JP3403858B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP3403858B2
JP3403858B2 JP08633795A JP8633795A JP3403858B2 JP 3403858 B2 JP3403858 B2 JP 3403858B2 JP 08633795 A JP08633795 A JP 08633795A JP 8633795 A JP8633795 A JP 8633795A JP 3403858 B2 JP3403858 B2 JP 3403858B2
Authority
JP
Japan
Prior art keywords
lithium
battery
positive electrode
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08633795A
Other languages
Japanese (ja)
Other versions
JPH08255635A (en
Inventor
肇 木下
信雄 安東
正起 山口
之規 羽藤
静邦 矢田
Original Assignee
カネボウ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネボウ株式会社 filed Critical カネボウ株式会社
Priority to JP08633795A priority Critical patent/JP3403858B2/en
Publication of JPH08255635A publication Critical patent/JPH08255635A/en
Application granted granted Critical
Publication of JP3403858B2 publication Critical patent/JP3403858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、負極に炭素材料、正極
に金属酸化物を用いた、高容量かつ高電圧を有する有機
電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity and high voltage organic electrolyte battery using a carbon material for a negative electrode and a metal oxide for a positive electrode.

【0002】[0002]

【従来の技術】近年、導電性高分子、遷移金属酸化物等
を正極とし、負極にリチウム金属あるいはリチウム合金
を用いた二次電池がエネルギー密度が高いことから、N
i−Cd電池、鉛電池に代る電池として提案されてい
る。しかし、これら二次電池は繰り返し充放電を行うと
正極、あるいは負極の劣化による容量低下が大きく実用
に問題が残されている。特に負極の劣化はデントライト
と呼ばれるこけ状のリチウム結晶の生成を伴い、充放電
の繰り返しにより終局的にはデントライトがセパレータ
を貫通し、電池内部でショートを引き起こし、場合によ
っては電池が破裂する等、安全面においても問題があっ
た。
2. Description of the Related Art In recent years, a secondary battery using a conductive polymer, a transition metal oxide or the like as a positive electrode and a lithium metal or a lithium alloy as a negative electrode has a high energy density.
It has been proposed as a battery replacing i-Cd batteries and lead batteries. However, when these secondary batteries are repeatedly charged and discharged, the capacity is greatly reduced due to deterioration of the positive electrode or the negative electrode, and there is a problem in practical use. In particular, the deterioration of the negative electrode involves the formation of moss-like lithium crystals called dentite, and the repetition of charging and discharging eventually causes the dentite to penetrate the separator, causing a short circuit inside the battery, and in some cases, the battery exploding There was also a problem in terms of safety.

【0003】近時、上記問題点を解決すべく、グラファ
イト等の炭素材料を負極に用い、正極にLiCoO2
のリチウム含有金属酸化物を用いた電池が提案されてい
る。該電池は、電池組立後、充電する事により正極のリ
チウム含有金属酸化物より負極にリチウムを供給し、更
に放電では負極リチウムを正極に戻すという、いわゆる
ロッキングチェア型電池である。該電池は高電圧、高容
量を特長とするものの、その容量には、不満足な点が残
されていた。
In recent years, in order to solve the above-mentioned problems, a battery using a carbon material such as graphite for a negative electrode and using a lithium-containing metal oxide such as LiCoO 2 for a positive electrode has been proposed. The battery is a so-called rocking chair type battery in which lithium is supplied to the negative electrode from the lithium-containing metal oxide of the positive electrode by charging after the battery is assembled, and the negative electrode lithium is returned to the positive electrode in discharging. Although the battery is characterized by a high voltage and a high capacity, the capacity still has an unsatisfactory point.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは上記問題
点に鑑み、鋭意研究を続けた結果本発明を完成したもの
であって、本発明の目的は高容量かつ高電圧を有する二
次電池を提供するにある。本発明の他の目的は長期に亘
って充放電が可能で、安全性に優れた二次電池を提供す
るにある。本発明の更に他の目的は内部抵抗が低い二次
電池を提供するにある。本発明の更に他の目的は製造が
容易な二次電池を提供するにある。本発明の更に他の目
的は以下の説明から明らかにされよう。
In view of the above problems, the present inventors have made intensive studies and completed the present invention. An object of the present invention is to provide a secondary battery having a high capacity and a high voltage. To provide batteries. Another object of the present invention is to provide a secondary battery which can be charged and discharged for a long period of time and is excellent in safety. Still another object of the present invention is to provide a secondary battery having a low internal resistance. Still another object of the present invention is to provide a secondary battery which is easy to manufacture. Further objects of the present invention will become clear from the description below.

【0005】[0005]

【課題を解決するための手段】本発明者らは、正極に金
属酸化物、負極に炭素材料を用い、負極由来のリチウム
の担持法(ドープ法)を選択することにより本発明を完
成した。すなわち、本発明は、正極,負極並びに電解液
としてリチウム塩の非プロトン性有機溶媒溶液を備えた
有機電解質電池であって、正極がリチウム含有金属酸化
物を含み、負極が炭素材料であり、負極炭素材料に電池
組立後に正極リチウム含有金属酸化物よりリチウムを担
持させたものであり、かつ正極には電池内に電極断面方
向に配置したリチウムよりリチウムを担持させる事を特
徴とする有機電解質電池である。
Means for Solving the Problems The present inventors have completed the present invention by using a metal oxide for the positive electrode and a carbon material for the negative electrode, and selecting a method for supporting lithium (doping method) derived from the negative electrode. That is, the present invention relates to an organic electrolyte battery provided with a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein the positive electrode contains a lithium-containing metal oxide, the negative electrode is a carbon material, are those obtained by supporting the lithium from the positive electrode of lithium-containing metal oxide after battery assembly to the carbon material, and the electrode cross-sectional side in the battery to the positive electrode
An organic electrolyte battery characterized by carrying lithium more than lithium arranged in the direction .

【0006】本発明における炭素材料としては、この種
の二次電池に用いられる炭素材料がいずれも使用可能で
ある。例えば、ピッチ、タール等を炭化して得られる炭
素材料、グラファイト等が挙げられる。更に、一回目の
充放電における効率が80%以下である炭素材料におい
て、本発明は効果てきである。
[0006] As the carbon material in the present invention, any carbon material used in this type of secondary battery can be used. For example, a carbon material obtained by carbonizing pitch, tar, or the like, graphite, or the like can be used. Further, the present invention is effective for a carbon material whose efficiency in the first charge / discharge is 80% or less.

【0007】本発明の負極は上記炭素材料より成り、粉
末状、粒状、短繊維状等の成形しやすい形状にある炭素
材料をバインダーで成形したものである。バインダーと
しては、ポリ四フッ化エチレン、ポリフッ化ビニリデン
等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等
の熱可塑性樹脂がを用いる事ができるが、好ましくフッ
素系バインダ−が好ましい。
[0007] The negative electrode of the present invention is made of the above-mentioned carbon material, and is formed by molding a carbon material having a shape which is easy to mold such as powder, granules and short fibers with a binder. As the binder, a fluorinated resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used, and a fluorinated binder is preferable.

【0008】本発明の有機電解質電池の正極としては、
LiX CoO2 、 LiX NiO2 、LiX MnO2 、L
X FeO2 等のLiX y Z (Mは金属、二種以上
の金属でも良い)の一般式で表され得る、リチウムを電
気化学的にドープ、脱ドープが可能なリチウム含有金属
酸化物を用いる。特にリチウム金属に対し4V以上の電
圧を有するリチウム含有酸化物が好ましい。中でも、リ
チウム含有コバルト酸化物、リチウム含有ニッケル酸化
物が好ましい。本発明における正極は、上記活物質、及
び必要に応じて導電材、バインダーを加え成形したもの
であり、導電材、バインダーの種類、組成等は適宜設定
すればよい。
[0008] As the positive electrode of the organic electrolyte battery of the present invention,
Li X CoO 2, Li X NiO 2, Li X MnO 2 , L
i X FeO 2, etc. Li X M y O Z (M is a metal, may also be in two or more metals) may be represented by the general formula, electrochemically doped, de-doped Lithium-containing metal oxide of lithium Use things. Particularly, a lithium-containing oxide having a voltage of 4 V or more with respect to lithium metal is preferable. Among them, lithium-containing cobalt oxide and lithium-containing nickel oxide are preferable. The positive electrode in the present invention is formed by adding the above-mentioned active material and, if necessary, a conductive material and a binder, and the type and composition of the conductive material and the binder may be appropriately set.

【0009】導電剤の種類は、金属ニッケル等の金属粉
末でもよいが、例えば、活性炭、カーボンブラック、ア
セチレンブラック、黒鉛等の炭素系のものが特に好まし
い。混合比は活物質の電気伝導度、電極形状等により異
なるが、活物質に対して2〜40%加えるのが適当であ
る。また、バインダーの種類は、後述の本発明にて用い
る電解液に不溶のものであればよく、例えば、SBR等
のゴム系バインダー、ポリ四フッ化エチレン、ポリフッ
化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポ
リエチレン等の熱可塑性樹脂が好ましく、その混合比は
20%以下とするのが好ましい。
The type of the conductive agent may be a metal powder such as metallic nickel, but a carbon-based material such as activated carbon, carbon black, acetylene black, and graphite is particularly preferable. The mixing ratio varies depending on the electric conductivity of the active material, the shape of the electrode, and the like, but it is appropriate to add 2 to 40% to the active material. Further, the kind of the binder may be any one that is insoluble in the electrolytic solution used in the present invention described later, for example, a rubber-based binder such as SBR, polytetrafluoroethylene, a fluorinated resin such as polyvinylidene fluoride, Thermoplastic resins such as polypropylene and polyethylene are preferable, and the mixing ratio is preferably 20% or less.

【0010】本発明に用いる正極、負極の電極形状は、
目的とする電池により、板状、フィルム状、円柱状、あ
るいは、金属箔上に成形するなど、種々の形状をとるこ
とが出来る。特に、金属箔上に成形したものは集電体一
体電極として、種々の電池に応用できることから好まし
い。
The positive electrode and the negative electrode used in the present invention have the following electrode shapes.
Depending on the intended battery, various shapes such as a plate shape, a film shape, a column shape, or a shape formed on a metal foil can be adopted. In particular, those formed on a metal foil are preferable because they can be applied to various batteries as a current collector integrated electrode.

【0011】本発明において、負極由来のリチウムは、
電池完成時、負極炭素材料に含まれるリチウムであり、
電解液を注液し電池を組立後、定電流或いは定電圧等の
電気化学的手法を用い、正極リチウム含有酸化物より負
極炭素材料にリチウムを担持させる。正極には、リチウ
ム金属より電気化学的にリチウムを担持させる。具体的
には、例えば、円筒型電池を組む場合、正極と負極をセ
パレーターを介して巻き取り電解液を注液した後、正極
とリチウムとの電気化学的接触により、正極にリチウム
を担持させる。正極とリチウムは、好ましくは、抵抗体
で接続するのが良い。抵抗体は正極とリチウムとの間に
流れる電流を制御するために用いる事ができ、その抵抗
値は電池容量、電池形状により異なるが、大きすぎると
電流値が小さくなり正極へのリチウムの担持に時間がか
かり、小さすぎると電流値が大きくなり金属リチウムが
析出する場合がある。好ましくは0.1〜10000Ω
が良く、市販の固定抵抗等を用いても良いが、例えば線
径の細いステンレスワイヤーを所定の抵抗分の長さだけ
用いても良い。更に、正極と接続させるリチウムは電極
断面方向に配置するのが好ましく、例えば、円筒型電池
を、正極、セパレータ、負極を巻き取って作成する場
合、巻き取り電極ユニット上部、あるいは、下部であ
り、図1のように正極、セパレータ、負極を積層し、電
池を組み立てる場合、電極面を下面あるいは上面とした
時、側面A,B,C,Dの4方向である。リチウム金属
の集電体は酸化にも還元にも耐性のある導電性物質を用
いることが好ましく、例えば、ステンレス、白金などを
用いることができる。更に、リチウム金属の集電体は、
リチウム金属の電極板から一番離れた位置に少なくとも
その一部が配置されることが、リチウムをスムーズに担
持させることができ好ましい。また、リチウムとして、
例えば、メッシュ状、網目状、多孔体等の形状にある導
電体にリチウム金属を埋め込んだものを用いること、渦
巻き状に巻いたリチウム金属を用いることも、スムーズ
にリチウムを担持させる上で好ましい。リチウム量は電
池ケース内にて正極にリチウムを担持する場合、予め決
定されたリチウム量に相当する、リチウムを配置する。
電解液の注液から正極リチウム含有酸化物より負極炭素
材料にリチウムを担持させ始める時間は、早い方がよく
1日以内、好ましくは1時間以内が良い。また、負極由
来のリチウム量は特に限定されないが,電極断面方向に
配置したリチウム量より多いことが好ましい。通常この
一連の操作は室温にて行うが、例えば40℃ぐらいの高
温になると短時間での操作が可能である。本発明におい
て、正極リチウム含有酸化物にリチウムと正極との接続
によりリチウムを担持させる事が終了したとき、電池完
成とする。負極リチウムの担持方法としては、電池組立
前に担持させる、すなわち、あらかじめ負極炭素材料に
所定のリチウムを担持させた後、電池を組み立てる方法
もあるが、電池生産において、その工程が煩雑になる事
から、好ましくない。更に、リチウムと負極炭素材料と
を電池内で短絡させる方法もあるが、負極炭素材料への
リチウム担持時間が長くなることから、好ましくない。
In the present invention, lithium derived from the negative electrode is
When the battery is completed, it is lithium contained in the negative electrode carbon material,
After the electrolyte is injected and the battery is assembled, lithium is supported on the negative electrode carbon material from the positive electrode lithium-containing oxide using an electrochemical method such as constant current or constant voltage. The positive electrode carries lithium electrochemically from lithium metal. Specifically, for example, when assembling a cylindrical battery, the positive electrode and the negative electrode are wound through a separator, the electrolytic solution is injected, and then the lithium is carried on the positive electrode by electrochemical contact between the positive electrode and lithium. The positive electrode and lithium are preferably connected by a resistor. The resistor can be used to control the current flowing between the positive electrode and lithium.The resistance value varies depending on the battery capacity and battery shape, but if it is too large, the current value becomes small and lithium is carried on the positive electrode. It takes a long time, and when it is too small, the current value becomes large and metallic lithium may be deposited. Preferably 0.1 to 10000Ω
Although a commercially available fixed resistor or the like may be used, for example, a stainless wire having a small wire diameter may be used for a length corresponding to a predetermined resistance. Further, lithium to be connected to the positive electrode is preferably arranged in the electrode cross-sectional direction.For example, when a cylindrical battery is formed by winding the positive electrode, the separator, and the negative electrode, the upper part of the winding electrode unit, or the lower part, When assembling a battery by laminating a positive electrode, a separator, and a negative electrode as shown in FIG. 1, when the electrode surface is a lower surface or an upper surface, there are four directions of side surfaces A, B, C, and D. As the lithium metal current collector, a conductive substance having resistance to both oxidation and reduction is preferably used. For example, stainless steel, platinum, or the like can be used. In addition, the lithium metal current collector
It is preferable that at least a part of the lithium metal electrode plate is disposed at a position farthest from the electrode plate because lithium can be smoothly carried. Also, as lithium,
For example, it is preferable to use lithium metal embedded in a conductor having a mesh shape, a mesh shape, a porous body, or the like, or to use a spirally wound lithium metal material for smoothly supporting lithium. When lithium is carried on the positive electrode in the battery case, lithium corresponding to a predetermined lithium amount is disposed.
The time from the injection of the electrolytic solution to the start of supporting lithium on the negative electrode carbon material from the positive electrode lithium-containing oxide is desirably earlier, preferably within one day, and preferably within one hour. The amount of lithium derived from the negative electrode is not particularly limited, but is preferably larger than the amount of lithium arranged in the electrode cross-sectional direction. Normally, this series of operations is performed at room temperature, but when the temperature becomes high, for example, about 40 ° C., the operation can be performed in a short time. In the present invention, the battery is completed when lithium has been supported by the lithium-containing oxide on the positive electrode by connection of the lithium and the positive electrode. As a method of supporting negative electrode lithium, there is a method of supporting the battery before assembling the battery, that is, a method of supporting the negative electrode carbon material in advance with a predetermined amount of lithium, and then assembling the battery. Is not preferred. Further, there is a method of short-circuiting lithium and the negative electrode carbon material in the battery. However, it is not preferable because lithium loading time on the negative electrode carbon material becomes long.

【0012】本発明において負極由来のリチウム量は、
炭素材料の種類により異なるが、負極炭素材料に対し2
0mAh/g以上,好ましくは50mAh/g以上であ
り、少なすぎると、容量が充分に得られない。また、本
発明における正極に供給されるリチウム量は負極由来の
リチウムと同じか、もしくは小さいことが好ましい。
In the present invention, the amount of lithium derived from the negative electrode is:
Depending on the type of carbon material, 2
It is 0 mAh / g or more, preferably 50 mAh / g or more. If the amount is too small, sufficient capacity cannot be obtained. In the present invention, the amount of lithium supplied to the positive electrode is preferably equal to or smaller than that of lithium derived from the negative electrode.

【0013】本発明に用いる電解液を構成する溶媒とし
ては非プロトン性有機溶媒が用いられる。非プロトン性
有機溶媒としては、例えば、エチレンカーボネイト、プ
ロピレンカーボネイト、ジメチルカーボネート、ジエチ
ルカーボネート、γ−ブチロラクトン、アセトニトリ
ル、ジメトキシエタン、テトラヒドロフラン、ジオキソ
ラン、塩化メチレン、スルホラン等が挙げられ、更に、
これら非プロトン性有機溶媒の二種以上の混合液も用い
ることができる。
An aprotic organic solvent is used as a solvent constituting the electrolytic solution used in the present invention. Examples of the aprotic organic solvent include, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolan, methylene chloride, sulfolane, and the like.
A mixture of two or more of these aprotic organic solvents can also be used.

【0014】また、上記の混合又は単一の溶媒に溶解さ
せる電解質は、リチウムイオンを生成しうる電解質のい
ずれでも良い。このような電解質としては、例えばLi
I、LiClO4 、LiAsF6 、LiBF4 、LiP
6 、又はLiHF2 等が挙げられる。上記の電解質及
び溶媒は充分に脱水された状態で混合され、電解液とす
るのであるが、電解液中の電解質の濃度は電解液による
内部抵抗を小さくするため少なくとも0.1モル/l以
上とするのが好ましく、通常0.2〜1.5モル/lと
するのが更に好ましい。
The electrolyte mixed or dissolved in a single solvent may be any electrolyte capable of generating lithium ions. As such an electrolyte, for example, Li
I, LiClO 4 , LiAsF 6 , LiBF 4 , LiP
F 6 , LiHF 2 and the like. The electrolyte and the solvent are mixed in a sufficiently dehydrated state to form an electrolyte. The concentration of the electrolyte in the electrolyte is at least 0.1 mol / l or more in order to reduce the internal resistance due to the electrolyte. It is preferable that the amount is usually 0.2 to 1.5 mol / l.

【0015】電池外部に電流を取り出すための集電体、
あるいはリード端子としては、例えば、炭素、白金、ニ
ッケル、ステンレス、アルミニウム、銅等を用いること
が出来、箔状、ネット状の集電体を用いる場合、電極を
集電体上に成形することにより集電体一体型電極として
用いることもできる。
A current collector for extracting a current outside the battery;
Alternatively, as the lead terminal, for example, carbon, platinum, nickel, stainless steel, aluminum, copper, or the like can be used.When a foil-shaped or net-shaped current collector is used, an electrode is formed on the current collector. It can also be used as a current collector integrated electrode.

【0016】次に図面により本発明の実施態様の一例を
説明する。図2は本発明に係る電池の基本構成説明図で
ある。図2において、(1)は正極であり、(2)は負
極である。(3),(3′)は集電体であり、電極は該
集電体の上に成形されている。リード端子(8),
(8′)は電圧降下を生じないように集電体に接続され
ており、その一端は、電池ケース(6)、トップ蓋
(7)に接続される。(9)はリチウムユニットであ
り、(10)はリチウムユニットのリチウム部集電体で
あり、抵抗(11)を介して正極集電体(3)に接続さ
れ、正極(1)とリチウム金属(9)の間には、電解液
が満たされている。(5)は電解液が含浸されたセパレ
ータであり、該電解液には、ドーピングされうるイオン
を生成し得る前述の化合物が非プロトン性有機溶媒に溶
解されている。電解液は通常液状であり、セパレータに
含浸されるが、セパレータなしに、漏液を防止するため
ゲル状又は固体状にして用いることもできる。(4)は
正負両極の接触(電池ケースとトップ蓋)を阻止する事
を目的として配置された絶縁パッキンである。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a diagram illustrating the basic configuration of the battery according to the present invention. In FIG. 2, (1) is a positive electrode, and (2) is a negative electrode. (3) and (3 ') are current collectors, and the electrodes are formed on the current collectors. Lead terminal (8),
(8 ') is connected to the current collector so as not to cause a voltage drop, and one end thereof is connected to the battery case (6) and the top lid (7). (9) is a lithium unit, (10) is a lithium current collector of the lithium unit, connected to the positive electrode current collector (3) via the resistor (11), and the positive electrode (1) and the lithium metal ( During 9), the electrolyte is filled. (5) is a separator impregnated with an electrolytic solution, in which the aforementioned compound capable of generating ions that can be doped is dissolved in an aprotic organic solvent. The electrolyte is usually in a liquid state and is impregnated in the separator. However, the electrolyte may be used in a gel or solid state without a separator to prevent liquid leakage. (4) is an insulating packing arranged to prevent contact between the positive and negative electrodes (battery case and top lid).

【0017】該セパレータは、電解液或は電極活物質等
に対し、耐久性のある連通気孔を有する電子伝導性のな
い多孔体であり、通常ガラス繊維、ポリエチレン或はポ
リプロピレン等からなる布、不織布或は多孔体が用いら
れる。好ましくは、3次元連通気孔を有するガラス繊
維、ポリエチレン或はポリプロピレン等からなる不織布
或は多孔体セパレータであり、リチウム担持時間が短く
なる効果が得られる。セパレータの厚さは電池の内部抵
抗を小さくするため薄い方が好ましいが、電解液の保持
量、流通性、強度等を勘案して決定される。正負極及び
セパレータは電池ケース(6)内に実用上問題が生じな
いように固定される。電極の形状、大きさ等は目的とす
る電池の形状、性能により適宜決められる。図3は本発
明に係る電池のリチウムユニットの基本構成説明図であ
る。図3において、(12)はリチウム金属であり、
(10)はその集電体である。また、(13)は(1
2)のリチウム金属と正極(1)、負極(2)及び電池
ケース(6)が直接に接触することを防ぐための絶縁キ
ャップである。(10)の集電体と正極端子(3)は抵
抗(11)を介して接続されている。また、電極ユニッ
トとリチウム金属(12)との間に、電解液を保液した
多孔質ポリプロピレン製不織布などを挿入しても良い。
矢印Eで示しているように、リチウムユニットの中心部
には負極端子(8’)と、電池ケース(6)の低部を溶
接するために、直径4mm程度の穴が開けてある。ま
た、抵抗(11)は市販の固定抵抗等を用いても良い
が、例えば図4に示す様に、線径の細いステンレスワイ
ヤー(15)を所定の抵抗分の長さだけ用いても良い。
その際、ワイヤーは細く、また、電池ケース(6)や電
極と接触しやすいので、補強と絶縁を兼ねて絶縁シール
テープ(16)で覆う方がよい。本発明の電池形状は上
記例示の、円筒型に限定されるものではなく、角形、箱
型等が挙げられ、その形状は特に限定されない。
[0017] The separator is a porous material having continuous holes for the electrolyte or the electrode active material and having no electron conductivity, and is usually made of glass fiber, polyethylene or polypropylene cloth, non-woven cloth. Alternatively, a porous body is used. Preferably, it is a nonwoven fabric or a porous separator made of glass fiber, polyethylene, polypropylene, or the like having three-dimensionally connected pores, and has an effect of shortening the lithium carrying time. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of retained electrolyte, flowability, strength, and the like. The positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem. The shape, size, and the like of the electrode are appropriately determined depending on the shape and performance of the intended battery. FIG. 3 is a diagram illustrating the basic configuration of the lithium unit of the battery according to the present invention. In FIG. 3, (12) is lithium metal,
(10) is the current collector. (13) is (1)
It is an insulating cap for preventing the lithium metal of 2) from directly contacting the positive electrode (1), the negative electrode (2) and the battery case (6). The current collector (10) and the positive electrode terminal (3) are connected via a resistor (11). Further, a porous polypropylene nonwoven fabric holding an electrolyte may be inserted between the electrode unit and the lithium metal (12).
As shown by the arrow E, a hole having a diameter of about 4 mm is formed in the center of the lithium unit to weld the negative electrode terminal (8 ') and the lower part of the battery case (6). A commercially available fixed resistor or the like may be used for the resistor (11). For example, as shown in FIG. 4, a stainless wire (15) having a small wire diameter may be used for a predetermined length.
At this time, since the wire is thin and easily comes into contact with the battery case (6) and the electrode, it is better to cover with an insulating sealing tape (16) for both reinforcement and insulation. The shape of the battery of the present invention is not limited to the cylindrical shape as exemplified above, but includes a square shape, a box shape, and the like, and the shape is not particularly limited.

【0018】[0018]

【発明の効果】本発明の有機電解質電池は、負極に炭素
材料、正極に金属酸化物を用い、かつ負極由来のリチウ
ム量の両者を適切に制御し、かつ、負極由来のリチウム
の担持方法を適切に選択することにより、高容量、高電
圧かつ低内部抵抗の電池であり、また、製造も容易な電
池である。以下、実施例を挙げて本発明を具体的に説明
する。
The organic electrolyte battery of the present invention uses a carbon material for the negative electrode, a metal oxide for the positive electrode, appropriately controls both the amount of lithium derived from the negative electrode, and a method for supporting lithium derived from the negative electrode. By proper selection, the battery has a high capacity, a high voltage and a low internal resistance, and is a battery that is easy to manufacture. Hereinafter, the present invention will be described specifically with reference to examples.

【0019】[0019]

【実施例】【Example】

実施例1 石油ピッチを1200℃で焼成し、ディスクミルで粉砕
することにより平均粒径約15μmの炭素材料粉体を得
た。次に上記炭素材料粉末100重量部と、ポリフッ化
ビニリデン粉末10重量部をN,N−ジメチルホルムア
ミド90重量部に溶解した溶液110重量部とを充分に
混合する事によりスラリーを得た。該スラリーをアプリ
ケーターを用い厚さ10μmの銅箔(負極集電体)上に
塗布し、乾燥、プレスし、両面に炭素材料を塗布した9
0μmの炭素材料負極を得た。LiCoO2 100部、
グラファイト5部対し、ポリフッ化ビニリデン粉末10
重量部、、N,N−ジメチルホルムアミド90重量部に
溶解した溶液50重量部を充分に混合する事によりスラ
リーを得た。該スラリーをアプリケーターを用い厚さ2
0μmのアルミ箔(正極集電体)上に塗布し、乾燥、プ
レスし、両面にLiCoO2 を塗布した厚さ150μm
の正極1を得た。
Example 1 A petroleum pitch was fired at 1200 ° C. and pulverized with a disk mill to obtain a carbon material powder having an average particle size of about 15 μm. Next, 100 parts by weight of the carbon material powder and 110 parts by weight of a solution obtained by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry was applied on a 10 μm-thick copper foil (negative electrode current collector) using an applicator, dried, pressed, and coated with a carbon material on both surfaces.
A carbon material negative electrode of 0 μm was obtained. LiCoO 2 100 parts,
5 parts of graphite, polyvinylidene fluoride powder 10
A slurry was obtained by sufficiently mixing 50 parts by weight of a solution dissolved in 90 parts by weight of N, N-dimethylformamide. Thick the slurry using an applicator to a thickness of 2
Coated on a 0 μm aluminum foil (positive electrode current collector), dried and pressed, coated with LiCoO 2 on both sides to a thickness of 150 μm
Of positive electrode 1 was obtained.

【0020】上記正極1(5.0×50cm2 ),負極
(5.2×54cm2 )とを用い、セパレーターとして
は、厚さ25μm、幅5.2cmのポリプロピレンセパ
レータ用いて、図1のような正極、セパレータ、負極の
位置関係にて円筒型電池を組んだ。正極端子としては厚
さ150μm、幅5mmのアルミニウム端子、負極端子
としては正極端子と同サイズのニッケルを用い、それぞ
れ電極の端にとりつけた。また、電極ユニットの断面方
向である電池ケースの下部(図2に示す位置)にリチウ
ムユニットを設置した。リチウムユニットは図3に示す
ように、直径15mmで中心に直径4mmの穴が有り、
長さ10mm、幅5mmの端子の付いたステンレスメッ
シュに、直径15mmで中心に直径4mmの穴の有るリ
チウム金属を圧着(負極炭素材料に対して100mAh
/g相当)したリチウム部と、このリチウム部の底面と
高さ方向を覆う厚さ300μmのポリプロピレン製のキ
ャップ(底面には中心に直径15mmの穴が有る)より
成っている。該リチウム部の端子と該正極端子を、抵抗
値が1000及び2000Ωの抵抗体で接続させ、それ
ぞれセル1及び2とした。セルはそれぞれ2本ずつ組ん
だ。リチウム部の端子と正極端子を継なぐ抵抗を含めた
線は、電池ケース及び電極と短絡しないようテフロン製
テープにより被覆した。また電解液としてはエチレンカ
ーボネートとジエチルカーボネートの1:1(重量比)
混合液に、1モル/lの濃度にLiPF6 を溶解した溶
液を用いた。上記電池に電解液を注液して1時間後に
0.25mA/cm2 の定電流にて、負極炭素材料に対
して120mAh/gに相当する電気量を通じ、負極炭
素材料に120mAh/gのリチウムを正極よりドーピ
ングした。セル1を組立後10日で分解したところ、リ
チウムの析出は無く、完全にリチウムは無くなってい
た。セル2を組立後20日で分解したところ、リチウム
の析出は無く、完全にリチウムは無くなっていた。上記
電池に0.25mA/cm2 の定電流で電池電圧が4.
3Vになるまで充電し、続いて0.25mA/cm2
定電流で電池電圧が2.5Vになるまで放電した。この
4.3V−2.5Vのサイクルを繰り返し、3回目の放
電において、体積容量(mAh/cc)にて評価した。
体積基準としては、電極体積、セパレータ体積、集電体
体積に加え、リチウム金属の体積を含めた総計を用い
た。結果を表1に示す。
The positive electrode 1 (5.0 × 50 cm 2 ) and the negative electrode (5.2 × 54 cm 2 ) were used. As the separator, a polypropylene separator having a thickness of 25 μm and a width of 5.2 cm was used as shown in FIG. A cylindrical battery was assembled with a proper positional relationship between the positive electrode, the separator, and the negative electrode. An aluminum terminal having a thickness of 150 μm and a width of 5 mm was used as a positive electrode terminal, and nickel having the same size as the positive electrode terminal was used as a negative electrode terminal. In addition, a lithium unit was installed at the lower part of the battery case (the position shown in FIG. 2), which was the cross-sectional direction of the electrode unit. As shown in FIG. 3, the lithium unit has a hole with a diameter of 15 mm and a diameter of 4 mm at the center,
A lithium metal having a hole of 15 mm in diameter and a diameter of 4 mm at the center is press-bonded to a stainless steel mesh having a terminal of 10 mm in length and 5 mm in width (100 mAh with respect to the negative electrode carbon material).
/ G), and a 300 μm-thick polypropylene cap (having a hole with a diameter of 15 mm at the center) covering the bottom surface and height direction of the lithium portion. The terminal of the lithium part and the positive electrode terminal were connected by a resistor having a resistance value of 1000 and 2000 Ω, and cells 1 and 2 were obtained, respectively. Two cells were assembled in each case. The wire including the resistor connecting the lithium terminal and the positive electrode terminal was covered with a Teflon tape so as not to short-circuit with the battery case and the electrode. As the electrolyte, ethylene carbonate and diethyl carbonate are in a ratio of 1: 1 (weight ratio).
A solution in which LiPF 6 was dissolved at a concentration of 1 mol / l was used for the mixed solution. One hour after the electrolyte was injected into the battery, at a constant current of 0.25 mA / cm 2 , 120 mAh / g of lithium was passed through the anode carbon material by passing an amount of electricity corresponding to 120 mAh / g to the anode carbon material. Was doped from the positive electrode. When the cell 1 was disassembled 10 days after assembly, no lithium was deposited and lithium was completely lost. When the cell 2 was disassembled 20 days after assembly, no lithium was deposited and lithium was completely lost. 3. The battery voltage was set to 4.25 at a constant current of 0.25 mA / cm 2 .
The battery was charged to 3 V, and then discharged at a constant current of 0.25 mA / cm 2 until the battery voltage reached 2.5 V. This cycle of 4.3 V-2.5 V was repeated, and the third discharge was evaluated by volume capacity (mAh / cc).
As a volume reference, a total including the volume of lithium metal in addition to the electrode volume, the separator volume, and the current collector volume was used. Table 1 shows the results.

【0021】比較例1 石油ピッチを1200℃で焼成し、ディスクミルで粉砕
することにより平均粒径約15μmの炭素材料粉体を得
た。次に上記炭素材料粉末100重量部と、ポリフッ化
ビニリデン粉末10重量部をN,N−ジメチルホルムア
ミド90重量部に溶解した溶液110重量部とを充分に
混合する事によりスラリーを得た。該スラリーをアプリ
ケーターを用い厚さ10μmの銅箔(負極集電体)上に
塗布し、乾燥、プレスし、両面に炭素材料を塗布した9
0μmの炭素材料負極を得た。LiCoO2 100部、
グラファイト5部対し、ポリフッ化ビニリデン粉末10
重量部、、N,N−ジメチルホルムアミド90重量部に
溶解した溶液50重量部を充分に混合する事によりスラ
リーを得た。該スラリーをアプリケーターを用い厚さ2
0μmのアルミ箔(正極集電体)上に塗布し、乾燥、プ
レスし、両面にLiCoO2 を塗布した厚さ200μm
の正極2を得た。
Comparative Example 1 A petroleum pitch was fired at 1200 ° C. and pulverized by a disk mill to obtain a carbon material powder having an average particle size of about 15 μm. Next, 100 parts by weight of the carbon material powder and 110 parts by weight of a solution obtained by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry was applied on a 10 μm-thick copper foil (negative electrode current collector) using an applicator, dried, pressed, and coated with a carbon material on both surfaces.
A carbon material negative electrode of 0 μm was obtained. LiCoO 2 100 parts,
5 parts of graphite, polyvinylidene fluoride powder 10
A slurry was obtained by sufficiently mixing 50 parts by weight of a solution dissolved in 90 parts by weight of N, N-dimethylformamide. Thick the slurry using an applicator to a thickness of 2
200 μm thick coated on 0 μm aluminum foil (positive electrode current collector), dried and pressed, and coated with LiCoO 2 on both sides
Of positive electrode 2 was obtained.

【0022】上記正極2(5.5×44cm2 ),負極
(5.7×49cm2 )とを用い、セパレーターとして
は、厚さ25μm、幅5.7cmのポリプロピレンセパ
レータ用いて、円筒型電池を組みセル3とした。電解液
としてはエチレンカーボネートとジエチルカーボネート
の1:1(重量比)混合液に、1モル/lの濃度にLi
PF6 を溶解した溶液を用いた。上記電池に0.25m
A/cm2 の定電流で電池電圧が4.3Vになるまで充
電し、続いて0.25mA/cm2 の定電流で電池電圧
が2.5Vになるまで放電した。この4.3V−2.5
Vのサイクルを繰り返し、3回目の放電において、体積
容量(mAh/cc)にて評価した。体積基準として
は、電極体積、セパレータ体積、集電体体積の総計を用
いた。結果を表1に示す。
Using the positive electrode 2 (5.5 × 44 cm 2 ) and the negative electrode (5.7 × 49 cm 2 ), and using a polypropylene separator having a thickness of 25 μm and a width of 5.7 cm as a separator, a cylindrical battery was used. Assembled cell 3 was obtained. As the electrolyte, a 1: 1 (weight ratio) mixture of ethylene carbonate and diethyl carbonate was used to adjust the concentration of Li to 1 mol / l.
Using a solution of PF 6. 0.25m for the above battery
The battery was charged at a constant current of A / cm 2 until the battery voltage reached 4.3 V, and subsequently discharged at a constant current of 0.25 mA / cm 2 until the battery voltage reached 2.5 V. This 4.3V-2.5
The cycle of V was repeated, and in the third discharge, evaluation was made by volume capacity (mAh / cc). As a volume standard, the total of the electrode volume, the separator volume, and the current collector volume was used. Table 1 shows the results.

【0023】負極由来のリチウムが0の場合、充分な容
量が得られなかった。
When lithium derived from the negative electrode was 0, sufficient capacity was not obtained.

【0024】比較例2 実施例1において、電池ケース下部のリチウム部(10
0mAh/g相当のリチウム金属)と正極端子の替わり
に負極端子と1000Ωの抵抗体で接続させること以外
は実施例1のセル1と同様に電池を2本組みセル4とし
た。電解液を注液した後50日で1本を分解したとこ
ろ、リチウムの析出は無く、完全にリチウムは無くなっ
ていた。実施例1と同様に容量を測定した。結果を表1
に示す。
Comparative Example 2 In Example 1, the lithium portion (10
A two-cell battery 4 was formed in the same manner as the cell 1 of Example 1 except that the negative electrode terminal was connected to the negative electrode terminal with a resistor of 1000Ω instead of the positive electrode terminal instead of the positive electrode terminal. When 50 pieces were decomposed 50 days after the injection of the electrolytic solution, no lithium was precipitated and lithium was completely lost. The capacity was measured in the same manner as in Example 1. Table 1 shows the results
Shown in

【0025】負極由来のリチウムを直接電極ユニット断
面方向に配置したリチウムとの接続により担持させるこ
とも可能であるが、時間がかかるため工業的には好まし
くない。また、電極ユニット断面方向に配置したリチウ
ムとの接続にも、適切な抵抗を選ぶことが工業的には重
要である。
Although it is possible to directly carry lithium derived from the negative electrode by connection with lithium disposed in the cross-sectional direction of the electrode unit, it is not industrially preferable because it takes time. It is also industrially important to select an appropriate resistor for connection with lithium arranged in the electrode unit cross-sectional direction.

【0026】[0026]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電極断面方向の説明図。FIG. 1 is an explanatory view of an electrode cross section according to the present invention.

【図2】本発明に係る電池の基本構成説明図。FIG. 2 is an explanatory diagram of a basic configuration of a battery according to the present invention.

【図3】本発明に係るリチウムユニットの基本構成説明
図。
FIG. 3 is an explanatory diagram of a basic configuration of a lithium unit according to the present invention.

【図4】本発明に係る抵抗の基本構成説明図。FIG. 4 is an explanatory diagram of a basic configuration of a resistor according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 集電体(正極) 3’集電体(負極) 4 絶縁パッキン 5 セパレータ 6 電池ケース 7 トップ蓋 8 端子(正極) 8’端子(負極) 9 リチウムユニット 10 集電体(リチウム金属) 11 抵抗 12 リチウム金属 13 絶縁キャップ 14 セパレータ 15 ステンレスワイヤー 16 絶縁シールテープ 1 positive electrode 2 Negative electrode 3 Current collector (positive electrode) 3 'current collector (negative electrode) 4 Insulation packing 5 Separator 6 Battery case 7 Top lid 8 terminals (positive electrode) 8 'terminal (negative electrode) 9 lithium unit 10 Current collector (lithium metal) 11 Resistance 12 Lithium metal 13 Insulation cap 14 Separator 15 Stainless wire 16 Insulation sealing tape

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢田 静邦 兵庫県加古郡播磨町宮西2丁目6番13号 (56)参考文献 特開 平5−151994(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shizukuni Yada 2-6-113 Miyanishi, Harima-cho, Kako-gun, Hyogo (56) References JP-A-5-151994 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極,負極並びに電解液としてリチウム塩
の非プロトン性有機溶媒溶液を備えた有機電解質電池で
あって、正極がリチウム含有金属酸化物を含み、負極が
炭素材料であり、負極炭素材料に電池組立後に正極リチ
ウム含有金属酸化物よりリチウムを担持させたものであ
り、かつ正極には電池内に電極断面方向に配置したリチ
ウムよりリチウムを担持させる事を特徴とする有機電解
質電池。
1. An organic electrolyte battery comprising a positive electrode, a negative electrode, and a solution of a lithium salt in an aprotic organic solvent as an electrolyte, wherein the positive electrode contains a lithium-containing metal oxide, the negative electrode is a carbon material, An organic electrolyte battery comprising a material in which lithium is supported by a positive electrode lithium-containing metal oxide after battery assembly, and a positive electrode in which lithium is supported by lithium disposed in a cross-sectional direction of the electrode in the battery.
【請求項2】正極と電極断面方向に配置したリチウムと
を抵抗体で接続させた事を特徴とする請求項1記載の有
機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein the positive electrode and lithium disposed in the electrode cross-sectional direction are connected by a resistor.
JP08633795A 1995-03-17 1995-03-17 Organic electrolyte battery Expired - Fee Related JP3403858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08633795A JP3403858B2 (en) 1995-03-17 1995-03-17 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08633795A JP3403858B2 (en) 1995-03-17 1995-03-17 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH08255635A JPH08255635A (en) 1996-10-01
JP3403858B2 true JP3403858B2 (en) 2003-05-06

Family

ID=13884043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08633795A Expired - Fee Related JP3403858B2 (en) 1995-03-17 1995-03-17 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3403858B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910235B2 (en) * 2001-02-09 2012-04-04 パナソニック株式会社 Lithium secondary battery and manufacturing method thereof
JP2013069418A (en) 2011-09-20 2013-04-18 Semiconductor Energy Lab Co Ltd Lithium secondary battery and method of manufacturing the same
JP2016027562A (en) 2014-07-04 2016-02-18 株式会社半導体エネルギー研究所 Manufacturing method and manufacturing apparatus of secondary battery
JP6890375B2 (en) 2014-10-21 2021-06-18 株式会社半導体エネルギー研究所 apparatus
US10403879B2 (en) 2014-12-25 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Electrolytic solution, secondary battery, electronic device, and method of manufacturing electrode
JP6723023B2 (en) 2015-02-24 2020-07-15 株式会社半導体エネルギー研究所 Method for manufacturing secondary battery electrode

Also Published As

Publication number Publication date
JPH08255635A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
JP3028582B2 (en) Non-aqueous electrolyte secondary battery
JPH10223259A (en) Lithium secondary battery and manufacture thereof
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
JP3403858B2 (en) Organic electrolyte battery
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4780361B2 (en) Lithium secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JP3403856B2 (en) Organic electrolyte battery
JP4599639B2 (en) Non-aqueous electrolyte secondary battery
JP2965674B2 (en) Lithium secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JPH0536401A (en) Lithium secondary battery
CN112970140A (en) Lithium primary battery
JP3403857B2 (en) Organic electrolyte battery
JP2730641B2 (en) Lithium secondary battery
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JP3121902B2 (en) Manufacturing method of lithium secondary battery
JP3278837B2 (en) Non-aqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery
JP2003007339A (en) Battery and manufacturing method of battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JPH06275267A (en) Electrode, battery using the same, and its manufacture

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150228

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150228

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150228

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees