JPS60240060A - Nonaqueous solvent cell - Google Patents

Nonaqueous solvent cell

Info

Publication number
JPS60240060A
JPS60240060A JP9598784A JP9598784A JPS60240060A JP S60240060 A JPS60240060 A JP S60240060A JP 9598784 A JP9598784 A JP 9598784A JP 9598784 A JP9598784 A JP 9598784A JP S60240060 A JPS60240060 A JP S60240060A
Authority
JP
Japan
Prior art keywords
positive electrode
resin
porous carbon
carbon body
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9598784A
Other languages
Japanese (ja)
Other versions
JPH0345866B2 (en
Inventor
Kazuya Hiratsuka
和也 平塚
Yoshiyasu Aoki
青木 良康
Takahisa Osaki
隆久 大崎
Shuji Yamada
修司 山田
Kiyoshi Mitsuyasu
光安 清志
Yuichi Sato
祐一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP9598784A priority Critical patent/JPS60240060A/en
Publication of JPS60240060A publication Critical patent/JPS60240060A/en
Publication of JPH0345866B2 publication Critical patent/JPH0345866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Abstract

PURPOSE:To improve the mechanical strength of the porous carbon body of a positive electrode and dissolve cell failures due to the fragility of the carbon body. CONSTITUTION:Melamine resin, phenol resin, polyamide resin, chlorinated polypropylene resin, chlorinated polyethylene resin, vinyl acetate resin, vinyl chloride resin, and vinyl chloride-vinyl acetate copolymer can be used as a high molecular compound to be solved in a liquid oxyhalogenide. A porous carbon body molded with a binding agent used jointly with such a high molecular copolymer holds a positive electrode via the binding action of only polytetrafluoroethylene, because the high molecular compound in the porous carbon body is solvent in the liquid oxyhalogenide after a cell is assembled. As a result, the absorption of the volume expansion due to the discharge reaction of the positive electrode is not entirely impeded owing to the spider web-like fiber-forming action of polytetrafluoroethylene, thereby the positive electrode utilization factor can be prevented from being decreased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極の結着剤を改良
した非水溶媒電池に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and particularly to a non-aqueous solvent battery in which the binder of the positive electrode is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、エネルギー密度が高く、長期貯蔵特性の優れた電
池として、リチウム・塩化チオニル系の非水溶媒電池が
注目されている。かかる電池の最大の特徴は、正極活物
質として塩化チオニルなどの液状オキシ−・ログン化物
を用いることにあり、多孔性の正極表面で液状活物質が
電気化学的に還元されることによシミ池反応が進行する
In recent years, lithium-thionyl chloride-based non-aqueous solvent batteries have attracted attention as batteries with high energy density and excellent long-term storage characteristics. The most important feature of such batteries is that they use a liquid oxylognide such as thionyl chloride as the positive electrode active material, and stains are eliminated by electrochemical reduction of the liquid active material on the porous positive electrode surface. The reaction progresses.

一般に、円筒型のリチウム・塩化チオニル系の非水溶媒
電池は缶体内面にリチウム製の負極を配設し、この負極
内側の缶体内にセ・母レータを介して金網等の金属集電
体を内存させた多孔質炭素体からなる正極を収納すると
共に、該正極に塩化チオニルを主成分とし、正極活物質
を兼ねる電解液を含浸させた構造になっている。
Generally, a cylindrical lithium/thionyl chloride-based non-aqueous solvent battery has a lithium negative electrode arranged inside the can, and a metal current collector such as a wire mesh placed inside the negative electrode through a mother plate. It has a structure in which it houses a positive electrode made of a porous carbon body in which ions are contained, and the positive electrode is impregnated with an electrolytic solution containing thionyl chloride as a main component and which also serves as a positive electrode active material.

