JPS60200465A - Method of manufacturing electrolyte for nonaqueous- solvent cell - Google Patents

Method of manufacturing electrolyte for nonaqueous- solvent cell

Info

Publication number
JPS60200465A
JPS60200465A JP5531884A JP5531884A JPS60200465A JP S60200465 A JPS60200465 A JP S60200465A JP 5531884 A JP5531884 A JP 5531884A JP 5531884 A JP5531884 A JP 5531884A JP S60200465 A JPS60200465 A JP S60200465A
Authority
JP
Japan
Prior art keywords
lithium
cell
electrolyte
mixture
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5531884A
Other languages
Japanese (ja)
Inventor
Kiyoshi Mitsuyasu
光安 清志
Takahisa Osaki
隆久 大崎
Shuji Yamada
修司 山田
Yuichi Sato
祐一 佐藤
Yoshiyasu Aoki
青木 良康
Kazuya Hiratsuka
和也 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP5531884A priority Critical patent/JPS60200465A/en
Publication of JPS60200465A publication Critical patent/JPS60200465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To provide a nonaqueous-solvent cell excellent in initial discharge characteristics, by using an electrolyte manufactured by adding lithium to a solution containing thionyl chloride as the main constituent, then stirring the mixture and leaving it quiet at the room temperature and thereafter filtering the mixture, to reduce the voltage drop of the cell even at the initial stage of large-current discharge. CONSTITUTION:1.2mol/l of AlCl3 is dissolved in SOCl2. 1.2mol/l of LiCl is then dissolved in the solution. After that, about 2g of lithium pieces, each of which has a size of 10mm. (length), 10mm. (width) and 0.5mm. (thickness), are added to 100ml of the solution. This mixture is stirred for 3 days. The mixture is thereafter filtered to remove the liquid of the lithium pieces. The filtered liquid is used as electrolyte to assemble a thionyl-chloride cell. When the cell is discharged through a fixed resistance of 30OMEGA, it is understood that the cell A which is an embodiment of the present invention undergoes a smaller voltage drop at the initial stage of discharge than a cell B as a comparison object and is therefore excellent in initial discharge characteristics, as shown in the drawing.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池用電解液の製造方法に関し、特に
塩化チオニル電池用電解液の製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing an electrolyte for a non-aqueous battery, and particularly to a method for producing an electrolyte for a thionyl chloride battery.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウムを用いた非水溶
媒電池はエネルギー密度が大きく、貯蔵特性に優れ、し
かも作動温度範囲が広いという特長をもち、電卓、時計
、メモリのバックアップ電源として多用されている。か
かる電池は負極、電解液、正極から構成されてお、す、
一般に負極としてリチウムやナトリウムなどのアルカリ
金属ヲ、′電解液としてプロピレンカーボネート、r−
ブチロラクトン、ジメトキシエタンなどの非水溶媒中に
過塩素酸リチウム、ホウフッ化リチウムなどの電解費を
溶解してなる溶液を、正極として二酸化マンガン、フッ
化黒鉛等を、夫々用いている。
Nonaqueous solvent batteries that use lithium or sodium as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, and are often used as backup power sources for calculators, watches, and memories. Such a battery consists of a negative electrode, an electrolyte, and a positive electrode.
Generally, an alkali metal such as lithium or sodium is used as the negative electrode, and propylene carbonate or r-
A solution prepared by dissolving electrolytic materials such as lithium perchlorate and lithium fluoroborate in a non-aqueous solvent such as butyrolactone and dimethoxyethane is used, and manganese dioxide, graphite fluoride, etc. are used as the positive electrode, respectively.

上述した電池の中に負極にリチウムを用い、塩化チオニ
ル(5OCzz )を主正極活物質とした、いわゆるリ
チウム塩化チオニル系電池は、特にエネルギー密度が大
きいために注目されている。
The so-called lithium-thionyl chloride-based battery, which uses lithium in the negative electrode and thionyl chloride (5OCzz) as the main positive electrode active material, is attracting attention because of its high energy density.

こうした電池は多孔質炭素体及び金属集電体からなる正
極を有し、一般に塩化リチウム(LiCIり及び塩化ア
ルミニウム(htcl s ) t−溶解した塩化チオ
ニル(SOC/2 ) ′t−電解液として用いている
These cells have a positive electrode consisting of a porous carbon body and a metal current collector, and typically contain lithium chloride (LiCI) and aluminum chloride (HTCLS) dissolved in thionyl chloride (SOC/2) used as the electrolyte. ing.

したがって、5ocz、は正極活物質と電解液との双方
を兼用している。
Therefore, 5ocz serves both as a positive electrode active material and as an electrolyte.

ところで、上記リチウム塩化チオニル系電池は正極活物
質である5OCf、が負極リチウムと直接接触している
ため、負極リチウム表面に反応生成物であるLICI!
皮膜が生成される。生成したLICJ皮膜は、負極リチ
ウムとSOCl2との直接接触を防止する機能を有し、
貯蔵時において電池の容量劣化を防ぐ役目をする。しか
しながら、放電時においては抵抗成分として働き、放電
初期の電圧降下の原因となる。また、前記LtCJ皮膜
は放電により剥離し、それに伴ない電圧も回復するため
、放電中期成いは放電後期においては支障とならないが
、放電初期、とりわけ大電流放電の際に大きな電圧降下
全誘発する欠点を招く。
By the way, in the above-mentioned lithium-thionyl chloride battery, since the positive electrode active material 5OCf is in direct contact with the negative electrode lithium, the reaction product LICI! is deposited on the negative electrode lithium surface.
A film is formed. The generated LICJ film has the function of preventing direct contact between the negative electrode lithium and SOCl2,
It serves to prevent battery capacity deterioration during storage. However, during discharge, it acts as a resistance component and causes a voltage drop in the early stage of discharge. Furthermore, since the LtCJ film peels off due to discharge and the voltage recovers accordingly, there is no problem in the middle or late stage of discharge, but a large voltage drop is induced in the early stage of discharge, especially during large current discharge. lead to shortcomings.

〔発明の目的〕[Purpose of the invention]

本発明は大電流放電初期においての著しい電圧降下を抑
制し得る非水溶媒電池に適しfC電解液の製造方法を提
供しようと1−るものである。
The present invention aims to provide a method for producing an fC electrolyte suitable for non-aqueous solvent batteries that can suppress a significant voltage drop at the initial stage of large current discharge.

〔発明の概要〕[Summary of the invention]

本発明者らは塩化チオニルを主成分とする溶液中にリチ
ウム片もしくはリチウム粉末全添加し、常温にて攪拌し
て静置した後口過すること罠より電解液を製造し、この
電解液を、リチウムの負極と多孔質炭素を主構成材とす
る正極とがセパレータを介して収納された缶体内に収容
したところ、大電流放電時に顕著な電圧降下を防止し得
る非水溶媒電池盆見い出した。このような電解液を用い
ることにより、優れfc%性の非水溶媒電池が得られる
のは、次のような理由によるものと推定される。
The present inventors produced an electrolytic solution by adding all lithium pieces or lithium powder to a solution containing thionyl chloride as a main component, stirring it at room temperature, letting it stand, and then pouring it into a trap. discovered a non-aqueous solvent battery tray that can prevent significant voltage drop during large current discharge by housing a lithium negative electrode and a positive electrode mainly composed of porous carbon in a can with a separator in between. . The reason why a non-aqueous solvent battery with excellent fc% properties can be obtained by using such an electrolytic solution is presumed to be due to the following reason.

即ち、リチウム負極表面上vc I’、lC/皮膜が形
成される機構の1つにリチウム負極と5OCt、、との
直接接触があるが、電解液の溶媒を兼ねる5OCI!2
に電解質を溶解せずに、5ocz2のみをリチウムと接
触させた場合には、電解質を溶解した電解液にリチウム
を接触させた場合に比較し、皮膜の形成速度が遅い軸向
にあるということが知られている。このことは、電解質
−,55OCI2に溶解することにより、リチウム表面
に何んらかの影響を及ぼすということを示しているが、
その理由として電解質に含まれる水が考えられる。多く
の場合、リチウム塩化チオニ)V電池の電解質としては
klcl、とLiCl!が用いられているが、これらの
試薬は吸湿性が強く、完全に乾燥することは非常な困1
mヲ伴ない、実用に際しては若干の水分が混入する。そ
のため、混入した水により電解液中にAJ(OH)Cl
、が溶存し、このA/(0)1)CI!2がリチウムと
反応し、リチウム表面にLiCJ皮膜を形成するものと
考えられる。このようなことから、塩化チオニルを主成
分とする溶液にリチウム片もしくはリチウム粉末を添加
し、常温で攪拌することにより、前記、!M(OH)C
J、がリチウム片等と反応して迅速に取り除かれ、口過
後の口数に%溶液として用いることによってリチウム負
極表面上へのLICJ 皮膜の生成を抑制できるものと
推定される。
That is, one of the mechanisms by which a vc I', lC/film is formed on the surface of the lithium negative electrode is direct contact between the lithium negative electrode and 5OCt, but 5OCt, which also serves as a solvent for the electrolyte, 2
When only 5 oz2 is brought into contact with lithium without dissolving the electrolyte, the rate of film formation is slower in the axial direction than when lithium is brought into contact with an electrolyte solution in which the electrolyte is dissolved. Are known. This indicates that dissolving in the electrolyte -55OCI2 has some effect on the lithium surface.
The reason for this is thought to be water contained in the electrolyte. In many cases, the electrolyte in lithium thionichloride)V cells is klcl, and LiCl! However, these reagents are highly hygroscopic and it is extremely difficult to dry them completely.
However, in practical use, some water will be mixed in. Therefore, the mixed water causes AJ(OH)Cl to enter the electrolyte.
, is dissolved, and this A/(0)1)CI! It is thought that 2 reacts with lithium and forms a LiCJ film on the lithium surface. For this reason, by adding lithium pieces or lithium powder to a solution containing thionyl chloride as the main component and stirring it at room temperature, the above-mentioned! M(OH)C
It is presumed that J is quickly removed by reacting with lithium pieces and the like, and that by using it as a % solution after filtration, it is possible to suppress the formation of an LICJ film on the surface of the lithium negative electrode.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例 まず、5ocz2にA7CI!s ’fr: l、 2
rnol!// 溶解し、更K LICI!′lc1.
2moI!/I! 溶解しfc後、該溶液w t 100m7に対し、大きさが10 XIOXo、5+i
+++のリチウム片を総量で約2g加えて3日間攪拌し
、つづいて口過してリチウム片を取り除いた口数からな
る電解液を製造した。
Example First, A7CI on 5ocz2! s'fr: l, 2
rnol! // Dissolve and change LICI! 'lc1.
2moI! /I! After dissolving fc, the size is 10XIOXo,5+i for the solution w t 100m7
Approximately 2 g of +++ lithium pieces were added in total, stirred for 3 days, and then passed through the mouth to remove the lithium pieces to produce an electrolytic solution.

次に、得られた電解液を用いて第1図に示す単三サイズ
の塩化チオニル電池上組立てた。
Next, the obtained electrolyte was used to assemble an AA size thionyl chloride battery as shown in FIG.

図中の1は負極端子を兼ねるステンレス製の缶体である
。この缶体lの内周面には金属リチウムからなる筒状の
負極2が圧着されている。
1 in the figure is a stainless steel can that also serves as a negative electrode terminal. A cylindrical negative electrode 2 made of metallic lithium is crimped onto the inner peripheral surface of the can 1.

この負極2の内側には正極3が該負極2の内側に配置さ
れた例えばガラス繊維不織布からなるセパレータ4と、
前記缶体l底面付近に配置された同不織布からなる底紙
5を介して収納されている◎この正極3は、例えば市販
のアセチレンブラックとポリテトラフルオロエチレンと
溶媒とを混合し、この混線物をステンレス製網体からな
る金属集電体6と共に、該集電体6が内側となるように
円筒状に成形した後、150”0の真空下で乾燥して前
記混線物を多孔質炭素層とすることにより作製される。
Inside the negative electrode 2, a separator 4 made of, for example, glass fiber non-woven fabric, with a positive electrode 3 disposed inside the negative electrode 2;
The positive electrode 3 is housed through a bottom paper 5 made of the same nonwoven fabric placed near the bottom of the can ◎This positive electrode 3 is made by mixing commercially available acetylene black, polytetrafluoroethylene, and a solvent, and then using this mixture. is formed into a cylindrical shape together with a metal current collector 6 made of a stainless steel net so that the current collector 6 is on the inside, and then dried under a vacuum of 150"0 to form a porous carbon layer. It is produced by

また、前記正極3上方の缶体1内には、前記セパレータ
4に支持された中央に穴を有する絶縁紙7が配設されて
いる。前記缶体1の上面開口部にはメタルトップ8がレ
ーザ溶接等により封冠されている。このメタルトップ8
の中心には穴9が開口されている。この人9にはパイプ
状の正極端子10が金属−ガラス製のシール材11’f
c介してメタルトップ8に対し電気的に絶縁して固定さ
れている。この正極端子10の下端は前記正極3の金属
集電体6にリード線12を介して接続されている。そし
て、前記缶体1内には前述した方法により製造された電
解液13が前記パイプ状正極端子10を通して注入する
ことにより収容されている。なお、前記パイプ状正極端
子10には、例えばステンレス環の栓体14が挿入され
、該端子10先端と挿入した栓体14とをレーザ溶接す
ることにより、該正極端子10の孔が封口されている。
Further, in the can body 1 above the positive electrode 3, an insulating paper 7 supported by the separator 4 and having a hole in the center is disposed. A metal top 8 is sealed to the upper opening of the can body 1 by laser welding or the like. This metal top 8
A hole 9 is opened in the center. This person 9 has a pipe-shaped positive terminal 10 with a metal-glass sealing material 11'f.
It is electrically insulated and fixed to the metal top 8 via c. The lower end of this positive electrode terminal 10 is connected to the metal current collector 6 of the positive electrode 3 via a lead wire 12. An electrolytic solution 13 manufactured by the method described above is injected into the can body 1 through the pipe-shaped positive electrode terminal 10 and accommodated therein. A plug 14 made of, for example, a stainless steel ring is inserted into the pipe-shaped positive terminal 10, and the hole of the positive terminal 10 is sealed by laser welding the tip of the terminal 10 and the inserted plug 14. There is.

比較例 リチウム片の添加処理を行なわない以外、実施例と同組
成の電解液を製造し、この電解液を用いて前述し′fc
mx図と同構造の塩化チオニル電池を組立てた。
Comparative Example An electrolytic solution having the same composition as that of the example was produced except that no lithium pieces were added, and this electrolytic solution was used to perform the above-mentioned 'fc
A thionyl chloride battery with the same structure as the mx diagram was assembled.

しかして、本実施例及び比較例の電池について、製作後
20°0で3力月間貯蔵を行ない、30Ωの定抵抗で放
電を行なったところ、第2図に示す特性図を得た。なお
、第2図中のAは本実施例の電池の特性線、Bは比較例
の電池の特性線を示す。この第2図より明らかな如く、
リチウム片の添加処理金施した電解液を用いることによ
って、放電初期の電圧降下が小さく、放電初期特性の優
れたリチウム塩化チオニル電池を得ることができること
がわかる。
After manufacture, the batteries of this example and comparative example were stored at 20° 0 for 3 months and discharged at a constant resistance of 30Ω, resulting in the characteristic diagram shown in FIG. 2. In addition, A in FIG. 2 shows the characteristic line of the battery of this example, and B shows the characteristic line of the battery of the comparative example. As is clear from this figure 2,
It can be seen that by using an electrolytic solution treated with lithium pieces, it is possible to obtain a lithium thionyl chloride battery with a small voltage drop at the initial stage of discharge and excellent initial discharge characteristics.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電初期にお
いても′電圧降下を抑制し、初期放電特性の優れた非水
溶媒電池に適した電解液の製造方法を提供できる。
As detailed above, according to the present invention, it is possible to provide a method for producing an electrolytic solution suitable for a non-aqueous solvent battery that suppresses voltage drop even in the early stage of large current discharge and has excellent initial discharge characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるリチウム塩化チオニル
電池の断面図、第2図は本実施例の電池及び比較例の電
池における大電流放電初期の放電特性を示す線図である
。 1・・・缶体、2・・・負極、3・・・正極、4・・・
セパレータ、6・・・金属集電体、8・・・メタルトッ
プ、10・・・パイプ状正極端子、13・・・電解液。
FIG. 1 is a cross-sectional view of a lithium thionyl chloride battery according to an example of the present invention, and FIG. 2 is a diagram showing the discharge characteristics of the battery of this example and the battery of a comparative example at the initial stage of large current discharge. 1... Can body, 2... Negative electrode, 3... Positive electrode, 4...
Separator, 6... Metal current collector, 8... Metal top, 10... Pipe-shaped positive terminal, 13... Electrolyte solution.

Claims (1)

【特許請求の範囲】[Claims] 缶体内にリチウムの負極と多孔質炭素を主構成材とする
正極とをセパレータを介して設け、かつ該缶体内にオキ
シハロゲン化物を主成分とし、正極活物質を兼ねる電解
液を収容した非水溶媒電池の前記電解液の製造において
、前記オキシハロゲン化物を主成分とする溶液にリチウ
ム片もしくはリチウム粉末t−添加し、常温にて攪拌し
、静置した後、口過せしめること全特徴とする非水溶媒
電池用電解液の製造方法。
A non-aqueous non-aqueous product in which a lithium negative electrode and a positive electrode mainly composed of porous carbon are disposed in a can with a separator interposed therebetween, and an electrolytic solution containing an oxyhalide as a main component and which also serves as a positive electrode active material is housed in the can. In the production of the electrolytic solution for a solvent battery, lithium pieces or lithium powder are added to the solution containing the oxyhalide as a main component, stirred at room temperature, allowed to stand, and then sipped. A method for producing an electrolyte for a non-aqueous battery.
JP5531884A 1984-03-23 1984-03-23 Method of manufacturing electrolyte for nonaqueous- solvent cell Pending JPS60200465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5531884A JPS60200465A (en) 1984-03-23 1984-03-23 Method of manufacturing electrolyte for nonaqueous- solvent cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5531884A JPS60200465A (en) 1984-03-23 1984-03-23 Method of manufacturing electrolyte for nonaqueous- solvent cell

Publications (1)

Publication Number Publication Date
JPS60200465A true JPS60200465A (en) 1985-10-09

Family

ID=12995197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5531884A Pending JPS60200465A (en) 1984-03-23 1984-03-23 Method of manufacturing electrolyte for nonaqueous- solvent cell

Country Status (1)

Country Link
JP (1) JPS60200465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552282A (en) * 1990-12-24 1993-03-02 Pall Corp Device for connecting fluid system two section

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552282A (en) * 1990-12-24 1993-03-02 Pall Corp Device for connecting fluid system two section

Similar Documents

Publication Publication Date Title
US4197366A (en) Non-aqueous electrolyte cells
JPH1197062A (en) Organic electrolyte secondary battery
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPS6381762A (en) Button type alkaline battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2609609B2 (en) Alkaline battery
JPH07220758A (en) Lithium battery
JPH0318308B2 (en)
JPS60200466A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPS59171470A (en) Nonaqueous solvent battery
JPH0259591B2 (en)
JPS6023971A (en) Manufacture of electrolyte for nonaqueous solvent battery
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPH0439187B2 (en)
GB2242566A (en) Porous lithium electrode for battery
JPS5951470A (en) Non-aqueous solvent cell
JPH0259590B2 (en)
JPH0532867B2 (en)
JPS59209274A (en) Nonaqueous solvent battery
JPH073785B2 (en) Non-aqueous electrolyte battery
JPS6155868A (en) Nonaqueous cell
JPH0349165A (en) Nonaqueous electrolyte secondary battery
JPS61190863A (en) Nonaqueous solvent battery
JPS59160974A (en) Nonaqueous solvent battery
JPH0570269B2 (en)