JPH04155767A - Thin type lead acid battery - Google Patents

Thin type lead acid battery

Info

Publication number
JPH04155767A
JPH04155767A JP2279405A JP27940590A JPH04155767A JP H04155767 A JPH04155767 A JP H04155767A JP 2279405 A JP2279405 A JP 2279405A JP 27940590 A JP27940590 A JP 27940590A JP H04155767 A JPH04155767 A JP H04155767A
Authority
JP
Japan
Prior art keywords
lead
active material
carbon fiber
paste
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2279405A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hasuda
蓮田 良紀
Toshio Horie
堀江 利夫
Maki Ishizawa
真樹 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2279405A priority Critical patent/JPH04155767A/en
Publication of JPH04155767A publication Critical patent/JPH04155767A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent an active material from falling off by constituting in such a way that the active material has a crystalline graphite structure and also contains hollow carbon fiber as an additive. CONSTITUTION:Cut fiber, sulfuric acid and water are added to lead powder so as to be kneaded together, and carbon fiber, which has the diameter of 0.1-0.3mum, the length of less than 7mum and a graphite structure of the hollow diameter of 0.03-0.14mum, is added to obtained paste to be agitated so that it can be 0.4wt.% to the lead powder, and then water content is adjusted to be 13wt.% so as to form positive electrode paste. Meanwhile, two current collecting bodies consisting respectively of Pb-Ca-Sn alloy are arranged in parallel on a plastic film substrate to be adhered by means of pressure so as to form the current collecting bodies for a positive electrode and negative electrode. In this way, by forming the positive electrode paste by adding the carbon fiber having a crystalline graphite structure and a hollow structure to lead paste to be mixed, even if the graphite structure of the carbon fiber forms a compound between graphite layers, an active material never falls off because of the hollow structure.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野J 本発明は電池厚さが1s+s+程度の薄形鉛蓄電池に関
し、特に高容量化が可能な薄形鉛蓄電池に関するもので
ある。
[Industrial Field of Application J] The present invention relates to a thin lead-acid battery having a battery thickness of approximately 1s+s+, and particularly to a thin lead-acid battery capable of increasing capacity.

【従来の技術] ポータプル機器などの小型機器の普及に伴い、安価で薄
形の密閉型蓄電池の需要が増大している。特開平1−1
32064号公報、特願平1−168531号または特
願平1−317619号には本発明者らによる薄形蓄電
池が開示されている。これら薄形蓄電池は、例えば第4
図に示す様に、一方のフィルム状のケース1の表面に正
極集電体2および正極活物質3からなる正極板と、負極
集電体4および負極活物質5からなる負極板とが設けら
れており、正極板と負極板の各端面間の空間には硫酸を
含有してなる電解質6が充填されている。他方のフィル
ム状のケース7によって電池全体を密閉して薄形■電池
が構成される。この様な構造を取ることによリ、充放電
に伴う電池反応の場の進展方向が電り面間ではなく、電
極面と平行方向とな゛る電極端d間の反応となる。これ
により電極面中央部に位」する集電部の劣化が保護され
るため、電極厚さ力薄くなっても寿命が低下することな
く薄形化を1能にしている。また、電極はケースlに固
着さtた鉛または鉛系合金製の集電体2.4の上に印届
法により活物質としての鉛ペーストを塗布し、発成・化
成工程を経て形成されている。それに用しる鉛ペースト
は一般的な作製方法によるものを弁いている。即ち、鉛
粉に硫駿右よび水を混入し、さらに必要に応じて添加剤
としてカットファイバー、リグニンおよび硫酸バリウム
を添加し、活線して鉛ペーストとしている。 一方、電池に要求される性能の高容量化と長期白化は互
いに相反する関係にあることが一般的に知られているが
、寿命性能を損なわず正極活物置の容量性能を向上させ
る方法が特開昭60−89071号に開示されている。 これは、層状構造を有する異方性黒鉛を正極ペースト中
に添加する方法で、こi   のことにより化成時にこ
の異方性黒鉛な硫酸中でa   陽極酸化し、黒鉛層間
化合物を生成させ、正極活【   物質の利用率を向上
させるものである。 Journal’    of 
Power 5ources、 27(1989)P1
27−143によれば、■   電気泳動による硫酸イ
オンの拡散性を向上させるし   ために正極活物質の
利用率を上げ電池容量が大き11くなると言われている
。 〜 −【発明が解決しようとする課題1 ]   薄形鉛蓄電池は薄形という特長を有しているが
、−数的な作製方法による鉛ペーストを用いている限り
、塗布できる活物質量に限界があるため、容量が小さく
なるのは避けられない。そこで容量を大きくしたい場合
、活物質を厚(塗らざる【   を得ないため薄形形状
を損なうという問題点を有している。そこで、上述の異
方性黒鉛を添加したペーストを用いて電極を形成すれば
その問題点を改善できることが期待できる。しかし、こ
の方法では熟成工程で集電体上に密着してなる活物質は
、化成工程で異方性黒鉛が黒鉛層間化合物になる時に膨
張するために、集電体上から離脱し電極形成が行えない
という問題点が生じた。。 本発明は上述の問題点に鑑みなされたものであり、電池
の薄形という電池形状の特長を損なうことなく高容量化
を可能にする薄形鉛蓄電池を提供することを目的とする
。 1課題を解決するための手段] 上述した目的を達成するために、本発明は鉛または船台
金製の集電体と該集電体面上に密着してなる活物質から
構成された電極板を有する薄形鉛蓄電池において、前記
活物質が実質的に結晶黒鉛構造を有しかつ中空の炭素繊
維を添加剤として含んでいることを特徴とする。 ここで炭素繊維が(002)面の面間隔がd (002
)初Å、(002)面および(110)面の結晶子の大
きさがいずれも Lc(002)> 100Å、 La
(110)>100人であり、かツ1360cm−’と
1580cm−’のラマンバンドの強度比(Lsso/
Ls*o)が0.25〜0. IIIであってもよい。 【作 用】 従来、電池厚さが1mm程度の薄形電池用電極形成に用
いる鉛ペーストは、鉛粉に硫酸および水を混入し、さら
に必要に応じてカットファイバー。 リグニンおよび硫酸バリウムを添加剤として添加し混練
して鉛ペーストを作製し、それを集電体に印刷法により
塗布して熟成・化成処理をして電極としている0本発明
では、鉛ペースト中への添加剤として、化成時の黒鉛層
間化合物形成時に膨張しても活物質の脱落が生じないよ
うに、その膨張分の体積を補う空間を有する中空構造の
結晶性炭素繊維を用いている。ここで結晶性炭素繊維は
、完全な黒鉛構造の結晶はもとより、結晶構造が若干乱
れた黒鉛繊維をも含む、より具体的には、炭素層面の(
002)面の面間隔が約Å、 (002)面上よび(1
10)面の結晶子の大きさがLc (002) >10
0Å、 La(110) > 100Å、1360cm
−’と1580cm−’のラマンバンドの強度比(11
ago/I+sa。)が0.25〜0.18の中空構造
体であれば化成工程中に活物質の脱落をなくして黒鉛層
間化合物を形成させることができ、従って、電池の薄形
形状および従来のスクリーン印刷等のペースト塗布工程
、熟成工程および化成工程を変更することなく、薄形鉛
蓄電池を高容量化することができる。 [実施例1 以下に、本発明の詳細について実施例により説明する。 鉛粉300gに対してカットファイバー0.6g、20
wt%硫酸80ccおよび水80ccを徐々に加えなが
ら乳針により混練した。混練して得られたペーストに直
径0.1〜0.3μ■、長さ約7μ園以下、中空径0.
03〜0.14μ墓の黒鉛構造を有する炭素繊維を鉛粉
に対して0.4wt%になるよう添加して汎用撹拌機に
より撹拌して水分量を13wt%(ペースト密度: 4
.4g/cm”)に調整して正極ペーストを得た。第1
図に使用した炭素繊維の走査電子顕微鏡写真を、第2図
にその透過電子顕微鏡写真を示す。第2図に見られる様
にこの炭素繊維は中空の繊維である。なお、用いた炭素
繊維の(002)面間隔はÅ、 Lc(002)416
Å、La(110)=141人。 ラマンバンド強度比118.。/工3.。。=0.18
である。 鉛粉300gに対して、カットファイバー以外にさらに
所定量のリグニンおよび硫酸バリウムを加えた以外は、
同じ操作をして水分量11wt%(ペースト密度: 4
.5g/cm”)に調整して負極ペーストを得た。 一方、それぞれPb−Ca−3n合金からなり寸法が幅
51111X長さ60m鳳×厚さ0.1mmの集電体2
本をプラスチックフィルム基板上に平行に配置して圧着
し、正極および負極用集電体とした。正・負極間距離は
5閣飄とした。 次に、上記調整した正極および負極ペーストを輻5+n
m X長さ50mmX厚さ0.511にのメタルマスク
を介して印刷法によりそれぞれ正極および負極集電体の
表面にすり込み、塗布した。その後ペーストを25℃、
90%RH中に2日間静置して熟成・硬化した。さらに
、20a+Aの定電流で20時間化成し、水洗い、乾燥
をして電極を得た6次に、電池性能を確認するために、
電極間および負極板上面にガラスリテーナに46%硫酸
0.61gを含浸させた電解質を配置して、フィルム基
板と同一のプラスチックフィルムをその上にかぶせて上
面と下面のフィルム基板の4辺を熱シークにより熱融着
し、厚さ0.8mmの薄形の密閉形鉛蓄電池を作製した
。これらの電池を充放電試験した結果を第3図に示した
。なお、充放電条件は2.45V定電圧充電、電流制限
10mA、 10時間充電、充電後味1時間、放電電流
12.5mA、終止電圧1.75V テある。 この炭素繊維含有の電池の放電時間は、以下に示す比較
例1の炭素繊維未添加の電池のそれよりも長くなった。 比較例1゜ 上述した炭素繊維を用いないこと以外は実施例1と同様
にして、厚さ0.8ms+の薄形の密閉形鉛蓄電池を作
製した。実施例1と同様の条件で充放電試験を行った結
果を第3図に示した。炭素繊維添加の電池の放電時間に
比べて短くなっている。 比較例2゜ 粒径が約600μm 、 (002)面間隔が3.39
Å、Lc(002) =895Å、La(110)=4
62人の異方性黒鉛を鉛粉に対して0.4wt%になる
ように、上述した結晶性中空構造の炭素繊維のかわりに
用いる以外は実施例1と同様にペーストを調整し、さら
に熟成・硬化を行い、化成処理を行った。しかし、化成
中に異方性黒鉛を添加した正極活物質は脱落してしまい
、電池にすることが出来なかった。
[Background Art] With the spread of small devices such as portable devices, the demand for inexpensive and thin sealed storage batteries is increasing. JP-A-1-1
32064, Japanese Patent Application No. 1-168531, and Japanese Patent Application No. 1-317619 disclose thin storage batteries by the present inventors. These thin storage batteries are, for example,
As shown in the figure, a positive electrode plate consisting of a positive electrode current collector 2 and a positive electrode active material 3 and a negative electrode plate consisting of a negative electrode current collector 4 and a negative electrode active material 5 are provided on the surface of one film-like case 1. The space between each end face of the positive electrode plate and the negative electrode plate is filled with an electrolyte 6 containing sulfuric acid. The other film-like case 7 seals the entire battery to form a thin battery. By adopting such a structure, the direction of the field of battery reaction during charging and discharging occurs not between the electrode surfaces, but between the electrode ends d, which are parallel to the electrode surfaces. This protects the current collector located at the center of the electrode surface from deteriorating, so that even if the electrode thickness becomes thinner, the lifespan will not be reduced, making it possible to make the electrode thinner. In addition, the electrodes are formed by applying lead paste as an active material on the current collector 2.4 made of lead or lead-based alloy fixed to the case 1 by the stamping method, and going through the generation and chemical formation process. ing. The lead paste used for this purpose is manufactured using a common manufacturing method. That is, lead powder is mixed with sulfur and water, and if necessary, cut fibers, lignin and barium sulfate are added as additives, and the lead paste is made into a live wire. On the other hand, it is generally known that the high capacity performance required for batteries and long-term whitening are in a contradictory relationship with each other, but there is a special method to improve the capacity performance of the cathode active storage without impairing the life performance. It is disclosed in 1988-89071. This is a method in which anisotropic graphite with a layered structure is added to the positive electrode paste, and during chemical formation, this anisotropic graphite is anodized in sulfuric acid to produce a graphite intercalation compound, and the positive electrode It improves the utilization rate of materials. Journal' of
Power 5 sources, 27 (1989) P1
According to 27-143, it is said that (1) the utilization rate of the positive electrode active material is increased in order to improve the diffusibility of sulfate ions due to electrophoresis, and the battery capacity is increased11. ~ - [Problem to be solved by the invention 1] Thin lead-acid batteries have the advantage of being thin, but - as long as lead paste is used using a numerical manufacturing method, there is a limit to the amount of active material that can be applied. Therefore, it is inevitable that the capacity will become smaller. Therefore, if you want to increase the capacity, you have to coat the active material thickly, which causes the problem of damaging the thin shape.Therefore, we use the above-mentioned anisotropic graphite-added paste to form the electrode. However, in this method, the active material that adheres to the current collector during the aging process expands when the anisotropic graphite becomes a graphite intercalation compound during the chemical formation process. Therefore, a problem arose in that the battery detached from the current collector and electrode formation could not be performed.The present invention was made in view of the above-mentioned problems, and does not impair the characteristic feature of the battery shape, which is the battery's thin shape. An object of the present invention is to provide a thin lead-acid battery that enables high capacity without any problems. 1. Means for Solving the Problems] In order to achieve the above-mentioned objects, the present invention provides a current collector made of lead or shipboard metal. A thin lead-acid battery having an electrode plate made of an active material in close contact with the current collector surface, wherein the active material has a substantially crystalline graphite structure and hollow carbon fibers are used as an additive. The carbon fiber is characterized in that the spacing between the (002) planes is d (002
) initial Å, the size of crystallites of (002) plane and (110) plane are both Lc (002) > 100 Å, La
(110) > 100, and the intensity ratio of the Raman bands at 1360 cm-' and 1580 cm-' (Lsso/
Ls*o) is 0.25 to 0. It may be III. [Function] Conventionally, the lead paste used to form electrodes for thin batteries with a thickness of about 1 mm is made by mixing sulfuric acid and water with lead powder, and then adding cut fibers as necessary. Lignin and barium sulfate are added as additives and kneaded to create a lead paste, which is then applied to a current collector by a printing method and subjected to aging and chemical conversion treatment to form an electrode. As an additive, a hollow crystalline carbon fiber having a space that compensates for the volume of the expansion is used so that the active material does not fall off even if it expands during the formation of a graphite intercalation compound during chemical formation. Here, crystalline carbon fibers include not only crystals with a perfect graphite structure but also graphite fibers with a slightly disordered crystal structure.
The interplanar spacing of the (002) plane is approximately Å, and the (002) plane and (1
10) The crystallite size of the plane is Lc (002) > 10
0 Å, La(110) > 100 Å, 1360 cm
-' and 1580 cm-' Raman band intensity ratio (11
ago/I+sa. ) is 0.25 to 0.18, it is possible to prevent the active material from falling off during the chemical formation process and form a graphite intercalation compound. Therefore, the thin shape of the battery and the conventional screen printing etc. It is possible to increase the capacity of a thin lead-acid battery without changing the paste application process, aging process, and chemical conversion process. [Example 1] The details of the present invention will be explained below with reference to Examples. 0.6g of cut fiber for 300g of lead powder, 20
While gradually adding 80 cc of wt% sulfuric acid and 80 cc of water, the mixture was kneaded using a milk needle. The paste obtained by kneading has a diameter of 0.1 to 0.3μ, a length of about 7μ or less, and a hollow diameter of 0.
Carbon fiber having a graphite structure of 0.3 to 0.14 μm was added to the lead powder to give a concentration of 0.4 wt%, and the mixture was stirred using a general-purpose stirrer to reduce the moisture content to 13 wt% (paste density: 4
.. 4 g/cm”) to obtain a positive electrode paste.
A scanning electron micrograph of the carbon fiber used in the figure is shown in FIG. 2, and a transmission electron micrograph thereof is shown in FIG. As seen in FIG. 2, this carbon fiber is a hollow fiber. The (002) plane spacing of the carbon fiber used is Å, Lc(002)416
Å, La (110) = 141 people. Raman band intensity ratio 118. . /Eng 3. . . =0.18
It is. Other than adding a predetermined amount of lignin and barium sulfate to 300g of lead powder in addition to cut fibers,
Repeat the same operation to reduce the water content to 11wt% (paste density: 4
.. 5 g/cm") to obtain a negative electrode paste. On the other hand, each current collector 2 was made of Pb-Ca-3n alloy and had dimensions of 51111 mm width x 60 m length x 0.1 mm thickness.
The book was placed in parallel on a plastic film substrate and crimped to form a current collector for the positive and negative electrodes. The distance between the positive and negative electrodes was set to 5 points. Next, apply the positive electrode and negative electrode pastes prepared above to a radius of 5+n.
It was rubbed and coated onto the surfaces of the positive electrode and negative electrode current collectors by a printing method through a metal mask having a length of 50 mm and a thickness of 0.51 mm. After that, paste the paste at 25℃.
It was left standing in 90% RH for 2 days to age and harden. Furthermore, the electrodes were formed by chemical conversion at a constant current of 20A+A for 20 hours, washed with water, and dried.Next, in order to confirm the battery performance,
An electrolyte in which a glass retainer is impregnated with 0.61 g of 46% sulfuric acid is placed between the electrodes and on the top of the negative electrode plate, and a plastic film identical to that of the film substrate is placed over it, and the four sides of the top and bottom film substrates are heated. A thin sealed lead-acid battery with a thickness of 0.8 mm was produced by heat-sealing by seek. The results of charging and discharging tests on these batteries are shown in FIG. The charging and discharging conditions are 2.45V constant voltage charging, current limit 10mA, 10 hours charging, 1 hour charging aftertaste, discharging current 12.5mA, and final voltage 1.75V. The discharge time of this carbon fiber-containing battery was longer than that of the battery of Comparative Example 1, shown below, in which carbon fiber was not added. Comparative Example 1 A thin sealed lead-acid battery having a thickness of 0.8 ms+ was produced in the same manner as in Example 1 except that the carbon fiber described above was not used. The results of a charge/discharge test conducted under the same conditions as in Example 1 are shown in FIG. The discharge time is shorter than that of batteries with carbon fiber added. Comparative Example 2゜Grain size is approximately 600 μm, (002) spacing is 3.39
Å, Lc (002) = 895 Å, La (110) = 4
A paste was prepared in the same manner as in Example 1, except that anisotropic graphite of 62 people was used at 0.4 wt% based on the lead powder instead of the crystalline hollow carbon fiber described above, and further aged.・Curing and chemical conversion treatment were performed. However, the positive electrode active material to which anisotropic graphite was added fell off during formation, and it was not possible to use it as a battery.

【発明の効果】【Effect of the invention】

以上説明したように、本発明においては結晶性黒鉛構造
と中空構造を有する炭素繊維を鉛ペーストに添加剤とし
て配合しているので、化成時に炭素繊維の黒鉛構造が黒
鉛層間化合物を形成しても中空構造を有しているために
活物質の脱落を生じない、また、黒鉛層間化合物の形成
による活物質の利用率の向上が図られ、薄形鉛蓄電池の
高容量化を可能にしている。しかも、集電体へのペース
トの塗布、熟成および化成工程など従来の製造工程を変
更する必要はない。
As explained above, in the present invention, carbon fibers having a crystalline graphite structure and a hollow structure are blended into the lead paste as an additive, so even if the graphite structure of the carbon fibers forms a graphite intercalation compound during chemical formation. Because it has a hollow structure, the active material does not fall off, and the formation of graphite intercalation compounds improves the utilization rate of the active material, making it possible to increase the capacity of thin lead-acid batteries. Moreover, there is no need to change conventional manufacturing processes such as applying the paste to the current collector, aging, and chemical conversion steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明・に用いた炭素繊
維の形状を示す走査電子顕微鏡写真および透過電子顕微
鏡写真、 第3図は本発明実施例の充放電サイクル数に対する放電
時間曲線を比較例と比較して示す図、第4図は薄形蓄電
池の構造例を示す斜視図である。 1.7・・・ケース、 2・・・正極用集電体、 3・・・正極活物質、 4・・・負極用集電体、 5・・・負極活物質、 6・・・電解質。
Figures 1 and 2 are scanning electron micrographs and transmission electron micrographs showing the shapes of the carbon fibers used in the present invention, respectively. Figure 3 is a comparison of discharge time curves with respect to the number of charge/discharge cycles of examples of the present invention. FIG. 4 is a perspective view showing a structural example of a thin storage battery. 1.7... Case, 2... Current collector for positive electrode, 3... Positive electrode active material, 4... Current collector for negative electrode, 5... Negative electrode active material, 6... Electrolyte.

Claims (1)

【特許請求の範囲】 1)鉛または鉛合金製の集電体と該集電体面上に密着し
てなる活物質から構成された電極板を有する薄形鉛蓄電
池において、前記活物質が実質的に結晶黒鉛構造を有し
かつ中空の炭素繊維を添加剤として含んでいることを特
徴とする薄形鉛蓄電池。 2)前記炭素繊維が(002)面の面間隔がd(002
)≒3.4Å、(002)面および(110)面の結晶
子の大きさがいずれもLc(002)>100Å、La
(110)>100Åであり、かつ1360cm^−^
1と1580cm^−^1のラマンバンドの強度比(I
_1_3_6_0/I_1_5_6_0)が0.25〜
0.18であることを特徴とする請求項1に記載の薄形
鉛蓄電池。
[Scope of Claims] 1) A thin lead-acid battery having an electrode plate composed of a current collector made of lead or a lead alloy and an active material in close contact with the surface of the current collector, wherein the active material is substantially A thin lead-acid battery characterized by having a crystalline graphite structure and containing hollow carbon fibers as an additive. 2) The spacing between the (002) planes of the carbon fiber is d(002
)≒3.4 Å, the crystallite sizes of the (002) and (110) planes are both Lc (002) > 100 Å, La
(110) > 100 Å and 1360 cm^-^
The intensity ratio of the Raman bands of 1 and 1580 cm^-^1 (I
_1_3_6_0/I_1_5_6_0) is 0.25~
2. The thin lead-acid battery according to claim 1, wherein the lead-acid battery has a diameter of 0.18.
JP2279405A 1990-10-19 1990-10-19 Thin type lead acid battery Pending JPH04155767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2279405A JPH04155767A (en) 1990-10-19 1990-10-19 Thin type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279405A JPH04155767A (en) 1990-10-19 1990-10-19 Thin type lead acid battery

Publications (1)

Publication Number Publication Date
JPH04155767A true JPH04155767A (en) 1992-05-28

Family

ID=17610650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279405A Pending JPH04155767A (en) 1990-10-19 1990-10-19 Thin type lead acid battery

Country Status (1)

Country Link
JP (1) JPH04155767A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023620A (en) * 1999-07-09 2001-01-26 Japan Storage Battery Co Ltd Sealed type lead-acid battery
US6858349B1 (en) 2000-09-07 2005-02-22 The Gillette Company Battery cathode
WO2018025837A1 (en) * 2016-08-05 2018-02-08 株式会社Gsユアサ Lead storage cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023620A (en) * 1999-07-09 2001-01-26 Japan Storage Battery Co Ltd Sealed type lead-acid battery
US6858349B1 (en) 2000-09-07 2005-02-22 The Gillette Company Battery cathode
WO2018025837A1 (en) * 2016-08-05 2018-02-08 株式会社Gsユアサ Lead storage cell
CN109565040A (en) * 2016-08-05 2019-04-02 株式会社杰士汤浅国际 Lead storage battery
CN109565040B (en) * 2016-08-05 2022-03-01 株式会社杰士汤浅国际 Lead-acid battery

Similar Documents

Publication Publication Date Title
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
EP0573040A1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
US6740452B2 (en) Process of forming a negative battery paste
JPH04155767A (en) Thin type lead acid battery
CN109037560B (en) Lithium metal graphene battery and graphene battery
JPH07122261A (en) Electrochemical element
US3576674A (en) Lead peroxide-sulfuric acid cell
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP2956114B2 (en) Anode plate for lead-acid battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
US11955627B2 (en) Zn powder/Sn coated Cu current collector as anode for Zn battery
JP2000348715A (en) Manufacture of lead-acid battery
JPH0287462A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
WO2018155422A1 (en) Positive electrode for lead storage battery and lead storage battery using same
JP3107242B2 (en) Lead storage battery
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JP2002343359A (en) Sealed type lead storage battery
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
CN116979022A (en) Battery, preparation method thereof and power utilization device
JP2002343413A (en) Seal type lead-acid battery
JPH022270B2 (en)
KR20200057465A (en) Composition of lead-carbon electrode paste, and manufacturing method of the paste