こうした構造の電池においては、正極の特性によp電池
放電特性が大きく影響され、正極活物質の電気化元凶反
応に対する触媒的活性度、気孔率、電気的導電性等が重
要な因子となる。
In a battery having such a structure, the p-cell discharge characteristics are greatly influenced by the characteristics of the positive electrode, and the catalytic activity of the positive electrode active material with respect to the reaction responsible for electrification, porosity, electrical conductivity, etc. are important factors.

ところで、上述した円筒型電池の正極の多孔質炭素体と
しては、従来よシアセチレンブラ。
By the way, as the porous carbon material of the positive electrode of the above-mentioned cylindrical battery, cyacetylene brane has conventionally been used.

り等のカーボンブラックにポリテトラフルオロエチレン
を結着剤として添加し、混練した後、所定の形状に成形
されたものが使用されている。
Polytetrafluoroethylene is added as a binder to carbon black such as carbon black, kneaded, and then molded into a predetermined shape.

このような正極の多孔質炭素体は、微視的に見すると、
ポリテトラフルオロエチレンが6蜘の巣状”に繊維化さ
れた中にカーボンプラ、り粒子が捕捉されてお)、正極
反応に伴なう放電生成物がカーがンブラックの粒子間に
析出する時に生じる正極の体積膨張を円滑かつ均一に吸
収する作用をなすため、正極の利用率の向上に寄与する
。かかる蜘の巣状”の繊維化による結合様式は、ポリテ
)・ラフルオロエチレン結着剤の最大の特長であり、他
の結合剤では実現できない。また、ポリテトラフルオロ
エチレンは液状オキシハロダン化物に対す耐久性におい
ても極めて優れている。
When viewed microscopically, such a porous carbon body of the positive electrode has the following characteristics:
Carbon plastic particles are trapped in the polytetrafluoroethylene fibers shaped like six webs), and discharge products from the positive electrode reaction are precipitated between the carbon black particles. It acts to smoothly and uniformly absorb the volumetric expansion of the positive electrode that sometimes occurs, contributing to improving the utilization rate of the positive electrode.The bonding method of this "spider-like" fiber formation is based on polytetrafluoroethylene bonding. This is the agent's greatest feature, and cannot be achieved with other binders. Polytetrafluoroethylene also has extremely excellent durability against liquid oxyhalodanides.

しかしながら、ポリテトラフルオロエチレンで結着し九
カーデンブラックは、強固な固形物とはならず、粘土状
の半固形物であり、これをプレス成形等によって所定形
状に成形することにより得られる多孔質炭素体は極めて
くずれ易い。このため、該多孔質炭素体に金属集電体を
内在させ、正極として缶体内に装填する電池の組立てに
おいて、該多孔質炭素体が割れ、欠は等の不良を生じた
如、電池組立て後の機械的衝撃によって金属集電体から
分離したり、セパレータとの密着性が悪化したシする。
However, nine-carden black bound with polytetrafluoroethylene does not form a strong solid, but is a clay-like semi-solid, and a porous material obtained by forming it into a predetermined shape by press molding etc. Carbon bodies are extremely fragile. For this reason, when assembling a battery in which a metal current collector is embedded in the porous carbon body and loaded into a case as a positive electrode, defects such as cracks and chips may occur in the porous carbon body after the battery is assembled. The mechanical impact may cause it to separate from the metal current collector or cause poor adhesion to the separator.

その結果、かかる正極を有する電池では、放電電圧が不
規則に低下したシ、最悪の場合は内部ショートを起こす
恐れがある。
As a result, in a battery having such a positive electrode, the discharge voltage may drop irregularly, and in the worst case, an internal short circuit may occur.

〔発明の目的〕[Purpose of the invention]

本発明は、正極の多孔質炭素体における機械的強度の脆
弱さによって生じる電池不良を解消し、かつ放電電圧の
安定性及び重負荷特性の優れた非水溶媒電池を提供しよ
うとするものである。
The present invention aims to eliminate battery defects caused by weak mechanical strength in the porous carbon body of the positive electrode, and to provide a non-aqueous solvent battery with excellent discharge voltage stability and heavy load characteristics. .

〔発明の概要〕[Summary of the invention]

本発明は正極の多孔質炭素体の主材であるカーボンブラ
ックの結着剤としてポリテトラフルオロエチレンと、電
解液の正極活物質を兼ねる液状オキシハロダン化物に溶
解する高分子化合物との混合物を用いることを骨子とす
るものである。こうした高分子化合物を併用した結着剤
で成形された多孔質炭素体は、電池組立て後、前記多孔
質炭素体中の高分子化合物が液状オキシハロダン化物に
溶解するため、高分子化合物の溶解後の多孔質炭素体は
ポリテトラフルオロエチレンのみの結着作用で正極が保
持されることになる。その結果、ポリテトラフルオロエ
チレンの“蜘の巣状”の繊維化作用による正極の放電反
応に伴なう体積膨張の吸収が全く阻害されないため、正
極利用率の低下を防止できる。
The present invention uses a mixture of polytetrafluoroethylene as a binder for carbon black, which is the main material of the porous carbon body of the positive electrode, and a polymer compound that is dissolved in a liquid oxyhalodanide that also serves as the positive electrode active material of the electrolytic solution. The main points are as follows. A porous carbon body formed using a binder containing such a polymer compound in combination with a binder containing such a polymer compound dissolves in the liquid oxyhalodanide after the battery is assembled. In the porous carbon body, the positive electrode is held by the binding action of polytetrafluoroethylene alone. As a result, the absorption of the volumetric expansion accompanying the discharge reaction of the positive electrode due to the "spider-like" fiber-forming effect of polytetrafluoroethylene is not inhibited at all, so that a decrease in the positive electrode utilization rate can be prevented.

また、多孔質炭素体を強固に固形化できるので、正極の
製造工程や電池組立て時の取扱いが容易となるばか)か
、金属集電体との密着性や形状保持性を向上でき、ひい
ては電池の放電電圧の5− 安定性が良好になり、重負荷放電時の電圧も向上できる
。なお、前記高分子化合物として液状オキシハロダン化
物に不溶なものを用いても正極の製造工程や電池の組立
て時の取扱いが容易となるものの、電池組立後において
も他の結着剤であるポリテトラフルオロエチレンの6蜘
の巣状”に繊維化した部分に該高分子化合物が残シ、そ
の“蜘の巣状”による多孔質炭素体の体積膨張の吸収作
用が阻害されるため、前述した正極利用率の良好−ph
uを達成することが困難となる。
In addition, since the porous carbon material can be firmly solidified, it not only makes handling easier during the positive electrode manufacturing process and battery assembly, but also improves the adhesion and shape retention of the metal current collector, which in turn improves the battery The stability of the discharge voltage is improved, and the voltage during heavy load discharge can also be improved. Although the use of a polymer compound that is insoluble in liquid oxyhalodanide facilitates handling during the positive electrode manufacturing process and battery assembly, even after battery assembly, polytetrafluorocarbon, which is another binder, may be used as the polymer compound. The polymer compound remains in the 6-web-shaped fibers of ethylene, and the absorption effect of the volume expansion of the porous carbon material due to the "spider-web shape" is inhibited, so the positive electrode cannot be used as described above. Good rate - ph
It becomes difficult to achieve u.

