JPH022270B2 - - Google Patents

Info

Publication number
JPH022270B2
JPH022270B2 JP58045123A JP4512383A JPH022270B2 JP H022270 B2 JPH022270 B2 JP H022270B2 JP 58045123 A JP58045123 A JP 58045123A JP 4512383 A JP4512383 A JP 4512383A JP H022270 B2 JPH022270 B2 JP H022270B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
porous carbon
black
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58045123A
Other languages
Japanese (ja)
Other versions
JPS59171470A (en
Inventor
Shuji Yamada
Takahisa Oosaki
Kyoshi Mitsuyasu
Juichi Sato
Kazuya Hiratsuka
Yoshasu Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP58045123A priority Critical patent/JPS59171470A/en
Priority to EP19840100066 priority patent/EP0118657B1/en
Priority to DE8484100066T priority patent/DE3485349D1/en
Priority to CA000445273A priority patent/CA1222542A/en
Publication of JPS59171470A publication Critical patent/JPS59171470A/en
Priority to US07/129,902 priority patent/US4767683A/en
Publication of JPH022270B2 publication Critical patent/JPH022270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極の組成
を改良した非水溶媒電池に係る。 〔発明の技術的背景〕 負極活物質としてリチウム、ナトリウムを用い
た非水溶媒電池はエネルギー密度が大きく、貯蔵
特性に優れ、かつ作動温度範囲が広いという特徴
をもち、電卓、時計、メモリのバツクアツプ電源
として多用されている。かかる電池は負極、電解
液、正極から構成されており、一般に負極として
リチウムやナトリウムを、電解液としてプロピレ
ンカーボネート、γ―ブチロラクトン、ジメトキ
シエタンなどの非水溶媒中に過塩素酸リチウム、
ホウフツ化リチウムなどの電解質を溶解してなる
溶液を、正極として二酸化マンガン、フツ化黒鉛
を、夫々用いている。 上述した電池の中でも負極にリチウムを用い、
塩化チオニル(SOCl2)を主正極活物質とした、
いわゆるリチウム塩化チオニル系電池は特にエネ
ルギー密度が高いために注目されている。この電
池は、多孔質炭素体及び金属集電体からなる正極
を有し、一般に塩化リチウム(LiCl)及び塩化ア
ルミニウム(AlCl3)を溶解した塩化チオニル
(SOCl2)を電解液として用いている。したがつ
て、SOCl2は正極活物質と電解液との双方を兼用
している。こうしたSOCl2を正極活物質とする電
池においては、負極反応は負極金属が金属イオン
として電解液中に溶解する反応であり、一方正極
反応はその正極の一構成材である多孔質炭素体上
で起こり、反応生成物が該多孔質炭素体表面に生
成する反応である。 ところで、上記リチウム塩化チオニル系電池に
用いられる正極は、アセチレンブラツクをポリテ
トラフルオロエチレン等のポリマー結着材と共に
混合し、所定形状に成形した後、乾燥して得た多
孔質炭素体とこの多孔質炭素体に圧着された金属
集電体とから構成されている。 〔背景技術の問題点〕 しかしながら、従来の多孔質炭素体からなる正
極を備えた電池をおいては、電極反応が著しく阻
害され、放電容量が低下する。しかも、大電流放
電では、低電流放電に比べて放電効率が著しく低
下するという欠点があつた。また、前記多孔質炭
素体はその製造工程である成形体の乾燥中におい
て膨張が起こるため、正極を電池の缶体内に挿入
することが困難となる。 〔発明の目的〕 本発明は放電容量及び大電流放電時での放電効
率が優れ、かつ寸法安定性の優れた多孔質炭素体
からなる正極を備えた非水溶媒電池を提供しよう
とするものである。 〔発明の概要〕 本発明者らは多種の炭素材の中で、鎖状をなす
粒子の周面に黒鉛結晶薄層が形成された構造のカ
ーボンブラツクは極めて高い導電性、比表面積を
有することに着目し、このカーボンブラツクを主
成分とする多孔質炭素体及び該炭素体に圧着され
た金属集電体からなる正極を用いることによつ
て、極めて放電特性の優れた非水溶媒電池を既に
提案した。しかしながら、その後の研究により、
前記カーボンブラツクをポリマー結着剤と共に混
練し、成形した後、乾燥すると、その乾燥時に成
形体の収縮、ひび割れが生じ、欠落が起こるとい
う欠点があることがわかつた。 そこで、本発明者らは上記欠点を踏えて更に鋭
意研究を重ねた結果、前記特殊な構造のカーボン
ブラツクにアセチレンブラツクを配合した混合物
を主成分として多孔質炭素体を形成することによ
つて、前記カーボンブラツクの優れた特性を生か
しつつ、その成形体の乾燥中での収縮をアセチレ
ンブラツクの添加により相殺でき、放電容量及び
大電流放電時での放電効率が優れかつ寸法安定性
の優れた非水溶媒電池を見い出した。 上記粒子周辺に黒鉛結晶薄層が形成された鎖状
構造のカーボンブラツクとアセチレンブラツクと
の配合割合は該カーボンブラツク20〜80重量%、
アセチレンブラツク80〜20重量%にすることが望
ましい。この理由はカーボンブラツクの配合量を
20重量%未満にすると、そのカーボンブラツクの
優れた特性を充分に生かすことができなくなるば
かりか、他方の配合材であるアセチレンブラツク
が多くなり多孔質炭素体が膨張して寸法安定性の
低下を招く恐れがある。かといつて、カーボンブ
ラツクの配合量が80重量%を越えると、そのカー
ボンブラツクによる乾燥中の収縮が顕在化して欠
陥等の生じない多孔質炭素体を得るのが困難とな
る。 また、上記正極は例えば以下に示す方法により
製造される。まず前記特殊な構造のカーボンブラ
ツクにアセチレンブラツクを配合し、この混合物
にポリテトラフルオロエチレン等のポリマー結着
材を添加混合した後、更にエチルアルコール等の
有機溶剤を添加して充分に撹拌、混練する。次い
で、この混練物を金網、パンチメタル、エキスパ
ンドメタル等の金属集電体に圧着し、乾燥するこ
とにより正極を製造する。 〔発明の実施例〕 以下、本発明をリチウム塩化チオニル電池に適
用した例について第1図を参照して説明する。 実施例 1 図中の1は負極端子を兼ねる上面が開口された
例えばステンレス製の缶体である。この缶体1の
内面には金属リチウムからなる筒状の負極2が圧
着されている。この負極2の内側の缶体1内には
正極が該負極2内面に配置されたガラス繊維の
不織布からなるセパレータ4を介して設けられて
いる。なお、正極と缶体1底面との間には絶縁
紙5が介装されている。 前記正極は次のような方法により造られたも
のである。まず、粒子周辺に黒鉛結晶薄層が形成
された鎖状構造のカーボンブラツク(ケツチエン
ブラツク;ライオンアグゾ社製商品名)45重量%
とアセチレンブラツク45重量%とポリテトラフル
オロエチレン粉末10重量部とを混合した後、該混
合物にエタノールを混合物1g当り8mlの割合で
添加し、十分に混練した。つづいて、この混練物
をニツケル製網体からなる金属集電体6と共に該
集電体6が内周面に配置されるように円筒状に成
形し、200℃の真空下で乾燥して同金属集電体6
の外周に円筒状の多孔質炭素体7を圧着して正極
3を製造した。 また、前記正極上方の缶体1内には前記セパ
レータ4に支持された孔を有する絶縁紙8が配設
されている。前記缶体1の開口部にはメタルトツ
プ9がレーザ溶接等により封着されている。この
メタルトツプ9の中心には穴10が開孔されてい
る。前記缶体1内にはLiAlCl4を溶解した1.8mol
濃度の塩化チオニル(SOCl2)溶液からなる電解
液が前記メタルトツプ9の穴10を通して注入、
収容されている。また、前記メタルトツプ9の穴
10には正極端子11がメタル―ガラス製シール
材12により電気的に絶縁され、固定されてい
る。この正極端子11の下端は前記正極の金属
集電体6に接続されている。 実施例 2 ケツチエンブラツク(ライオンアグゾ社製)25
重量%、アセチレンブラツク65重量%及びポリテ
トラフルオロエチレン粉末10重量%からなる混合
物を用いた以外、実施例1と同様にして正極を造
り、同構成のリチウム塩化チオニル電池を組立て
た。 比較例 1 アセチレンブラツク90重量%とポリテトラフル
オロエチレン粉末10重量%の混合物を用いた以
外、実施例1と同様にして正極を造り、同構成の
リチウム塩化チオニル電池を組立てた。 比較例 2 ケツチエンブラツク(ライオンアグゾ社製)90
重量%とポリテトラフルオロエチレン粉末10重量
%の混合物を用いた以外、実施例1と同様にして
正極を造り、同構成のリチウム塩化チオニル電池
を組立てた。 しかして、本実施例1,2及び比較例1,2の
電池の正極を各々100本づつ製作し、乾燥前、後
の径を測定したところ、下記表に示す結果が得ら
れた。なお、表中には乾燥後、金属集電体から多
孔質炭素体が剥れたり、欠落した正極、並びに膨
張による缶体内への挿入不可能な正極、の本数も
併記した。 【表】 上表より明らかな如く、本実施例1,2の電池
に用いられる正極は夫々寸法変化も少なく、かつ
多孔質炭素体の欠陥や同炭素体の膨張に伴なう缶
体内への挿入不可能という問題がほとんどないこ
とがわかる。これに対し、比較例1の電池に用い
られる正極では乾燥後の寸法バラツキが大きく、
缶体内への挿入不可能なものが多数ある。比較例
2の電池に用いられる正極では乾燥後における多
孔質炭素体のひび割れが多数本生じ、缶体内への
挿入工程時に金属集電体からの欠落を生じたもの
が多数ある。 また、本実施例1,2及び比較例1,2の電池
について、常温で300Ωの定負荷放電特性を調べ
たところ、第2図に示す特性図を得た。なお、第
2図中のAは本実施例1の電池における放電特性
曲線、Bは本実施例2の電池における同曲線、C
は比較例1の電池における同曲線、Dは比較例2
の電池における同曲線、である。この第2図から
明らかな如く、本実施例1,2の電池はアセチレ
ンブラツクのみを主成分とする多孔質炭素体から
なる正極を備えた電池(比較例1)に比べて放電
時間が長く、しかも放電電圧が高いことがわか
る。また、本実施例1,2の電池はケツチエンブ
ラツク(ライオンアグゾ社製)のみを主成分とす
る多孔質炭素体からなる正極を備えた電池(比較
例2)に比べて放電特性が若干劣るものの、既述
した表と共に総合的に評価すると、本実施例1,
2は優れていることがわかる。 なお、上記実施例では正極として同筒状のもの
を用いたが、これに限定されない。例えば前記カ
ーボンブラツク、アセチレンブラツク及びポリマ
ー結着材の混練物を金属集電体に圧着して帯状物
とし、これを渦巻状に巻回して乾燥した巻渦状の
正極を用いてもよい。 〔発明の効果〕 以上詳述した如く、本発明によれば放電容量を
大巾に向上すると共に放電効率も優れ、更に寸法
安定性の優れた多孔質炭素体からなる正極を備え
た高歩留りで製作し得る非水溶媒電池を提供でき
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and particularly to a non-aqueous solvent battery in which the composition of the positive electrode is improved. [Technical background of the invention] Nonaqueous solvent batteries using lithium and sodium as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, and are useful for backup of calculators, watches, and memories. It is widely used as a power source. Such batteries are composed of a negative electrode, an electrolyte, and a positive electrode, and generally, the negative electrode is lithium or sodium, and the electrolyte is lithium perchlorate, lithium perchlorate, etc. in a nonaqueous solvent such as propylene carbonate, γ-butyrolactone, or dimethoxyethane.
A solution prepared by dissolving an electrolyte such as lithium borofluoride is used, and manganese dioxide and graphite fluoride are used as the positive electrode, respectively. Among the batteries mentioned above, lithium is used for the negative electrode,
With thionyl chloride (SOCl 2 ) as the main positive electrode active material,
So-called lithium-thionyl chloride batteries are attracting attention because of their particularly high energy density. This battery has a positive electrode made of a porous carbon body and a metal current collector, and generally uses thionyl chloride (SOCl 2 ) in which lithium chloride (LiCl) and aluminum chloride (AlCl 3 ) are dissolved as an electrolyte. Therefore, SOCl 2 serves both as a positive electrode active material and as an electrolyte. In batteries using SOCl 2 as the positive electrode active material, the negative electrode reaction is a reaction in which the negative electrode metal dissolves in the electrolyte as metal ions, while the positive electrode reaction is a reaction in which the negative electrode metal dissolves on the porous carbon material that is one of the constituent materials of the positive electrode. This is a reaction in which a reaction product is generated on the surface of the porous carbon body. By the way, the positive electrode used in the above-mentioned lithium thionyl chloride battery is made by mixing acetylene black with a polymer binder such as polytetrafluoroethylene, molding it into a predetermined shape, and drying it to obtain a porous carbon body and this porous carbon material. It consists of a metal current collector crimped onto a carbon body. [Problems with Background Art] However, in batteries equipped with conventional positive electrodes made of porous carbon bodies, electrode reactions are significantly inhibited and discharge capacity is reduced. In addition, large current discharge has the disadvantage that the discharge efficiency is significantly lower than that in low current discharge. Further, since the porous carbon body expands during drying of the molded body in its manufacturing process, it becomes difficult to insert the positive electrode into the battery case. [Object of the Invention] The present invention aims to provide a nonaqueous solvent battery equipped with a positive electrode made of a porous carbon material that has excellent discharge capacity and discharge efficiency during large current discharge, and has excellent dimensional stability. be. [Summary of the Invention] Among various types of carbon materials, the present inventors have discovered that carbon black, which has a structure in which a thin graphite crystal layer is formed on the circumferential surface of chain-shaped particles, has extremely high conductivity and specific surface area. By focusing on this, we have already developed a non-aqueous solvent battery with extremely excellent discharge characteristics by using a positive electrode consisting of a porous carbon body mainly composed of carbon black and a metal current collector crimped onto the carbon body. Proposed. However, subsequent research has shown that
It has been found that when the carbon black is kneaded with a polymer binder, molded, and then dried, the molded product shrinks, cracks, and breaks during drying. Therefore, the inventors of the present invention conducted further intensive research in view of the above-mentioned drawbacks, and as a result, by forming a porous carbon body mainly composed of a mixture of carbon black with the above-mentioned special structure and acetylene black, While taking advantage of the excellent properties of carbon black, the shrinkage of the molded product during drying can be offset by the addition of acetylene black, and the carbon black has excellent discharge capacity, discharge efficiency during large current discharge, and excellent dimensional stability. We discovered a water-solvent battery. The blending ratio of carbon black with a chain structure in which a thin graphite crystal layer is formed around the particles and acetylene black is 20 to 80% by weight of the carbon black;
It is desirable that the acetylene black be 80 to 20% by weight. The reason for this is that the amount of carbon black
If it is less than 20% by weight, not only will it be impossible to take full advantage of the excellent properties of carbon black, but also the amount of acetylene black, the other compounding material, will increase, causing the porous carbon body to expand and resulting in a decrease in dimensional stability. There is a risk of inviting On the other hand, if the amount of carbon black exceeds 80% by weight, shrinkage during drying due to the carbon black becomes obvious, making it difficult to obtain a porous carbon body free of defects. Moreover, the above-mentioned positive electrode is manufactured, for example, by the method shown below. First, acetylene black is blended with the above-mentioned carbon black with a special structure, and after adding and mixing a polymer binder such as polytetrafluoroethylene to this mixture, an organic solvent such as ethyl alcohol is further added and thoroughly stirred and kneaded. do. Next, this kneaded material is pressed onto a metal current collector such as a wire mesh, punched metal, expanded metal, etc., and dried to produce a positive electrode. [Embodiments of the Invention] Hereinafter, an example in which the present invention is applied to a lithium thionyl chloride battery will be described with reference to FIG. Embodiment 1 Reference numeral 1 in the figure is a can body made of stainless steel, for example, whose top surface is open and also serves as a negative electrode terminal. A cylindrical negative electrode 2 made of metallic lithium is pressure-bonded to the inner surface of the can 1. A positive electrode 3 is provided inside the can body 1 inside the negative electrode 2 with a separator 4 made of a non-woven glass fiber fabric disposed on the inner surface of the negative electrode 2 . Note that an insulating paper 5 is interposed between the positive electrode 3 and the bottom surface of the can body 1. The positive electrode 3 was manufactured by the following method. First, 45% by weight of carbon black (Ketchen Black; a product name manufactured by Lion Agzo Co., Ltd.), which has a chain structure in which a thin layer of graphite crystals is formed around the particles.
After mixing 45% by weight of acetylene black and 10 parts by weight of polytetrafluoroethylene powder, ethanol was added to the mixture at a rate of 8 ml per 1 g of the mixture and thoroughly kneaded. Subsequently, this kneaded product was formed into a cylindrical shape together with a metal current collector 6 made of a nickel mesh so that the current collector 6 was placed on the inner peripheral surface, and dried under vacuum at 200°C. Metal current collector 6
A cylindrical porous carbon body 7 was pressed onto the outer periphery of the positive electrode 3 to produce a positive electrode 3. Further, an insulating paper 8 having holes supported by the separator 4 is disposed inside the can body 1 above the positive electrode 3 . A metal top 9 is sealed to the opening of the can body 1 by laser welding or the like. A hole 10 is made in the center of this metal top 9. In the can body 1, 1.8 mol of LiAlCl 4 was dissolved.
An electrolyte consisting of a concentrated thionyl chloride (SOCl 2 ) solution is injected through the hole 10 in the metal top 9;
It is accommodated. Further, a positive electrode terminal 11 is electrically insulated and fixed in the hole 10 of the metal top 9 by a metal-glass sealing material 12. The lower end of this positive electrode terminal 11 is connected to the metal current collector 6 of the positive electrode 3 . Example 2 Butt chain black (manufactured by Lion Agzo) 25
A positive electrode was prepared in the same manner as in Example 1, except that a mixture consisting of 65% by weight of acetylene black and 10% by weight of polytetrafluoroethylene powder was used, and a lithium thionyl chloride battery having the same configuration was assembled. Comparative Example 1 A positive electrode was produced in the same manner as in Example 1, except that a mixture of 90% by weight acetylene black and 10% by weight polytetrafluoroethylene powder was used, and a lithium thionyl chloride battery having the same configuration was assembled. Comparative example 2 Butt chain black (manufactured by Lion Agzo) 90
A positive electrode was produced in the same manner as in Example 1, except that a mixture of 10% by weight and 10% by weight of polytetrafluoroethylene powder was used, and a lithium thionyl chloride battery having the same configuration was assembled. When 100 battery positive electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 were each manufactured, and the diameters were measured before and after drying, the results shown in the table below were obtained. The table also includes the number of positive electrodes whose porous carbon body peeled off from the metal current collector after drying, or which were missing, as well as the number of positive electrodes that could not be inserted into the can due to expansion. [Table] As is clear from the table above, the positive electrodes used in the batteries of Examples 1 and 2 had little dimensional change, and there were no defects in the porous carbon body or defects in the can due to expansion of the carbon body. It can be seen that there is almost no problem of not being able to insert. In contrast, the positive electrode used in the battery of Comparative Example 1 had large dimensional variations after drying.
There are many items that cannot be inserted into the can body. In the positive electrode used in the battery of Comparative Example 2, many cracks occurred in the porous carbon body after drying, and many of the positive electrodes fell off from the metal current collector during the insertion process into the can. Further, when the constant load discharge characteristics of the batteries of Examples 1 and 2 and Comparative Examples 1 and 2 at room temperature of 300Ω were investigated, the characteristic diagram shown in FIG. 2 was obtained. In addition, in FIG. 2, A is the discharge characteristic curve of the battery of Example 1, B is the same curve of the battery of Example 2, and C is the discharge characteristic curve of the battery of Example 1.
is the same curve for the battery of Comparative Example 1, and D is the same curve for the battery of Comparative Example 2.
This is the same curve for the battery. As is clear from FIG. 2, the batteries of Examples 1 and 2 had longer discharge times than the battery (Comparative Example 1) equipped with a positive electrode made of a porous carbon body containing only acetylene black as a main component. Furthermore, it can be seen that the discharge voltage is high. In addition, although the batteries of Examples 1 and 2 had slightly inferior discharge characteristics compared to the battery (Comparative Example 2) equipped with a positive electrode made of a porous carbon body containing only Ketschen Black (manufactured by Lion Agzo) as a main component, , Comprehensively evaluated along with the table mentioned above, this Example 1,
It can be seen that 2 is superior. Note that in the above embodiments, a cylindrical positive electrode was used, but the positive electrode is not limited to this. For example, a spiral positive electrode may be used, in which a kneaded mixture of carbon black, acetylene black, and a polymer binder is pressed onto a metal current collector to form a belt, which is spirally wound and dried. [Effects of the Invention] As detailed above, according to the present invention, the discharge capacity is greatly improved, the discharge efficiency is also excellent, and a high-yield cathode comprising a porous carbon material with excellent dimensional stability is provided. A non-aqueous solvent battery that can be manufactured can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すリチウム塩化
チオニル電池の断面図、第2図は本実施例及び比
較例の電池における放電時間と端子電圧との関係
を示す特性図である。 1……缶体、2……負極、……正極、4……
セパレータ、6……金属集電体、7……多孔質炭
素体、9……メタルトツプ、11……正極端子。
FIG. 1 is a sectional view of a lithium thionyl chloride battery showing an example of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between discharge time and terminal voltage in batteries of this example and a comparative example. 1...Can body, 2...Negative electrode, 3 ...Positive electrode, 4...
Separator, 6... Metal current collector, 7... Porous carbon body, 9... Metal top, 11... Positive electrode terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 缶体内にリチウム、ナトリウム、アルミニウ
ムのうちから選ばれた軽金属からなる負極と、多
孔質炭素体及び金属集電体からなる正極とをセパ
レータを介して設け、かつ該缶体内にイオウのオ
キシハロゲン化物を主な正極活物質とする電解液
を収容した非水溶媒電池において、前記多孔質炭
素体として粒子周辺に黒鉛結晶薄層が形成された
鎖状構造を有するカーボンブラツクとアセチレン
ブラツクとの混合物を主成分とするものを用いた
ことを特徴とする非水溶媒電池。
1 A negative electrode made of a light metal selected from lithium, sodium, and aluminum and a positive electrode made of a porous carbon body and a metal current collector are provided in a can body with a separator interposed therebetween, and oxyhalogen of sulfur is provided in the can body. A mixture of carbon black and acetylene black having a chain structure in which a thin graphite crystal layer is formed around the particles as the porous carbon body in a non-aqueous solvent battery containing an electrolyte containing a compound as the main positive electrode active material. A non-aqueous solvent battery characterized by using a battery containing as a main component.
JP58045123A 1983-01-14 1983-03-17 Nonaqueous solvent battery Granted JPS59171470A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58045123A JPS59171470A (en) 1983-03-17 1983-03-17 Nonaqueous solvent battery
EP19840100066 EP0118657B1 (en) 1983-01-14 1984-01-04 Non-aqueous electrochemical cell
DE8484100066T DE3485349D1 (en) 1983-01-14 1984-01-04 NONWATER ELECTROCHEMICAL CELL.
CA000445273A CA1222542A (en) 1983-01-14 1984-01-13 Non-aqueous electrochemical cell
US07/129,902 US4767683A (en) 1983-01-14 1987-12-07 Non-aqueous electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58045123A JPS59171470A (en) 1983-03-17 1983-03-17 Nonaqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS59171470A JPS59171470A (en) 1984-09-27
JPH022270B2 true JPH022270B2 (en) 1990-01-17

Family

ID=12710487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58045123A Granted JPS59171470A (en) 1983-01-14 1983-03-17 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS59171470A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790969A (en) * 1987-07-16 1988-12-13 Eveready Battery Company Dry molded cathode collector for liquid cathode systems
JPH09189969A (en) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp Attaching structure for screen

Also Published As

Publication number Publication date
JPS59171470A (en) 1984-09-27

Similar Documents

Publication Publication Date Title
JP4052695B2 (en) Lithium secondary battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JPH1154135A (en) Organic electrolyte battery
JPH022270B2 (en)
JPH1197062A (en) Organic electrolyte secondary battery
JPH0318308B2 (en)
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPH0536401A (en) Lithium secondary battery
JP3489381B2 (en) Non-aqueous electrolyte secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP3139174B2 (en) Manufacturing method of thin non-aqueous electrolyte battery
JPH10214629A (en) Lithium secondary battery
JP3273569B2 (en) Lithium battery
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JPH02215043A (en) Nonaqueous solvent secondary battery
JPH0439187B2 (en)
JP3029715B2 (en) Non-aqueous electrolyte secondary battery
JPS5951470A (en) Non-aqueous solvent cell
JPH0922738A (en) Secondary battery with organic electrolytic solution
JP4656698B2 (en) Flat non-aqueous electrolyte secondary battery
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPH0439188B2 (en)
JPS58209068A (en) Battery
JPH0785861A (en) Lithium secondary battery
JPH073785B2 (en) Non-aqueous electrolyte battery