JPH08255635A - Organic electrolyte battery - Google Patents
Organic electrolyte batteryInfo
- Publication number
- JPH08255635A JPH08255635A JP7086337A JP8633795A JPH08255635A JP H08255635 A JPH08255635 A JP H08255635A JP 7086337 A JP7086337 A JP 7086337A JP 8633795 A JP8633795 A JP 8633795A JP H08255635 A JPH08255635 A JP H08255635A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- positive electrode
- negative electrode
- battery
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、負極に炭素材料、正極
に金属酸化物を用いた、高容量かつ高電圧を有する有機
電解質電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery having a high capacity and a high voltage, which uses a carbon material for a negative electrode and a metal oxide for a positive electrode.
【0002】[0002]
【従来の技術】近年、導電性高分子、遷移金属酸化物等
を正極とし、負極にリチウム金属あるいはリチウム合金
を用いた二次電池がエネルギー密度が高いことから、N
i−Cd電池、鉛電池に代る電池として提案されてい
る。しかし、これら二次電池は繰り返し充放電を行うと
正極、あるいは負極の劣化による容量低下が大きく実用
に問題が残されている。特に負極の劣化はデントライト
と呼ばれるこけ状のリチウム結晶の生成を伴い、充放電
の繰り返しにより終局的にはデントライトがセパレータ
を貫通し、電池内部でショートを引き起こし、場合によ
っては電池が破裂する等、安全面においても問題があっ
た。2. Description of the Related Art In recent years, secondary batteries using a conductive polymer, a transition metal oxide or the like as a positive electrode and a lithium metal or a lithium alloy as a negative electrode have a high energy density.
It has been proposed as an alternative to i-Cd batteries and lead batteries. However, when these secondary batteries are repeatedly charged and discharged, the capacity decreases due to deterioration of the positive electrode or the negative electrode, and a problem remains for practical use. In particular, the deterioration of the negative electrode is accompanied by the generation of moss-like lithium crystals called dendrites, and the dendrites eventually penetrate the separator due to repeated charging and discharging, causing a short circuit inside the battery, and in some cases the battery bursts. There was also a problem in terms of safety.
【0003】近時、上記問題点を解決すべく、グラファ
イト等の炭素材料を負極に用い、正極にLiCoO2 等
のリチウム含有金属酸化物を用いた電池が提案されてい
る。該電池は、電池組立後、充電する事により正極のリ
チウム含有金属酸化物より負極にリチウムを供給し、更
に放電では負極リチウムを正極に戻すという、いわゆる
ロッキングチェア型電池である。該電池は高電圧、高容
量を特長とするものの、その容量には、不満足な点が残
されていた。Recently, in order to solve the above problems, a battery using a carbon material such as graphite for the negative electrode and a lithium-containing metal oxide such as LiCoO 2 for the positive electrode has been proposed. The battery is a so-called rocking chair type battery in which lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode by charging after the battery is assembled, and the negative electrode lithium is returned to the positive electrode by discharging. Although the battery is characterized by high voltage and high capacity, the capacity is still unsatisfactory.
【0004】[0004]
【発明が解決しようとする課題】本発明者らは上記問題
点に鑑み、鋭意研究を続けた結果本発明を完成したもの
であって、本発明の目的は高容量かつ高電圧を有する二
次電池を提供するにある。本発明の他の目的は長期に亘
って充放電が可能で、安全性に優れた二次電池を提供す
るにある。本発明の更に他の目的は内部抵抗が低い二次
電池を提供するにある。本発明の更に他の目的は製造が
容易な二次電池を提供するにある。本発明の更に他の目
的は以下の説明から明らかにされよう。The inventors of the present invention have completed the present invention as a result of intensive research in view of the above problems, and an object of the present invention is to provide a secondary battery having a high capacity and a high voltage. To provide batteries. Another object of the present invention is to provide a secondary battery which can be charged and discharged for a long period of time and is excellent in safety. Still another object of the present invention is to provide a secondary battery having a low internal resistance. Still another object of the present invention is to provide a secondary battery that is easy to manufacture. Still other objects of the present invention will be apparent from the following description.
【0005】[0005]
【課題を解決するための手段】本発明者らは、正極に金
属酸化物、負極に炭素材料を用い、負極由来のリチウム
の担持法(ドープ法)を選択することにより本発明を完
成した。すなわち、本発明は、正極,負極並びに電解液
としてリチウム塩の非プロトン性有機溶媒溶液を備えた
有機電解質電池であって、正極がリチウム含有金属酸化
物を含み、負極が炭素材料であり、負極炭素材料に電池
組立後に正極リチウム含有金属酸化物よりリチウムを担
持させたものであり、かつ正極にはリチウムよりリチウ
ムを担持させる事を特徴とする有機電解質電池である。The present inventors have completed the present invention by using a metal oxide for the positive electrode, a carbon material for the negative electrode, and selecting a method for supporting (doping) lithium from the negative electrode. That is, the present invention is an organic electrolyte battery comprising a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein the positive electrode contains a lithium-containing metal oxide, the negative electrode is a carbon material, and the negative electrode is An organic electrolyte battery is characterized in that a carbon material is loaded with lithium from a positive electrode lithium-containing metal oxide after the battery is assembled, and the positive electrode is loaded with lithium rather than lithium.
【0006】本発明における炭素材料としては、この種
の二次電池に用いられる炭素材料がいずれも使用可能で
ある。例えば、ピッチ、タール等を炭化して得られる炭
素材料、グラファイト等が挙げられる。更に、一回目の
充放電における効率が80%以下である炭素材料におい
て、本発明は効果てきである。As the carbon material in the present invention, any carbon material used in this type of secondary battery can be used. Examples thereof include carbon materials obtained by carbonizing pitch, tar and the like, graphite and the like. Further, the present invention is effective in a carbon material having an efficiency of 80% or less in the first charge / discharge.