上記高分子化合物としてはメラミン樹脂、フェノール樹
脂、ポリアミド樹脂、塩素化ポリプロピレン樹脂、塩素
化ポリエチレン樹脂、その他酢酸ビニル樹脂、塩化ビニ
ル樹脂、塩化ビニル−酢酸ビニル共重合体等を挙げるこ
とができる。4?に、ポリアミド樹脂、塩素化ポリゾロ
ピレン樹脂、塩素化ポリエチレン樹脂はカーがンブラッ
クに対する結着性に優れ、液状オキシハロゲン化物に対
する溶解性が良好で同液状オキ6− ジハロゲン化物によって分解しにくいため、有効である
。また、これら樹脂や酢酸ビニル樹脂等のビニルポリマ
ーは液状オキシハロゲン化物に溶解することによって、
初期大電流放電時の電圧降下の要因となるリチウム負極
表面へのLiC2皮膜の生成抑制作用を有するために有
益である。
Examples of the polymer compound include melamine resin, phenol resin, polyamide resin, chlorinated polypropylene resin, chlorinated polyethylene resin, vinyl acetate resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, and the like. 4? Polyamide resins, chlorinated polyzolopyrene resins, and chlorinated polyethylene resins are effective because they have excellent binding properties to carbon black, have good solubility in liquid oxyhalides, and are difficult to decompose by liquid oxyhalides. It is. In addition, by dissolving these resins and vinyl polymers such as vinyl acetate resin in liquid oxyhalide,
This is useful because it has the effect of suppressing the formation of a LiC2 film on the surface of the lithium negative electrode, which causes a voltage drop during initial large current discharge.

上記高分子化合物の配合割合はカーがンブラックに対し
5〜20重量慢の範囲にすることが望ましい。この理由
は、その配合割合を5重量%未満にすると、多孔質炭素
体の保形性、強度が不十分となシ、かといって20重量
%を越えると液状オキシハロゲン化物中に未溶解の高分
子化合物が生じて懸濁し、多孔質炭素体の気孔率を低下
させて放電性能に悪影響を及ぼす恐れがある。
It is desirable that the blending ratio of the above-mentioned polymer compound is in the range of 5 to 20% by weight relative to car black. The reason for this is that if the blending ratio is less than 5% by weight, the shape retention and strength of the porous carbon body will be insufficient; A polymer compound is generated and suspended, which may reduce the porosity of the porous carbon body and adversely affect the discharge performance.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を単3型のリチウム・塩化チオニル電池に
適用した例について第1図を参照して説明する。
Hereinafter, an example in which the present invention is applied to a AA type lithium/thionyl chloride battery will be described with reference to FIG.

図中の1は負極端子を兼ねる上面が開口された例えばス
テンレス製の有底円筒形の缶体である。この缶体1内面
には金属リチウムからなる筒状の負極2が圧着されてい
る。この負極2の内側の缶体1内には正極3が該負極2
内面に配置されたガラス繊維不織布からなる七ノ等レー
タ4を介して設けられている。なお、正極3と缶体1底
面との間には、絶縁紙5が介装されている。前記正極3
は筒状の多孔質炭素体6と、この多孔質炭素体6の中空
部内面に配置された筒状の金網からなる金属集電体7と
から構成されている。こうした正極3は市販のアセチレ
ンブラックにポリテトラフルオロエチレン(三井フロロ
ケミカル社製商品名;テフロン)を7重量%加え、この
混合物に対し8重量%に相当する市販のナイロン−6を
溶解させたアセトン溶液を加えて混練した後、プレス成
形によシ長さ38111%外径11.5m+)内径5I
III11の筒状としその中空部に長さ40mのニッケ
ル製網体(40メツシユ)の筒状金属集電体を挿入、圧
接し、更に100℃で12時間乾燥、固化させることに
より造られたものである。
Reference numeral 1 in the figure is a bottomed cylindrical can made of stainless steel, for example, with an open top that also serves as a negative electrode terminal. A cylindrical negative electrode 2 made of metallic lithium is crimped onto the inner surface of the can 1. A positive electrode 3 is placed inside the can 1 inside the negative electrode 2.
It is provided via a seven-layer plate 4 made of glass fiber non-woven fabric arranged on the inner surface. Note that an insulating paper 5 is interposed between the positive electrode 3 and the bottom surface of the can body 1. The positive electrode 3
It is composed of a cylindrical porous carbon body 6 and a metal current collector 7 made of a cylindrical wire mesh placed inside the hollow part of the porous carbon body 6. The positive electrode 3 was prepared by adding 7% by weight of polytetrafluoroethylene (trade name: Teflon, manufactured by Mitsui Fluorochemical Co., Ltd.) to commercially available acetylene black, and dissolving 8% by weight of commercially available nylon-6 in the mixture in acetone. After adding the solution and kneading, it is press-formed to a length of 38111% (outer diameter 11.5 m +) inner diameter 5I.
It was made by inserting a 40 m long nickel mesh (40 meshes) cylindrical metal current collector into the hollow part of III11, pressing it together, and drying and solidifying it at 100°C for 12 hours. It is.

また、前記正極3上方の缶体1内には前記モノ4レータ
4に支持された中央に穴を有する絶縁紙8が配設されて
いる。前記缶体1の上面開口部にはメタルトラf9がレ
ーデ溶接等によシ封冠されている。このメタルトップ9
の中心には穴10が開口されておシ、この穴1oにはノ
J?イゾ状正極端子11がガラスシール材12によシ該
メタルトッゾ9に対して電気的に絶縁された状態で固定
されている。この正極端子11はその下端に取付けたリ
ード線13を介して前記正極3の金属集電体7に接続さ
れている。更に、前記缶体1内には前記ノ9イブ状正極
端子11から注入された電解液14が収容されている。
Further, in the can body 1 above the positive electrode 3, an insulating paper 8 supported by the mono 4 plater 4 and having a hole in the center is disposed. A metal trough f9 is sealed to the upper opening of the can body 1 by Rede welding or the like. This metal top 9
A hole 10 is opened in the center of the hole 1o. An isometric positive electrode terminal 11 is fixed to the metal terminal 9 by a glass sealing material 12 in an electrically insulated state. This positive electrode terminal 11 is connected to the metal current collector 7 of the positive electrode 3 via a lead wire 13 attached to its lower end. Furthermore, an electrolytic solution 14 injected from the tube-shaped positive electrode terminal 11 is housed in the can body 1 .

この電解液14はLtAtCt4を例えば1.5モル/
を溶解した塩化チオニル(5oct2)からなる。なお
、前記パイプ状正極端子11には例えばステンレス製の
封体15が挿入され、該端子11先端と挿入された封体
15とをレーザ溶接することに9− よシ該正極端子11の孔が封口されている。
This electrolytic solution 14 contains, for example, 1.5 mol/LtAtCt4.
It consists of thionyl chloride (5oct2) dissolved in In addition, an enclosure 15 made of stainless steel, for example, is inserted into the pipe-shaped positive terminal 11, and the hole in the positive terminal 11 is opened in order to laser weld the tip of the terminal 11 and the inserted enclosure 15. It is sealed.

比較例 市販のアセチレンブラックにポリテトラフルオロエチレ
ンを7重量%加え、この混合物に対してナイロン−6を
含まないアセチレンのみを添加、混練した後、実施例と
同様に節状に成形し、この成形体の中空部に筒状金属集
電体を挿入圧接し、更に100℃、12時間乾燥、固化
させて正極を作製した。こうした正極を用い蛛外、実施
例と同構造の電池を組立てだ。
Comparative Example: 7% by weight of polytetrafluoroethylene was added to commercially available acetylene black, and only acetylene containing no nylon-6 was added to the mixture, kneaded, and then molded into a knot shape in the same manner as in the example. A cylindrical metal current collector was inserted and pressed into the hollow part of the body, and further dried and solidified at 100° C. for 12 hours to prepare a positive electrode. Using these positive electrodes, a battery with the same structure as the example was assembled.

しかして、本実施例及び比較例について、正極を缶体内
に装填する等の組立て工程での正極(多孔質炭素体)の
割れ、欠は等の不良発生個数並びに第2図に示すように
3000負荷での放電曲線に示す如く良品体)のように
放電終止まで平坦な電圧を維持しな謬督品(B)の如き
電池の数を調べた。その結果を下記表に示した。
Therefore, regarding the present example and comparative example, the number of defects such as cracks and chips in the positive electrode (porous carbon body) during the assembly process such as loading the positive electrode into the can body, and the number of defects such as cracks and chips as shown in Fig. 2 were 3000. As shown in the discharge curve under load, the number of batteries such as a good product (B) and a defective product (B) that did not maintain a flat voltage at the end of discharge was investigated. The results are shown in the table below.

−10〜 また、本実施例及び比較例の電池について、重負荷放電
特性を調べだ。これらの結果を、第3図に示した。なお
、図中のAは本実施例の電池の特性線、Bは比較例の電
池の特性線を夫々示す。
-10~ Also, the heavy load discharge characteristics of the batteries of this example and comparative example were investigated. These results are shown in FIG. Note that A in the figure shows the characteristic line of the battery of this example, and B shows the characteristic line of the battery of the comparative example.

上記表及び第3図から明らかな如く、本発明の電池は従
来の電池に比べて正極の多孔質炭素体の割れ、欠けが極
めて少なく、放電電圧の安定性、重負荷特性の点でも優
れていることがわかる。
As is clear from the above table and FIG. 3, the battery of the present invention has extremely fewer cracks and chips in the porous carbon material of the positive electrode than conventional batteries, and is also superior in terms of discharge voltage stability and heavy load characteristics. I know that there is.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば正極の多孔質炭素体
の機械的強度を改善して該炭素体の脆弱さによる電池不
良を解でき、更に放電電圧の安定性及び重負荷特性の優
れた非水溶媒電池を提供できる。
As detailed above, according to the present invention, it is possible to improve the mechanical strength of the porous carbon body of the positive electrode, thereby solving battery failures caused by the brittleness of the carbon body, and furthermore, it is possible to improve the stability of the discharge voltage and the heavy load characteristics. It is possible to provide a non-aqueous solvent battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すリチウム・塩化チオニ
ル離性の断面図、第2図はリチウム拳塩化チオニル電池
における放電電圧の時間経過に伴なう変化を示す線図、
第3図は重負荷放電特性を示す線図である。 1・・・缶体、2・・・負極、3・・・正極、6・・・
多孔質炭素体、7・・・金属集電体、9・・・メタルド
ッグ、11・・・・9イグ状正極端子、14・・・電解
液。 出願人代理人 弁理士 鈴 江 武 彦第1図 5 第2図 放電特級時開(hr)
FIG. 1 is a cross-sectional view of a lithium-thionyl chloride dissociator showing an example of the present invention, and FIG. 2 is a diagram showing changes in discharge voltage over time in a lithium-thionyl chloride battery.
FIG. 3 is a diagram showing heavy load discharge characteristics. 1... Can body, 2... Negative electrode, 3... Positive electrode, 6...
Porous carbon body, 7... Metal current collector, 9... Metal dog, 11... 9 Ig-shaped positive electrode terminal, 14... Electrolyte solution. Applicant's representative Patent attorney Takehiko Suzue Figure 1 5 Figure 2 Discharge special grade time opening (hr)

Claims (2)

【特許請求の範囲】[Claims] (1) 軽金属からなる負極と、結着剤で結着された多
孔質炭素体を主構成材とする正極と、液状オキシハロダ
ン化物を主成分とし、正極活物質を兼ねる電解液とから
構成される非水溶媒電池において、前記正極の結着6と
して/ IJテトラフルオロエチレンと、前記液状オキ
シハロダン化物に可溶な高分子化合物との混合物を用い
ることを特徴とする非水溶媒電池。
(1) Consisting of a negative electrode made of a light metal, a positive electrode mainly composed of porous carbon bound with a binder, and an electrolytic solution mainly composed of a liquid oxyhalodanide, which also serves as the positive electrode active material. A non-aqueous solvent battery, characterized in that the binder 6 of the positive electrode is a mixture of /IJ tetrafluoroethylene and a polymer compound soluble in the liquid oxyhalodanide.
(2) 高分子化合物が、ポリアミP樹脂、塩素化ポリ
ピロピレン樹脂又は塩素化ポリエチレン樹脂の中から選
ばれた少なくとも1種以上のものであることを特徴とす
る特許請求の範囲第1項記載の非水溶媒電池。
(2) The polymer compound according to claim 1, wherein the polymer compound is at least one selected from polyamide P resin, chlorinated polypropylene resin, and chlorinated polyethylene resin. Water solvent battery.
JP9598784A 1984-05-14 1984-05-14 Nonaqueous solvent cell Granted JPS60240060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9598784A JPS60240060A (en) 1984-05-14 1984-05-14 Nonaqueous solvent cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9598784A JPS60240060A (en) 1984-05-14 1984-05-14 Nonaqueous solvent cell

Publications (2)

Publication Number Publication Date
JPS60240060A true JPS60240060A (en) 1985-11-28
JPH0345866B2 JPH0345866B2 (en) 1991-07-12

Family

ID=14152482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9598784A Granted JPS60240060A (en) 1984-05-14 1984-05-14 Nonaqueous solvent cell

Country Status (1)

Country Link
JP (1) JPS60240060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296589A2 (en) * 1987-06-24 1988-12-28 Hitachi Maxell Ltd. Non-aqueous electrochemical cell
JPH04269459A (en) * 1991-02-25 1992-09-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
EP0587199A2 (en) * 1989-01-24 1994-03-16 Matsushita Electric Industrial Co., Ltd. A nonaqueous electrochemical cell and a method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761267A (en) * 1980-09-30 1982-04-13 Seiko Instr & Electronics Ltd Nonaqueous electrolyte cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761267A (en) * 1980-09-30 1982-04-13 Seiko Instr & Electronics Ltd Nonaqueous electrolyte cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296589A2 (en) * 1987-06-24 1988-12-28 Hitachi Maxell Ltd. Non-aqueous electrochemical cell
EP0587199A2 (en) * 1989-01-24 1994-03-16 Matsushita Electric Industrial Co., Ltd. A nonaqueous electrochemical cell and a method of manufacturing the same
EP0587199A3 (en) * 1989-01-24 1995-11-29 Matsushita Electric Ind Co Ltd A nonaqueous electrochemical cell and a method of manufacturing the same
JPH04269459A (en) * 1991-02-25 1992-09-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPH0345866B2 (en) 1991-07-12

Similar Documents

Publication Publication Date Title
US5187033A (en) Lithium secondary battery
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
US3870564A (en) Alkaline cell
JP3428750B2 (en) Non-aqueous solvent secondary battery
JP2003007357A (en) Non-aqueous electrolyte air battery
JP3022758B2 (en) Alkaline manganese battery
JPS60240060A (en) Nonaqueous solvent cell
JPH0366782B2 (en)
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JPS60167280A (en) Electrochemical device capable of recharging
US4331744A (en) Lead salt electric storage battery
JP3403858B2 (en) Organic electrolyte battery
JP2811834B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
JP3309463B2 (en) Cylindrical nickel-metal hydride storage battery
JPS60170172A (en) Rechargeable electrochemical device
JPS6119056A (en) Separator for battery
JP2000348715A (en) Manufacture of lead-acid battery
JP2001052676A (en) Lithium ion conductor for nonaqueous battery and noaqueous battery
JP2002151064A (en) Hydrogen storage metal alloy and hydrogen storage metal alloy electrode
JPS62283571A (en) Nonaqueous solvent secondary cell
JPH07142092A (en) Nonaqueous solvent secondary battery
JPH0318308B2 (en)
JPS6182674A (en) Nonaqueous solvent battery
JPS60240056A (en) Alkaline-manganese cell
JPH09245775A (en) Non-aqueous solvent battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term