JPH0259590B2 - - Google Patents

Info

Publication number
JPH0259590B2
JPH0259590B2 JP10404084A JP10404084A JPH0259590B2 JP H0259590 B2 JPH0259590 B2 JP H0259590B2 JP 10404084 A JP10404084 A JP 10404084A JP 10404084 A JP10404084 A JP 10404084A JP H0259590 B2 JPH0259590 B2 JP H0259590B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
discharge
lithium
oxyhalide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10404084A
Other languages
Japanese (ja)
Other versions
JPS60249253A (en
Inventor
Takahisa Oosaki
Shuji Yamada
Kyoshi Mitsuyasu
Juichi Sato
Yoshasu Aoki
Kazuya Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP10404084A priority Critical patent/JPS60249253A/en
Publication of JPS60249253A publication Critical patent/JPS60249253A/en
Publication of JPH0259590B2 publication Critical patent/JPH0259590B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極活物質
を兼ねる電解液を改良した非水溶媒電池に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and more particularly to a non-aqueous solvent battery in which an electrolytic solution that also serves as a positive electrode active material is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウム、アル
ミニウム等の軽金属を用いた非水溶媒電池は、エ
ネルギー密度が大きく、貯蔵特性に優れ、かつ作
動温度範囲が広いという特長をもつことから、電
卓、時計、メモリのバツクアツプ電源として多用
されている。中でも負極にリチウムを用い、正極
活物質として塩化チオニル(SOCl2)、塩化スル
フリル(SO2Cl2)等のイオウのオキシハロゲン
化物を用いた電池は、特にエネルギー密度が大き
いために注目されている。こうした電池は炭素及
び金属集電体からなる正極を有し、一般に塩化ア
ルミニウム(AlCl3)、臭化アルミニウム
(AlBr3)等のルイス酸と塩化リチウム、臭化リ
チウム等のルイス塩基とを溶解したイオウの液体
状オキシハロゲン化物を電解液として用いてい
る。このため、液体状オキシハロゲン化物は、正
極活物質と電解液との双方を兼用しており、適当
な形状の正極を用いることにより高率放電特性の
優れた電池が期待できる。
Nonaqueous solvent batteries that use light metals such as lithium, sodium, and aluminum as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, so they are used in calculators, watches, and memories. It is widely used as a backup power source. Among these, batteries that use lithium for the negative electrode and sulfur oxyhalides such as thionyl chloride (SOCl 2 ) and sulfuryl chloride (SO 2 Cl 2 ) as the positive electrode active material are attracting attention because of their high energy density. . These batteries have a positive electrode made of carbon and a metal current collector, and are generally prepared by dissolving a Lewis acid such as aluminum chloride (AlCl 3 ) or aluminum bromide (AlBr 3 ) and a Lewis base such as lithium chloride or lithium bromide. A liquid oxyhalide of sulfur is used as the electrolyte. Therefore, the liquid oxyhalide serves both as a positive electrode active material and as an electrolyte, and by using a positive electrode with an appropriate shape, a battery with excellent high rate discharge characteristics can be expected.

ところで、上述した電池は正極活物質であるイ
オウのオキシハロゲン化物が負極のリチウムと直
接接触しているため、負極リチウム表面に反応生
成物であるLiCl皮膜が生成される。このLiCl皮膜
は、負極リチウムとオキシハロゲン化物との直接
接触を防止する機能を有し、貯蔵時において電池
の容量劣化を防ぐ役割りをする。しかし、放電時
には抵抗成分として働き、放電初期の電圧降下の
原因となる。この電圧降下の程度は、放電電流が
μAオーダの微小な場合には無視できる程小さい
が、大電流放電の場合には無視できず、特に高温
で長時間貯蔵してLiCl皮膜の成長が相当起つた後
や、低温での放電時には、放電開始と共に大幅な
電圧降下を生じ、所定の電圧に回復するまでかな
りの時間を必要とする問題があつた。
By the way, in the above-mentioned battery, since the sulfur oxyhalide which is the positive electrode active material is in direct contact with the lithium of the negative electrode, a LiCl film which is a reaction product is generated on the surface of the negative electrode lithium. This LiCl film has the function of preventing direct contact between the negative electrode lithium and the oxyhalide, and serves to prevent battery capacity deterioration during storage. However, during discharge, it acts as a resistance component and causes a voltage drop in the early stage of discharge. The degree of this voltage drop is so small that it can be ignored when the discharge current is minute on the μA order, but it cannot be ignored when the discharge current is large, and especially when stored at high temperatures for long periods of time, the growth of the LiCl film can occur considerably. There is a problem in that after the discharge has started, or during discharge at low temperatures, a significant voltage drop occurs upon the start of discharge, and it takes a considerable amount of time to recover to a predetermined voltage.

〔発明の目的〕[Purpose of the invention]

本発明は大電流放電初期においても電圧降下が
小さく、かつ電圧の回復時間も短かい非水溶媒電
池を提供しようとするものである。
The present invention aims to provide a non-aqueous solvent battery that has a small voltage drop even in the early stages of large current discharge and has a short voltage recovery time.

〔発明の概要〕[Summary of the invention]

本発明はリチウム等の軽金属からなる負極と、
炭素を主構成材とする正極と、イオウのオキシハ
ロゲン化物を主成分とする正極活物質を兼ねる電
解液とから構成される非水溶媒電池において、前
記電解液として前記オキシハロゲン化物を含む溶
液に塩素化ポリプロピレンを添加したものを用い
たことを骨子とするものである。かかる塩素化ポ
リプロピレンを添加した電解液を用いることによ
つて、貯蔵後に大電流放電を行なつても大幅な電
圧降下を示さず、かつ電圧の回復時間も短かい初
期放電特性の優れた非水溶媒電池を得ることがで
きる。
The present invention provides a negative electrode made of a light metal such as lithium,
In a nonaqueous solvent battery composed of a positive electrode mainly composed of carbon and an electrolytic solution that also serves as a positive electrode active material and mainly composed of a sulfur oxyhalide, a solution containing the oxyhalide as the electrolytic solution is used. The main idea is to use a material to which chlorinated polypropylene has been added. By using an electrolytic solution containing such chlorinated polypropylene, it is possible to create a non-aqueous non-aqueous solution with excellent initial discharge characteristics that does not show a significant voltage drop even when discharged at a large current after storage and has a short voltage recovery time. A solvent battery can be obtained.

上記塩素化ポリプロピレンはイオウのオキシハ
ロゲン化物を含む溶液1に対して0.2〜10gの
範囲で添加することが望ましい。この理由は塩素
化ポリプロピレンの添加量を0.2g未満にすると、
所期目的の電圧降下の抑制効果を十分に達成でき
ず、かといつてその添加量が10gを越えると、効
果の増大が望めないばかりか、かえつて電池の放
電容量が減少する恐れがあるからである。
It is desirable to add the chlorinated polypropylene in an amount of 0.2 to 10 g per 1 part of the solution containing the sulfur oxyhalide. The reason for this is that when the amount of chlorinated polypropylene added is less than 0.2g,
If the intended voltage drop suppression effect cannot be achieved sufficiently, and the amount added exceeds 10g, not only will the effect not be expected to increase, but the discharge capacity of the battery may even decrease. It is.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図を参照して説明
する。
Embodiments of the present invention will be described below with reference to FIG.

図中の1は上面が開口した負極端子を兼ねるス
テンレス製の有底円筒形の缶体である。この缶体
1の内面には、金属リチウムからなる筒状の負極
2が圧着されている。この負極2の内側の缶体1
内には、筒状ステンレス製網体からなる金属集電
体3の外側に筒状多孔質炭素層4を圧着した構造
の正極がガラス繊維不織布からなる籠状のセパ
レータ61,62を介して設けられている。なお、
前記正極は、例えば市販のアセチレンブラツク
とポリテトラフロロエチレンとを混合し、この混
練物をステンレス製網体からなる金属集電体3と
共に該集電体3が内側となるように円筒状に成形
した後、150℃の真空下で乾燥して前記混練物を
多孔質炭素層4とすることにより作製される。
Reference numeral 1 in the figure is a bottomed cylindrical stainless steel can with an open top that also serves as a negative electrode terminal. A cylindrical negative electrode 2 made of metallic lithium is press-bonded to the inner surface of the can 1. Can body 1 inside this negative electrode 2
Inside, a positive electrode 5 has a structure in which a cylindrical porous carbon layer 4 is crimped onto the outside of a metal current collector 3 made of a cylindrical stainless steel net, and cage-like separators 6 1 , 6 2 made of glass fiber nonwoven fabric are placed inside. It is provided through. In addition,
The positive electrode 5 is made by mixing commercially available acetylene black and polytetrafluoroethylene, and shaping the mixture together with a metal current collector 3 made of a stainless steel mesh into a cylindrical shape with the current collector 3 on the inside. After molding, the porous carbon layer 4 is produced by drying the kneaded product under vacuum at 150°C.

また、前記正極上方の缶体1内には、前記セ
パレータ61に支持された中央に穴を有する絶縁
紙7が配設されている。前記缶体1の上面開口部
にはメタルトツプ8がレーザ溶接等により封冠さ
れている。このメタルトツプ8の中心には穴9が
開口されており、この穴9にはパイプ状正極端子
10がガラス製のシール材11を介して前記メタ
ルトツプ8に対し電気的に絶縁して固定されてい
る。前記正極端子10の下端はリード線12を介
して前記正極の金属集電体3に接続されてい
る。そして、前記缶体1内には前記パイプ状正極
端子10から注入された電解液13が収容されて
いる。この電解液13は塩化チオニル(SOCl2
中に塩化アルミニウム(AlCl3)と塩化リチウム
(LiCl)とを夫々1.5モル/溶解した溶液に塩素
化ポリプロピレン粉末を2g/の割合で添加し
たものである。また、前記パイプ状正極端子10
には例えばステンレス製の針体14が挿入され、
該端子10先端と挿入した針体14とをレーザ溶
接することにより正極端子10の孔が封口されて
いる。
Further, in the can body 1 above the positive electrode 5 , an insulating paper 7 having a hole in the center and supported by the separator 61 is disposed. A metal top 8 is sealed to the upper opening of the can body 1 by laser welding or the like. A hole 9 is opened in the center of the metal top 8, and a pipe-shaped positive electrode terminal 10 is fixed to the metal top 8 in an electrically insulated manner through a sealing material 11 made of glass. . The lower end of the positive electrode terminal 10 is connected to the metal current collector 3 of the positive electrode 5 via a lead wire 12. The can body 1 accommodates an electrolytic solution 13 injected from the pipe-shaped positive electrode terminal 10. This electrolyte 13 is thionyl chloride (SOCl 2 )
Chlorinated polypropylene powder was added at a rate of 2 g/solution to a solution in which 1.5 mol/each of aluminum chloride (AlCl 3 ) and lithium chloride (LiCl) were dissolved. Further, the pipe-shaped positive electrode terminal 10
A needle body 14 made of stainless steel, for example, is inserted into the
The hole of the positive electrode terminal 10 is sealed by laser welding the tip of the terminal 10 and the inserted needle body 14.

比較例 電解液としてSOCl2中にAlCl3とLiClを夫々1.5
モル/溶解した塩素化ポリプロピレン無添加の
ものを用いた以外、実施例と同構造の電池を組立
てた。
Comparative example 1.5 each of AlCl 3 and LiCl in SOCl 2 as electrolyte
A battery having the same structure as the example was assembled except that mol/dissolved chlorinated polypropylene without additives was used.

しかして、本実施例及び比較例の電池につい
て、組立て後25℃で3カ月間貯蔵を行ない、30Ω
の定抵抗放電を行なつて放電初期の特性を調べた
ところ、第2図に示す特性図を得た。なお、第2
図中のAは実施例の電池の放電曲線、Bは比較例
の電池の放電曲線、を夫々示す。第2図より明ら
かな如く、塩素化ポリプロピレンを添加して電解
液を用いる本実施例の電池は塩素化ポリプロピレ
ン無添加の電解液を用いる比較例の電池に比べて
初期の電圧降下が小さく、かつ電圧の回復時間が
短かいことがわかる。
Therefore, the batteries of this example and comparative example were stored at 25°C for 3 months after assembly, and
When constant resistance discharge was carried out and the characteristics at the initial stage of discharge were investigated, the characteristic diagram shown in FIG. 2 was obtained. In addition, the second
In the figure, A shows the discharge curve of the battery of the example, and B shows the discharge curve of the battery of the comparative example. As is clear from Figure 2, the battery of this example using an electrolyte with chlorinated polypropylene added had a smaller initial voltage drop than the comparative battery using an electrolyte without chlorinated polypropylene. It can be seen that the voltage recovery time is short.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電
初期においても電圧降下を抑制し、かつ電圧の回
復時間も短縮される等の初期放電特性の優れた非
水溶媒電池を提供できる。
As described in detail above, according to the present invention, it is possible to provide a non-aqueous solvent battery with excellent initial discharge characteristics, such as suppressing voltage drop and shortening voltage recovery time even in the initial stage of large current discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す非水溶媒電池
の断面図、第2図は本実施例の電池及び比較例の
電池における大電流放電初期の放電特性を示す線
図である。 1……缶体、2……負極、3……金属集電体、
4……多孔質炭素層、……正極、61,62……
セパレータ、8……メタルトツプ、10……パイ
プ状正極端子、13……電解液。
FIG. 1 is a sectional view of a non-aqueous solvent battery showing an example of the present invention, and FIG. 2 is a diagram showing the discharge characteristics at the initial stage of large current discharge in the battery of this example and the battery of a comparative example. 1...Can body, 2...Negative electrode, 3...Metal current collector,
4... Porous carbon layer, 5 ... Positive electrode, 6 1 , 6 2 ...
Separator, 8... Metal top, 10... Pipe-shaped positive terminal, 13... Electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウム、ナトリウム、アルミニウムの軽金
属からなる負極と、炭素を主構成材とする正極
と、イオウのオキシハロゲン化物を主成分とする
正極活物質を兼ねる電解液とから構成された非水
溶媒電池において、前記電解液として前記オキシ
ハロゲン化物を含む溶液に塩素化ポリプロピレン
を添加したものを用いたことを特徴とする非水溶
媒電池。
1. In a nonaqueous solvent battery composed of a negative electrode made of light metals such as lithium, sodium, and aluminum, a positive electrode mainly composed of carbon, and an electrolyte that also serves as a positive electrode active material and mainly composed of sulfur oxyhalide. . A non-aqueous solvent battery, characterized in that the electrolytic solution is a solution containing the oxyhalide to which chlorinated polypropylene is added.
JP10404084A 1984-05-23 1984-05-23 Nonaqueous solvent battery Granted JPS60249253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10404084A JPS60249253A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10404084A JPS60249253A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS60249253A JPS60249253A (en) 1985-12-09
JPH0259590B2 true JPH0259590B2 (en) 1990-12-12

Family

ID=14370106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10404084A Granted JPS60249253A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS60249253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329279A (en) * 1991-04-30 1992-11-18 Yamaichi Electron Co Ltd Socket for electric part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329279A (en) * 1991-04-30 1992-11-18 Yamaichi Electron Co Ltd Socket for electric part

Also Published As

Publication number Publication date
JPS60249253A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
US4456665A (en) Calcium electrochemical reserve cell
JPH0259590B2 (en)
JPS6182674A (en) Nonaqueous solvent battery
JPS6154160A (en) Nonaqueous solvent battery
JPH0439187B2 (en)
JPH0259589B2 (en)
JPH065621B2 (en) Method for manufacturing non-aqueous solvent battery
JPS6182673A (en) Nonaqueous solvent battery
JPS5987771A (en) Nonaqueous solvent battery
JPH0763014B2 (en) Non-aqueous solvent battery
JPS61190863A (en) Nonaqueous solvent battery
JPH0318308B2 (en)
JPH0439188B2 (en)
JPH0713898B2 (en) Non-aqueous solvent battery
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPS61190864A (en) Nonaqueous solvent battery
JPS60200464A (en) Nonaqueous-solvent cell
JPS6154159A (en) Nonaqueous solvent battery
JPS6023971A (en) Manufacture of electrolyte for nonaqueous solvent battery
JPH0532867B2 (en)
JPS59209274A (en) Nonaqueous solvent battery
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPS63175347A (en) Nonaqueous solvent battery
JPH022270B2 (en)
JPH0259591B2 (en)