the penetration short circuit can be further suppressed.
  • the content of barium element in the negative electrode material is 1.1 mass% or more in terms of barium sulfate, and the positive electrode material further contains a tin element
  • the penetration short circuit can be further suppressed.
  • the content of barium element in the negative electrode material is 1.0 mass% or less in terms of barium sulfate, even if tin element is contained in the positive electrode material, the penetration short-circuit suppressing effect by the tin element is observed. Absent. It has not been known so far that the tin element in the positive electrode material is related to the penetration short circuit.
  • the negative electrode material contains graphite or the like and contains a barium element of 1.1 mass% or more in terms of barium sulfate
  • the penetration electrode short circuit can be suppressed by containing the tin element in the positive electrode material. It is not possible.
  • the content of barium element in the negative electrode material in terms of barium sulfate is 1.1 mass% or more and 1.0 mass% or less, the penetration short-circuit suppressing effect by the tin element clearly changes. It can be said that there is a critical significance in setting the barium element content in the negative electrode material to 1.1 mass% or more in terms of barium sulfate.
  • the content of tin element in the positive electrode material is 0.01 mass% or more, the penetration short circuit can be remarkably suppressed. Therefore, the content of tin element in the positive electrode material is preferably 0.01 mass% or more.
  • metals, oxides, sulfates, and the like can be considered as the presence form of the tin element in the positive electrode material.
  • the action mechanism in which the occurrence of permeation short circuit is suppressed by the addition of tin element to the positive electrode material is not necessarily clear, but is presumed as follows. Since tin element has the effect of increasing conductivity, the addition of tin element to the positive electrode material makes charge / discharge reactions in the vertical direction of the positive electrode plate more uniform, reducing the concentration of charging current on the top of the electrode plate. Is done. When the concentration of the charging current on the upper part of the electrode plate is relaxed, the growth of dendritic lead on the upper part of the electrode plate is suppressed, and synergistic with the penetration short-circuit suppressing effect by 1.1 mass% or more of barium sulfate in the negative electrode material. It is presumed that the occurrence of permeation short circuit is significantly suppressed.
  • the positive electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate
  • the positive electrode material is tin
  • the PSOC life performance is improved as compared with the case where no element is contained. Therefore, it is preferable that the content of the tin element in the positive electrode material is 0.15 mass% or less.
  • the positive electrode material is used even if the content of tin element in the positive electrode material is 0.15 mass% or less.
  • the PSOC life performance is not improved as compared with the case where no tin element is contained.
  • the negative electrode material contains graphite or the like
  • the PSCO life performance is improved by making the content of barium element in the negative electrode material and the content of tin element in the positive electrode material into a specific range. Is not known so far.
  • the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate
  • the positive electrode material is tin Compared with the case where no element is contained, the PSOC life performance is greatly improved. Therefore, the content of tin element in the positive electrode material is more preferably 0.10 mass% or less.
  • the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate, if the content of tin element in the positive electrode material is 0.08 mass% or less, PSOC life performance is further improved. It is further preferable because it greatly improves.
  • the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate, if the content of tin element in the positive electrode material is 0.06 mass% or less, PSOC life performance is particularly good This is particularly preferable because it greatly improves.
  • the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate, if the content of tin element in the positive electrode material is 0.03 mass% or more, the positive electrode material is tin. Compared with the case where no element is contained, the PSOC life performance is greatly improved. Therefore, the content of tin element in the positive electrode material is preferably 0.03 mass% or more.
  • the density of the positive electrode material is preferably 3.6 g / cm 3 or more.
  • the content of barium element in the negative electrode material is 1.0 mass% or less in terms of barium sulfate, even if the density of the positive electrode material is 3.6 g / cm 3 or more, the positive electrode material contains tin element. Compared with the case where it does not contain, the PSOC life performance is not improved.
  • the density of the positive electrode material is 4.2 g / cm 3 or more, the density is further increased. Therefore, the density of the positive electrode material is more preferably 4.2 g / cm 3 or more. Improvement of the PSOC life performance since the density of the positive electrode material becomes significantly large when the 4.4 g / cm 3 or more, and particularly preferably the density of the positive electrode material 4.4 g / cm 3 or more .
  • the density of the positive electrode material is 5.0 g / cm 3 or less, the initial capacity of the lead-acid battery is improved. Therefore, the density of the positive electrode material is preferably 5.0 g / cm 3 or less.
  • the lead storage battery according to one embodiment of the present invention may further contain carbon black in the negative electrode material.
  • the negative electrode material contains graphite and the barium element of 1.1 mass% or more in terms of barium sulfate, and the positive electrode material contains tin element
  • the black electrode material further contains carbon black
  • the penetration short circuit Can be further suppressed.
  • the content of barium element in the negative electrode material is 1.0 mass% or less in terms of barium sulfate, or when the positive electrode material does not contain tin element
  • carbon black is contained in the negative electrode material.
  • the effect of suppressing the penetration short circuit by carbon black cannot be obtained.
  • the content of carbon black in the negative electrode material is 0.1 mass% or more because the penetration short circuit can be largely suppressed.
  • the content of carbon black in the negative electrode material is 1.0 mass% or less, it becomes easy to fill the negative electrode current collector with the negative electrode material paste. Accordingly, the content of carbon black in the negative electrode material is preferably 1.0 mass% or less.
  • the unformed negative electrode plate can be produced as follows. First, water and sulfuric acid are added to lead powder to form a paste to obtain a negative electrode material paste.
  • the negative electrode material paste may further contain graphite, carbon fiber, barium sulfate, carbon black, lignin as an anti-shrink agent, reinforcing materials such as synthetic resin fibers, and the like. Instead of barium sulfate, a barium compound such as single barium or barium carbonate may be used.
  • the content of lignin is arbitrary, and instead of lignin, a synthetic shrinking agent such as a sulfonated bisphenol condensate may be used.
  • the content of the reinforcing material and the type of the synthetic resin fiber are arbitrary.
  • the kind of lead powder and manufacturing conditions are arbitrary.
  • Other additives, a water-soluble synthetic polymer electrolyte, and the like may be included in the negative electrode material paste.
  • the negative electrode current collector After filling the negative electrode current material paste into the negative electrode current collector, aging and drying are performed to produce an unformed negative electrode plate.
  • the negative electrode current collector for example, an expanded lattice, a cast lattice, a punched lattice, or the like can be used.
  • the non-chemically formed positive electrode plate can be produced as follows. First, water and sulfuric acid are added to lead powder to form a paste to obtain a positive electrode material paste.
  • the positive electrode material paste may contain a reinforcing material such as tin sulfate or synthetic resin fiber. After filling this positive electrode material paste into the positive electrode current collector, aging and drying are performed to produce an unformed positive electrode plate.
  • the kind of lead powder and manufacturing conditions are arbitrary. Instead of tin sulfate, metal tin or the like may be used, and it is presumed that tin is present as a metal, oxide, sulfate compound or the like in the positive electrode material.
  • the density of the positive electrode material after the formation is adjusted by changing the amount of water added when preparing the positive electrode material paste.
  • the positive electrode current collector for example, an expanded lattice, a cast lattice, a punched lattice, or the like can be used.
  • Lead acid battery can be manufactured as follows. An unformed negative electrode plate and an unformed positive electrode plate are alternately laminated via a separator, and the unformed negative electrode plates and the unformed positive electrode plates are connected by a strap to form an electrode plate group. The electrode plates are connected in series and accommodated in a cell chamber of a battery case, and sulfuric acid is added to form a lead acid battery. After forming the unformed negative electrode plate and the unformed positive electrode plate, the electrode plate group may be assembled to produce a lead storage battery.
  • the separator is made of, for example, a synthetic resin, preferably made of polyolefin, and more preferably made of polyethylene. The separator preferably has a rib protruding from the base.
  • the base thickness and total thickness of the separator are arbitrary, but the thickness of the separator base is preferably 0.15 mm or more and 0.25 mm or less.
  • the distance between the positive electrode plate and the negative electrode plate is preferably 0.5 mm or more and 1.0 mm or less. You may enclose a positive electrode plate or a negative electrode plate by making a separator into a bag shape.
  • FIG. 1 shows a main part of an electrode plate group 1 of a lead storage battery according to one embodiment of the present invention
  • 2 is a negative electrode plate
  • 3 is a positive electrode plate
  • 4 is a separator.
  • the negative electrode plate 2 includes a negative electrode current collector 21 and a negative electrode material 22
  • the positive electrode plate 3 includes a positive electrode current collector 31 and a positive electrode material 32.
  • the separator 4 has a bag shape including a base 41 and ribs 42, the negative electrode plate 2 is accommodated inside the bag, and the ribs 42 face the positive electrode plate 3 side.
  • the positive plate 3 may be accommodated in the separator 4 with the rib 42 facing the positive plate 3, or the separator 4 may not have the rib 42.
  • the separator need not be in the form of a bag as long as the positive electrode plate and the negative electrode plate are separated from each other. For example, a leaflet-shaped glass mat or a retainer mat may be used.
  • the content of barium element contained in the negative electrode material after chemical conversion is quantified as follows.
  • the fully charged lead acid battery is disassembled, the negative electrode plate is washed with water and dried to remove the sulfuric acid, and the negative electrode material is collected.
  • the negative electrode material is pulverized, and 300 g / L of hydrogen peroxide water is added at 20 mL per 100 g of the negative electrode material, and nitric acid obtained by diluting 60 mass% of concentrated nitric acid with 3 times its volume of ion exchange water is added, Heat for 5 hours under stirring to dissolve lead as lead nitrate.
  • barium sulfate is dissolved, and the barium concentration in the obtained aqueous solution is quantified by atomic absorption measurement. Using this barium concentration, the barium content in terms of barium sulfate contained in the negative electrode material is calculated.
  • the contents of graphite and carbon black contained in the negative electrode material after chemical conversion are quantified as follows.
  • the fully charged lead acid battery is disassembled, the negative electrode plate is washed with water and dried to remove the sulfuric acid, and the negative electrode material is collected.
  • the negative electrode material is pulverized, and 300 g / L of hydrogen peroxide water is added at 20 mL per 100 g of the negative electrode material, and nitric acid obtained by diluting 60 mass% of concentrated nitric acid with 3 times its volume of ion exchange water is added, Heat for 5 hours under stirring to dissolve lead as lead nitrate. Furthermore, barium sulfate is dissolved. By filtering the obtained aqueous solution, solid components such as graphite, carbon black, and reinforcing material are separated.
  • the solid component obtained by filtration is dispersed in water.
  • the dispersion is sieved twice, washed with water to remove the reinforcing material, thereby separating carbon black and graphite.
  • the negative electrode material paste carbon black and graphite are added together with an organic shrinkage agent such as lignin.
  • an organic shrinkage agent such as lignin.
  • carbon black and graphite are aggregated due to the surface active effect of the organic shrinkage agent. Exists in a collapsed state.
  • the organic shrunk agent is eluted and lost in the water, so that the separated carbon black and graphite are dispersed again in water, and then the organic shrunk agent, Vanillex N (Nippon Paper Industries Co., Ltd.) is used as the lignin sulfonate. 15 g) is added to 100 mL of water and stirred, and the following separation operation is performed with the carbon black and graphite aggregates broken again.
  • the suspension containing carbon black and graphite is passed through a sieve through which carbon black does not substantially pass and graphite is separated.
  • graphite remains on the sieve, and carbon black is contained in the liquid that has passed through the sieve.
  • the method for measuring the average particle diameter of graphite is shown below.
  • a laser diffraction particle size distribution measuring device SALD2200 manufactured by Shimadzu Corporation is used as a measuring device.
  • graphite is dispersed in a dispersion prepared by mixing water and a surfactant, and the dispersion in which graphite is dispersed is irradiated with ultrasonic waves for 5 minutes using an ultrasonic cleaner.
  • the dispersion liquid in which graphite is dispersed is introduced into a batch cell and stirred for 1 minute. Thereafter, laser light is irradiated to obtain a particle size distribution of graphite.
  • the average particle size is the particle size at which the cumulative volume is 50% (D50) within the range where the minimum is set to 0.1 ⁇ m and the maximum is set to 1000 ⁇ m.
  • the content of tin element in the positive electrode material after chemical conversion is quantified as follows.
  • the fully charged lead-acid battery is disassembled, the positive electrode plate is washed with water and dried to remove sulfuric acid, and the positive electrode material is collected.
  • the positive electrode material is crushed, and 300 g / L of hydrogen peroxide water is added in an amount of 20 mL per 100 g of the positive electrode material, and nitric acid obtained by diluting 60 mass% of concentrated nitric acid with 3 times its volume of ion exchange water is added, Heat for 5 hours under stirring to dissolve lead and tin.
  • the concentration of tin element in the obtained aqueous solution is quantified by ICP emission spectrometry, and the content of tin element in the positive electrode material is calculated.
  • the density of the positive electrode material means the value of the bulk density of the positive electrode material in a fully charged state after formation, and is measured as follows.
  • the battery after chemical conversion is fully charged and then disassembled, and the obtained positive electrode plate is washed with water and dried to remove the electrolyte in the positive electrode plate.
  • the positive electrode material is separated from the positive electrode plate to obtain an unground measurement sample. After putting the sample into the measurement container and evacuating it, filling the mercury with a pressure of 0.5 to 0.55 psia, measuring the bulk volume of the positive electrode material, and dividing the mass of the measurement sample by the bulk volume The bulk density of the positive electrode material is obtained.
  • the volume obtained by subtracting the injection volume of mercury from the volume of the measurement container is defined as the bulk volume.
  • the lead storage battery according to the present embodiment is excellent in PSOC life performance and is less likely to cause a penetration short circuit even when used in a partially charged state, and is therefore suitable for a lead storage battery used in a partially charged state such as a lead storage battery for an idling stop vehicle. . Moreover, the lead storage battery according to the present embodiment is suitable for a lead storage battery for cycle use such as for forklifts in addition to a lead storage battery for an idling stop vehicle. In the following embodiments, the lead storage battery is a liquid type, but may be a control valve type. The lead storage battery according to the present embodiment is preferably a liquid lead storage battery.
  • the present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode.
  • the present invention can be implemented in the following manner.
  • a positive electrode plate, a negative electrode plate, and an electrolyte solution wherein the negative electrode material of the negative electrode plate contains graphite or carbon fiber and 1.1 mass% or more of barium element in terms of barium sulfate, and the positive electrode plate
  • the positive electrode material contains a tin element.
  • a positive electrode plate, a negative electrode plate, and an electrolyte solution wherein the negative electrode material of the negative electrode plate contains graphite or carbon fiber and about 1.1 mass% or more of barium element in terms of barium sulfate, and the positive electrode A lead-acid battery characterized in that the positive electrode material of the plate contains a tin element.
  • the negative electrode material may be referred to as a negative electrode active material
  • the positive electrode material may be referred to as a positive electrode active material
  • a lead powder produced by the ball mill method has a predetermined amount of flaky graphite (average particle size (D50) is 10 to 500 ⁇ m), a predetermined amount of barium sulfate (average primary particle size is 0.79 ⁇ m, average secondary particle size is 2.5 ⁇ m), a predetermined amount of carbon black, a lignin (content 0.2 mass%) as a shrink-preventing agent, and a synthetic resin fiber (content 0.1 mass%) as a reinforcing material are mixed and pasted with water and sulfuric acid.
  • a negative electrode active material paste was prepared.
  • the content of flaky graphite was changed in the range of 0 mass% to 3.0 mass%.
  • the content of barium sulfate was varied in the range of 1.0 mass% to 4.0 mass%.
  • the carbon black content was varied in the range of 0 mass% to 0.5 mass%.
  • the prepared negative electrode active material paste is filled in an expanded negative electrode grid (height 110 mm ⁇ width 100 mm ⁇ thickness 1.0 mm) made of a Pb—Ca—Sn alloy that does not contain antimony, and subjected to aging and drying.
  • a non-chemically formed negative electrode plate was prepared.
  • the lead powder produced by the ball mill method is mixed with a predetermined amount of tin sulfate and a synthetic resin fiber of 0.1 mass% reinforcing material (content: 0.1 mass%), and the mixture is made into a paste with water and sulfuric acid to produce a positive electrode active material.
  • a material paste was prepared. The content of tin sulfate was varied in the range of 0 to 0.3 mass% in terms of metal tin.
  • the prepared positive electrode active material paste is filled into an expanded positive electrode lattice (height 110 mm ⁇ width 100 mm ⁇ thickness 1.2 mm) made of a Pb—Ca—Sn alloy that does not contain antimony, and is subjected to aging and drying.
  • a non-chemically formed positive electrode plate was produced. The density of the positive electrode active material after the chemical conversion by changing the amount of water to be added upon paste was adjusted to below 3.4 g / cm 3 or more 5.0 g / cm 3.
  • a non-formed negative electrode plate is wrapped with a polyethylene separator (average pore diameter of 0.1 ⁇ m) with ribs protruding from the base, and 7 unformed negative plates and 6 unformed positive plates are alternately laminated.
  • the positive electrode plates were connected to each other with a strap to form an electrode plate group.
  • a separator having a base thickness of 0.25 mm was used, and the distance between the positive electrode plate and the negative electrode plate was 0.7 mm.
  • Six electrode plate groups connected in series are accommodated in a cell chamber of a battery case, and sulfuric acid having a specific gravity of 1.285 is added at 20 ° C. to form in the battery case.
  • the liquid lead-acid battery was used.
  • the barium element content, graphite content, graphite average particle diameter, and carbon black content in the negative electrode active material were measured as described above.
  • a sieve having a diameter of 1.4 mm was used to separate the carbon black and graphite in the negative electrode active material from the reinforcing material.
  • vanillox N manufactured by Nippon Paper Industries Co., Ltd.
  • carbon black and graphite are mixed using a sieve having a diameter of 20 ⁇ m. separated.
  • the lead storage battery provided with the negative electrode plate with the same composition it measured by selecting one of those lead storage batteries, and the measurement result applied to all the lead storage batteries provided with the negative electrode plate of the same composition.
  • the content of the tin element contained in the positive electrode active material and the measurement of the positive electrode active material density were performed as described above.
  • the lead acid battery provided with the positive electrode plate with the same composition one of those lead acid batteries was selected and measured, and the measurement result was applied to all the lead acid batteries provided with the positive electrode plate of the same composition.
  • the PSOC life test and the penetration short circuit acceleration test were performed on the fully charged lead acid battery.
  • Table 1 shows the contents of the PSOC life test.
  • 1CA is 30 A for a battery with a nominal capacity of 30 Ah.
  • “40 ° C. gas” indicates that the test was conducted in a 40 ° C. air tank.
  • the contents of the PSOC life test are as follows. First, a constant current discharge (step 1) at 1 CA for 59 seconds and a constant current discharge (step 2) at 300 A for 1 second are performed. Next, constant voltage charging (step 3) for 10 seconds at a voltage of 2.4 V per cell (charging current is 50 A at the maximum) and constant current discharging for 5 seconds at 1 CA (step 4) are performed.
  • Steps 3 and 4 are repeated 5 times in total (Step 5), and Steps 1 to 5 are further repeated 50 times in total (Step 6).
  • step 6 constant voltage charging (step 7) is performed for 900 seconds at a voltage of 2.4 V per cell (the charging current is 50 A at the maximum).
  • Steps 1 to 7 are repeated a total of 72 times (Step 8), and after a 15-hour pause (Step 9), the process returns to Step 1 (Step 10).
  • Steps 1 to 10 are repeated until the terminal voltage reaches 1.2 V / cell, and the number of cycles when the terminal voltage reaches 1.2 V / cell is defined as the number of PSOC lifetimes. It should be noted that steps 1 to 5 are one cycle. For example, when Step 1 to Step 10 are performed once, the number of cycles is 3600 cycles.
  • Table 2 shows the contents of the penetration short circuit acceleration test. This test is a test performed under conditions that promote the occurrence of permeation shorts, and the incidence of permeation shorts is significantly higher than the actual use conditions of lead-acid batteries.
  • the details of the penetration short circuit acceleration test are as follows. First, constant current discharge is performed at 0.05 CA until the voltage per cell reaches 1.0 V (step 1). Next, a resistance of 10 ⁇ is connected between the positive electrode terminal and the negative electrode terminal of the lead-acid battery, and left in that state for 23 hours and 50 minutes (step 2). Thereafter, constant voltage charging is performed at a voltage of 2.4 V per cell for 10 minutes (maximum charging current is 50 A) (step 3).
  • step 4 After repeating step 2 and step 3 a total of 5 times (step 4), the lead storage battery was disassembled and the proportion of lead storage batteries in which a short circuit occurred was examined.
  • “25 degreeC water” shows having tested in the 25 degreeC water tank.
  • CC discharge means constant current discharge
  • CV charge means constant voltage charge
  • CC charge means constant current charge.
  • Tables 3 to 10 show the results of the PSOC life test and the penetration short circuit acceleration test.
  • the PSOC life frequency represents the ratio of the PSOC life frequency of each battery when the PSOC life frequency of the battery A1 in Table 3 is 100.
  • the PSOC life ratio represents the ratio of the number of PSOC life of each battery to the number of PSOC life of the first battery in each table.
  • the lead-acid battery containing graphite as the negative electrode active material has improved PSOC life performance as compared with the lead-acid battery except for the graphite content under the same conditions.
  • the negative electrode active material contains 0.5 mass% or more of graphite
  • the PSOC life performance is greatly improved
  • the negative electrode active material contains 1.0 mass% or more of graphite
  • the positive electrode active material when the content of barium element in the negative electrode active material is 1.1 mass% or more in terms of barium sulfate, the positive electrode active material contains tin element to greatly suppress the penetration short circuit. I understand that I can do it. When the content of tin element in the positive electrode active material is 0.01 mass% or more, the permeation short circuit can be remarkably suppressed. On the other hand, when the content of barium element in the negative electrode active material is 1.0 mass% or less in terms of barium sulfate, even if the positive electrode active material contains tin element, the effect of suppressing penetration short circuit by tin element is not obtained. .
  • barium element in the negative electrode active material and tin element in the positive electrode active material are related to the penetration short circuit. Therefore, when the content of the barium element in the negative electrode active material is 1.1 mass% or more in terms of barium sulfate, it is not expected that the penetration short circuit can be remarkably suppressed by containing the tin element in the positive electrode active material. . In addition, since the content of barium element in the negative electrode material is 1.1 mass% or more in terms of barium sulfate and 1.0 mass% or less, the penetration short circuit suppression effect by the tin element clearly changes. It can be said that it is critical that the content of the barium element in the negative electrode material is 1.1 mass% or more in terms of barium sulfate.
  • the PSOC life performance is particularly greatly improved.
  • the content of barium element in the negative electrode active material is 1.0 mass% or less in terms of barium sulfate
  • the positive electrode active material can be obtained even if the content of tin element in the positive electrode active material is 0.15 mass% or less. Compared with the case where no tin element is contained, the PSOC life performance is not improved.
  • the negative electrode active material contains graphite and a barium element of 1.1 mass% or more in terms of barium sulfate, and the positive electrode active material contains a tin element of 0.15 mass% or less. It can be seen that the effect of improving the obtained PSOC life performance is increased when the density of the positive electrode active material is 3.6 g / cm 3 or more. When the density of the positive electrode active material is 4.2 g / cm 3 or more, the effect of improving the PSOC life performance is further increased. When the density of the positive electrode active material is 4.4 g / cm 3 or more, the effect of improving the PSOC life performance is increased. Becomes significantly larger.
  • the PSOC life performance is not improved even if the density of the positive electrode active material is 3.6 g / cm 3 or more (see FIG. 7).
  • Table 7 and FIG. 9 show the results when carbon black is contained in the negative electrode active material. From Table 7 and FIG. 9, when the negative electrode active material contains barium element of 1.1 mass% or more in terms of graphite and barium sulfate, and the positive electrode active material contains tin element, the negative electrode active material contains carbon black. It can be seen that the penetration short circuit can be further suppressed. When the carbon black content in the negative electrode active material is 0.1 mass% or more, the penetration short circuit can be largely suppressed.
  • Table 8 and FIG. 10 show the results when the average particle diameter of graphite in the negative electrode active material is changed. It can be seen from Table 8 and FIG. 10 that the penetration short circuit can be suppressed when the average particle diameter of graphite in the negative electrode active material is 300 ⁇ m or less. It can also be seen that the PSOC life performance is improved when the average particle size of graphite in the negative electrode active material is 100 ⁇ m or more.
  • Tables 9 and 10 show the results when expanded anode graphite was made to contain expanded graphite instead of scaly graphite. From Tables 9 and 10, it can be seen that the same results can be obtained even if expanded graphite is used instead of flaky graphite.
  • the present invention can provide a lead storage battery with improved PSOC life performance and suppressed penetration short circuit occurrence, it is useful for IS vehicle applications that are often placed in a state of insufficient charging.

Abstract

A lead storage cell characterized in being provided with a positive electrode plate, a negative electrode plate, and an electrolytic solution, a negative electrode material of the negative electrode plate containing graphite or carbon fiber and barium element at an amount of 1.1 mass% or greater in terms of barium sulfate, and a positive electrode material of the positive electrode plate containing tin element.

Description

鉛蓄電池Lead acid battery
 本発明は鉛蓄電池に関する。 The present invention relates to a lead-acid battery.
 鉛蓄電池を不完全な充電状態(PSOC(Partial state of charge))で使用する用途が多くなっている。例えば、自動車の燃費を向上させるため、アイドリングストップ(Idling-Stop、以下ISと省略する。)車が提案されているが、IS車では鉛蓄電池は充電不足の状態で使用される。IS車用途以外でも、エネルギー効率を向上させるために鉛蓄電池への充電を避け、しかも鉛蓄電池から取り出す電力が増加しているので、鉛蓄電池は充電不足な状態に置かれることが多い。 The use of lead-acid batteries in an incompletely charged state (PSOC (Partial state of charge)) is increasing. For example, an idling stop (hereinafter abbreviated as “IS”) vehicle has been proposed in order to improve the fuel efficiency of an automobile, but the lead-acid battery is used in an insufficiently charged state in the IS vehicle. Even in applications other than IS vehicles, lead-acid batteries are often placed in an insufficiently charged state because charging to the lead-acid batteries is avoided in order to improve energy efficiency, and moreover, the power taken out from the lead-acid batteries is increasing.
 鉛蓄電池では、放電時に、両極板で硫酸が消費されるとともに正極では水が生成する。また、充電時に両極板から硫酸が放出される。硫酸は水より比重が大きいため、鉛蓄電池の下部に蓄積しやすく、電解液の硫酸濃度に上下差が生じる現象(成層化)が起こる。充電量が充分な場合、充電末期に極板から発生するガスにより電解液が撹拌されるため、成層化は解消する。 In lead-acid batteries, sulfuric acid is consumed by the bipolar plates and water is generated at the positive electrode during discharge. In addition, sulfuric acid is released from the bipolar plates during charging. Since the specific gravity of sulfuric acid is greater than that of water, it tends to accumulate in the lower part of the lead-acid battery, resulting in a phenomenon (stratification) in which the sulfuric acid concentration of the electrolytic solution has a vertical difference. When the amount of charge is sufficient, stratification is eliminated because the electrolyte is stirred by the gas generated from the electrode plate at the end of charging.
しかし、PSOCで使用される鉛蓄電池では、過充電によるガス発生が少ないため、電解液の成層化が解消し難い。硫酸濃度が高くなった極板下部では、充電受入性が低くなり、負極板下部においてサルフェーション(硫酸鉛の蓄積)が進行する。また、充放電反応が極板上部に集中することにより、正極板上部の劣化が促進され、寿命性能が低下する。 However, in lead acid batteries used in PSOC, gas generation due to overcharging is small, so that stratification of the electrolyte is difficult to eliminate. At the bottom of the electrode plate where the sulfuric acid concentration is high, the charge acceptability is low, and sulfation (accumulation of lead sulfate) proceeds at the bottom of the negative electrode plate. Moreover, when the charge / discharge reaction is concentrated on the upper part of the electrode plate, the deterioration of the upper part of the positive electrode plate is promoted and the life performance is lowered.
 PSOCで使用される鉛蓄電池の充電受入性を改善し、寿命性能を向上させるために、負極電極材料に黒鉛を添加することが知られている。 It is known to add graphite to the negative electrode material in order to improve the charge acceptance of lead-acid batteries used in PSOC and improve the life performance.
 特許文献1には、「鉛粉を原料とするペースト状活物質を鉛合金製の集電体に保持させてなるペースト式負極板が用いられた鉛蓄電池において、負極活物質中に炭素質材料とともに、(a)ビスフェノールスルホン酸ポリマと(b)リグニンスルホン酸ナトリウムを含有し、(a)および(b)の配合量について次の点を特徴とする鉛蓄電池。配合した(a)と(b)の合計を100質量部とした時、(a)の配合割合を50~80質量部とし、かつ、前記負極活物質の原料鉛粉の質量に対して、(a)と(b)を合計した配合質量を、0.05質量%以上、0.3質量%以下とする。」([請求項1])、「前記負極活物質中に、炭素質材料として、平均一次粒子径が10μm以上の鱗片状黒鉛が含有されていることを特徴とする請求項1~3のいずれかに記載の鉛蓄電池。」([請求項4])、「前記鱗片状黒鉛の含有量が、満充電状態における負極活物質の質量に対し、0.5質量%~2.5質量%であることを特徴とする請求項4記載の鉛蓄電池。」([請求項5])、「前記鱗片状黒鉛に加えてカーボンブラックが含有されることを特徴とする請求項5記載の鉛蓄電池。」([請求項6])の発明が記載されている。 In Patent Document 1, “in a lead storage battery using a paste type negative electrode plate in which a paste-like active material made of lead powder as a raw material is held in a lead alloy current collector, a carbonaceous material is contained in the negative electrode active material. A lead acid battery containing (a) a bisphenol sulfonic acid polymer and (b) sodium lignin sulfonate and characterized by the following points regarding the amount of (a) and (b): (a) and (b ) Is 100 parts by mass, the blending ratio of (a) is 50 to 80 parts by mass, and (a) and (b) are added to the mass of the raw material lead powder of the negative electrode active material. The blended mass is 0.05 mass% or more and 0.3 mass% or less. ”([Claim 1]),“ In the negative electrode active material, the average primary particle diameter is 10 μm or more as a carbonaceous material. The flaky graphite is contained. 4. The lead storage battery according to any one of claims 1 to 3] ([Claim 4]), "The content of the flake graphite is 0.5 mass% to 2 mass% with respect to the mass of the negative electrode active material in a fully charged state. 5. The lead acid battery according to claim 4, wherein the content is 5% by mass. ([Claim 5]), “Carbon black is contained in addition to the flake graphite. Of lead storage battery ”([Claim 6]).
 特許文献2には、「硫酸バリウム;高濃度の炭素および/またはグラファイト;ならびに有機物質を含む、鉛蓄電池用の蓄電池極板用の蓄電池ペースト用の防縮剤。」(請求項1)、「高濃度の炭素および/またはグラファイトが、鉛蓄電池中の負極活物質表面上での硫酸鉛の蓄積を低下させる、請求項1に記載の防縮剤。」(請求項10)についての発明が記載されている。 Patent Document 2 discloses "a shrinkage-preventing agent for a storage battery paste for a storage battery electrode plate for a lead storage battery, which contains barium sulfate; a high concentration of carbon and / or graphite; and an organic substance." (Claim 1), "High The invention according to claim 1, wherein the concentration of carbon and / or graphite reduces lead sulfate accumulation on the surface of the negative electrode active material in the lead acid battery. Yes.
 特許文献3には、「硫酸バリウム、炭素および有機材料を含み、有機材料が耐熱分解性であることを特徴とする、蓄電池ペースト用の膨張剤。」(請求項1)の発明について、「炭素は、カーボンブラック、活性化炭素またはグラファイト、およびそれらの混合物のいずれかを表す。」(段落[0029])と記載されている。 Patent Document 3 describes the invention of “an expansion agent for a storage battery paste characterized by containing barium sulfate, carbon, and an organic material, and the organic material is heat-decomposable.” (Claim 1) Represents any of carbon black, activated carbon or graphite, and mixtures thereof ”(paragraph [0029]).
 また、PSOCで使用される鉛蓄電池の性能を改善するために、正極電極材料にスズを添加することや、正極電極材料の密度を特定することが知られている。 It is also known to add tin to the positive electrode material and to specify the density of the positive electrode material in order to improve the performance of the lead storage battery used in PSOC.
 特許文献4には、「正極活物質と正極格子とから成る正極板と、負極活物質と負極格子とから成る負極板と、正極板と負極板とを分離するセパレータと、正極板と負極板とセパレータとを浸しかつ流動性のある液体電解液、とを備えるアイドリングストップ車用の液式鉛蓄電池において、正極活物質は化成済みの状態において、密度が4.4g/cm以上4.8g/cm以下で、かつSnを金属Snに換算して0.05mass%以上1.0mass%以下含有することを特徴とする、液式鉛蓄電池。」(請求項1)についての発明が記載されている。 In Patent Document 4, “a positive electrode plate made of a positive electrode active material and a positive electrode lattice, a negative electrode plate made of a negative electrode active material and a negative electrode lattice, a separator separating the positive electrode plate and the negative electrode plate, a positive electrode plate and a negative electrode plate are disclosed. In a liquid lead-acid battery for an idling stop vehicle that includes a liquid electrolyte that immerses the separator and has fluidity, the density of the positive electrode active material is 4.4 g / cm 3 or more and 4.8 g in the already formed state. / Cm 3 or less, and Sn is converted into metal Sn and contained 0.05 mass% or more and 1.0 mass% or less. The invention of “Liquid lead storage battery” (Claim 1) is described. ing.
再公表 WO2012/017702Re-publication WO2012 / 017702 特表2012-501519号公報Special table 2012-501519 gazette 特表2010-529619号公報Special table 2010-529619 特開2013-140677号公報JP 2013-140677 A
 鉛蓄電池において、比較的導電性が高くカーボンブラック等に比べて粒子径が大きい、黒鉛又は炭素繊維(以下、「黒鉛等」ということがある。)を負極電極材料に含有させると、PSOC条件下における鉛蓄電池の寿命(以下「PSOC寿命」という。)を長くすることができる。一方で、負極電極材料に黒鉛等を含有させた鉛蓄電池では、浸透短絡が生じやすくなるという課題があることを、本発明者らは初めて知見した。その理由は、必ずしも明らかではないが、以下のように推察される。黒鉛等はカーボンブラック等に比べて粒子径が大きいことでその一部が負極板表面に露出しやすい。黒鉛等は導電性が比較的高いため、黒鉛等が負極板表面に露出すると、その露出部上でPb2+の充電反応が集中して起こるようになる。その結果、局所的に大きなデンドライト状鉛が、セパレータを突き破る方向に成長し、充電電流が集中しやすい極板上部を中心に浸透短絡が生じると推察される。 In a lead-acid battery, when graphite or carbon fiber (hereinafter sometimes referred to as “graphite or the like”) having relatively high conductivity and a particle size larger than that of carbon black or the like is contained in the negative electrode material, The life of the lead storage battery (hereinafter referred to as “PSOC life”) can be extended. On the other hand, the present inventors have found for the first time that a lead storage battery in which graphite or the like is contained in the negative electrode material has a problem that an infiltration short circuit is likely to occur. The reason is not necessarily clear, but is presumed as follows. Graphite and the like have a larger particle size than carbon black and the like, and a part of the graphite is easily exposed on the surface of the negative electrode plate. Since graphite or the like has a relatively high conductivity, when the graphite or the like is exposed on the surface of the negative electrode plate, the charge reaction of Pb 2+ occurs on the exposed portion. As a result, it is presumed that locally large dendritic lead grows in a direction that breaks through the separator, and a penetration short circuit occurs around the upper part of the electrode plate where the charging current tends to concentrate.
 本発明は、上記の課題に鑑み、PSOC寿命性能が向上し、かつ浸透短絡の発生が抑制された鉛蓄電池を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a lead-acid battery with improved PSOC life performance and suppressed occurrence of permeation short circuit.
 本発明の一態様に係る鉛蓄電池は、正極板と負極板と電解液とを備え、前記負極板の負極電極材料は黒鉛あるいは炭素繊維と、硫酸バリウム換算で1.1mass%以上のバリウム元素と、を含有し、前記正極板の正極電極材料はスズ元素を含有することを特徴とする。 A lead storage battery according to an aspect of the present invention includes a positive electrode plate, a negative electrode plate, and an electrolyte solution. The negative electrode material of the negative electrode plate is graphite or carbon fiber, and a barium element of 1.1 mass% or more in terms of barium sulfate. The positive electrode material of the positive electrode plate contains a tin element.
 本発明の一態様によれば、PSOC寿命性能が向上し、かつ浸透短絡の発生が抑制された鉛蓄電池を提供することができる。 According to one embodiment of the present invention, it is possible to provide a lead-acid battery with improved PSOC life performance and suppressed occurrence of permeation short circuit.
本発明の一態様に係る鉛蓄電池の要部断面図Sectional drawing of the principal part of the lead acid battery which concerns on 1 aspect of this invention. 黒鉛含有量の影響を示す特性図(硫酸バリウム換算のバリウム含有量1.0mass%、正極活物質密度4.8g/cm、スズ含有量0mass%)Characteristic chart showing influence of graphite content (barium content 1.0 mass% in terms of barium sulfate, positive electrode active material density 4.8 g / cm 3 , tin content 0 mass%) バリウム含有量の影響を示す特性図(黒鉛含有量1.0mass%、スズ含有量0mass%)Characteristic diagram showing the effect of barium content (graphite content 1.0 mass%, tin content 0 mass%) バリウム含有量とスズ含有量の影響を示す特性図(黒鉛含有量1.0mass%、正極活物質密度4.2g/cmCharacteristic diagram showing influence of barium content and tin content (graphite content: 1.0 mass%, positive electrode active material density: 4.2 g / cm 3 ) バリウム含有量とスズ含有量の影響を示す特性図(黒鉛含有量1.0mass%、正極活物質密度4.2g/cmCharacteristic diagram showing influence of barium content and tin content (graphite content: 1.0 mass%, positive electrode active material density: 4.2 g / cm 3 ) 正極活物質密度の影響を示す特性図(黒鉛含有量1.0mass%、硫酸バリウム換算のバリウム含有量1.2mass%)Characteristic diagram showing influence of positive electrode active material density (graphite content: 1.0 mass%, barium content in terms of barium sulfate: 1.2 mass%) 正極活物質密度の影響を示す特性図(黒鉛含有量1.0mass%、硫酸バリウム換算のバリウム含有量1.0mass%)Characteristic diagram showing influence of positive electrode active material density (graphite content: 1.0 mass%, barium content in terms of barium sulfate: 1.0 mass%) バリウム含有量の影響を示す特性図(黒鉛含有量1.0mass%、スズ含有量0.01mass%)Characteristic chart showing the effect of barium content (graphite content 1.0 mass%, tin content 0.01 mass%) カーボンブラック含有量の影響を示す特性図(黒鉛含有量3.0mass%、正極活物質密度4.8g/cmThe characteristic figure which shows the influence of carbon black content (graphite content 3.0mass%, positive electrode active material density 4.8g / cm < 3 >) 黒鉛の平均粒子径の影響を示す特性図(黒鉛含有量3.0mass%、硫酸バリウム換算のバリウム含有量1.2mass%、正極活物質密度4.8g/cm、スズ含有量0.01mass%)Characteristic chart showing influence of average particle diameter of graphite (graphite content: 3.0 mass%, barium content: 1.2 mass% in terms of barium sulfate, positive electrode active material density: 4.8 g / cm 3 , tin content: 0.01 mass% )
 本発明の一態様に係る鉛蓄電池は、正極板と負極板と電解液とを備え、前記負極板の負極電極材料は黒鉛あるいは炭素繊維と、硫酸バリウム換算で1.1mass%以上のバリウム元素と、を含有し、前記正極板の正極電極材料はスズ元素を含有することを特徴とする。以下、詳述する。 A lead storage battery according to an aspect of the present invention includes a positive electrode plate, a negative electrode plate, and an electrolyte solution. The negative electrode material of the negative electrode plate is graphite or carbon fiber, and a barium element of 1.1 mass% or more in terms of barium sulfate. The positive electrode material of the positive electrode plate contains a tin element. Details will be described below.
 負極板は、負極集電体と負極電極材料とから成り、正極板は、正極集電体と正極電極材料とから成り、集電体以外の固形成分は電極材料に属するものとする。以下、黒鉛の含有量、炭素繊維の含有量、バリウム元素の含有量、カーボンブラックの含有量は、化成後で満充電状態の負極電極材料に対する含有量(mass%)である。また、スズ元素の含有量は、化成後で満充電状態の正極電極材料に対する含有量(mass%)である。なお、バリウム元素の含有量は硫酸バリウム換算での含有量であり、スズ元素の含有量は金属スズ換算での含有量である。 The negative electrode plate is composed of a negative electrode current collector and a negative electrode material, the positive electrode plate is composed of a positive electrode current collector and a positive electrode material, and solid components other than the current collector belong to the electrode material. Hereinafter, the content of graphite, the content of carbon fiber, the content of barium element, and the content of carbon black are the content (mass%) with respect to the negative electrode material in a fully charged state after chemical conversion. Further, the content of tin element is the content (mass%) relative to the positive electrode material in a fully charged state after chemical conversion. In addition, content of barium element is content in barium sulfate conversion, and content of tin element is content in metal tin conversion.
 鉛蓄電池を満充電状態にするには、液式の電池の場合、25℃の水槽中で、5時間率電流で2.5V/セルに達するまで定電流充電を行った後、さらに5時間率電流で2時間、定電流充電を行う。また、制御弁式の電池の場合、25℃の気槽中にて5時間率電流、2.23V/セルにて定電流定電圧充電を行い、定電圧充電時の電流値が1mCA以下になった時点で充電を終了する。この明細書における5時間率電流は、鉛蓄電池の公称容量を5時間で放電する電流値であり、例えば公称容量が30Ahの電池であれば5時間率電流は6Aであり、1mCAは30mAである。 In order to make a lead-acid battery fully charged, in the case of a liquid battery, after performing constant current charging in a water bath at 25 ° C. until it reaches 2.5 V / cell at a current rate of 5 hours, an additional 5 hours rate Charge with constant current for 2 hours. In the case of a control valve type battery, a constant current / constant voltage charge is performed at a current of 5 hours in a 25 ° C. air tank at a rate of 2.23 V / cell, and the current value during constant voltage charge is 1 mCA or less. When charging is finished. The 5-hour rate current in this specification is a current value for discharging the nominal capacity of the lead storage battery in 5 hours. For example, if the battery has a nominal capacity of 30 Ah, the 5-hour rate current is 6 A, and 1 mCA is 30 mA. .
<電極材料>
 前述のとおり、黒鉛等を含有する負極電極材料を備えた鉛蓄電池は、PSOC寿命性能が向上する。
<Electrode material>
As described above, the lead-acid battery including the negative electrode material containing graphite or the like has improved PSOC life performance.
 負極電極材料中の黒鉛等の含有量が0.5mass%以上であると、PSOC寿命性能の向上効果が大きいため、負極電極材料中の黒鉛等の含有量は0.5mass%以上とすることが好ましい。負極電極材料中の黒鉛等の含有量が1.0mass%以上であると、PSOC寿命性能の向上効果がさらに大きいため、負極電極材料中の黒鉛等の含有量は1.0mass%以上とすることがより好ましい。 If the content of graphite or the like in the negative electrode material is 0.5 mass% or more, the effect of improving the PSOC life performance is great. Therefore, the content of graphite or the like in the negative electrode material may be 0.5 mass% or more. preferable. If the content of graphite or the like in the negative electrode material is 1.0 mass% or more, the effect of improving the PSOC life performance is further increased. Therefore, the content of graphite or the like in the negative electrode material should be 1.0 mass% or more. Is more preferable.
 負極電極材料中の黒鉛等の含有量が2.5mass%以下であると、負極電極材料ペーストを負極集電体へ充填することが容易になるため、負極電極材料中の黒鉛等の含有量は2.5mass%以下とすることが好ましく、2.0mass%以下とすることがより好ましい。 When the content of graphite or the like in the negative electrode material is 2.5 mass% or less, it becomes easy to fill the negative electrode current paste into the negative electrode current collector, so the content of graphite or the like in the negative electrode material is It is preferable to set it as 2.5 mass% or less, and it is more preferable to set it as 2.0 mass% or less.
 黒鉛としては、例えば鱗片状黒鉛、鱗状黒鉛、土状黒鉛、膨張黒鉛、膨張化黒鉛、人造黒鉛等が挙げられる。膨張化黒鉛とは膨張済みの黒鉛である。また、黒鉛に代えて炭素繊維を用いてもよい。黒鉛及び炭素繊維は導電性が比較的高く、カーボンブラック等よりも大きい点で共通し、負極電極材料中での作用も同様であると考えられる。炭素繊維は例えば長さが5μm以上500μm以下のものが好ましく、長さが10μm以上300μm以下のものがより好ましい。黒鉛等は、鱗片状黒鉛又は膨張化黒鉛であることが好ましく、鱗片状黒鉛であることがより好ましい。 Examples of graphite include scaly graphite, scaly graphite, earthy graphite, expanded graphite, expanded graphite, and artificial graphite. Expanded graphite is expanded graphite. Carbon fiber may be used instead of graphite. Graphite and carbon fiber have a relatively high electrical conductivity and are common in that they are larger than carbon black and the like, and the action in the negative electrode material is considered to be the same. For example, the carbon fiber preferably has a length of 5 μm or more and 500 μm or less, and more preferably a length of 10 μm or more and 300 μm or less. The graphite or the like is preferably flaky graphite or expanded graphite, and more preferably flaky graphite.
 黒鉛の平均粒子径を300μm以下とすると、浸透短絡が発生しにくくなるので、黒鉛の平均粒子径は300μm以下とするのが好ましい。また、黒鉛の平均粒子径を100μm以上とすると、PSOC寿命性能が向上するので、黒鉛の平均粒子径は100μm以上とするのが好ましい。なお、黒鉛の平均粒子径は、レーザー回折式粒度分布測定装置で分析した際の粒度分布における、累積体積が50%となる粒子径(D50)の値を意味する。 When the average particle diameter of graphite is 300 μm or less, it is difficult for permeation short circuit to occur. Therefore, the average particle diameter of graphite is preferably 300 μm or less. Further, when the average particle diameter of graphite is 100 μm or more, the PSOC life performance is improved. Therefore, the average particle diameter of graphite is preferably 100 μm or more. In addition, the average particle diameter of graphite means the value of the particle diameter (D50) at which the cumulative volume is 50% in the particle size distribution when analyzed with a laser diffraction particle size distribution analyzer.
 負極電極材料に黒鉛等を添加することにより、PSOC寿命性能が向上する一方で、浸透短絡が発生しやすくなる。鉛蓄電池の負極電極材料に黒鉛等を添加することにより浸透短絡が発生しやすくなることはこれまで知られていない。本発明者らは、負極電極材料に黒鉛等とともに硫酸バリウム換算で1.1mass%以上のバリウム元素を含有させることにより、浸透短絡の発生を抑制できることを見出した。 By adding graphite or the like to the negative electrode material, the PSOC life performance is improved, but an infiltration short circuit is likely to occur. It has not been known so far that an infiltration short circuit is likely to occur by adding graphite or the like to the negative electrode material of a lead storage battery. The inventors of the present invention have found that the occurrence of an infiltration short circuit can be suppressed by adding 1.1 mass% or more of barium element in terms of barium sulfate together with graphite or the like in the negative electrode material.
 負極電極材料に、黒鉛等とともに硫酸バリウム換算で1.1mass%以上のバリウム元素を添加することにより、浸透短絡を抑制することができるという効果は、これまでの技術常識から予想できないものである。なぜなら、負極電極材料に黒鉛等を含有させることにより、浸透短絡が発生しやすくなるという課題がこれまで認識されておらず、バリウム元素の添加量を硫酸バリウム換算で1.1mass%以上に選択することにより、浸透短絡の発生が抑制されるという効果もこれまで知られていなかったからである。 The effect that the penetration short circuit can be suppressed by adding 1.1 mass% or more of barium sulfate in addition to graphite or the like to the negative electrode material is unpredictable from the conventional technical common sense. This is because the problem that an osmotic short circuit is likely to occur by including graphite or the like in the negative electrode material has not been recognized so far, and the addition amount of barium element is selected to be 1.1 mass% or more in terms of barium sulfate. This is because the effect of suppressing the occurrence of the penetration short circuit has not been known so far.
 負極電極材料へのバリウム元素の添加が浸透短絡の発生を抑制する作用機序は、必ずしも明らかではないが、以下のように推察される。負極電極材料中のバリウム元素は、硫酸バリウムとして負極電極材料の内部にほぼ均一に分散し、放電時には硫酸鉛の核形成材として機能することにより、負極電極材料内部にも硫酸鉛を生成させる。負極電極材料内部にも硫酸鉛が生成すると、負極板の表面で硫酸鉛の生成量が多くなることを抑制できる。硫酸鉛の一部は溶解して鉛イオンを生ずるが、負極板の表面の硫酸鉛量が減少すると、負極板の表面付近での鉛イオンの濃度も減少し、鉛イオンが正負極板間の電解液中に拡散しにくくなる。その結果、極板表面に露出した黒鉛等において、充電時に鉛イオンの還元反応が起き難くなり、極板表面に露出した黒鉛等から正極板方向へのデンドライト状鉛の成長を抑制することができると考えられる。 The mechanism of action by which the addition of barium element to the negative electrode material suppresses the occurrence of permeation short circuit is not necessarily clear, but is presumed as follows. The barium element in the negative electrode material is dispersed almost uniformly inside the negative electrode material as barium sulfate and functions as a lead sulfate nucleating material during discharge, thereby generating lead sulfate also in the negative electrode material. When lead sulfate is generated inside the negative electrode material, it is possible to suppress an increase in the amount of lead sulfate generated on the surface of the negative electrode plate. Part of the lead sulfate dissolves to produce lead ions, but when the amount of lead sulfate on the surface of the negative electrode plate decreases, the concentration of lead ions near the surface of the negative electrode plate also decreases, and the lead ions are between the positive and negative electrode plates. Difficult to diffuse into the electrolyte. As a result, in the graphite exposed on the electrode plate surface, the reduction reaction of lead ions hardly occurs at the time of charging, and it is possible to suppress the growth of dendritic lead from the graphite exposed on the electrode plate surface toward the positive electrode plate. it is conceivable that.
 負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で1.2mass%以上とすると、浸透短絡の発生を大きく抑制できる。したがって、負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で1.2mass%以上とすることが好ましい。 When the content of barium element in the negative electrode material is 1.2 mass% or more in terms of barium sulfate, the occurrence of permeation short circuit can be greatly suppressed. Therefore, the barium element content in the negative electrode material is preferably 1.2 mass% or more in terms of barium sulfate.
 負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で3.0mass%以下とすると、PSOC寿命性能が向上するので、負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で3.0mass%以下とすることが好ましい。負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で2.5mass%以下とすると、PSOC寿命性能が大きく向上するので、負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で2.5mass%以下とすることがより好ましい。 If the content of barium element in the negative electrode material is 3.0 mass% or less in terms of barium sulfate, PSOC life performance is improved. Therefore, the content of barium element in the negative electrode material is 3.0 mass% in terms of barium sulfate. The following is preferable. If the barium element content in the negative electrode material is 2.5 mass% or less in terms of barium sulfate, the PSOC life performance is greatly improved. Therefore, the barium element content in the negative electrode material is 2.5 mass in terms of barium sulfate. % Or less is more preferable.
 負極電極材料にバリウム元素を含有させるためには、負極電極材料に単体のバリウム、あるいは硫酸バリウム、炭酸バリウム等のバリウム化合物を添加すればよい。硫酸バリウム以外の、単体のバリウムやバリウム化合物を負極電極材料に添加しても、添加後に硫酸バリウムに変化すると考えられる。 In order to contain barium element in the negative electrode material, single barium or a barium compound such as barium sulfate or barium carbonate may be added to the negative electrode material. Even if a single barium or barium compound other than barium sulfate is added to the negative electrode material, it is considered that it changes to barium sulfate after the addition.
 負極電極材料中での硫酸バリウムは、例えば平均二次粒子径が1~10μmであることが好ましい。また、負極電極材料中での硫酸バリウムは、例えば平均一次粒子径が0.3~2.0μmであることが好ましい。 The barium sulfate in the negative electrode material preferably has an average secondary particle size of 1 to 10 μm, for example. Further, the barium sulfate in the negative electrode material preferably has an average primary particle size of, for example, 0.3 to 2.0 μm.
 負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で1.1mass%以上とし、さらに正極電極材料にスズ元素を含有させると、浸透短絡を一層抑制することができる。一方で、負極電極材料中のバリウム元素の含有量が硫酸バリウム換算で1.0mass%以下の場合には、正極電極材料にスズ元素を含有させても、スズ元素による浸透短絡抑制効果はみられない。正極電極材料中のスズ元素が浸透短絡に関係していることはこれまで知られていない。したがって、負極電極材料が黒鉛等を含有し、かつ、硫酸バリウム換算で1.1mass%以上のバリウム元素を含有する場合に、正極電極材料にスズ元素を含有させることで浸透短絡を抑制できることは予想できるものではない。また、負極電極材料中の硫酸バリウム換算でのバリウム元素の含有量が1.1mass%以上の場合と1.0mass%以下の場合とで、スズ元素による浸透短絡抑制効果が明確に変化することから、負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で1.1mass%以上とすることには臨界的意義があるといえる。 When the content of the barium element in the negative electrode material is 1.1 mass% or more in terms of barium sulfate, and the positive electrode material further contains a tin element, the penetration short circuit can be further suppressed. On the other hand, when the content of barium element in the negative electrode material is 1.0 mass% or less in terms of barium sulfate, even if tin element is contained in the positive electrode material, the penetration short-circuit suppressing effect by the tin element is observed. Absent. It has not been known so far that the tin element in the positive electrode material is related to the penetration short circuit. Therefore, when the negative electrode material contains graphite or the like and contains a barium element of 1.1 mass% or more in terms of barium sulfate, it is expected that the penetration electrode short circuit can be suppressed by containing the tin element in the positive electrode material. It is not possible. In addition, since the content of barium element in the negative electrode material in terms of barium sulfate is 1.1 mass% or more and 1.0 mass% or less, the penetration short-circuit suppressing effect by the tin element clearly changes. It can be said that there is a critical significance in setting the barium element content in the negative electrode material to 1.1 mass% or more in terms of barium sulfate.
 正極電極材料中のスズ元素の含有量を0.01mass%以上とすると、浸透短絡を顕著に抑制できるので、正極電極材料中のスズ元素の含有量を0.01mass%以上とすることが好ましい。なお、正極電極材料中でのスズ元素の存在形態としては金属、酸化物、硫酸塩などが考えられる。 When the content of tin element in the positive electrode material is 0.01 mass% or more, the penetration short circuit can be remarkably suppressed. Therefore, the content of tin element in the positive electrode material is preferably 0.01 mass% or more. In addition, metals, oxides, sulfates, and the like can be considered as the presence form of the tin element in the positive electrode material.
 正極電極材料へのスズ元素の添加により、浸透短絡の発生が抑制される作用機序は必ずしも明らかではないが、以下のように推察される。スズ元素には導電性を高める効果があることから、正極電極材料にスズ元素を添加すると、正極板の上下方向における充放電反応がより均一化され、極板上部への充電電流の集中が緩和される。極板上部への充電電流の集中が緩和されると、極板上部でのデンドライト状鉛の成長が抑制され、負極電極材料中の1.1mass%以上の硫酸バリウムによる浸透短絡抑制効果と相乗的に作用して、浸透短絡の発生が顕著に抑制されるものと推察される。 The action mechanism in which the occurrence of permeation short circuit is suppressed by the addition of tin element to the positive electrode material is not necessarily clear, but is presumed as follows. Since tin element has the effect of increasing conductivity, the addition of tin element to the positive electrode material makes charge / discharge reactions in the vertical direction of the positive electrode plate more uniform, reducing the concentration of charging current on the top of the electrode plate. Is done. When the concentration of the charging current on the upper part of the electrode plate is relaxed, the growth of dendritic lead on the upper part of the electrode plate is suppressed, and synergistic with the penetration short-circuit suppressing effect by 1.1 mass% or more of barium sulfate in the negative electrode material. It is presumed that the occurrence of permeation short circuit is significantly suppressed.
 負極電極材料が黒鉛等と硫酸バリウム換算で1.1mass%以上のバリウム元素とを含有する場合に、正極電極材料中のスズ元素の含有量を0.15mass%以下とすると、正極電極材料がスズ元素を含有しない場合と比べて、PSOC寿命性能が向上する。したがって、正極電極材料中のスズ元素の含有量を0.15mass%以下とするのが好ましい。一方、負極電極材料中のバリウム元素の含有量が硫酸バリウム換算で1.0mass%以下の場合には、正極電極材料中のスズ元素の含有量を0.15mass%以下としても、正極電極材料がスズ元素を含有しない場合と比べて、PSOC寿命性能は向上しない。負極電極材料が黒鉛等を含有する場合に、負極電極材料中のバリウム元素の含有量と、正極電極材料中のスズ元素の含有量とを特定の範囲にすることでPSCO寿命性能が向上することはこれまで知られていない。 When the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate, if the content of tin element in the positive electrode material is 0.15 mass% or less, the positive electrode material is tin The PSOC life performance is improved as compared with the case where no element is contained. Therefore, it is preferable that the content of the tin element in the positive electrode material is 0.15 mass% or less. On the other hand, when the content of barium element in the negative electrode material is 1.0 mass% or less in terms of barium sulfate, the positive electrode material is used even if the content of tin element in the positive electrode material is 0.15 mass% or less. The PSOC life performance is not improved as compared with the case where no tin element is contained. When the negative electrode material contains graphite or the like, the PSCO life performance is improved by making the content of barium element in the negative electrode material and the content of tin element in the positive electrode material into a specific range. Is not known so far.
 負極電極材料が黒鉛等と硫酸バリウム換算で1.1mass%以上のバリウム元素とを含有する場合に、正極電極材料中のスズ元素の含有量を0.10mass%以下とすると、正極電極材料にスズ元素を含有しない場合と比べて、PSOC寿命性能が大きく向上する。したがって、正極電極材料中のスズ元素の含有量を0.10mass%以下とするのがより好ましい。負極電極材料が黒鉛等と硫酸バリウム換算で1.1mass%以上のバリウム元素とを含有する場合に、正極電極材料中のスズ元素の含有量を0.08mass%以下とすると、PSOC寿命性能がさらに大きく向上するのでさらに好ましい。負極電極材料が黒鉛等と硫酸バリウム換算で1.1mass%以上のバリウム元素とを含有する場合に、正極電極材料中のスズ元素の含有量を0.06mass%以下とすると、PSOC寿命性能が特に大きく向上するので特に好ましい。 When the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate, if the content of tin element in the positive electrode material is 0.10 mass% or less, the positive electrode material is tin Compared with the case where no element is contained, the PSOC life performance is greatly improved. Therefore, the content of tin element in the positive electrode material is more preferably 0.10 mass% or less. When the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate, if the content of tin element in the positive electrode material is 0.08 mass% or less, PSOC life performance is further improved. It is further preferable because it greatly improves. When the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate, if the content of tin element in the positive electrode material is 0.06 mass% or less, PSOC life performance is particularly good This is particularly preferable because it greatly improves.
 負極電極材料が黒鉛等と硫酸バリウム換算で1.1mass%以上のバリウム元素とを含有する場合に、正極電極材料中のスズ元素の含有量を0.03mass%以上とすると、正極電極材料にスズ元素を含有しない場合と比べて、PSOC寿命性能が大きく向上する。したがって、正極電極材料中のスズ元素の含有量を0.03mass%以上とするのが好ましい。 When the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate, if the content of tin element in the positive electrode material is 0.03 mass% or more, the positive electrode material is tin. Compared with the case where no element is contained, the PSOC life performance is greatly improved. Therefore, the content of tin element in the positive electrode material is preferably 0.03 mass% or more.
 負極電極材料が黒鉛等と硫酸バリウム換算で1.1mass%以上のバリウム元素とを含有し、正極電極材料が0.15mass%以下のスズ元素を含有することにより得られるPSOC寿命性能の向上効果は、正極電極材料の密度が3.6g/cm以上の場合に大きくなる。したがって、正極電極材料の密度を3.6g/cm以上とすることが好ましい。一方、負極電極材料中のバリウム元素の含有量が硫酸バリウム換算で1.0mass%以下の場合には、正極電極材料の密度を3.6g/cm以上としても、正極電極材料がスズ元素を含有しない場合と比べて、PSOC寿命性能は向上しない。 The effect of improving PSOC life performance obtained when the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate and the positive electrode material contains tin element of 0.15 mass% or less is When the density of the positive electrode material is 3.6 g / cm 3 or more, the density increases. Therefore, the density of the positive electrode material is preferably 3.6 g / cm 3 or more. On the other hand, when the content of barium element in the negative electrode material is 1.0 mass% or less in terms of barium sulfate, even if the density of the positive electrode material is 3.6 g / cm 3 or more, the positive electrode material contains tin element. Compared with the case where it does not contain, the PSOC life performance is not improved.
 負極電極材料が黒鉛等と硫酸バリウム換算で1.1mass%以上のバリウム元素とを含有し、正極電極材料が0.15mass%以下のスズ元素を含有することにより得られるPSOC寿命性能の向上効果は、正極電極材料の密度が4.2g/cm以上の場合に一層大きくなる。したがって、正極電極材料の密度を4.2g/cm以上とすることがより好ましい。このPSOC寿命性能の向上効果は、正極電極材料の密度が4.4g/cm以上の場合に顕著に大きくなるので、正極電極材料の密度を4.4g/cm以上とすることが特に好ましい。 The effect of improving PSOC life performance obtained when the negative electrode material contains graphite or the like and barium element of 1.1 mass% or more in terms of barium sulfate and the positive electrode material contains tin element of 0.15 mass% or less is When the density of the positive electrode material is 4.2 g / cm 3 or more, the density is further increased. Therefore, the density of the positive electrode material is more preferably 4.2 g / cm 3 or more. Improvement of the PSOC life performance since the density of the positive electrode material becomes significantly large when the 4.4 g / cm 3 or more, and particularly preferably the density of the positive electrode material 4.4 g / cm 3 or more .
 正極電極材料の密度を5.0g/cm以下とすると鉛蓄電池の初期容量が向上するので、正極電極材料の密度は5.0g/cm以下とすることが好ましい。 When the density of the positive electrode material is 5.0 g / cm 3 or less, the initial capacity of the lead-acid battery is improved. Therefore, the density of the positive electrode material is preferably 5.0 g / cm 3 or less.
 本発明の一態様に係る鉛蓄電池は、負極電極材料にさらにカーボンブラックを含有してもよい。負極電極材料が黒鉛等と硫酸バリウム換算で1.1mass%以上のバリウム元素を含有し、正極電極材料がスズ元素を含有する場合に、負極電極材料中にさらにカーボンブラックを含有させると、浸透短絡を一層抑制することができる。一方、負極電極材料中のバリウム元素の含有量が硫酸バリウム換算で1.0mass%以下の場合、または、正極電極材料がスズ元素を含有しない場合には、負極電極材料中にカーボンブラックを含有させても、カーボンブラックによる浸透短絡抑制効果は得られない。 The lead storage battery according to one embodiment of the present invention may further contain carbon black in the negative electrode material. When the negative electrode material contains graphite and the barium element of 1.1 mass% or more in terms of barium sulfate, and the positive electrode material contains tin element, if the black electrode material further contains carbon black, the penetration short circuit Can be further suppressed. On the other hand, when the content of barium element in the negative electrode material is 1.0 mass% or less in terms of barium sulfate, or when the positive electrode material does not contain tin element, carbon black is contained in the negative electrode material. However, the effect of suppressing the penetration short circuit by carbon black cannot be obtained.
 負極電極材料中のカーボンブラックの含有量を0.1mass%以上とすると浸透短絡を大きく抑制できるので好ましい。負極電極材料中のカーボンブラックの含有量を1.0mass%以下とすると負極電極材料ペーストを負極集電体へ充填することが容易になる。したがって、負極電極材料中のカーボンブラックの含有量は1.0mass%以下とするのが好ましい。 It is preferable that the content of carbon black in the negative electrode material is 0.1 mass% or more because the penetration short circuit can be largely suppressed. When the content of carbon black in the negative electrode material is 1.0 mass% or less, it becomes easy to fill the negative electrode current collector with the negative electrode material paste. Accordingly, the content of carbon black in the negative electrode material is preferably 1.0 mass% or less.
 以下、本発明の一実施形態に係る鉛蓄電池及びその製造方法について、順に詳説する。 Hereinafter, a lead storage battery and a manufacturing method thereof according to an embodiment of the present invention will be described in detail.
<負極板>
 未化成の負極板は以下のようにして作製することができる。まず、鉛粉に水と硫酸とを加えてペースト化して負極電極材料ペーストを得る。負極電極材料ペーストにはさらに黒鉛、炭素繊維、硫酸バリウム、カーボンブラック、防縮剤としてのリグニン、合成樹脂繊維等の補強材、等を含有させてもよい。硫酸バリウムに代えて、単体のバリウムや炭酸バリウム等のバリウム化合物を用いても良い。
<Negative electrode plate>
The unformed negative electrode plate can be produced as follows. First, water and sulfuric acid are added to lead powder to form a paste to obtain a negative electrode material paste. The negative electrode material paste may further contain graphite, carbon fiber, barium sulfate, carbon black, lignin as an anti-shrink agent, reinforcing materials such as synthetic resin fibers, and the like. Instead of barium sulfate, a barium compound such as single barium or barium carbonate may be used.
 リグニンの含有量は任意で、リグニンに代えて、スルホン化したビスフェノール類の縮合物等の合成防縮剤を用いてもよい。補強材の含有量及び合成樹脂繊維の種類は任意である。また、鉛粉の種類と製造条件は任意である。他の添加物、水溶性の合成高分子電解質等を負極電極材料ペーストに含有させても良い。 The content of lignin is arbitrary, and instead of lignin, a synthetic shrinking agent such as a sulfonated bisphenol condensate may be used. The content of the reinforcing material and the type of the synthetic resin fiber are arbitrary. Moreover, the kind of lead powder and manufacturing conditions are arbitrary. Other additives, a water-soluble synthetic polymer electrolyte, and the like may be included in the negative electrode material paste.
 負極電極材料ペーストを負極集電体に充填した後に、熟成と乾燥を施し、未化成の負極板を作製する。負極集電体には例えばエキスパンド格子、鋳造格子、打ち抜き格子などを使用することができる。 After filling the negative electrode current material paste into the negative electrode current collector, aging and drying are performed to produce an unformed negative electrode plate. For the negative electrode current collector, for example, an expanded lattice, a cast lattice, a punched lattice, or the like can be used.
<正極板>
 未化成の正極板は以下のようにして作製することができる。まず、鉛粉に水と硫酸とを加えてペースト化して正極電極材料ペーストを得る。正極電極材料ペーストに、硫酸スズ、合成樹脂繊維等の補強材、等を含有させてもよい。この正極電極材料ペーストを正極集電体に充填した後に、熟成と乾燥を施して、未化成の正極板を作製する。鉛粉の種類と製造条件は任意である。硫酸スズに代えて、金属スズ等を用いても良く、正極電極材料中でスズは金属、酸化物、硫酸化合物等として存在すると推察される。化成後の正極電極材料の密度は、正極電極材料ペーストを作製するときの水の添加量を変えて調整する。なお、正極集電体には例えばエキスパンド格子、鋳造格子、打ち抜き格子などを使用することができる。
<鉛蓄電池>
<Positive electrode plate>
The non-chemically formed positive electrode plate can be produced as follows. First, water and sulfuric acid are added to lead powder to form a paste to obtain a positive electrode material paste. The positive electrode material paste may contain a reinforcing material such as tin sulfate or synthetic resin fiber. After filling this positive electrode material paste into the positive electrode current collector, aging and drying are performed to produce an unformed positive electrode plate. The kind of lead powder and manufacturing conditions are arbitrary. Instead of tin sulfate, metal tin or the like may be used, and it is presumed that tin is present as a metal, oxide, sulfate compound or the like in the positive electrode material. The density of the positive electrode material after the formation is adjusted by changing the amount of water added when preparing the positive electrode material paste. For the positive electrode current collector, for example, an expanded lattice, a cast lattice, a punched lattice, or the like can be used.
<Lead battery>
 鉛蓄電池は以下のようにして作製することができる。未化成の負極板と未化成の正極板とをセパレータを介して交互に積層し、未化成の負極板同士、未化成の正極板同士をそれぞれストラップで接続して極板群とする。極板群を直列に接続した状態で電槽のセル室に収容し、硫酸を加えて化成を行い、鉛蓄電池を作製する。未化成の負極板及び未化成の正極板を化成した後に、極板群を組み立てて鉛蓄電池を作製してもよい。セパレータは例えば合成樹脂製で、好ましくはポリオレフィン製であり、さらに好ましくはポリエチレン製である。また、セパレータはベースから突出するリブを有するのが好ましい。セパレータのベース厚さ、合計厚さ等は任意であるが、セパレータのベースの厚さは0.15mm以上0.25mm以下が好ましい。正極板と負極板との間隔は0.5mm以上1.0mm以下が好ましい。セパレータを袋状として、正極板又は負極板を包んでもよい。 Lead acid battery can be manufactured as follows. An unformed negative electrode plate and an unformed positive electrode plate are alternately laminated via a separator, and the unformed negative electrode plates and the unformed positive electrode plates are connected by a strap to form an electrode plate group. The electrode plates are connected in series and accommodated in a cell chamber of a battery case, and sulfuric acid is added to form a lead acid battery. After forming the unformed negative electrode plate and the unformed positive electrode plate, the electrode plate group may be assembled to produce a lead storage battery. The separator is made of, for example, a synthetic resin, preferably made of polyolefin, and more preferably made of polyethylene. The separator preferably has a rib protruding from the base. The base thickness and total thickness of the separator are arbitrary, but the thickness of the separator base is preferably 0.15 mm or more and 0.25 mm or less. The distance between the positive electrode plate and the negative electrode plate is preferably 0.5 mm or more and 1.0 mm or less. You may enclose a positive electrode plate or a negative electrode plate by making a separator into a bag shape.
 図1は、本発明の一態様に係る鉛蓄電池の極板群1の要部を示し、2は負極板、3は正極板、4はセパレータである。負極板2は負極集電体21と負極電極材料22とから成り、正極板3は正極集電体31と正極電極材料32とから成る。セパレータ4はベース41とリブ42とを備える袋状で、袋の内部に負極板2が収納され、リブ42が正極板3側を向いている。ただし、リブ42を正極板3に向けてセパレータ4に正極板3を収納しても良いし、セパレータ4がリブ42を有しなくても良い。また、セパレータは正極板と負極板を隔離していれば、袋状である必要はなく、例えばリーフレット状のガラスマットやリテーナマット等を用いても良い。 FIG. 1 shows a main part of an electrode plate group 1 of a lead storage battery according to one embodiment of the present invention, 2 is a negative electrode plate, 3 is a positive electrode plate, and 4 is a separator. The negative electrode plate 2 includes a negative electrode current collector 21 and a negative electrode material 22, and the positive electrode plate 3 includes a positive electrode current collector 31 and a positive electrode material 32. The separator 4 has a bag shape including a base 41 and ribs 42, the negative electrode plate 2 is accommodated inside the bag, and the ribs 42 face the positive electrode plate 3 side. However, the positive plate 3 may be accommodated in the separator 4 with the rib 42 facing the positive plate 3, or the separator 4 may not have the rib 42. The separator need not be in the form of a bag as long as the positive electrode plate and the negative electrode plate are separated from each other. For example, a leaflet-shaped glass mat or a retainer mat may be used.
 化成後の負極電極材料に含まれるバリウム元素の含有量は以下のようにして定量する。満充電状態の鉛蓄電池を解体し、負極板を水洗及び乾燥して硫酸分を除去し、負極電極材料を採取する。負極電極材料を粉砕し、300g/Lの過酸化水素水を、負極電極材料100g当たり20mL加え、さらに60mass%の濃硝酸をその3倍容のイオン交換水で希釈して得た硝酸を加え、撹拌下で5時間加熱し、鉛を硝酸鉛として溶解させる。さらに硫酸バリウムを溶解させ、得られた水溶液中のバリウム濃度を原子吸光測定により定量する。このバリウム濃度を用いて、負極電極材料に含まれる、硫酸バリウム換算のバリウム含有量を算出する。 The content of barium element contained in the negative electrode material after chemical conversion is quantified as follows. The fully charged lead acid battery is disassembled, the negative electrode plate is washed with water and dried to remove the sulfuric acid, and the negative electrode material is collected. The negative electrode material is pulverized, and 300 g / L of hydrogen peroxide water is added at 20 mL per 100 g of the negative electrode material, and nitric acid obtained by diluting 60 mass% of concentrated nitric acid with 3 times its volume of ion exchange water is added, Heat for 5 hours under stirring to dissolve lead as lead nitrate. Further, barium sulfate is dissolved, and the barium concentration in the obtained aqueous solution is quantified by atomic absorption measurement. Using this barium concentration, the barium content in terms of barium sulfate contained in the negative electrode material is calculated.
 化成後の負極電極材料に含まれる黒鉛及びカーボンブラックの含有量は以下のようにして定量する。満充電状態の鉛蓄電池を解体し、負極板を水洗及び乾燥して硫酸分を除去し、負極電極材料を採取する。負極電極材料を粉砕し、300g/Lの過酸化水素水を、負極電極材料100g当たり20mL加え、さらに60mass%の濃硝酸をその3倍容のイオン交換水で希釈して得た硝酸を加え、撹拌下で5時間加熱し、鉛を硝酸鉛として溶解させる。さらに硫酸バリウムを溶解させる。得られた水溶液を濾過することにより、黒鉛、カーボンブラック、補強材等の固形成分を分離する。 The contents of graphite and carbon black contained in the negative electrode material after chemical conversion are quantified as follows. The fully charged lead acid battery is disassembled, the negative electrode plate is washed with water and dried to remove the sulfuric acid, and the negative electrode material is collected. The negative electrode material is pulverized, and 300 g / L of hydrogen peroxide water is added at 20 mL per 100 g of the negative electrode material, and nitric acid obtained by diluting 60 mass% of concentrated nitric acid with 3 times its volume of ion exchange water is added, Heat for 5 hours under stirring to dissolve lead as lead nitrate. Furthermore, barium sulfate is dissolved. By filtering the obtained aqueous solution, solid components such as graphite, carbon black, and reinforcing material are separated.
 次に、濾過によって得られた固形成分を水中に分散させる。補強材が通らない篩いを用い、分散液を2回篩いにかけ、水洗をおこない補強材を除去することで、カーボンブラック及び黒鉛を分離する。 Next, the solid component obtained by filtration is dispersed in water. Using a sieve through which the reinforcing material does not pass, the dispersion is sieved twice, washed with water to remove the reinforcing material, thereby separating carbon black and graphite.
 負極電極材料ペーストには、カーボンブラック及び黒鉛はリグニンなどの有機防縮剤とともに添加され、化成後の負極電極材料中においても、有機防縮剤の界面活性効果によって、カーボンブラック及び黒鉛はその凝集体が崩れた状態で存在する。上記一連の分離操作において有機防縮剤は水中に溶出して失われるため、分離したカーボンブラック及び黒鉛を再度水中に分散させた後、有機防縮剤として、リグニンスルホン酸塩であるバニレックスN(日本製紙株式会社製)を水100mLに対して15g加えて撹拌し、カーボンブラック及び黒鉛の凝集体を再び崩した状態で以下の分離操作を行う。 In the negative electrode material paste, carbon black and graphite are added together with an organic shrinkage agent such as lignin. In the negative electrode material after conversion, carbon black and graphite are aggregated due to the surface active effect of the organic shrinkage agent. Exists in a collapsed state. In the above series of separation operations, the organic shrunk agent is eluted and lost in the water, so that the separated carbon black and graphite are dispersed again in water, and then the organic shrunk agent, Vanillex N (Nippon Paper Industries Co., Ltd.) is used as the lignin sulfonate. 15 g) is added to 100 mL of water and stirred, and the following separation operation is performed with the carbon black and graphite aggregates broken again.
 上記操作の後、カーボンブラックと黒鉛を含む懸濁液を、黒鉛が実質的に通過せずカーボンブラックが通過する篩いにかけ、両者を分離する。この操作で黒鉛は篩い上に残り、篩いを通過した液にカーボンブラックが含まれる。上記一連の操作により分離した、黒鉛及びカーボンブラックをそれぞれ水洗及び乾燥した後にそれぞれの重量を秤量する。炭素繊維も黒鉛と同様にして分離し、重量を秤量する。 After the above operation, the suspension containing carbon black and graphite is passed through a sieve through which carbon black does not substantially pass and graphite is separated. By this operation, graphite remains on the sieve, and carbon black is contained in the liquid that has passed through the sieve. After the graphite and carbon black separated by the above series of operations are washed with water and dried, the respective weights are weighed. Carbon fiber is also separated in the same manner as graphite and weighed.
 黒鉛の平均粒子径の測定方法を以下に示す。測定装置には島津製作所製レーザー回折式粒度分布測定装置SALD2200を用いる。まず、水と界面活性剤を混合して作製した分散液に黒鉛を分散させ、黒鉛を分散させた分散液に、超音波洗浄機を使用して5分間超音波を照射する。次に、黒鉛を分散させた分散液を回分式セルに導入し、1分間撹拌する。その後、レーザー光を照射し、黒鉛の粒度分布を得る。その粒度分布において、最小を0.1μm、最大を1000μmに設定した範囲の中で、累積体積が50%(D50)となる粒径を平均粒子径とする。 The method for measuring the average particle diameter of graphite is shown below. As a measuring device, a laser diffraction particle size distribution measuring device SALD2200 manufactured by Shimadzu Corporation is used. First, graphite is dispersed in a dispersion prepared by mixing water and a surfactant, and the dispersion in which graphite is dispersed is irradiated with ultrasonic waves for 5 minutes using an ultrasonic cleaner. Next, the dispersion liquid in which graphite is dispersed is introduced into a batch cell and stirred for 1 minute. Thereafter, laser light is irradiated to obtain a particle size distribution of graphite. In the particle size distribution, the average particle size is the particle size at which the cumulative volume is 50% (D50) within the range where the minimum is set to 0.1 μm and the maximum is set to 1000 μm.
 化成後の正極電極材料中のスズ元素の含有量は以下のようにして定量する。満充電状態の鉛蓄電池を解体し、正極板を水洗及び乾燥して硫酸分を除去し、正極電極材料を採取する。正極電極材料を粉砕し、300g/Lの過酸化水素水を、正極電極材料100g当たり20mL加え、さらに60mass%の濃硝酸をその3倍容のイオン交換水で希釈して得た硝酸を加え、撹拌下で5時間加熱し、鉛とスズを溶解させる。得られた水溶液中のスズ元素の濃度をICP発光分光分析法により定量し、正極電極材料中のスズ元素の含有量を算出する。 The content of tin element in the positive electrode material after chemical conversion is quantified as follows. The fully charged lead-acid battery is disassembled, the positive electrode plate is washed with water and dried to remove sulfuric acid, and the positive electrode material is collected. The positive electrode material is crushed, and 300 g / L of hydrogen peroxide water is added in an amount of 20 mL per 100 g of the positive electrode material, and nitric acid obtained by diluting 60 mass% of concentrated nitric acid with 3 times its volume of ion exchange water is added, Heat for 5 hours under stirring to dissolve lead and tin. The concentration of tin element in the obtained aqueous solution is quantified by ICP emission spectrometry, and the content of tin element in the positive electrode material is calculated.
 正極電極材料の密度は、化成後で満充電状態の正極電極材料のかさ密度の値を意味し、以下のようにして測定する。化成後の電池を満充電してから解体し、入手した正極板を、水洗と乾燥とを施すことにより正極板中の電解液を除く。次いで正極板から正極電極材料を分離して、未粉砕の測定試料を入手する。測定容器に試料を投入し、真空排気した後、0.5~0.55psiaの圧力で水銀を満たして、正極電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、正極電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。 The density of the positive electrode material means the value of the bulk density of the positive electrode material in a fully charged state after formation, and is measured as follows. The battery after chemical conversion is fully charged and then disassembled, and the obtained positive electrode plate is washed with water and dried to remove the electrolyte in the positive electrode plate. Next, the positive electrode material is separated from the positive electrode plate to obtain an unground measurement sample. After putting the sample into the measurement container and evacuating it, filling the mercury with a pressure of 0.5 to 0.55 psia, measuring the bulk volume of the positive electrode material, and dividing the mass of the measurement sample by the bulk volume The bulk density of the positive electrode material is obtained. The volume obtained by subtracting the injection volume of mercury from the volume of the measurement container is defined as the bulk volume.
 本実施形態に係る鉛蓄電池はPSOC寿命性能に優れるとともに、部分充電状態で使用されても浸透短絡を生じにくいため、アイドリングストップ車用鉛蓄電池など部分充電状態で使用される鉛蓄電池に好適である。また、本実施形態に係る鉛蓄電池は、アイドリングストップ車用鉛蓄電池などの他に、フォークリフト用などのサイクル用途の鉛蓄電池にも好適である。以下の実施例では鉛蓄電池は液式であるが、制御弁式でも良い。本実施形態に係る鉛蓄電池は、好ましくは液式の鉛蓄電池である。 The lead storage battery according to the present embodiment is excellent in PSOC life performance and is less likely to cause a penetration short circuit even when used in a partially charged state, and is therefore suitable for a lead storage battery used in a partially charged state such as a lead storage battery for an idling stop vehicle. . Moreover, the lead storage battery according to the present embodiment is suitable for a lead storage battery for cycle use such as for forklifts in addition to a lead storage battery for an idling stop vehicle. In the following embodiments, the lead storage battery is a liquid type, but may be a control valve type. The lead storage battery according to the present embodiment is preferably a liquid lead storage battery.
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、本発明は以下のような態様で実施することができる。
<Other embodiments>
The present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode. For example, the present invention can be implemented in the following manner.
 (1)正極板と負極板と電解液とを備え、前記負極板の負極電極材料は黒鉛あるいは炭素繊維と、硫酸バリウム換算で1.1mass%以上のバリウム元素と、を含有し、前記正極板の正極電極材料はスズ元素を含有することを特徴とする鉛蓄電池。 (1) A positive electrode plate, a negative electrode plate, and an electrolyte solution, wherein the negative electrode material of the negative electrode plate contains graphite or carbon fiber and 1.1 mass% or more of barium element in terms of barium sulfate, and the positive electrode plate The positive electrode material contains a tin element.
 (2)前記正極電極材料は0.15mass%以下のスズ元素を含有することを特徴とする、(1)の鉛蓄電池。 (2) The lead acid battery according to (1), wherein the positive electrode material contains 0.15 mass% or less of tin element.
 (3)前記正極電極材料の密度が3.6g/cm以上であることを特徴とする、(1)または(2)の鉛蓄電池。 (3) The lead acid battery according to (1) or (2), wherein the density of the positive electrode material is 3.6 g / cm 3 or more.
 (4)前記負極電極材料がカーボンブラックを含有することを特徴とする、(1)~(3)のいずれかの鉛蓄電池。 (4) The lead acid battery according to any one of (1) to (3), wherein the negative electrode material contains carbon black.
 (5)前記負極電極材料は黒鉛あるいは炭素繊維を0.5mass%以上含有することを特徴とする、(1)~(4)のいずれかの鉛蓄電池。 (5) The lead acid battery according to any one of (1) to (4), wherein the negative electrode material contains 0.5 mass% or more of graphite or carbon fiber.
 (6)前記負極電極材料は黒鉛あるいは炭素繊維を2.5mass%以下含有することを特徴とする、(1)~(5)のいずれかの鉛蓄電池。 (6) The lead acid battery according to any one of (1) to (5), wherein the negative electrode material contains 2.5 mass% or less of graphite or carbon fiber.
 (7)前記黒鉛あるいは炭素繊維は平均粒子径が300μm以下の黒鉛であることを特徴とする、(1)~(6)のいずれかの鉛蓄電池。 (7) The lead storage battery according to any one of (1) to (6), wherein the graphite or carbon fiber is graphite having an average particle size of 300 μm or less.
 (8)前記黒鉛あるいは炭素繊維は平均粒子径が100μm以上の黒鉛であることを特徴とする、(1)~(7)のいずれかの鉛蓄電池。 (8) The lead acid battery according to any one of (1) to (7), wherein the graphite or carbon fiber is graphite having an average particle diameter of 100 μm or more.
 (9)前記負極電極材料は硫酸バリウム換算で3.0mass%以下のバリウム元素を含有することを特徴とする、(1)~(8)のいずれかの鉛蓄電池。 (9) The lead acid battery according to any one of (1) to (8), wherein the negative electrode material contains a barium element of 3.0 mass% or less in terms of barium sulfate.
 (10)前記正極電極材料は0.01mass%以上のスズ元素を含有することを特徴とする、(1)~(9)のいずれかの鉛蓄電池。 (10) The lead acid battery according to any one of (1) to (9), wherein the positive electrode material contains 0.01 mass% or more of tin element.
 (11)前記正極電極材料の密度が4.2g/cm以上であることを特徴とする、(1)~(10)のいずれかの鉛蓄電池。 (11) The lead acid battery according to any one of (1) to (10), wherein the density of the positive electrode material is 4.2 g / cm 3 or more.
 (12)前記正極電極材料の密度が5.0g/cm以下であることを特徴とする、(1)~(11)のいずれかの鉛蓄電池。 (12), wherein the density of the positive electrode material is 5.0 g / cm 3 or less, one of the lead storage battery (1) to (11).
 (13)前記負極電極材料は黒鉛あるいは炭素繊維を1.0mass%以上含有することを特徴とする、(1)~(12)のいずれかの鉛蓄電池。 (13) The lead acid battery according to any one of (1) to (12), wherein the negative electrode material contains 1.0 mass% or more of graphite or carbon fiber.
 (14)前記負極電極材料は黒鉛あるいは炭素繊維を2.0mass%以下含有することを特徴とする、(1)~(13)のいずれかの鉛蓄電池。 (14) The lead acid battery according to any one of (1) to (13), wherein the negative electrode material contains 2.0 mass% or less of graphite or carbon fiber.
 (15)前記負極電極材料は硫酸バリウム換算で1.2mass%以上のバリウム元素を含有することを特徴とする、(1)~(14)のいずれかの鉛蓄電池。 (15) The lead acid battery according to any one of (1) to (14), wherein the negative electrode material contains 1.2 mass% or more of barium element in terms of barium sulfate.
 (16)前記負極電極材料は硫酸バリウム換算で2.5mass%以下のバリウム元素を含有することを特徴とする、(1)~(15)のいずれかの鉛蓄電池。 (16) The lead acid battery according to any one of (1) to (15), wherein the negative electrode material contains a barium element of 2.5 mass% or less in terms of barium sulfate.
 (17)前記バリウム元素を硫酸バリウムとして含有することを特徴とする、(1)~(16)のいずれかの鉛蓄電池。 (17) The lead acid battery according to any one of (1) to (16), wherein the barium element is contained as barium sulfate.
 (18)前記正極電極材料は0.10mass%以下のスズ元素を含有することを特徴とする、(1)~(17)のいずれかの鉛蓄電池。 (18) The lead acid battery according to any one of (1) to (17), wherein the positive electrode material contains tin element of 0.10 mass% or less.
 (19)前記正極電極材料は0.08mass%以下のスズ元素を含有することを特徴とする、(1)~(18)のいずれかの鉛蓄電池。 (19) The lead acid battery according to any one of (1) to (18), wherein the positive electrode material contains a tin element of 0.08 mass% or less.
 (20)前記正極電極材料は0.06mass%以下のスズ元素を含有することを特徴とする、(1)~(19)のいずれかの鉛蓄電池。 (20) The lead acid battery according to any one of (1) to (19), wherein the positive electrode material contains a tin element of 0.06 mass% or less.
 (21)前記正極電極材料は0.03mass%以上のスズ元素を含有することを特徴とする、(1)~(20)のいずれかの鉛蓄電池。 (21) The lead acid battery according to any one of (1) to (20), wherein the positive electrode material contains 0.03 mass% or more of a tin element.
 (22)前記正極電極材料の密度が4.4g/cm以上であることを特徴とする、(1)~(21)のいずれかの鉛蓄電池。 (22) The lead acid battery according to any one of (1) to (21), wherein the density of the positive electrode material is 4.4 g / cm 3 or more.
 (23)前記負極電極材料が0.1mass%以上のカーボンブラックを含有することを特徴とする、(1)~(22)のいずれかの鉛蓄電池。 (23) The lead acid battery according to any one of (1) to (22), wherein the negative electrode material contains 0.1 mass% or more of carbon black.
 (24)前記負極電極材料が1.0mass%以下のカーボンブラックを含有することを特徴とする、(1)~(23)のいずれかの鉛蓄電池。 (24) The lead acid battery according to any one of (1) to (23), wherein the negative electrode material contains carbon black of 1.0 mass% or less.
 (25)正極板と負極板と電解液とを備え、前記負極板の負極電極材料は黒鉛あるいは炭素繊維と、硫酸バリウム換算で約1.1mass%以上のバリウム元素と、を含有し、前記正極板の正極電極材料はスズ元素を含有することを特徴とする鉛蓄電池。 (25) A positive electrode plate, a negative electrode plate, and an electrolyte solution, wherein the negative electrode material of the negative electrode plate contains graphite or carbon fiber and about 1.1 mass% or more of barium element in terms of barium sulfate, and the positive electrode A lead-acid battery characterized in that the positive electrode material of the plate contains a tin element.
 (26)前記正極電極材料は約0.15mass%以下のスズ元素を含有することを特徴とする、(25)の鉛蓄電池。 (26) The lead acid battery according to (25), wherein the positive electrode material contains about 0.15 mass% or less of tin element.
 (27)前記正極電極材料の密度が約3.6g/cm以上であることを特徴とする、(25)または(26)の鉛蓄電池。 (27), wherein the density of the positive electrode material is about 3.6 g / cm 3 or more, lead-acid battery (25) or (26).
 (28)前記負極電極材料は黒鉛あるいは炭素繊維を約0.5mass%以上含有することを特徴とする、(25)~(27)のいずれかの鉛蓄電池。 (28) The lead-acid battery according to any one of (25) to (27), wherein the negative electrode material contains about 0.5 mass% or more of graphite or carbon fiber.
 (29)前記黒鉛あるいは炭素繊維は、鱗片状黒鉛あるいは膨張化黒鉛であることを特徴とする、(1)~(28)のいずれかの鉛蓄電池。 (29) The lead acid battery according to any one of (1) to (28), wherein the graphite or carbon fiber is scaly graphite or expanded graphite.
 (30)前記黒鉛あるいは炭素繊維は、鱗片状黒鉛であることを特徴とする、(1)~(29)のいずれかの鉛蓄電池。 (30) The lead acid battery according to any one of (1) to (29), wherein the graphite or carbon fiber is scaly graphite.
 (31)前記鉛蓄電池は、部分充電状態で使用される鉛蓄電池であることを特徴とする、(1)~(30)のいずれかの鉛蓄電池。 (31) The lead acid battery according to any one of (1) to (30), wherein the lead acid battery is a lead acid battery used in a partially charged state.
 (32)前記鉛蓄電池は、液式鉛蓄電池であることを特徴とする、(1)~(31)のいずれかの鉛蓄電池。 (32) The lead acid battery according to any one of (1) to (31), wherein the lead acid battery is a liquid type lead acid battery.
 (33)前記鉛蓄電池は、制御弁式鉛蓄電池であることを特徴とする、(1)~(31)のいずれかの鉛蓄電池。 (33) The lead acid battery according to any one of (1) to (31), wherein the lead acid battery is a control valve type lead acid battery.
 (34)前記鉛蓄電池は、アイドリングストップ車用の鉛蓄電池であることを特徴とする、(1)~(33)のいずれかの鉛蓄電池。 (34) The lead acid battery according to any one of (1) to (33), wherein the lead acid battery is a lead acid battery for an idling stop vehicle.
 (35)(1)~(34)のいずれかの鉛蓄電池を搭載した車両。 (35) A vehicle equipped with any one of the lead acid batteries of (1) to (34).
 以下に、実施例を示す。実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。なお実施例では、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶことがある。 Examples are shown below. In implementation, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art. In Examples, the negative electrode material may be referred to as a negative electrode active material, and the positive electrode material may be referred to as a positive electrode active material.
 ボールミル法によって製造した鉛粉に、所定量の鱗片状黒鉛(平均粒子径(D50)は10~500μm)、所定量の硫酸バリウム(平均1次粒子径は0.79μm、平均2次粒子径は2.5μm)、所定量のカーボンブラック、防縮剤のリグニン(含有量0.2mass%)、及び補強材の合成樹脂繊維(含有量0.1mass%)を混合し、水と硫酸とでペースト化して負極活物質ペーストを作製した。鱗片状黒鉛の含有量は、0mass%から3.0mass%の範囲で変化させた。硫酸バリウムの含有量は、1.0mass%~4.0mass%の範囲で変化させた。カーボンブラックの含有量は0mass%から0.5mass%の範囲で変化させた。 A lead powder produced by the ball mill method has a predetermined amount of flaky graphite (average particle size (D50) is 10 to 500 μm), a predetermined amount of barium sulfate (average primary particle size is 0.79 μm, average secondary particle size is 2.5μm), a predetermined amount of carbon black, a lignin (content 0.2 mass%) as a shrink-preventing agent, and a synthetic resin fiber (content 0.1 mass%) as a reinforcing material are mixed and pasted with water and sulfuric acid. Thus, a negative electrode active material paste was prepared. The content of flaky graphite was changed in the range of 0 mass% to 3.0 mass%. The content of barium sulfate was varied in the range of 1.0 mass% to 4.0 mass%. The carbon black content was varied in the range of 0 mass% to 0.5 mass%.
 作製した負極活物質ペーストを、アンチモンを含有しないPb-Ca-Sn系合金から成るエキスパンドタイプの負極格子(高さ110mm×幅100mm×厚さ1.0mm)に充填し、熟成と乾燥を施して、未化成の負極板を作製した。 The prepared negative electrode active material paste is filled in an expanded negative electrode grid (height 110 mm × width 100 mm × thickness 1.0 mm) made of a Pb—Ca—Sn alloy that does not contain antimony, and subjected to aging and drying. A non-chemically formed negative electrode plate was prepared.
 ボールミル法によって製造した鉛粉に、所定量の硫酸スズと、0.1mass%の補強材の合成樹脂繊維(含有量0.1mass%)とを混合し、水と硫酸とでペースト化して正極活物質ペーストを作製した。硫酸スズの含有量は、金属スズ換算で0~0.3mass%の範囲で変化させた。作製した正極活物質ペーストを、アンチモンを含有しないPb-Ca-Sn系合金から成るエキスパンドタイプの正極格子(高さ110mm×幅100mm×厚さ1.2mm)に充填し、熟成と乾燥を施して、未化成の正極板を作製した。なお、ペースト化する際に添加する水の量を変えて化成後の正極活物質の密度が3.4g/cm以上5.0g/cm以下になるように調整した。 The lead powder produced by the ball mill method is mixed with a predetermined amount of tin sulfate and a synthetic resin fiber of 0.1 mass% reinforcing material (content: 0.1 mass%), and the mixture is made into a paste with water and sulfuric acid to produce a positive electrode active material. A material paste was prepared. The content of tin sulfate was varied in the range of 0 to 0.3 mass% in terms of metal tin. The prepared positive electrode active material paste is filled into an expanded positive electrode lattice (height 110 mm × width 100 mm × thickness 1.2 mm) made of a Pb—Ca—Sn alloy that does not contain antimony, and is subjected to aging and drying. A non-chemically formed positive electrode plate was produced. The density of the positive electrode active material after the chemical conversion by changing the amount of water to be added upon paste was adjusted to below 3.4 g / cm 3 or more 5.0 g / cm 3.
 ベースからリブが突出したポリエチレンセパレータ(平均細孔径0.1μm)で未化成の負極板を包み、未化成の負極板7枚と未化成の正極板6枚とを交互に積層し、負極板同士、正極板同士をそれぞれストラップで接続して極板群とした。実施例ではベースの厚さが0.25mmのセパレータを使用し、正極板と負極板との間隔は0.7mmとした。6個の極板群を直列に接続した状態で電槽のセル室に収容し、20℃で比重1.285の硫酸を加えて電槽内で化成し、B20サイズで5時間率容量が30Ahの液式鉛蓄電池とした。 A non-formed negative electrode plate is wrapped with a polyethylene separator (average pore diameter of 0.1 μm) with ribs protruding from the base, and 7 unformed negative plates and 6 unformed positive plates are alternately laminated. The positive electrode plates were connected to each other with a strap to form an electrode plate group. In the examples, a separator having a base thickness of 0.25 mm was used, and the distance between the positive electrode plate and the negative electrode plate was 0.7 mm. Six electrode plate groups connected in series are accommodated in a cell chamber of a battery case, and sulfuric acid having a specific gravity of 1.285 is added at 20 ° C. to form in the battery case. The liquid lead-acid battery was used.
 負極活物質に含まれるバリウム元素の含有量、黒鉛の含有量、黒鉛の平均粒子径、カーボンブラックの含有量の測定は前述のとおりに行った。負極活物質中のカーボンブラック及び黒鉛と補強材との分離には、径が1.4mmの篩いを用いた。分離したカーボンブラックと黒鉛を水中に分散させた後に、有機防縮剤としてリグニンスルホン酸塩であるバニレックスN(日本製紙株式会社製)を添加し、径が20μmの篩いを用いてカーボンブラックと黒鉛を分離した。なお、組成が同じ負極板を備える鉛蓄電池については、それらの鉛蓄電池のうちの1個を選んで測定を行い、測定結果は同組成の負極板を備える全ての鉛蓄電池に当てはまるものとした。また、正極活物質に含まれるスズ元素の含有量、正極活物質密度の測定は前述のとおりに行った。組成が同じ正極板を備える鉛蓄電池については、それらの鉛蓄電池のうちの1個を選んで測定を行い、測定結果は同組成の正極板を備える全ての鉛蓄電池に当てはまるものとした。 The barium element content, graphite content, graphite average particle diameter, and carbon black content in the negative electrode active material were measured as described above. A sieve having a diameter of 1.4 mm was used to separate the carbon black and graphite in the negative electrode active material from the reinforcing material. After the separated carbon black and graphite are dispersed in water, vanillox N (manufactured by Nippon Paper Industries Co., Ltd.), which is a lignin sulfonate, is added as an organic anti-shrink agent, and carbon black and graphite are mixed using a sieve having a diameter of 20 μm. separated. In addition, about the lead storage battery provided with the negative electrode plate with the same composition, it measured by selecting one of those lead storage batteries, and the measurement result applied to all the lead storage batteries provided with the negative electrode plate of the same composition. Moreover, the content of the tin element contained in the positive electrode active material and the measurement of the positive electrode active material density were performed as described above. About the lead acid battery provided with the positive electrode plate with the same composition, one of those lead acid batteries was selected and measured, and the measurement result was applied to all the lead acid batteries provided with the positive electrode plate of the same composition.
 満充電状態の鉛蓄電池に対し、PSOC寿命試験と浸透短絡促進試験とを行った。PSOC寿命試験の内容を表1に示す。1CAは公称容量が30Ahの電池の場合は30Aである。「40℃気」は40℃の気槽中で試験したことを示す。PSOC寿命試験の内容は以下のとおりである。まず、1CAで59秒間の定電流放電(工程1)と、300Aで1秒間の定電流放電(工程2)を行う。次に、1セル当たり2.4Vの電圧(充電電流は最大で50Aとする。)で10秒間の定電圧充電(工程3)と、1CAで5秒間の定電流放電を行う(工程4)。工程3及び工程4を合計5回繰り返し(工程5)、さらに工程1~工程5を合計50回繰り返す(工程6)。工程6が終わった後、1セル当たり2.4Vの電圧(充電電流は最大で50Aとする。)で900秒間の定電圧充電(工程7)を行う。工程1~工程7を合計72回繰り返し(工程8)、15時間の休止を経て(工程9)、工程1に戻る(工程10)。端子電圧が1.2V/セルに到達するまで工程1~工程10を繰り返し、端子電圧が1.2V/セルに到達した時点でのサイクル数を、PSOC寿命回数とする。なお、工程1~工程5で1サイクルとする。例えば、工程1~工程10を1回行った場合、サイクル数は3600サイクルとなる。 The PSOC life test and the penetration short circuit acceleration test were performed on the fully charged lead acid battery. Table 1 shows the contents of the PSOC life test. 1CA is 30 A for a battery with a nominal capacity of 30 Ah. “40 ° C. gas” indicates that the test was conducted in a 40 ° C. air tank. The contents of the PSOC life test are as follows. First, a constant current discharge (step 1) at 1 CA for 59 seconds and a constant current discharge (step 2) at 300 A for 1 second are performed. Next, constant voltage charging (step 3) for 10 seconds at a voltage of 2.4 V per cell (charging current is 50 A at the maximum) and constant current discharging for 5 seconds at 1 CA (step 4) are performed. Steps 3 and 4 are repeated 5 times in total (Step 5), and Steps 1 to 5 are further repeated 50 times in total (Step 6). After step 6 is completed, constant voltage charging (step 7) is performed for 900 seconds at a voltage of 2.4 V per cell (the charging current is 50 A at the maximum). Steps 1 to 7 are repeated a total of 72 times (Step 8), and after a 15-hour pause (Step 9), the process returns to Step 1 (Step 10). Steps 1 to 10 are repeated until the terminal voltage reaches 1.2 V / cell, and the number of cycles when the terminal voltage reaches 1.2 V / cell is defined as the number of PSOC lifetimes. It should be noted that steps 1 to 5 are one cycle. For example, when Step 1 to Step 10 are performed once, the number of cycles is 3600 cycles.
 浸透短絡促進試験の内容を表2に示す。この試験は浸透短絡の発生を促進するような条件下で行う試験であり、実際の鉛蓄電池の使用条件下よりも浸透短絡の発生率が顕著に高くなる。浸透短絡促進試験の内容は以下のとおりである。まず、1セル当たりの電圧が1.0Vになるまで0.05CAで定電流放電を行う(工程1)。次に、鉛蓄電池の正極端子と負極端子の間に10Ωの抵抗を接続し、その状態で23時間50分放置する(工程2)。その後、1セル当たり2.4Vの電圧で10分間定電圧充電(充電電流は最大で50Aとする。)を行う(工程3)。工程2及び工程3を合計5回繰り返した後に(工程4)鉛蓄電池を解体して、短絡が発生した鉛蓄電池の割合を調べた。なお、「25℃水」は25℃の水槽中で試験したことを示す。表1及び表2において、CC放電は定電流放電、CV充電は定電圧充電、CC充電は定電流充電を意味する。 Table 2 shows the contents of the penetration short circuit acceleration test. This test is a test performed under conditions that promote the occurrence of permeation shorts, and the incidence of permeation shorts is significantly higher than the actual use conditions of lead-acid batteries. The details of the penetration short circuit acceleration test are as follows. First, constant current discharge is performed at 0.05 CA until the voltage per cell reaches 1.0 V (step 1). Next, a resistance of 10Ω is connected between the positive electrode terminal and the negative electrode terminal of the lead-acid battery, and left in that state for 23 hours and 50 minutes (step 2). Thereafter, constant voltage charging is performed at a voltage of 2.4 V per cell for 10 minutes (maximum charging current is 50 A) (step 3). After repeating step 2 and step 3 a total of 5 times (step 4), the lead storage battery was disassembled and the proportion of lead storage batteries in which a short circuit occurred was examined. In addition, "25 degreeC water" shows having tested in the 25 degreeC water tank. In Tables 1 and 2, CC discharge means constant current discharge, CV charge means constant voltage charge, and CC charge means constant current charge.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 PSOC寿命試験と浸透短絡促進試験の結果を表3~表10に示す。表3~表10において、PSOC寿命回数は、表3の電池A1のPSOC寿命回数を100とした場合の各電池のPSOC寿命回数の比を表す。PSOC寿命比は、各表の先頭の電池のPSOC寿命回数に対する各電池のPSOC寿命回数の比を表す。 Tables 3 to 10 show the results of the PSOC life test and the penetration short circuit acceleration test. In Tables 3 to 10, the PSOC life frequency represents the ratio of the PSOC life frequency of each battery when the PSOC life frequency of the battery A1 in Table 3 is 100. The PSOC life ratio represents the ratio of the number of PSOC life of each battery to the number of PSOC life of the first battery in each table.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5及び図2より、負極活物質に黒鉛を含有する鉛蓄電池では、黒鉛含有量以外が同条件の鉛蓄電池と比べて、PSOC寿命性能が向上することがわかる。負極活物質に黒鉛を0.5mass%以上含有させるとPSOC寿命性能が大きく向上し、負極活物質に黒鉛を1.0mass%以上含有させるとPSOC寿命性能がさらに大きく向上する。 From Table 5 and FIG. 2, it can be seen that the lead-acid battery containing graphite as the negative electrode active material has improved PSOC life performance as compared with the lead-acid battery except for the graphite content under the same conditions. When the negative electrode active material contains 0.5 mass% or more of graphite, the PSOC life performance is greatly improved, and when the negative electrode active material contains 1.0 mass% or more of graphite, the PSOC life performance is further improved.
 一方で、表3~表6及び図2より、負極活物質に黒鉛を含有する鉛蓄電池では、黒鉛含有量以外が同条件の鉛蓄電池と比べて、浸透短絡が発生しやすくなることがわかる。このように負極活物質に黒鉛を含有させると浸透短絡が発生しやすくなることはこれまで知られていなかった。 On the other hand, it can be seen from Tables 3 to 6 and FIG. 2 that lead-acid batteries containing graphite as the negative electrode active material are more likely to cause penetration short circuits than lead-acid batteries other than the graphite content under the same conditions. Thus, it has not been known so far that when the negative electrode active material contains graphite, an osmotic short circuit is likely to occur.
 表3~表6及び図3より、負極活物質に硫酸バリウム換算で1.1mass%以上のバリウム元素を含有させると浸透短絡を抑制できることがわかる。負極活物質に硫酸バリウム換算で1.2mass%以上のバリウム元素を含有させると浸透短絡を大きく抑制できる。 From Tables 3 to 6 and FIG. 3, it can be seen that when the negative electrode active material contains barium element of 1.1 mass% or more in terms of barium sulfate, the permeation short circuit can be suppressed. When the negative electrode active material contains 1.2 mass% or more of barium element in terms of barium sulfate, the penetration short circuit can be greatly suppressed.
 表3~表6及び図4より、負極活物質中のバリウム元素の含有量が硫酸バリウム換算で1.1mass%以上の場合に、正極活物質にスズ元素を含有させることで浸透短絡を大きく抑制できることがわかる。正極活物質中のスズ元素の含有量を0.01mass%以上とすると浸透短絡を顕著に抑制できる。一方、負極活物質中のバリウム元素の含有量が硫酸バリウム換算で1.0mass%以下の場合には、正極活物質にスズ元素を含有させても、スズ元素による浸透短絡抑制効果は得られない。 From Table 3 to Table 6 and Fig. 4, when the content of barium element in the negative electrode active material is 1.1 mass% or more in terms of barium sulfate, the positive electrode active material contains tin element to greatly suppress the penetration short circuit. I understand that I can do it. When the content of tin element in the positive electrode active material is 0.01 mass% or more, the permeation short circuit can be remarkably suppressed. On the other hand, when the content of barium element in the negative electrode active material is 1.0 mass% or less in terms of barium sulfate, even if the positive electrode active material contains tin element, the effect of suppressing penetration short circuit by tin element is not obtained. .
 負極活物質中のバリウム元素及び正極活物質中のスズ元素が浸透短絡に関係していることはこれまで知られていなかった。したがって、負極活物質中のバリウム元素の含有量が硫酸バリウム換算で1.1mass%以上の場合に、正極活物質にスズ元素を含有させることで浸透短絡を顕著に抑制できることは予想できるものではない。また、負極電極材料中のバリウム元素の含有量が硫酸バリウム換算で1.1mass%以上の場合と1.0mass%以下の場合とで、スズ元素による浸透短絡抑制効果が明確に変化することから、負極電極材料中のバリウム元素の含有量を硫酸バリウム換算で1.1mass%以上とすることには臨界的意義があるといえる。 It has not been known so far that barium element in the negative electrode active material and tin element in the positive electrode active material are related to the penetration short circuit. Therefore, when the content of the barium element in the negative electrode active material is 1.1 mass% or more in terms of barium sulfate, it is not expected that the penetration short circuit can be remarkably suppressed by containing the tin element in the positive electrode active material. . In addition, since the content of barium element in the negative electrode material is 1.1 mass% or more in terms of barium sulfate and 1.0 mass% or less, the penetration short circuit suppression effect by the tin element clearly changes. It can be said that it is critical that the content of the barium element in the negative electrode material is 1.1 mass% or more in terms of barium sulfate.
 表3~表6及び図5より、負極活物質中のバリウム元素の含有量が硫酸バリウム換算で1.1mass%以上の場合に、正極活物質中のスズ元素の含有量を0.15mass%以下とすることで、正極活物質がスズ元素を含有しない場合と比較して、PSOC寿命性能が向上することがわかる。正極活物質中のスズ元素の含有量を0.10mass%以下とすると、PSOC寿命性能が大きく向上し、正極活物質中のスズ元素の含有量を0.08mass%以下とすると、PSOC寿命性能がさらに大きく向上し、正極活物質中のスズ元素の含有量を0.06mass%以下とすると、PSOC寿命性能が特に大きく向上する。一方、負極活物質中のバリウム元素の含有量が硫酸バリウム換算で1.0mass%以下の場合には、正極活物質中のスズ元素の含有量を0.15mass%以下としても、正極活物質がスズ元素を含有しない場合と比較して、PSOC寿命性能は向上しない。 From Tables 3 to 6 and FIG. 5, when the content of barium element in the negative electrode active material is 1.1 mass% or more in terms of barium sulfate, the content of tin element in the positive electrode active material is 0.15 mass% or less. It can be seen that the PSOC life performance is improved as compared with the case where the positive electrode active material does not contain tin element. When the content of tin element in the positive electrode active material is 0.10 mass% or less, the PSOC life performance is greatly improved. When the content of tin element in the positive electrode active material is 0.08 mass% or less, the PSOC life performance is improved. If the tin element content in the positive electrode active material is further improved and the content of tin element is 0.06 mass% or less, the PSOC life performance is particularly greatly improved. On the other hand, when the content of barium element in the negative electrode active material is 1.0 mass% or less in terms of barium sulfate, the positive electrode active material can be obtained even if the content of tin element in the positive electrode active material is 0.15 mass% or less. Compared with the case where no tin element is contained, the PSOC life performance is not improved.
 負極電極材料に黒鉛等を含有する場合に、負極電極材料中のバリウム元素の含有量と、正極電極材料中のスズ元素の含有量とを特定の範囲にすることでPSOC寿命性能が向上することはこれまで知られておらず、予想外の結果である。 When the negative electrode material contains graphite or the like, PSOC life performance is improved by setting the content of barium element in the negative electrode material and the content of tin element in the positive electrode material to a specific range. Has not been known so far and is an unexpected result.
 表3~表6及び図6より、負極活物質が黒鉛と硫酸バリウム換算で1.1mass%以上のバリウム元素とを含有し、正極活物質が0.15mass%以下のスズ元素を含有することで得られるPSOC寿命性能の向上効果は、正極活物質の密度が3.6g/cm以上の場合に大きくなることがわかる。正極活物質の密度が4.2g/cm以上の場合にはPSOC寿命性能の向上効果がさらに大きく、正極活物質の密度が4.4g/cm以上の場合にはPSOC寿命性能の向上効果が顕著に大きくなる。一方、負極活物質中のバリウム元素の含有量が硫酸バリウム換算で1.0mass%以下の場合には、正極活物質の密度を3.6g/cm以上としてもPSOC寿命性能は向上しない(図7)。 From Tables 3 to 6 and FIG. 6, the negative electrode active material contains graphite and a barium element of 1.1 mass% or more in terms of barium sulfate, and the positive electrode active material contains a tin element of 0.15 mass% or less. It can be seen that the effect of improving the obtained PSOC life performance is increased when the density of the positive electrode active material is 3.6 g / cm 3 or more. When the density of the positive electrode active material is 4.2 g / cm 3 or more, the effect of improving the PSOC life performance is further increased. When the density of the positive electrode active material is 4.4 g / cm 3 or more, the effect of improving the PSOC life performance is increased. Becomes significantly larger. On the other hand, when the barium element content in the negative electrode active material is 1.0 mass% or less in terms of barium sulfate, the PSOC life performance is not improved even if the density of the positive electrode active material is 3.6 g / cm 3 or more (see FIG. 7).
 表3~表6及び図8より、負極活物質中のバリウム元素の含有量が硫酸バリウム換算で3.0mass%以下であると、PSOC寿命性能が向上することがわかる。 From Tables 3 to 6 and FIG. 8, it can be seen that when the content of barium element in the negative electrode active material is 3.0 mass% or less in terms of barium sulfate, PSOC life performance is improved.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7及び図9は負極活物質にカーボンブラックを含有させた場合の結果を示す。表7及び図9より、負極活物質が黒鉛と硫酸バリウム換算で1.1mass%以上のバリウム元素を含有し、正極活物質がスズ元素を含有する場合、負極活物質にカーボンブラックを含有させると浸透短絡をさらに抑制できることがわかる。負極活物質中のカーボンブラック含有量を0.1mass%以上とすると浸透短絡を大きく抑制できる。一方、負極活物質中のバリウム元素の含有量が硫酸バリウム換算で1.0mass%以下の場合、又は正極活物質がスズ元素を含有しない場合には、カーボンブラックによる浸透短絡抑制効果は得られない。 Table 7 and FIG. 9 show the results when carbon black is contained in the negative electrode active material. From Table 7 and FIG. 9, when the negative electrode active material contains barium element of 1.1 mass% or more in terms of graphite and barium sulfate, and the positive electrode active material contains tin element, the negative electrode active material contains carbon black. It can be seen that the penetration short circuit can be further suppressed. When the carbon black content in the negative electrode active material is 0.1 mass% or more, the penetration short circuit can be largely suppressed. On the other hand, when the content of barium element in the negative electrode active material is 1.0 mass% or less in terms of barium sulfate, or when the positive electrode active material does not contain tin element, the effect of suppressing the penetration short circuit by carbon black is not obtained. .
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8及び図10は負極活物質中の黒鉛の平均粒子径を変化させた場合の結果を示す。表8及び図10より、負極活物質中の黒鉛の平均粒子径を300μm以下とすると浸透短絡を抑制できることがわかる。また、負極活物質中の黒鉛の平均粒子径を100μm以上とするとPSOC寿命性能が向上することがわかる。 Table 8 and FIG. 10 show the results when the average particle diameter of graphite in the negative electrode active material is changed. It can be seen from Table 8 and FIG. 10 that the penetration short circuit can be suppressed when the average particle diameter of graphite in the negative electrode active material is 300 μm or less. It can also be seen that the PSOC life performance is improved when the average particle size of graphite in the negative electrode active material is 100 μm or more.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9及び表10は、鱗片状黒鉛に代えて膨張化黒鉛を負極活物質に含有させた場合の結果を示す。表9及び表10より、鱗片状黒鉛に代えて膨張化黒鉛を使用しても同様の結果が得られることがわかる。 Tables 9 and 10 show the results when expanded anode graphite was made to contain expanded graphite instead of scaly graphite. From Tables 9 and 10, it can be seen that the same results can be obtained even if expanded graphite is used instead of flaky graphite.
 実施例では浸透短絡が少ない液式の鉛蓄電池が得られたが、セパレータをガラスマット等として、制御弁式の鉛蓄電池としても良い。 In the examples, a liquid type lead storage battery with few permeation short circuits was obtained, but a control valve type lead storage battery may be used with the separator as a glass mat or the like.
 本発明により、PSOC寿命性能が向上し、かつ浸透短絡の発生が抑制された鉛蓄電池を提供することができるので、充電不足な状態に置かれることが多いIS車両用途等に有用である。 Since the present invention can provide a lead storage battery with improved PSOC life performance and suppressed penetration short circuit occurrence, it is useful for IS vehicle applications that are often placed in a state of insufficient charging.
1 鉛蓄電池の極板群
2 負極板
3 正極板
4 セパレータ
21 負極集電体
22 負極電極材料
31 正極集電体
32 正極電極材料
41 ベース
42 リブ
DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 of lead acid battery Negative electrode plate 3 Positive electrode plate 4 Separator 21 Negative electrode collector 22 Negative electrode material 31 Positive electrode collector 32 Positive electrode material 41 Base 42 Rib

Claims (15)

  1.  正極板と負極板と電解液とを備え、
     前記負極板の負極電極材料は黒鉛あるいは炭素繊維と、硫酸バリウム換算で1.1mass%以上のバリウム元素と、を含有し、
     前記正極板の正極電極材料はスズ元素を含有することを特徴とする鉛蓄電池。
    A positive electrode plate, a negative electrode plate, and an electrolyte;
    The negative electrode material of the negative electrode plate contains graphite or carbon fiber and barium element of 1.1 mass% or more in terms of barium sulfate,
    The lead-acid battery, wherein the positive electrode material of the positive electrode plate contains tin element.
  2.  前記正極電極材料は0.15mass%以下のスズ元素を含有することを特徴とする、請求項1に記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein the positive electrode material contains 0.15 mass% or less of tin element.
  3.  前記正極電極材料の密度が3.6g/cm以上であることを特徴とする、請求項1または請求項2に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the positive electrode material has a density of 3.6 g / cm 3 or more.
  4.  前記負極電極材料がカーボンブラックを含有することを特徴とする、請求項1~3のいずれかに記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 3, wherein the negative electrode material contains carbon black.
  5.  前記負極電極材料は黒鉛あるいは炭素繊維を0.5mass%以上含有することを特徴とする、請求項1~4のいずれかに記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 4, wherein the negative electrode material contains 0.5 mass% or more of graphite or carbon fiber.
  6.  前記負極電極材料は黒鉛あるいは炭素繊維を2.5mass%以下含有することを特徴とする、請求項1~5のいずれかに記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 5, wherein the negative electrode material contains 2.5 mass% or less of graphite or carbon fiber.
  7.  前記黒鉛あるいは炭素繊維は平均粒子径が300μm以下の黒鉛であることを特徴とする、請求項1~6のいずれかに記載の鉛蓄電池。 7. The lead acid battery according to claim 1, wherein the graphite or carbon fiber is graphite having an average particle diameter of 300 μm or less.
  8.  前記黒鉛あるいは炭素繊維は平均粒子径が100μm以上の黒鉛であることを特徴とする、請求項1~7のいずれかに記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 7, wherein the graphite or carbon fiber is graphite having an average particle diameter of 100 µm or more.
  9.  前記負極電極材料は硫酸バリウム換算で3.0mass%以下のバリウム元素を含有することを特徴とする、請求項1~8のいずれかに記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 8, wherein the negative electrode material contains a barium element of 3.0 mass% or less in terms of barium sulfate.
  10.  前記正極電極材料は0.01mass%以上のスズ元素を含有することを特徴とする、請求項1~9のいずれかに記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 9, wherein the positive electrode material contains 0.01 mass% or more of a tin element.
  11.  前記正極電極材料の密度が4.2g/cm以上であることを特徴とする、請求項1~10のいずれかに記載の鉛蓄電池。 11. The lead acid battery according to claim 1, wherein the density of the positive electrode material is 4.2 g / cm 3 or more.
  12.  前記正極電極材料の密度が5.0g/cm以下であることを特徴とする、請求項1~11のいずれかに記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 11, wherein the density of the positive electrode material is 5.0 g / cm 3 or less.
  13.  前記鉛蓄電池が部分充電状態で使用される鉛蓄電池であることを特徴とする、請求項1~12のいずれかに記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 12, wherein the lead acid battery is a lead acid battery used in a partially charged state.
  14.  前記鉛蓄電池は液式鉛蓄電池であることを特徴とする、請求項1~13のいずれかに記載の鉛蓄電池。 14. The lead storage battery according to claim 1, wherein the lead storage battery is a liquid lead storage battery.
  15.  請求項1~14のいずれかに記載の鉛蓄電池を搭載した車両。 A vehicle equipped with the lead storage battery according to any one of claims 1 to 14.
PCT/JP2017/027816 2016-08-05 2017-08-01 Lead storage cell WO2018025837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780047806.8A CN109565040B (en) 2016-08-05 2017-08-01 Lead-acid battery
JP2018531906A JP6844622B2 (en) 2016-08-05 2017-08-01 Lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-154919 2016-08-05
JP2016154919 2016-08-05

Publications (1)

Publication Number Publication Date
WO2018025837A1 true WO2018025837A1 (en) 2018-02-08

Family

ID=61073456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027816 WO2018025837A1 (en) 2016-08-05 2017-08-01 Lead storage cell

Country Status (3)

Country Link
JP (1) JP6844622B2 (en)
CN (1) CN109565040B (en)
WO (1) WO2018025837A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414758A (en) * 1990-05-02 1992-01-20 Matsushita Electric Ind Co Ltd Lead-acid accumulator
JPH04155767A (en) * 1990-10-19 1992-05-28 Nippon Telegr & Teleph Corp <Ntt> Thin type lead acid battery
JP2001155723A (en) * 1999-11-26 2001-06-08 Shin Kobe Electric Mach Co Ltd Sealed lead acid storage battery and method of fabricating it
WO2011090113A1 (en) * 2010-01-21 2011-07-28 株式会社Gsユアサ Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
WO2012043556A1 (en) * 2010-09-29 2012-04-05 株式会社Gsユアサ Lead storage battery and idling stop vehicle using same
JP2013140677A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Liquid lead-acid battery and battery system using the same
JP2016152131A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Lead acid storage battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317332A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid storage battery
AU2005336806B2 (en) * 2005-09-27 2010-09-09 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
CN101123139B (en) * 2007-09-29 2010-11-03 李中奇 A dual pole plate for super accumulator
WO2011108056A1 (en) * 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
CN103035957B (en) * 2011-09-30 2014-10-29 松下蓄电池(沈阳)有限公司 Lead storage battery for energy storage
CN103066295B (en) * 2012-12-18 2014-11-12 超威电源有限公司 Internally formed lead plaster of storage battery suitable for high temperature area
CN103035923B (en) * 2012-12-18 2014-10-22 超威电源有限公司 Low-temperature-resistant storage battery internally formed lead plaster
JP5769096B2 (en) * 2014-09-05 2015-08-26 株式会社Gsユアサ Lead acid battery
EP3035433B1 (en) * 2014-12-18 2020-02-19 GS Yuasa International Ltd. Lead-acid battery
JP6070684B2 (en) * 2014-12-24 2017-02-01 株式会社Gsユアサ Control valve type lead acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414758A (en) * 1990-05-02 1992-01-20 Matsushita Electric Ind Co Ltd Lead-acid accumulator
JPH04155767A (en) * 1990-10-19 1992-05-28 Nippon Telegr & Teleph Corp <Ntt> Thin type lead acid battery
JP2001155723A (en) * 1999-11-26 2001-06-08 Shin Kobe Electric Mach Co Ltd Sealed lead acid storage battery and method of fabricating it
WO2011090113A1 (en) * 2010-01-21 2011-07-28 株式会社Gsユアサ Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
WO2012043556A1 (en) * 2010-09-29 2012-04-05 株式会社Gsユアサ Lead storage battery and idling stop vehicle using same
JP2013140677A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Liquid lead-acid battery and battery system using the same
JP2016152131A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
CN109565040A (en) 2019-04-02
JP6844622B2 (en) 2021-03-17
JPWO2018025837A1 (en) 2019-06-27
CN109565040B (en) 2022-03-01

Similar Documents

Publication Publication Date Title
JP6635346B2 (en) Lead storage battery
JP5857962B2 (en) Lead acid battery
JP6202477B1 (en) Lead acid battery
WO2012086008A1 (en) Lead storage battery
JP6115796B2 (en) Lead acid battery
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
US10003069B2 (en) Lead-acid battery
JP6311799B2 (en) Lead acid battery
JP6458829B2 (en) Lead acid battery
US20160240857A1 (en) Lead-acid battery
JP6388094B1 (en) Lead acid battery
JP6339030B2 (en) Lead acid battery
WO2018025837A1 (en) Lead storage cell
JP6136079B2 (en) Lead acid battery
JP6628070B2 (en) Manufacturing method of positive electrode plate for control valve type lead-acid battery
JP6582636B2 (en) Lead acid battery
JP2017174821A (en) Lead acid battery
JP2018170303A (en) Lead-acid battery
EP3937276A1 (en) Anode and lithium ion battery
JP2022138753A (en) Lead-acid battery
WO2018100639A1 (en) Lead storage battery and production method therefor
JP2008034286A (en) Closed lead battery
JP2020080286A (en) Lead-acid storage battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836941

Country of ref document: EP

Kind code of ref document: A1