【0007】本発明の負極は上記炭素材料より成り、粉
末状、粒状、短繊維状等の成形しやすい形状にある炭素
材料をバインダーで成形したものである。バインダーと
しては、ポリ四フッ化エチレン、ポリフッ化ビニリデン
等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等
の熱可塑性樹脂がを用いる事ができるが、好ましくフッ
素系バインダ−が好ましい。The negative electrode of the present invention is made of the above-mentioned carbon material, and is formed by using a binder to form a carbon material in the form of powder, granules, short fibers, etc., which is easy to form. As the binder, a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used, but a fluorine-based binder is preferable.
【0008】本発明の有機電解質電池の正極としては、
LiX CoO2 、 LiX NiO2 、LiX MnO2 、L
iX FeO2 等のLiX My OZ (Mは金属、二種以上
の金属でも良い)の一般式で表され得る、リチウムを電
気化学的にドープ、脱ドープが可能なリチウム含有金属
酸化物を用いる。特にリチウム金属に対し4V以上の電
圧を有するリチウム含有酸化物が好ましい。中でも、リ
チウム含有コバルト酸化物、リチウム含有ニッケル酸化
物が好ましい。本発明における正極は、上記活物質、及
び必要に応じて導電材、バインダーを加え成形したもの
であり、導電材、バインダーの種類、組成等は適宜設定
すればよい。As the positive electrode of the organic electrolyte battery of the present invention,
Li X CoO 2, Li X NiO 2, Li X MnO 2 , L
i X FeO 2, etc. Li X M y O Z (M is a metal, may also be in two or more metals) may be represented by the general formula, electrochemically doped, de-doped Lithium-containing metal oxide of lithium Use things. Particularly, a lithium-containing oxide having a voltage of 4 V or more with respect to lithium metal is preferable. Of these, lithium-containing cobalt oxide and lithium-containing nickel oxide are preferable. The positive electrode in the present invention is formed by adding the above active material and, if necessary, a conductive material and a binder, and the kind and composition of the conductive material and the binder may be appropriately set.
【0009】導電剤の種類は、金属ニッケル等の金属粉
末でもよいが、例えば、活性炭、カーボンブラック、ア
セチレンブラック、黒鉛等の炭素系のものが特に好まし
い。混合比は活物質の電気伝導度、電極形状等により異
なるが、活物質に対して2〜40%加えるのが適当であ
る。また、バインダーの種類は、後述の本発明にて用い
る電解液に不溶のものであればよく、例えば、SBR等
のゴム系バインダー、ポリ四フッ化エチレン、ポリフッ
化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポ
リエチレン等の熱可塑性樹脂が好ましく、その混合比は
20%以下とするのが好ましい。The kind of the conductive agent may be metal powder such as metallic nickel, but carbon-based ones such as activated carbon, carbon black, acetylene black and graphite are particularly preferable. The mixing ratio varies depending on the electric conductivity of the active material, the shape of the electrode, etc., but it is appropriate to add 2 to 40% to the active material. Further, the kind of binder may be one that is insoluble in the electrolytic solution used in the present invention described later, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, Thermoplastic resins such as polypropylene and polyethylene are preferable, and the mixing ratio thereof is preferably 20% or less.
【0010】本発明に用いる正極、負極の電極形状は、
目的とする電池により、板状、フィルム状、円柱状、あ
るいは、金属箔上に成形するなど、種々の形状をとるこ
とが出来る。特に、金属箔上に成形したものは集電体一
体電極として、種々の電池に応用できることから好まし
い。The shape of the positive and negative electrodes used in the present invention is
Depending on the intended battery, various shapes such as a plate shape, a film shape, a column shape, or molding on a metal foil can be adopted. In particular, the one formed on a metal foil is preferable as it can be applied to various batteries as a collector-integrated electrode.
【0011】本発明において、負極由来のリチウムは、
電池完成時、負極炭素材料に含まれるリチウムであり、
電解液を注液し電池を組立後、定電流或いは定電圧等の
電気化学的手法を用い、正極リチウム含有酸化物より負
極炭素材料にリチウムを担持させる。正極には、リチウ
ム金属より電気化学的にリチウムを担持させる。具体的
には、例えば、円筒型電池を組む場合、正極と負極をセ
パレーターを介して巻き取り電解液を注液した後、正極
とリチウムとの電気化学的接触により、正極にリチウム
を担持させる。正極とリチウムは、好ましくは、抵抗体
で接続するのが良い。抵抗体は正極とリチウムとの間に
流れる電流を制御するために用いる事ができ、その抵抗
値は電池容量、電池形状により異なるが、大きすぎると
電流値が小さくなり正極へのリチウムの担持に時間がか
かり、小さすぎると電流値が大きくなり金属リチウムが
析出する場合がある。好ましくは0.1〜10000Ω
が良く、市販の固定抵抗等を用いても良いが、例えば線
径の細いステンレスワイヤーを所定の抵抗分の長さだけ
用いても良い。更に、正極と接続させるリチウムは電極
断面方向に配置するのが好ましく、例えば、円筒型電池
を、正極、セパレータ、負極を巻き取って作成する場
合、巻き取り電極ユニット上部、あるいは、下部であ
り、図1のように正極、セパレータ、負極を積層し、電
池を組み立てる場合、電極面を下面あるいは上面とした
時、側面A,B,C,Dの4方向である。リチウム金属
の集電体は酸化にも還元にも耐性のある導電性物質を用
いることが好ましく、例えば、ステンレス、白金などを
用いることができる。更に、リチウム金属の集電体は、
リチウム金属の電極板から一番離れた位置に少なくとも
その一部が配置されることが、リチウムをスムーズに担
持させることができ好ましい。また、リチウムとして、
例えば、メッシュ状、網目状、多孔体等の形状にある導
電体にリチウム金属を埋め込んだものを用いること、渦
巻き状に巻いたリチウム金属を用いることも、スムーズ
にリチウムを担持させる上で好ましい。リチウム量は電
池ケース内にて正極にリチウムを担持する場合、予め決
定されたリチウム量に相当する、リチウムを配置する。
電解液の注液から正極リチウム含有酸化物より負極炭素
材料にリチウムを担持させ始める時間は、早い方がよく
1日以内、好ましくは1時間以内が良い。また、負極由
来のリチウム量は特に限定されないが,電極断面方向に
配置したリチウム量より多いことが好ましい。通常この
一連の操作は室温にて行うが、例えば40℃ぐらいの高
温になると短時間での操作が可能である。本発明におい
て、正極リチウム含有酸化物にリチウムと正極との接続
によりリチウムを担持させる事が終了したとき、電池完
成とする。負極リチウムの担持方法としては、電池組立
前に担持させる、すなわち、あらかじめ負極炭素材料に
所定のリチウムを担持させた後、電池を組み立てる方法
もあるが、電池生産において、その工程が煩雑になる事
から、好ましくない。更に、リチウムと負極炭素材料と
を電池内で短絡させる方法もあるが、負極炭素材料への
リチウム担持時間が長くなることから、好ましくない。In the present invention, lithium derived from the negative electrode is
When the battery is completed, it is lithium contained in the negative electrode carbon material,
After the electrolytic solution is injected and the battery is assembled, lithium is supported on the negative electrode carbon material from the positive electrode lithium-containing oxide by using an electrochemical method such as constant current or constant voltage. Lithium is electrochemically supported on the positive electrode rather than lithium metal. Specifically, for example, in the case of assembling a cylindrical battery, after winding the positive electrode and the negative electrode through a separator and injecting an electrolytic solution, the positive electrode carries lithium by electrochemical contact with the lithium. The positive electrode and lithium are preferably connected by a resistor. The resistor can be used to control the current flowing between the positive electrode and lithium, and its resistance value varies depending on the battery capacity and battery shape, but if it is too large, the current value will be small and it will be necessary to support lithium on the positive electrode. It takes time, and if it is too small, the current value increases and metallic lithium may be deposited. Preferably 0.1 to 10,000 Ω
Although a commercially available fixed resistor or the like may be used, for example, a stainless wire having a small wire diameter may be used for the length of a predetermined resistance. Further, the lithium to be connected to the positive electrode is preferably arranged in the electrode cross-sectional direction, for example, when a cylindrical battery is formed by winding the positive electrode, the separator, and the negative electrode, the winding electrode unit is the upper part or the lower part, When a battery is assembled by stacking a positive electrode, a separator, and a negative electrode as shown in FIG. 1, when the electrode surface is the lower surface or the upper surface, there are four directions of side surfaces A, B, C, and D. As the lithium metal current collector, it is preferable to use a conductive substance that is resistant to oxidation and reduction, and, for example, stainless steel, platinum, or the like can be used. Further, the lithium metal current collector is
It is preferable that at least a part of the lithium metal is arranged at a position farthest from the electrode plate because lithium can be smoothly carried. Also, as lithium,
For example, it is also preferable to use a conductor in which lithium metal is embedded in a conductor having a mesh shape, a mesh shape, a porous body, or the like, or to use spirally wound lithium metal in order to smoothly support lithium. When the lithium is loaded on the positive electrode in the battery case, the lithium amount is set to correspond to a predetermined lithium amount.
The time from the injection of the electrolytic solution to the loading of lithium on the negative electrode carbon material from the positive electrode lithium-containing oxide is preferably as early as possible, and within 1 day, preferably within 1 hour. The amount of lithium derived from the negative electrode is not particularly limited, but it is preferably larger than the amount of lithium arranged in the electrode cross-sectional direction. Usually, this series of operations is performed at room temperature, but when the temperature becomes high, for example, about 40 ° C., the operation can be performed in a short time. In the present invention, the battery is completed when the supporting of lithium in the positive electrode lithium-containing oxide by supporting lithium and the positive electrode is completed. As a method for supporting the negative electrode lithium, there is also a method of supporting before the battery is assembled, that is, a method of previously supporting a predetermined lithium on the negative electrode carbon material and then assembling the battery, but in the battery production, the process becomes complicated. Therefore, it is not preferable. Further, there is a method of short-circuiting lithium and the negative electrode carbon material in the battery, but it is not preferable because it takes a long time to carry lithium on the negative electrode carbon material.
【0012】本発明において負極由来のリチウム量は、
炭素材料の種類により異なるが、負極炭素材料に対し2
0mAh/g以上,好ましくは50mAh/g以上であ
り、少なすぎると、容量が充分に得られない。また、本
発明における正極に供給されるリチウム量は負極由来の
リチウムと同じか、もしくは小さいことが好ましい。In the present invention, the amount of lithium derived from the negative electrode is
2 depending on the type of carbon material
It is 0 mAh / g or more, preferably 50 mAh / g or more, and if it is too small, the capacity cannot be sufficiently obtained. Further, the amount of lithium supplied to the positive electrode in the present invention is preferably the same as or smaller than that of lithium derived from the negative electrode.
【0013】本発明に用いる電解液を構成する溶媒とし
ては非プロトン性有機溶媒が用いられる。非プロトン性
有機溶媒としては、例えば、エチレンカーボネイト、プ
ロピレンカーボネイト、ジメチルカーボネート、ジエチ
ルカーボネート、γ−ブチロラクトン、アセトニトリ
ル、ジメトキシエタン、テトラヒドロフラン、ジオキソ
ラン、塩化メチレン、スルホラン等が挙げられ、更に、
これら非プロトン性有機溶媒の二種以上の混合液も用い
ることができる。An aprotic organic solvent is used as a solvent constituting the electrolytic solution used in the present invention. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane, and the like.
Mixtures of two or more of these aprotic organic solvents can also be used.
【0014】また、上記の混合又は単一の溶媒に溶解さ
せる電解質は、リチウムイオンを生成しうる電解質のい
ずれでも良い。このような電解質としては、例えばLi
I、LiClO4 、LiAsF6 、LiBF4 、LiP
F6 、又はLiHF2 等が挙げられる。上記の電解質及
び溶媒は充分に脱水された状態で混合され、電解液とす
るのであるが、電解液中の電解質の濃度は電解液による
内部抵抗を小さくするため少なくとも0.1モル/l以
上とするのが好ましく、通常0.2〜1.5モル/lと
するのが更に好ましい。The electrolyte mixed or dissolved in a single solvent may be any electrolyte capable of producing lithium ions. As such an electrolyte, for example, Li
I, LiClO 4 , LiAsF 6 , LiBF 4 , LiP
F 6 or LiHF 2 may, for example, be mentioned. The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolytic solution, and the concentration of the electrolyte in the electrolytic solution is at least 0.1 mol / l or more in order to reduce the internal resistance of the electrolytic solution. It is preferable that the amount is usually 0.2 to 1.5 mol / l.
【0015】電池外部に電流を取り出すための集電体、
あるいはリード端子としては、例えば、炭素、白金、ニ
ッケル、ステンレス、アルミニウム、銅等を用いること
が出来、箔状、ネット状の集電体を用いる場合、電極を
集電体上に成形することにより集電体一体型電極として
用いることもできる。A current collector for extracting a current to the outside of the battery,
Alternatively, for the lead terminal, for example, carbon, platinum, nickel, stainless steel, aluminum, copper or the like can be used. When a foil-shaped or net-shaped current collector is used, by forming the electrode on the current collector, It can also be used as a collector-integrated electrode.
【0016】次に図面により本発明の実施態様の一例を
説明する。図2は本発明に係る電池の基本構成説明図で
ある。図2において、(1)は正極であり、(2)は負
極である。(3),(3′)は集電体であり、電極は該
集電体の上に成形されている。リード端子(8),
(8′)は電圧降下を生じないように集電体に接続され
ており、その一端は、電池ケース(6)、トップ蓋
(7)に接続される。(9)はリチウムユニットであ
り、(10)はリチウムユニットのリチウム部集電体で
あり、抵抗(11)を介して正極集電体(3)に接続さ
れ、正極(1)とリチウム金属(9)の間には、電解液
が満たされている。(5)は電解液が含浸されたセパレ
ータであり、該電解液には、ドーピングされうるイオン
を生成し得る前述の化合物が非プロトン性有機溶媒に溶
解されている。電解液は通常液状であり、セパレータに
含浸されるが、セパレータなしに、漏液を防止するため
ゲル状又は固体状にして用いることもできる。(4)は
正負両極の接触(電池ケースとトップ蓋)を阻止する事
を目的として配置された絶縁パッキンである。Next, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a diagram illustrating the basic configuration of the battery according to the present invention. In FIG. 2, (1) is a positive electrode and (2) is a negative electrode. (3) and (3 ') are current collectors, and the electrodes are formed on the current collectors. Lead terminal (8),
(8 ') is connected to the current collector so as not to cause a voltage drop, and one end thereof is connected to the battery case (6) and the top lid (7). (9) is a lithium unit, (10) is a lithium part current collector of the lithium unit, is connected to the positive electrode current collector (3) through the resistor (11), and is connected to the positive electrode (1) and the lithium metal ( The electrolyte is filled between 9). (5) is a separator impregnated with an electrolytic solution, in which the above-mentioned compound capable of generating ions that can be doped is dissolved in an aprotic organic solvent. The electrolytic solution is usually a liquid and is impregnated in the separator, but it may be used in the form of gel or solid without the separator in order to prevent liquid leakage. (4) is an insulating packing arranged to prevent contact between the positive and negative electrodes (battery case and top lid).
【0017】該セパレータは、電解液或は電極活物質等
に対し、耐久性のある連通気孔を有する電子伝導性のな
い多孔体であり、通常ガラス繊維、ポリエチレン或はポ
リプロピレン等からなる布、不織布或は多孔体が用いら
れる。好ましくは、3次元連通気孔を有するガラス繊
維、ポリエチレン或はポリプロピレン等からなる不織布
或は多孔体セパレータであり、リチウム担持時間が短く
なる効果が得られる。セパレータの厚さは電池の内部抵
抗を小さくするため薄い方が好ましいが、電解液の保持
量、流通性、強度等を勘案して決定される。正負極及び
セパレータは電池ケース(6)内に実用上問題が生じな
いように固定される。電極の形状、大きさ等は目的とす
る電池の形状、性能により適宜決められる。図3は本発
明に係る電池のリチウムユニットの基本構成説明図であ
る。図3において、(12)はリチウム金属であり、
(10)はその集電体である。また、(13)は(1
2)のリチウム金属と正極(1)、負極(2)及び電池
ケース(6)が直接に接触することを防ぐための絶縁キ
ャップである。(10)の集電体と正極端子(3)は抵
抗(11)を介して接続されている。また、電極ユニッ
トとリチウム金属(12)との間に、電解液を保液した
多孔質ポリプロピレン製不織布などを挿入しても良い。
矢印Eで示しているように、リチウムユニットの中心部
には負極端子(8’)と、電池ケース(6)の低部を溶
接するために、直径4mm程度の穴が開けてある。ま
た、抵抗(11)は市販の固定抵抗等を用いても良い
が、例えば図4に示す様に、線径の細いステンレスワイ
ヤー(15)を所定の抵抗分の長さだけ用いても良い。
その際、ワイヤーは細く、また、電池ケース(6)や電
極と接触しやすいので、補強と絶縁を兼ねて絶縁シール
テープ(16)で覆う方がよい。本発明の電池形状は上
記例示の、円筒型に限定されるものではなく、角形、箱
型等が挙げられ、その形状は特に限定されない。The separator is a porous material having continuous ventilation holes that are durable to an electrolytic solution or an electrode active material and has no electron conductivity, and is usually a cloth or non-woven cloth made of glass fiber, polyethylene or polypropylene. Alternatively, a porous body is used. Preferred is a non-woven fabric or a porous separator made of glass fiber, polyethylene, polypropylene or the like having three-dimensional continuous air holes, which has the effect of shortening the lithium carrying time. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of retained electrolyte, flowability, strength, and the like. The positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem. The shape and size of the electrode are appropriately determined according to the shape and performance of the target battery. FIG. 3 is a diagram illustrating the basic configuration of the lithium unit of the battery according to the present invention. In FIG. 3, (12) is lithium metal,
(10) is the current collector. Also, (13) is (1
It is an insulating cap for preventing the lithium metal of 2) from directly contacting the positive electrode (1), the negative electrode (2) and the battery case (6). The current collector (10) and the positive electrode terminal (3) are connected via a resistor (11). Further, a porous polypropylene non-woven fabric holding an electrolytic solution may be inserted between the electrode unit and the lithium metal (12).
As indicated by an arrow E, a hole having a diameter of about 4 mm is formed in the center of the lithium unit for welding the negative electrode terminal (8 ') and the lower part of the battery case (6). Further, as the resistor (11), a commercially available fixed resistor or the like may be used, but as shown in FIG. 4, for example, a stainless wire (15) having a small wire diameter may be used for the length of a predetermined resistance.
At that time, the wire is thin and easily comes into contact with the battery case (6) and the electrodes, so it is better to cover the wire with an insulating seal tape (16) for both reinforcement and insulation. The shape of the battery of the present invention is not limited to the cylindrical shape illustrated above, but may be a prismatic shape, a box shape or the like, and the shape thereof is not particularly limited.
【0018】[0018]
【発明の効果】本発明の有機電解質電池は、負極に炭素
材料、正極に金属酸化物を用い、かつ負極由来のリチウ
ム量の両者を適切に制御し、かつ、負極由来のリチウム
の担持方法を適切に選択することにより、高容量、高電
圧かつ低内部抵抗の電池であり、また、製造も容易な電
池である。以下、実施例を挙げて本発明を具体的に説明
する。EFFECTS OF THE INVENTION The organic electrolyte battery of the present invention uses a carbon material for the negative electrode and a metal oxide for the positive electrode, appropriately controls both the amount of lithium derived from the negative electrode, and a method for supporting lithium derived from the negative electrode. With proper selection, it is a battery with high capacity, high voltage and low internal resistance, and also a battery that is easy to manufacture. Hereinafter, the present invention will be specifically described with reference to examples.
【0019】[0019]
実施例1 石油ピッチを1200℃で焼成し、ディスクミルで粉砕
することにより平均粒径約15μmの炭素材料粉体を得
た。次に上記炭素材料粉末100重量部と、ポリフッ化
ビニリデン粉末10重量部をN,N−ジメチルホルムア
ミド90重量部に溶解した溶液110重量部とを充分に
混合する事によりスラリーを得た。該スラリーをアプリ
ケーターを用い厚さ10μmの銅箔(負極集電体)上に
塗布し、乾燥、プレスし、両面に炭素材料を塗布した9
0μmの炭素材料負極を得た。LiCoO2 100部、
グラファイト5部対し、ポリフッ化ビニリデン粉末10
重量部、、N,N−ジメチルホルムアミド90重量部に
溶解した溶液50重量部を充分に混合する事によりスラ
リーを得た。該スラリーをアプリケーターを用い厚さ2
0μmのアルミ箔(正極集電体)上に塗布し、乾燥、プ
レスし、両面にLiCoO2 を塗布した厚さ150μm
の正極1を得た。Example 1 Petroleum pitch was fired at 1200 ° C. and pulverized with a disc mill to obtain a carbon material powder having an average particle size of about 15 μm. Next, 100 parts by weight of the carbon material powder and 110 parts by weight of a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry was applied on a copper foil (negative electrode current collector) having a thickness of 10 μm using an applicator, dried and pressed, and a carbon material was applied on both surfaces.
A 0 μm carbon material negative electrode was obtained. 100 parts of LiCoO 2 ,
Polyvinylidene fluoride powder 10 against 5 parts of graphite
A slurry was obtained by thoroughly mixing 50 parts by weight of a solution of 90 parts by weight of N, N-dimethylformamide and 50 parts by weight of a solution. Thickness of the slurry is 2 using an applicator.
Coated on 0 μm aluminum foil (positive electrode current collector), dried, pressed, and coated with LiCoO 2 on both sides. Thickness 150 μm
A positive electrode 1 of was obtained.
【0020】上記正極1(5.0×50cm2 ),負極
(5.2×54cm2 )とを用い、セパレーターとして
は、厚さ25μm、幅5.2cmのポリプロピレンセパ
レータ用いて、図1のような正極、セパレータ、負極の
位置関係にて円筒型電池を組んだ。正極端子としては厚
さ150μm、幅5mmのアルミニウム端子、負極端子
としては正極端子と同サイズのニッケルを用い、それぞ
れ電極の端にとりつけた。また、電極ユニットの断面方
向である電池ケースの下部(図2に示す位置)にリチウ
ムユニットを設置した。リチウムユニットは図3に示す
ように、直径15mmで中心に直径4mmの穴が有り、
長さ10mm、幅5mmの端子の付いたステンレスメッ
シュに、直径15mmで中心に直径4mmの穴の有るリ
チウム金属を圧着(負極炭素材料に対して100mAh
/g相当)したリチウム部と、このリチウム部の底面と
高さ方向を覆う厚さ300μmのポリプロピレン製のキ
ャップ(底面には中心に直径15mmの穴が有る)より
成っている。該リチウム部の端子と該正極端子を、抵抗
値が1000及び2000Ωの抵抗体で接続させ、それ
ぞれセル1及び2とした。セルはそれぞれ2本ずつ組ん
だ。リチウム部の端子と正極端子を継なぐ抵抗を含めた
線は、電池ケース及び電極と短絡しないようテフロン製
テープにより被覆した。また電解液としてはエチレンカ
ーボネートとジエチルカーボネートの1:1(重量比)
混合液に、1モル/lの濃度にLiPF6 を溶解した溶
液を用いた。上記電池に電解液を注液して1時間後に
0.25mA/cm2 の定電流にて、負極炭素材料に対
して120mAh/gに相当する電気量を通じ、負極炭
素材料に120mAh/gのリチウムを正極よりドーピ
ングした。セル1を組立後10日で分解したところ、リ
チウムの析出は無く、完全にリチウムは無くなってい
た。セル2を組立後20日で分解したところ、リチウム
の析出は無く、完全にリチウムは無くなっていた。上記
電池に0.25mA/cm2 の定電流で電池電圧が4.
3Vになるまで充電し、続いて0.25mA/cm2 の
定電流で電池電圧が2.5Vになるまで放電した。この
4.3V−2.5Vのサイクルを繰り返し、3回目の放
電において、体積容量(mAh/cc)にて評価した。
体積基準としては、電極体積、セパレータ体積、集電体
体積に加え、リチウム金属の体積を含めた総計を用い
た。結果を表1に示す。Using the positive electrode 1 (5.0 × 50 cm 2 ) and the negative electrode (5.2 × 54 cm 2 ) and using a polypropylene separator having a thickness of 25 μm and a width of 5.2 cm as a separator, as shown in FIG. A cylindrical battery was assembled with the positive electrode, the separator, and the negative electrode in the positional relationship. An aluminum terminal having a thickness of 150 μm and a width of 5 mm was used as the positive electrode terminal, and nickel having the same size as the positive electrode terminal was used as the negative electrode terminal, which were attached to the ends of the electrodes. Further, the lithium unit was installed in the lower part of the battery case (the position shown in FIG. 2) in the cross-sectional direction of the electrode unit. As shown in FIG. 3, the lithium unit has a hole with a diameter of 15 mm and a diameter of 4 mm at the center.
Lithium metal with a diameter of 15 mm and a hole with a diameter of 4 mm in the center is pressure-bonded to a stainless steel mesh with a terminal of 10 mm in length and 5 mm in width (100 mAh to the negative electrode carbon material).
/ G)), and a polypropylene cap with a thickness of 300 μm that covers the bottom surface of this lithium portion and the height direction (the bottom surface has a hole with a diameter of 15 mm). The terminal of the lithium portion and the positive electrode terminal were connected by resistors having resistance values of 1000 and 2000Ω to form cells 1 and 2, respectively. Two cells each were assembled. The wire including the resistance connecting the terminal of the lithium portion and the positive electrode terminal was covered with a Teflon tape so as not to short-circuit with the battery case and the electrode. The electrolyte is 1: 1 (weight ratio) of ethylene carbonate and diethyl carbonate.
As the mixed solution, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l was used. One hour after injecting the electrolytic solution into the above-mentioned battery, a constant current of 0.25 mA / cm 2 was applied to pass a quantity of electricity corresponding to 120 mAh / g for the negative electrode carbon material, and 120 mAh / g lithium for the negative electrode carbon material. Was doped from the positive electrode. When cell 1 was disassembled 10 days after assembling, lithium was not deposited and lithium was completely lost. When the cell 2 was disassembled 20 days after assembling, lithium was not deposited and lithium was completely lost. Battery voltage at a constant current of 0.25 mA / cm 2 to the battery 4.
The battery was charged to 3 V and then discharged at a constant current of 0.25 mA / cm 2 until the battery voltage was 2.5 V. This 4.3V-2.5V cycle was repeated, and the volume capacity (mAh / cc) was evaluated in the third discharge.
As the volume standard, the total volume including the volume of the lithium metal in addition to the volume of the electrode, the volume of the separator, the volume of the current collector was used. The results are shown in Table 1.
【0021】比較例1 石油ピッチを1200℃で焼成し、ディスクミルで粉砕
することにより平均粒径約15μmの炭素材料粉体を得
た。次に上記炭素材料粉末100重量部と、ポリフッ化
ビニリデン粉末10重量部をN,N−ジメチルホルムア
ミド90重量部に溶解した溶液110重量部とを充分に
混合する事によりスラリーを得た。該スラリーをアプリ
ケーターを用い厚さ10μmの銅箔(負極集電体)上に
塗布し、乾燥、プレスし、両面に炭素材料を塗布した9
0μmの炭素材料負極を得た。LiCoO2 100部、
グラファイト5部対し、ポリフッ化ビニリデン粉末10
重量部、、N,N−ジメチルホルムアミド90重量部に
溶解した溶液50重量部を充分に混合する事によりスラ
リーを得た。該スラリーをアプリケーターを用い厚さ2
0μmのアルミ箔(正極集電体)上に塗布し、乾燥、プ
レスし、両面にLiCoO2 を塗布した厚さ200μm
の正極2を得た。Comparative Example 1 Petroleum pitch was calcined at 1200 ° C. and pulverized by a disc mill to obtain a carbon material powder having an average particle size of about 15 μm. Next, 100 parts by weight of the carbon material powder and 110 parts by weight of a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry was applied on a copper foil (negative electrode current collector) having a thickness of 10 μm using an applicator, dried and pressed, and a carbon material was applied on both surfaces.
A 0 μm carbon material negative electrode was obtained. 100 parts of LiCoO 2 ,
Polyvinylidene fluoride powder 10 against 5 parts of graphite
A slurry was obtained by thoroughly mixing 50 parts by weight of a solution of 90 parts by weight of N, N-dimethylformamide and 50 parts by weight of a solution. Thickness of the slurry is 2 using an applicator.
200 μm thick, coated on 0 μm aluminum foil (positive electrode current collector), dried, pressed, and coated with LiCoO 2 on both sides
A positive electrode 2 of was obtained.
【0022】上記正極2(5.5×44cm2 ),負極
(5.7×49cm2 )とを用い、セパレーターとして
は、厚さ25μm、幅5.7cmのポリプロピレンセパ
レータ用いて、円筒型電池を組みセル3とした。電解液
としてはエチレンカーボネートとジエチルカーボネート
の1:1(重量比)混合液に、1モル/lの濃度にLi
PF6 を溶解した溶液を用いた。上記電池に0.25m
A/cm2 の定電流で電池電圧が4.3Vになるまで充
電し、続いて0.25mA/cm2 の定電流で電池電圧
が2.5Vになるまで放電した。この4.3V−2.5
Vのサイクルを繰り返し、3回目の放電において、体積
容量(mAh/cc)にて評価した。体積基準として
は、電極体積、セパレータ体積、集電体体積の総計を用
いた。結果を表1に示す。Using the positive electrode 2 (5.5 × 44 cm 2 ) and the negative electrode (5.7 × 49 cm 2 ) as the separator, a polypropylene battery having a thickness of 25 μm and a width of 5.7 cm was used as a separator to form a cylindrical battery. The assembled cell 3 was used. As the electrolytic solution, a 1: 1 (weight ratio) mixed solution of ethylene carbonate and diethyl carbonate was used to prepare Li at a concentration of 1 mol / l.
A solution in which PF 6 was dissolved was used. 0.25m for the above battery
The battery was charged at a constant current of A / cm 2 until the battery voltage reached 4.3 V, and then discharged at a constant current of 0.25 mA / cm 2 until the battery voltage reached 2.5 V. This 4.3V-2.5
The cycle of V was repeated, and the volume capacity (mAh / cc) was evaluated in the third discharge. As the volume reference, the total of the electrode volume, the separator volume, and the current collector volume was used. The results are shown in Table 1.
【0023】負極由来のリチウムが0の場合、充分な容
量が得られなかった。When the amount of lithium derived from the negative electrode was 0, a sufficient capacity could not be obtained.
【0024】比較例2 実施例1において、電池ケース下部のリチウム部(10
0mAh/g相当のリチウム金属)と正極端子の替わり
に負極端子と1000Ωの抵抗体で接続させること以外
は実施例1のセル1と同様に電池を2本組みセル4とし
た。電解液を注液した後50日で1本を分解したとこ
ろ、リチウムの析出は無く、完全にリチウムは無くなっ
ていた。実施例1と同様に容量を測定した。結果を表1
に示す。Comparative Example 2 In Example 1, the lithium part (10
A two-cell set cell 4 was prepared in the same manner as the cell 1 of Example 1 except that the negative electrode terminal was connected to the negative electrode terminal by a resistor of 1000 Ω instead of the positive electrode terminal (a lithium metal equivalent to 0 mAh / g). When 50 pieces were decomposed one after the electrolyte was injected, lithium was not deposited and lithium was completely removed. The capacity was measured in the same manner as in Example 1. The results are shown in Table 1.
Shown in
【0025】負極由来のリチウムを直接電極ユニット断
面方向に配置したリチウムとの接続により担持させるこ
とも可能であるが、時間がかかるため工業的には好まし
くない。また、電極ユニット断面方向に配置したリチウ
ムとの接続にも、適切な抵抗を選ぶことが工業的には重
要である。It is possible to support lithium derived from the negative electrode by directly connecting it to lithium arranged in the cross-sectional direction of the electrode unit, but this is industrially not preferable because it takes time. Further, it is industrially important to select an appropriate resistance for connection with lithium arranged in the electrode unit cross-sectional direction.
【0026】[0026]
【表1】 [Table 1]
【図1】本発明に係る電極断面方向の説明図。FIG. 1 is an explanatory diagram of an electrode cross-section direction according to the present invention.
【図2】本発明に係る電池の基本構成説明図。FIG. 2 is an explanatory diagram of a basic configuration of a battery according to the present invention.
【図3】本発明に係るリチウムユニットの基本構成説明
図。FIG. 3 is an explanatory diagram of a basic configuration of a lithium unit according to the present invention.
【図4】本発明に係る抵抗の基本構成説明図。FIG. 4 is a diagram illustrating the basic configuration of a resistor according to the present invention.
1 正極 2 負極 3 集電体(正極) 3’集電体(負極) 4 絶縁パッキン 5 セパレータ 6 電池ケース 7 トップ蓋 8 端子(正極) 8’端子(負極) 9 リチウムユニット 10 集電体(リチウム金属) 11 抵抗 12 リチウム金属 13 絶縁キャップ 14 セパレータ 15 ステンレスワイヤー 16 絶縁シールテープ 1 Positive electrode 2 Negative electrode 3 Current collector (positive electrode) 3'Current collector (negative electrode) 4 Insulating packing 5 Separator 6 Battery case 7 Top lid 8 Terminal (positive electrode) 8'terminal (negative electrode) 9 Lithium unit 10 Current collector (lithium) Metal) 11 Resistance 12 Lithium metal 13 Insulation cap 14 Separator 15 Stainless wire 16 Insulation seal tape
Claims (3)
塩の非プロトン性有機溶媒溶液を備えた有機電解質電池
であって、正極がリチウム含有金属酸化物を含み、負極
が炭素材料であり、負極炭素材料に電池組立後に正極リ
チウム含有金属酸化物よりリチウムを担持させたもので
あり、かつ正極には電池内に配置したリチウムよりリチ
ウムを担持させる事を特徴とする有機電解質電池。1. An organic electrolyte battery comprising a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, the positive electrode containing a lithium-containing metal oxide, the negative electrode being a carbon material, and the negative electrode carbon. An organic electrolyte battery in which lithium is supported by a metal oxide containing lithium in a positive electrode after the battery is assembled, and lithium is supported by a positive electrode in the positive electrode.
特徴とする請求項1記載の有機電解質電池。2. The organic electrolyte battery according to claim 1, wherein lithium is arranged in the direction of the electrode cross section.
とを抵抗体で接続させた事を特徴とする請求項1記載の
有機電解質電池。3. The organic electrolyte battery according to claim 1, wherein the positive electrode and lithium arranged in the direction of the electrode cross section are connected by a resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08633795A JP3403858B2 (en) | 1995-03-17 | 1995-03-17 | Organic electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08633795A JP3403858B2 (en) | 1995-03-17 | 1995-03-17 | Organic electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08255635A true JPH08255635A (en) | 1996-10-01 |
JP3403858B2 JP3403858B2 (en) | 2003-05-06 |
Family
ID=13884043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08633795A Expired - Fee Related JP3403858B2 (en) | 1995-03-17 | 1995-03-17 | Organic electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3403858B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002237295A (en) * | 2001-02-09 | 2002-08-23 | Matsushita Electric Ind Co Ltd | Lithium secondary battery and its manufacturing method |
US9350044B2 (en) | 2011-09-20 | 2016-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Lithium secondary battery and manufacturing method thereof |
US10153479B2 (en) | 2014-10-21 | 2018-12-11 | Semiconductor Energy Laboratory Co., Ltd. | Apparatus, secondary battery, electronic device, and battery management unit |
US10403879B2 (en) | 2014-12-25 | 2019-09-03 | Semiconductor Energy Laboratory Co., Ltd. | Electrolytic solution, secondary battery, electronic device, and method of manufacturing electrode |
US10581060B2 (en) | 2015-02-24 | 2020-03-03 | Semiconductor Energy Laboratory Co., Ltd. | Apparatus, secondary battery, manufacturing method, and electronic device |
US10593929B2 (en) | 2014-07-04 | 2020-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Fabricating method and fabricating apparatus for secondary battery |
-
1995
- 1995-03-17 JP JP08633795A patent/JP3403858B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002237295A (en) * | 2001-02-09 | 2002-08-23 | Matsushita Electric Ind Co Ltd | Lithium secondary battery and its manufacturing method |
US9350044B2 (en) | 2011-09-20 | 2016-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Lithium secondary battery and manufacturing method thereof |
US10593929B2 (en) | 2014-07-04 | 2020-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Fabricating method and fabricating apparatus for secondary battery |
US10615404B2 (en) | 2014-07-04 | 2020-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Fabricating method and fabricating apparatus for secondary battery |
US10153479B2 (en) | 2014-10-21 | 2018-12-11 | Semiconductor Energy Laboratory Co., Ltd. | Apparatus, secondary battery, electronic device, and battery management unit |
US10403879B2 (en) | 2014-12-25 | 2019-09-03 | Semiconductor Energy Laboratory Co., Ltd. | Electrolytic solution, secondary battery, electronic device, and method of manufacturing electrode |
US10581060B2 (en) | 2015-02-24 | 2020-03-03 | Semiconductor Energy Laboratory Co., Ltd. | Apparatus, secondary battery, manufacturing method, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP3403858B2 (en) | 2003-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3111791B2 (en) | Non-aqueous electrolyte secondary battery | |
US6800397B2 (en) | Non-aqueous electrolyte secondary battery and process for the preparation thereof | |
EP0573040B1 (en) | A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode | |
JP2000067914A (en) | Non-aqueous organic electrolyte for rechargeable electrochemical battery capable of discharging at low temperature | |
JPH10223259A (en) | Lithium secondary battery and manufacture thereof | |
JPS63121258A (en) | Nonaqueous secondary battery | |
JP3403858B2 (en) | Organic electrolyte battery | |
JPH11297311A (en) | Negative electrode material for nonaqueous secondary battery | |
JPH11120993A (en) | Nonaqueous electrolyte secondary battery | |
JP3336672B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JPH0364989B2 (en) | ||
JP3403856B2 (en) | Organic electrolyte battery | |
JPH07105935A (en) | Non-aqueous electrolyte secondary battery | |
JP2003331841A (en) | Positive active material for lithium ion secondary battery and its manufacturing method, and lithium ion secondary battery | |
CN112970140A (en) | Lithium primary battery | |
JPH1154122A (en) | Lithium ion secondary battery | |
JPH08162154A (en) | Secondary battery having nonaqueous solvent electrolyt | |
JP3403857B2 (en) | Organic electrolyte battery | |
JP2503541Y2 (en) | Non-aqueous electrolyte secondary battery | |
JP3506386B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002184392A (en) | Nonaqueous secondary cell | |
JP3121902B2 (en) | Manufacturing method of lithium secondary battery | |
JP2845069B2 (en) | Organic electrolyte secondary battery | |
JP3278837B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002117898A (en) | Non-aqueous organic electrolysis liquid for electric discharge in low temperature of re-chargeable electrochemistry battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150228 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150228 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150228 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |