JPS6182673A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPS6182673A
JPS6182673A JP59203568A JP20356884A JPS6182673A JP S6182673 A JPS6182673 A JP S6182673A JP 59203568 A JP59203568 A JP 59203568A JP 20356884 A JP20356884 A JP 20356884A JP S6182673 A JPS6182673 A JP S6182673A
Authority
JP
Japan
Prior art keywords
chloride
voltage
vinyl chloride
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59203568A
Other languages
Japanese (ja)
Other versions
JPH063736B2 (en
Inventor
Takahisa Osaki
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59203568A priority Critical patent/JPH063736B2/en
Publication of JPS6182673A publication Critical patent/JPS6182673A/en
Publication of JPH063736B2 publication Critical patent/JPH063736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To minimize the voltage reduction of a nonaqueous solvent battery during its initial stage of large current electric discharge and shorten the time for voltage recovery by adding a vinyl chloride-vinylidene chloride copolymer to prepare the liquid electrolyte. CONSTITUTION:A can 1 contains a liquid electrolyte 13 poured through a pipe- like positive terminal 10. The liquid electrolyte 13 is prepared by adding 2.5g/l of vinyl chloride-vinylidene chloride copolymer to a solution prepared by dissolving 1.5mol/l of aluminum chloride and 1.5mol/l of lithium chloride in thionyl chloride. After a stainless steel needle 14 is inserted in the positive terminal 10, the needle 14 and the end of the terminal 10 are fused by laser welding to seal the terminal 10. Owing to the above structure, only a slight voltage decrease occurs during the initial stage of large current electric discharge. Furthermore, it is possible to reduce the time for voltage recovery.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極活物質を兼ねろ
電解液を改良した非水溶媒電池に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and more particularly to a non-aqueous solvent battery in which an electrolyte that also serves as a positive electrode active material is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウム、アルミニウム
等の軽金属を用いた非水溶媒電池は、エネルギー密度が
大きく、貯蔵特性に優れ、かつ作動温度範囲が広いとい
う特長をもつことから、電卓1時計、メモリのバックア
ップ電源として多用されている。中でも負極にリチウム
を用い、正極活物質として塩化チオニル(SOCl2)
、塩化スルフリル(SO2C22)等のイオウのオキシ
ハロゲン化物を用いた電池は、特にエネルギー密度が大
きいために注目されている。こうした電池は炭素及び金
属集電体からなる正極を有し、一般に塩化アルミニウム
(ktcL5 ) 、臭化アルミニウム(AtBrρ等
のルイス酸と塩化リチウム。
Nonaqueous solvent batteries that use light metals such as lithium, sodium, and aluminum as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range. It is often used as a backup power source. Among them, lithium is used for the negative electrode, and thionyl chloride (SOCl2) is used as the positive electrode active material.
Batteries using sulfur oxyhalides, such as sulfuryl chloride (SO2C22), are attracting attention because of their particularly high energy density. Such cells have a positive electrode consisting of carbon and a metal current collector, typically a Lewis acid such as aluminum chloride (ktcL5), aluminum bromide (AtBrρ) and lithium chloride.

臭化リチウム等のルイス塩基とを浴解したイオウの液体
状オキシハロr)化物を電解液として用いている。この
ため、液体状オキシハロゲン化物は、正極活物質と電解
液との双方を兼用しており、適当な形状の正極を用いる
ことにより高率放電特性の優れた電池が期待できる。
A liquid oxyhalide of sulfur obtained by bath-dissolving a Lewis base such as lithium bromide is used as the electrolyte. Therefore, the liquid oxyhalide serves both as a positive electrode active material and as an electrolyte, and by using a positive electrode with an appropriate shape, a battery with excellent high rate discharge characteristics can be expected.

ところで、上述した電池は正極活物質であるイオウのオ
キシハロゲン化物が負極のリチウムと直接接触している
ため、負極リチウム表面に反応生成物であるLIC1皮
膜が生成される。このLiCt皮膜は、負極リチウムと
オキシハロゲン化物との直接接触を防止する機能を有し
、貯蔵時において電池の容量劣化を防ぐ役割りをする。
By the way, in the above-mentioned battery, since the sulfur oxyhalide which is the positive electrode active material is in direct contact with the lithium of the negative electrode, a LIC1 film which is a reaction product is generated on the surface of the negative electrode lithium. This LiCt film has the function of preventing direct contact between the negative electrode lithium and the oxyhalide, and serves to prevent battery capacity deterioration during storage.

しかし、放電時には抵抗成分として働き、放電初期の電
圧降下の原因となる。この電圧降下の程度は、放電電流
がμAオーダの微小な場合には無視できる程小さいが、
大電流放電の場合には無視できず、特に高温で長時間貯
蔵してLiCL皮膜の成長が相当起った後や、低温での
放電時には放電開始と共に大幅な電圧降下を生じ、所定
の電圧に回復するまでかなりの時間を必要とする、いわ
ゆる電圧遅延現象と呼ばれる問題があった。
However, during discharge, it acts as a resistance component and causes a voltage drop in the early stage of discharge. The degree of this voltage drop is negligible when the discharge current is minute on the μA order, but
This cannot be ignored in the case of large current discharge, especially after storage at high temperature for a long time and considerable growth of the LiCL film has occurred, or when discharging at low temperature, a large voltage drop occurs at the beginning of discharge, and the voltage does not reach the specified voltage. There was a problem called the so-called voltage delay phenomenon, which required a considerable amount of time to recover.

このようなことから、上記問題を解決するためニイくつ
かの提案がなされており、例、tハ’l?公昭57−3
7992には負極表面を塩化ビニル。
For this reason, several proposals have been made to solve the above problems, such as: Kosho 57-3
7992 has a negative electrode surface made of vinyl chloride.

塩化ビニリデンのホモポリマーや塩化ビニルと酢酸ビニ
ルとの共重合体等のビニル、/ IJマで被覆すること
が開示されている。しかしながら、かかる方法によると
確かに電圧遅延現象は大幅に改善されるが、電池を高温
で貯蔵した後に大電流放電を行なったような場合には電
圧の回復に少々の時間を要していた。
Coating with a vinyl/IJ polymer such as a homopolymer of vinylidene chloride or a copolymer of vinyl chloride and vinyl acetate has been disclosed. However, although this method does greatly improve the voltage delay phenomenon, it takes some time for the voltage to recover when a large current discharge is performed after the battery has been stored at a high temperature.

〔発明の目的〕[Purpose of the invention]

本発明は、大電流放電初期においても電圧降下が小さく
、かつ電圧の回復時間も短く、更に放電特性の優れた非
水溶媒電池を提供しようとするものである。
The present invention aims to provide a non-aqueous solvent battery that has a small voltage drop even in the early stages of large current discharge, a short voltage recovery time, and excellent discharge characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、リチウム等の程金属からなる負極と、炭素を
主構成材とする正極と、イオウのオキシハロゲン化物を
主成分とする正極活物質を兼ねる電解液とから構成され
る非水溶媒電池において、前記電解液に塩化ビニルと塩
化ビニリデンの共重合体を添加したことを特徴とするも
のである。このように電解液に塩化ビニルと塩化ビニリ
デンの共重合体を存在させた電池は、貯蔵後に大電流放
電を行なっても大幅な電圧降下を示さず、しかも電圧の
回復時間も短い。この場合、電圧回復時間の短縮の程度
は、塩化ビニルや塩化ビニリゾ7等のホモポリマ及び両
者の混合物、又は塩化ビニル−酢酸ビニル共重合体等の
ビニルポリマを電解液に添加させた電池に比べて格段に
優れている。
The present invention provides a non-aqueous solvent battery comprising a negative electrode made of a metal such as lithium, a positive electrode mainly made of carbon, and an electrolyte that also serves as a positive electrode active material and whose main component is sulfur oxyhalide. , a copolymer of vinyl chloride and vinylidene chloride is added to the electrolytic solution. In this way, a battery in which a copolymer of vinyl chloride and vinylidene chloride is present in the electrolyte does not show a significant voltage drop even when discharged at a large current after storage, and also has a short voltage recovery time. In this case, the voltage recovery time is significantly shortened compared to batteries in which homopolymers such as vinyl chloride, vinyl chloride 7, etc., mixtures of both, or vinyl polymers such as vinyl chloride-vinyl acetate copolymer are added to the electrolyte. Excellent.

上記電解液中への塩化ビニル−塩化ビニリデン共重合体
の含有量は、0.2〜10 Vtの範囲にすることが望
ましい。この理由は、共重合体の含有量を0.217を
未満にすると、電圧降下の抑制効果等を十分に発揮でき
ず、かといってその量が10 Vtを越えると、その効
果が殆んど増大しないばかりか、かえって電池の放電容
量が減少する恐れがある。
The content of the vinyl chloride-vinylidene chloride copolymer in the electrolytic solution is desirably in the range of 0.2 to 10 Vt. The reason for this is that if the content of the copolymer is less than 0.217, it will not be able to sufficiently exhibit the effect of suppressing voltage drop, etc., but if the amount exceeds 10 Vt, the effect will be negligible. Not only will it not increase, but there is a possibility that the discharge capacity of the battery will decrease on the contrary.

本発明に用いる塩化ビニル−塩化ビニリデン共重合体は
塩化ビニルと塩化ビニリデンとの重量比で95=5〜1
0〜90、より好筐しくは95:5〜50:50の範囲
にすることが望ましい。
The vinyl chloride-vinylidene chloride copolymer used in the present invention has a weight ratio of vinyl chloride to vinylidene chloride of 95=5 to 1.
It is desirable that the ratio be in the range of 0 to 90, more preferably 95:5 to 50:50.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例 図中の1は負極端子を兼ねる上面が開口した例えばステ
ンレス製の有底円筒形の缶体である。
Reference numeral 1 in the drawings indicates a bottomed cylindrical can made of, for example, stainless steel and having an open top which also serves as a negative electrode terminal.

この缶体1の内面には金属リチウムからなる筒状の負極
2が圧着されている。この負極2の内側の缶体I内には
、筒状ステンレス製網体の金属集τに体3の外側に筒状
多孔質炭素層4を圧着した構造の正極上かがラス不織布
からなるセパレータ61,6□を介して設けられている
。なお、前記正極上は、例えば市販のアセチレンブラッ
クとポリテトラフルオロエチレンとを混合し、この混練
物をステ/レス製網体の金属集電体3と共に該集電体が
内側となるように円筒状に成形した後、150℃の真空
下で乾燥して前記混練物を多孔質炭素層4とすることに
より作製される。
A cylindrical negative electrode 2 made of metallic lithium is pressure-bonded to the inner surface of the can 1. Inside the can body I inside the negative electrode 2, a separator made of lath nonwoven fabric is placed over the positive electrode, which has a structure in which a cylindrical porous carbon layer 4 is crimped to the outside of the body 3 to a metal collection τ of a cylindrical stainless steel mesh body. 61, 6□. Note that on the positive electrode, for example, commercially available acetylene black and polytetrafluoroethylene are mixed, and this kneaded mixture is placed in a cylinder together with a metal current collector 3 made of stainless steel mesh so that the current collector is on the inside. The porous carbon layer 4 is produced by forming the kneaded product into a porous carbon layer 4 by drying it under vacuum at 150°C.

また、前記正極上上方の缶体1内には、前記セル−タロ
1に支持された中央に穴を有する絶縁紙7が配設されて
いる。前記缶体ノの上面開口部にはメタルドッグ8がレ
ーザ浴接等により封着されており、かつ該メタルドッグ
8の中心の穴9にはパイプ状正極端子10がガラス製の
シール材11を介してメタルドッグ8に対し電気的に絶
縁して固定されている。前記正極端子10の下端はリー
ド線12を介して前記正極王の金属集電体3に接続され
ている。そして、前記缶体1内には前記ノ々イグ状正極
端子10から注入された電解液13が収容されている。
Further, in the can body 1 above the positive electrode, an insulating paper 7 supported by the cell taro 1 and having a hole in the center is disposed. A metal dog 8 is sealed to the upper opening of the can body by laser bath welding or the like, and a pipe-shaped positive electrode terminal 10 is attached to a hole 9 in the center of the metal dog 8 with a sealing material 11 made of glass. It is electrically insulated and fixed to the metal dog 8 via the metal dog 8. The lower end of the positive electrode terminal 10 is connected to the metal current collector 3 of the positive electrode king via a lead wire 12. The can body 1 accommodates an electrolytic solution 13 injected from the nozzle-shaped positive electrode terminal 10.

この電解液13は塩化チオニル(socz2)中に塩化
アルミニウム(AtC43)と塩化リチウム(t、tc
z)とを夫々1,5モル/を溶解させた液に、市販の塩
化ビニル−塩化ビニリゾy共重合体(共重合比80:2
0)を2.5 g/を添加したものである。
This electrolyte 13 contains aluminum chloride (AtC43) and lithium chloride (t, tc) in thionyl chloride (socz2).
z) and a commercially available vinyl chloride-vinyl chloride lyso y copolymer (copolymerization ratio 80:2).
0) was added at 2.5 g/.

なお、前記パイプ状正極端子10には例えばステンレス
製の封体14が挿入され、該端子IQ先端と挿入した封
体14とをレーザ溶接することにより該正極端子10が
封口される。
A seal 14 made of stainless steel, for example, is inserted into the pipe-shaped positive electrode terminal 10, and the positive electrode terminal 10 is sealed by laser welding the tip of the terminal IQ and the inserted seal 14.

比較例1 電解液として塩化ビニル−塩化ビニリデン共重合体を添
加しない1,5モル/を濃度のktct3/LiC4系
のものを用いた以外、実施例と同構造の電池を組立てた
Comparative Example 1 A battery having the same structure as in Example was assembled, except that a ktct3/LiC4-based electrolyte having a concentration of 1.5 mol/mole to which no vinyl chloride-vinylidene chloride copolymer was added was used as the electrolyte.

比較例2 電解液として、塩化ビニルホモポリマーを2、5 Vt
添加した1、5モル/を濃度のAtct3/LIC4系
のものを用いた以外、実施例と同構造の電池を組立てた
Comparative Example 2 Vinyl chloride homopolymer was used as an electrolyte at 2.5 Vt.
A battery having the same structure as in the example was assembled except that an Atct3/LIC4 type with a concentration of 1.5 mol/mole was used.

比較例3 電解液として、塩化ビニリデンホモポリマーを2.5 
g/を添加した1、5モル/を濃度のA1.Cts /
LiC2系のものを用いた以外、実施例と同構造の電池
を組立てた。
Comparative Example 3 Vinylidene chloride homopolymer was used as an electrolyte at 2.5
g/added to a concentration of 1.5 mol/A1. Cts/
A battery having the same structure as the example was assembled except that a LiC2 type battery was used.

比較例4 ?!!解液として、塩化ビニルホモポリマート塩化ビニ
リデンホモポリマーとを80:20の重債比で混合した
混合ポリマーを2.5 g/を添加した1、5モル/を
濃度のAtct、 / LIC1系のものを用いた以外
、実施例と同構造の電池を組立てた。
Comparative example 4? ! ! As a solution, 2.5 g of a mixed polymer prepared by mixing vinyl chloride homopolymer and vinylidene chloride homopolymer at a ratio of 80:20 was added to give a concentration of 1.5 mol/Atct/LIC1 system. A battery having the same structure as in the example was assembled except that the same material was used.

比較例5 電解液として、塩化ビニル−酢酸ビニル共重合体(共重
合比86:14)を2.5 g/を添加した1、5モル
μ濃度のfi、tct、 / Li CL系のものを用
いた以外、実施例と同構造の電池を組立てた。
Comparative Example 5 As an electrolytic solution, a fi, tct, / Li CL type electrolyte with a concentration of 1.5 molar μ to which 2.5 g of vinyl chloride-vinyl acetate copolymer (copolymerization ratio 86:14) was added was used. A battery having the same structure as the example was assembled except that the battery was used.

しかして、本実施例及び比較例1〜5の電池について、
組立後60℃で20日間貯蔵を行なった後、30Ωの定
抵抗放電を行ない、放電開始時の最低電圧と、電圧が2
.5vに戻るまでの時間、並びに平均作動電圧及び放電
容量を測定した。その結果を、下記表に示した。
Therefore, regarding the batteries of this example and comparative examples 1 to 5,
After assembling and storing at 60℃ for 20 days, a constant resistance discharge of 30Ω was performed, and the minimum voltage at the start of discharge and the voltage were 2.
.. The time taken to return to 5V, as well as the average operating voltage and discharge capacity were measured. The results are shown in the table below.

上表より明らかな如<、444市に塩化ビニル−塩化ビ
ニリゾy共重合体を4男させた電池は、従来の電池に比
べて初期の電圧降下が小さく、かつ電圧の回復時間も短
かく、更に放電容量も向上することがわかる。
As is clear from the above table, the battery made of vinyl chloride-vinyl chloride lyso-y copolymer has a smaller initial voltage drop and a shorter voltage recovery time than conventional batteries. Furthermore, it can be seen that the discharge capacity is also improved.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電初期にお
いても電圧降下を抑制し、かつ電圧の回復時間も短縮さ
れ、更に放電容量も向上する等、放電特性の優れた非水
溶媒電池を提供できる。
As detailed above, the present invention provides a nonaqueous solvent battery with excellent discharge characteristics, such as suppressing voltage drop even in the early stage of large current discharge, shortening voltage recovery time, and improving discharge capacity. Can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例を示す非水溶媒電池の断面図で
ある。 1・・・缶体、2・・・負極、3・・・金属集電体、4
・・・多孔質炭素層、Σ・・・正極、61.62・・・
セパレータ、8・・・メタルトップ、10・・・/臂イ
グ状正極端子、13・・・電解液。
The figure is a sectional view of a non-aqueous solvent battery showing one embodiment of the present invention. 1... Can body, 2... Negative electrode, 3... Metal current collector, 4
... Porous carbon layer, Σ... Positive electrode, 61.62...
Separator, 8...Metal top, 10.../arm-shaped positive electrode terminal, 13... Electrolyte solution.

Claims (1)

【特許請求の範囲】[Claims] リチウム、ナトリウム、アルミニウムの軽金属からなる
負極と、炭素を主構成材とする正極と、イオウのオキシ
ハロゲン化物を主成分とする正極活物質を兼ねる電解液
とから構成された非水溶媒電池において、前記電解液に
塩化ビニルと塩化ビニリデンとの共重合体を添加したこ
とを特徴とする非水溶媒電池。
In a non-aqueous solvent battery that is composed of a negative electrode made of light metals such as lithium, sodium, and aluminum, a positive electrode mainly made of carbon, and an electrolyte that also serves as a positive electrode active material and mainly made of sulfur oxyhalide, A non-aqueous solvent battery, characterized in that a copolymer of vinyl chloride and vinylidene chloride is added to the electrolyte.
JP59203568A 1984-09-28 1984-09-28 Non-aqueous solvent battery Expired - Lifetime JPH063736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203568A JPH063736B2 (en) 1984-09-28 1984-09-28 Non-aqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203568A JPH063736B2 (en) 1984-09-28 1984-09-28 Non-aqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS6182673A true JPS6182673A (en) 1986-04-26
JPH063736B2 JPH063736B2 (en) 1994-01-12

Family

ID=16476280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203568A Expired - Lifetime JPH063736B2 (en) 1984-09-28 1984-09-28 Non-aqueous solvent battery

Country Status (1)

Country Link
JP (1) JPH063736B2 (en)

Also Published As

Publication number Publication date
JPH063736B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JPS6182673A (en) Nonaqueous solvent battery
US4228228A (en) Electrode structure for energy cells
JPS6182674A (en) Nonaqueous solvent battery
JP2811834B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
JPH0259590B2 (en)
JPS61165961A (en) Organic electrolytic solution battery
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPH0763014B2 (en) Non-aqueous solvent battery
JPS60249252A (en) Nonaqueous solvent battery
JPS62128454A (en) Nonaqueous solvent cell
JPS6154160A (en) Nonaqueous solvent battery
JPS60200464A (en) Nonaqueous-solvent cell
JPS61190863A (en) Nonaqueous solvent battery
JPS60208055A (en) Manufacture of nonaqueous solvent battery
JPS59171470A (en) Nonaqueous solvent battery
JPH0318308B2 (en)
JPH1064551A (en) Inorganic nonaqueous solvent battery
JPS61190864A (en) Nonaqueous solvent battery
JPS59160974A (en) Nonaqueous solvent battery
JPS60240060A (en) Nonaqueous solvent cell
JPH0439187B2 (en)
JPS59230262A (en) Nonaqueous solvent battery
JPS63175347A (en) Nonaqueous solvent battery
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell