JPH063736B2 - Non-aqueous solvent battery - Google Patents

Non-aqueous solvent battery

Info

Publication number
JPH063736B2
JPH063736B2 JP59203568A JP20356884A JPH063736B2 JP H063736 B2 JPH063736 B2 JP H063736B2 JP 59203568 A JP59203568 A JP 59203568A JP 20356884 A JP20356884 A JP 20356884A JP H063736 B2 JPH063736 B2 JP H063736B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
electrolytic solution
aqueous solvent
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59203568A
Other languages
Japanese (ja)
Other versions
JPS6182673A (en
Inventor
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59203568A priority Critical patent/JPH063736B2/en
Publication of JPS6182673A publication Critical patent/JPS6182673A/en
Publication of JPH063736B2 publication Critical patent/JPH063736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極活物質を兼ねる
電解液を改良した非水溶媒電池に係る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a non-aqueous solvent battery, and more particularly to a non-aqueous solvent battery having an improved electrolytic solution that also serves as a positive electrode active material.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム,ナトリウム,アルミニウム
等の軽金属を用いた非水溶媒電池は、エネルギー密度が
大きく、貯蔵特性に優れ、かつ作動温度範囲が広いとい
う特長をもつことから、電卓,時計,メモリのバックア
ップ電源として多用されている。中でも負極にリチウム
を用い、正極活物質として塩化チオニル(SOCl2)、塩化
スルフリル(SO2Cl2)等のイオウのオキシハロゲン化物を
用いた電池は、特にエネルギー密度が大きいために注目
されている。こうした電池は炭素及び金属集電体からな
る正極を有し、一般に塩化アルミニウム(AlCl3)、臭化
アルミニウム(AlBr3)等のルイス酸と塩化リチウム,臭
化リチウム等のルイス塩基とを溶解したイオウの液体状
オキシハロゲン化物を電解液として用いている。このた
め、液体状オキシハロゲン化物は、正極活物質と電解液
との双方を兼用しており、適当な形状の正極を用いるこ
とにより高率放電特性の優れた電池が期待できる。
Non-aqueous solvent batteries that use light metals such as lithium, sodium, and aluminum as the negative electrode active material have the characteristics of high energy density, excellent storage characteristics, and a wide operating temperature range. It is often used as a backup power source. Among them, batteries using lithium for the negative electrode and sulfur oxyhalides such as thionyl chloride (SOCl 2 ) and sulfuryl chloride (SO 2 Cl 2 ) as the positive electrode active material are attracting attention because of their particularly high energy density. . Such a battery has a positive electrode composed of carbon and a metal current collector and generally dissolves a Lewis acid such as aluminum chloride (AlCl 3 ) or aluminum bromide (AlBr 3 ) and a Lewis base such as lithium chloride or lithium bromide. Liquid sulfur oxyhalide is used as the electrolyte. Therefore, the liquid oxyhalide serves as both the positive electrode active material and the electrolytic solution, and by using a positive electrode having an appropriate shape, a battery having excellent high rate discharge characteristics can be expected.

ところで、上述した電池は正極活物質であるイオウのオ
キシハロゲン化物が負極のリチウムと直接接触している
ため、負極リチウム表面に反応生成物であるLiCl皮膜が
生成される。このLiCl皮膜は、負極リチウムとオキシハ
ロゲン化物の直接接触を防止する機能を有し、貯蔵時に
おいて電池の容量劣化を防ぐ役割りをする。しかし、放
電時には抵抗部分として働き、放電初期の電圧降下の原
因となる。この電圧降下の程度は、放電電流がμAオー
ダの微小な場合には無視できる程小さいが、大電流放電
の場合には無視できず、特に高温で長時間貯蔵してLiCl
被膜の成長が相当起った後や、低温での放電時には放電
開始と共に大幅な電圧降下を生じ、所定の電圧に回復す
るまでかなりの時間を必要とする、いわゆる電圧遅延現
象と呼ばれる問題があった。
By the way, in the battery described above, the oxyhalide of sulfur, which is the positive electrode active material, is in direct contact with lithium of the negative electrode, so that a LiCl film, which is a reaction product, is formed on the surface of the negative electrode lithium. This LiCl film has a function of preventing direct contact between the negative electrode lithium and the oxyhalide, and plays a role of preventing deterioration of battery capacity during storage. However, at the time of discharging, it works as a resistance portion and causes a voltage drop at the initial stage of discharging. The degree of this voltage drop is so small that it can be ignored when the discharge current is very small on the order of μA, but it cannot be ignored when it is a large current discharge.
There is a so-called voltage delay phenomenon, in which after a considerable amount of film growth or during low-temperature discharge, a large voltage drop occurs with the start of discharge, and it takes a considerable amount of time to recover to a predetermined voltage. It was

このようなことから、上記問題を解決するためにいくつ
かの提案がなされており、例えば特公昭57-37992には負
極表面を塩化ビニル,塩化ビニリデンのホモポリマーや
塩化ビニルと酢酸ビニルとの共重合体等のビニルポリマ
で被覆することが開示されている。しかしながら、かか
る方法によると確かに電圧遅延現象は大幅に改善される
が、電池を高温で貯蔵した後に大電流放電を行なったよ
うな場合には電圧の回復に少々の時間を要していた。
For this reason, some proposals have been made to solve the above problems. For example, in Japanese Examined Patent Publication No. 57-37992, the surface of the negative electrode is treated with a homopolymer of vinyl chloride or vinylidene chloride or a copolymer of vinyl chloride and vinyl acetate. Coating with a vinyl polymer such as a polymer is disclosed. However, according to such a method, the voltage delay phenomenon is remarkably improved, but when the battery is stored at high temperature and then discharged with a large current, it takes a little time to recover the voltage.

〔発明の目的〕[Object of the Invention]

本発明は、大電流放電初期においても電圧降下が小さ
く、かつ電圧の回復時間も短く、更に放電特性の優れた
非水溶媒電池を提供しようとするものである。
An object of the present invention is to provide a non-aqueous solvent battery having a small voltage drop even in the initial stage of large current discharge, a short voltage recovery time, and excellent discharge characteristics.

〔発明の概要〕[Outline of Invention]

本発明は、リチウム等の軽金属からなる負極と、炭素を
主構成材とする正極と、イオウのオキシハロゲン化物を
主成分とする正極活物質を兼ねる電解液とから構成され
る非水溶媒電池において、前記電解液に塩化ビニルと塩
化ビニリデンの共重合体を添加しことを特徴とするもの
である。このように電解液に塩化ビニルと塩化ビニリデ
ンの共重合体を存在させた電池は、貯蔵後に大電流を行
なっても大幅な電圧降下を示さず、しかも電圧の回復時
間も短い。この場合、電圧回復時間の短縮の程度は、塩
化ビニルや塩化ビニリデン等のホモポリマ及び両者の混
合物、又は塩化ビニル−酢酸ビニル共重合体等のビニル
ポリマを電解液に添加させた電池に比べて格段に優れて
いる。
The present invention provides a non-aqueous solvent battery composed of a negative electrode composed of a light metal such as lithium, a positive electrode containing carbon as a main constituent material, and an electrolytic solution containing sulfur oxyhalide as a main component and also serving as a positive electrode active material. A copolymer of vinyl chloride and vinylidene chloride is added to the electrolytic solution. Thus, the battery in which the copolymer of vinyl chloride and vinylidene chloride is present in the electrolytic solution does not show a large voltage drop even if a large current is applied after storage, and the voltage recovery time is short. In this case, the degree of shortening of the voltage recovery time is remarkably higher than that of a battery in which a homopolymer such as vinyl chloride or vinylidene chloride and a mixture thereof, or a vinyl polymer such as vinyl chloride-vinyl acetate copolymer is added to the electrolytic solution. Are better.

上記電解液中への塩化ビニル−塩化ビニリデン共重合体
の含有量は、0.2〜10g/lの範囲にすることが望まし
い。この理由は、共重合体の含有量を0.2g/l未満にする
と、電圧降下の抑制降下等を十分に発揮できず、かとい
ってその量が10g/lを越えると、その効果が殆んど増
大しないばかりか、かえって電池の放電容量が減少する
恐れがある。
The content of the vinyl chloride-vinylidene chloride copolymer in the electrolytic solution is preferably in the range of 0.2 to 10 g / l. The reason for this is that when the content of the copolymer is less than 0.2 g / l, the suppression of voltage drop cannot be sufficiently exhibited, but when the amount exceeds 10 g / l, the effect is almost zero. Not only does it not increase, but the discharge capacity of the battery may decrease.

本発明に用いる塩化ビニル−塩化ビニリデン共重合体は
塩化ビニルと塩化ビニリデンとの重量比で95:5〜1
0〜90、より好ましくは95:5〜50:50の範囲
にすることが望ましい。
The vinyl chloride-vinylidene chloride copolymer used in the present invention has a weight ratio of vinyl chloride and vinylidene chloride of 95: 5-1.
It is desirable that the range is 0 to 90, and more preferably 95: 5 to 50:50.

〔発明の実施例〕 以下、本発明の実施例を図面を参照して説明する。Embodiments of the Invention Embodiments of the present invention will be described below with reference to the drawings.

実施例 図中の1は負極端子を兼ねる上面が開口した例えばステ
ンレス製の有底円筒形の缶体である。この缶体1の内面
には金属リチウムからなる筒状の負極2が圧着されてい
る。この負極2の内側の缶体1内には、筒状ステンレス
製網体の金属集電体3の外側に筒状多孔質炭素層を圧着
した構造の正極がガラス不織布からなるセパレータ6
,6を介して設けられている。なお、前記正極
は、例えば市販のアセチレングラックとポリテトラフル
オロエチレンとを混合し、この混練物をステンレス製網
体の金属集電体3と共に該集電体が内側となるように円
筒状に成形した後、150℃の真空下で乾燥して前記混
練物を多孔質炭素層4とすることにより作製される。
Example 1 in the figure is, for example, a step with an open upper surface that also serves as a negative electrode terminal.
It is a bottomed cylindrical can body made of stainless steel. Inner surface of this can body 1
A cylindrical negative electrode 2 made of metallic lithium is pressure-bonded to the
It Inside the can body 1 inside the negative electrode 2, tubular stainless steel is used.
A cylindrical porous carbon layer is pressure bonded to the outside of the metal current collector 3 of the net body.
Structured positive electrode56 made of non-woven glass
1, 6TwoIt is provided through. The positive electrode5
Is, for example, commercially available acetylene black and polytetraflu
Mix with oloethylene and mix this kneaded product with a stainless steel net.
A circle with the metal collector 3 of the body so that the collector is inside
After being formed into a tubular shape, it is dried under vacuum at 150 ° C and then mixed.
It is produced by forming the paste into the porous carbon layer 4.

また、前記正極上方の缶体1内には、前記セパレータ
に支持された中央に穴を有する絶縁紙7が配設され
ている。前記缶体1の上面開口部にはメタルトップ8が
レーザ溶接等により封着されており、かつ該メタルトッ
プ8の中心の穴9にはパイプ状製正極端子10がガラス
製のシール材11を介してメタルトップ8に対し電気的
に絶縁して固定されている。前記正極端子10の下端は
リード線12を介して前記正極の金属集電体3に接続
されている。そして、前記缶体1内には前記パイプ状正
極端子10から注入された電解液13が収容されてい
る。この電解液13は塩化チオニル(SOCl2)中に塩化
アルミニウム(AlCl3)と塩化リチウム(LiCl)とを夫
々1.5モル/溶解させた液に、市販の塩化ビニル−塩
化ビニリデン共重合体(共重合比80:20)を2.5/
添加したものである。なお、前記パイプ状正極端子10
には例えばステンレス製の針体14が挿入され、該端子
10先端と挿入した針体14とをレーザ溶接することに
より該正極端子10が封口される。
Further, wherein the positive electrode 5 above the can body 1, insulating paper 7 is provided with a hole in the center that is supported by the separator 61. A metal top 8 is sealed by laser welding or the like in the upper surface opening of the can body 1, and a pipe-shaped positive electrode terminal 10 is provided with a glass sealing material 11 in a hole 9 at the center of the metal top 8. It is electrically insulated and fixed to the metal top 8 via. The lower end of the positive electrode terminal 10 is connected to the metal current collector 3 of the positive electrode 5 via a lead wire 12. Then, the electrolytic solution 13 injected from the pipe-shaped positive electrode terminal 10 is accommodated in the can body 1. This electrolytic solution 13 is a commercially available solution of vinyl chloride-vinylidene chloride copolymer (copolymerization) in a solution prepared by dissolving 1.5 mol / mol of aluminum chloride (AlCl 3 ) and lithium chloride (LiCl) in thionyl chloride (SOCl 2 ). Ratio 80:20) to 2.5 /
It was added. The pipe-shaped positive electrode terminal 10
For example, a needle body 14 made of stainless steel is inserted into the positive electrode terminal 10 by laser welding the tip of the terminal 10 and the inserted needle body 14.

比較例1 電解液として塩化ビニル−塩化ビニリデン共重合体を添
加しない1.5モル/濃度のAlCl3/LiCl系のものを用い
た以外、実施例と同構造の電池を組立てた。
Comparative Example 1 A battery having the same structure as that of the example was assembled except that a 1.5 mol / concentration AlCl 3 / LiCl system containing no vinyl chloride-vinylidene chloride copolymer was used as the electrolytic solution.

比較例2 電解液として、塩化ビニルホモポリマーを2.5g/添加
した1.5モル/濃度のAlCl3/LiCl系のものを用いた以
外、実施例と同構造の電池を組立てた。
Comparative Example 2 A battery having the same structure as that of the example was assembled except that the electrolyte solution used was 1.5 mol / concentration of AlCl 3 / LiCl system containing 2.5 g of vinyl chloride homopolymer / addition.

比較例3 電解液として、塩化ビリデンホモポリマーを2.5g/添
加した1.5モル/濃度のAlCl3/LiCl系のものを用いた
以外、実施例と同構造の電池を組立てた。
Comparative Example 3 A battery having the same structure as that of the example was assembled, except that the electrolyte solution used was an AlCl 3 / LiCl system having a concentration of 1.5 mol / concentration containing 2.5 g of a vinylidene chloride homopolymer / addition.

比較例4 電解液として、塩化ビニルホモポリマーと塩化ビニリデ
ンホモポリマーとを80:20の重量比で混合した混合
ポリマーを2.5g/添加した1.5モル/濃度のAlCl3/L
iCl系のものを用いた以外、実施例と同構造の電池を組
立てた。
Comparative Example 4 As an electrolytic solution, 2.5 g of a mixed polymer prepared by mixing a vinyl chloride homopolymer and a vinylidene chloride homopolymer in a weight ratio of 80:20 was added, and 1.5 mol / concentration of AlCl 3 / L was added.
A battery having the same structure as that of the example was assembled except that the iCl type was used.

比較例5 電解液として、塩化ビニル−酢酸ビニル共重合体(共重
合比86:14)を2.5g/添加した1.5モル/濃度の
AlCl3/LiCl系のものを用いた以外、実施例と同構造の
電池を組立てた。
Comparative Example 5 As an electrolytic solution, a vinyl chloride-vinyl acetate copolymer (copolymerization ratio 86:14) of 2.5 g / 1.5 mol / concentration was added.
A battery having the same structure as that of the example was assembled except that an AlCl 3 / LiCl system was used.

しかして、本実施例及び比較例1〜5の電池について、
組立後60℃で20日間貯蔵を行なった後、30Ωの定
抵抗放電を行ない、放電開始時の最低電圧と、電圧が2.
5Vに戻るまでの時間、並びに平均作動電圧及び放電容
量を測定した。その結果を、下記表に示した。
Then, regarding the batteries of this example and Comparative Examples 1 to 5,
After assembling, the product was stored at 60 ° C for 20 days, then discharged with a constant resistance of 30Ω, and the minimum voltage at the start of discharge and the voltage were 2.
The time to return to 5 V, and the average operating voltage and discharge capacity were measured. The results are shown in the table below.

上記より明らかな如く、電解液中に塩化ビニル−塩化ビ
ニリデン共重合体を含有させた電池は、従来の電池に比
べて初期の電圧降下が小さく、かつ電圧の回復時間も短
かく、更に放電容量も向上することがわかる。
As is clear from the above, the battery containing the vinyl chloride-vinylidene chloride copolymer in the electrolytic solution has a smaller initial voltage drop than the conventional battery, and has a short voltage recovery time, and further has a discharge capacity. It turns out that also improves.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明によれば大電流放電初期にお
いても電圧降下を抑制し、かつ電圧の回復時間も短縮さ
れ、更に放電容量も向上する等、放電特性の優れた非水
溶媒電池を提供できる。
As described in detail above, according to the present invention, a non-aqueous solvent battery having excellent discharge characteristics, such as suppressing a voltage drop even at the initial stage of a large current discharge, shortening a voltage recovery time, and improving a discharge capacity, can be provided. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

図は、本発明の一実施例を示す非水溶媒電池の断面図で
ある。 1…缶体、2…負極、3…金属集電体、4…多孔質炭素
層、…正極、6,6…セパレータ、8…メタルト
ップ、10…パイプ状正極端子、13…電解液。
FIG. 1 is a sectional view of a non-aqueous solvent battery showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Can body, 2 ... Negative electrode, 3 ... Metal collector, 4 ... Porous carbon layer, 5 ... Positive electrode, 6 1 , 6 2 ... Separator, 8 ... Metal top, 10 ... Pipe-shaped positive electrode terminal, 13 ... Electrolysis liquid.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム,ナトリウム,アルミニウムの軽
金属からなる負極と、炭素を主構成材とする正極と、イ
オウのオキシハロゲン化物を主成分とする正極活物質を
兼ねる電解液とから構成された非水溶媒電池において、
前記電解液に塩化ビニルと塩化ビニリデンとの共重合体
を添加したことを特徴とする非水溶媒電池。
1. A non-electrode comprising a negative electrode composed of a light metal such as lithium, sodium and aluminum, a positive electrode containing carbon as a main constituent material, and an electrolytic solution containing sulfur oxyhalide as a main component and also serving as a positive electrode active material. In a water solvent battery,
A non-aqueous solvent battery, wherein a copolymer of vinyl chloride and vinylidene chloride is added to the electrolytic solution.
JP59203568A 1984-09-28 1984-09-28 Non-aqueous solvent battery Expired - Lifetime JPH063736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203568A JPH063736B2 (en) 1984-09-28 1984-09-28 Non-aqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203568A JPH063736B2 (en) 1984-09-28 1984-09-28 Non-aqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS6182673A JPS6182673A (en) 1986-04-26
JPH063736B2 true JPH063736B2 (en) 1994-01-12

Family

ID=16476280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203568A Expired - Lifetime JPH063736B2 (en) 1984-09-28 1984-09-28 Non-aqueous solvent battery

Country Status (1)

Country Link
JP (1) JPH063736B2 (en)

Also Published As

Publication number Publication date
JPS6182673A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
JPH063736B2 (en) Non-aqueous solvent battery
JPS61183869A (en) Cathode composition for high energy density battery
JPH0763014B2 (en) Non-aqueous solvent battery
Ishikawa et al. Behavior of the interface between lithium electrodes and organic electrolyte solutions
JPH0713898B2 (en) Non-aqueous solvent battery
JPS6182674A (en) Nonaqueous solvent battery
JPH0259590B2 (en)
JPH065621B2 (en) Method for manufacturing non-aqueous solvent battery
JPS6154160A (en) Nonaqueous solvent battery
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPH0259589B2 (en)
JPH0824046B2 (en) Non-aqueous solvent battery
JPS61190863A (en) Nonaqueous solvent battery
JPH0775165B2 (en) Non-aqueous solvent battery
JPS60200464A (en) Nonaqueous-solvent cell
JPS6154159A (en) Nonaqueous solvent battery
JPS59160974A (en) Nonaqueous solvent battery
JPS61190864A (en) Nonaqueous solvent battery
JPH0439187B2 (en)
JPS6342377B2 (en)
JP2648489B2 (en) Non-aqueous electrolyte battery
JPH04192262A (en) Thionyl chloride lithium cell
JPH0532867B2 (en)
JPS59230262A (en) Nonaqueous solvent battery
JPH07101611B2 (en) Inorganic non-aqueous electrolyte battery