JPH0259589B2 - - Google Patents

Info

Publication number
JPH0259589B2
JPH0259589B2 JP10403984A JP10403984A JPH0259589B2 JP H0259589 B2 JPH0259589 B2 JP H0259589B2 JP 10403984 A JP10403984 A JP 10403984A JP 10403984 A JP10403984 A JP 10403984A JP H0259589 B2 JPH0259589 B2 JP H0259589B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
discharge
lithium
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10403984A
Other languages
Japanese (ja)
Other versions
JPS60249252A (en
Inventor
Takahisa Oosaki
Shuji Yamada
Kyoshi Mitsuyasu
Juichi Sato
Yoshasu Aoki
Kazuya Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP10403984A priority Critical patent/JPS60249252A/en
Publication of JPS60249252A publication Critical patent/JPS60249252A/en
Publication of JPH0259589B2 publication Critical patent/JPH0259589B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極活物質
を兼ねた電解液を改良した非水溶媒電池に係る。 〔発明の技術的背景とその問題点〕 負極活物質としてリチウム、ナトリウム、アル
ミニウム等の軽金属を用いた非水溶媒電池はエネ
ルギー密度が大きく、貯蔵特性に優れ、かつ作動
温度範囲が広いという特長をもつことから、電
卓、時計、メモリのバツクアツプ電池として多用
されている。中でも負極にリチウムを用い、正極
活物質として塩化チオニル(SOCl2)、塩化スル
フリル(SO2Cl2)等のイオウのオキシハロゲン
化物を用いた電池は特にエネルギー密度が大きい
ために注目されている。こうした電池は炭素及び
金属集電体からなる正極を有し、一般に塩化アル
ミニウム(AlCl3)、臭化アルミニウム(AlBr3
等のルイス酸と塩化リチウム、臭化リチウム等の
ルイス塩基とを溶解したイオウの液体状オキシハ
ロゲン化物を電解液として用いている。このた
め、液体状オキシハロゲン化物は正極活物質と電
解液との双方を兼用しており、適当な形状の正極
を用いることにより高率放電特性の優れた電池が
期待できる。 ところで、上述した電池の正極活物質であるイ
オウのオキシハロゲン化物が負極のリチウムと直
接接触しているため、負極リチウム表面に反応生
成物であるLiCl皮膜が生成される。このLiCl皮膜
は、負極リチウムとオキシハロゲン化物との直接
接触を防止する機能を有し、貯蔵時において電池
の容量劣化を防ぐ役割りをする。しかし、放電時
には抵抗成分として働き、放電初期の電圧降下の
原因となる。この電圧降下の程度は放電電流が
μAオーダの微小な場合には無視できる程小さい
が、大電流放電の場合には無視できず、特に高温
で長時間貯蔵してLiCl皮膜の成長が相当起つた後
や、低温での放電時には、放電開始と共に大幅な
電圧降下が生じ、所定の電圧に回復するまでかな
りの時間を必要とする問題があつた。 〔発明の目的〕 本発明は大電流放電初期においても電圧降下の
小さい非水溶媒電池を提供しようとするものであ
る。 〔発明の概要〕 本発明はリチウム等の軽金属からなる負極と、
炭素を主構成材とする正極と、イオウのオキシハ
ロゲン化物を主成分とする正極活物質を兼ねる電
解液とから構成される非水溶媒電池において、前
記電解液として前記オキシハロゲン化物を含む溶
液にメタクロレインを添加したものを用いること
を骨子とするものである。かかるメタクロレイン
を添加した電解液を用いることによつて、貯蔵後
に大電流放電を行なつても大幅な電圧降下を示さ
ず、かつ電圧の回復時間も短い初期放電特性の優
れた非水溶媒電池を得ることができる。 上記メタクロレインはモノマー又はポリマーい
ずれでもよい。こうしたメタクロレインはイオウ
のオキシハロゲン化物を含む溶液1に対してモ
ノマーの場合は1〜25c.c.、ポリマーの場合は0.2
〜10gの範囲で添加することが望ましい。この理
由は、メタクロレイン添加量を上記下限値未満に
すると添加効果が不充分となり、かといつて上限
値を越えると、効果の増大が認られないだかり
か、かえつて電池の放電容量が減少する。 〔発明の実施例〕 以下、本発明の実施例を第1図を参照して詳細
に説明する。 実施例 1 図中の1は上面が開口した負極端子を兼ねるス
テンレス製の缶体であり、この缶体1の内面には
金属リチウムからなる筒状の負極2が圧着されて
いる。この負極2の内側の缶体1内には、筒状ス
テンレス製網体からなる金属集電体3の外側に筒
状多孔質炭素層4を圧着した構造の正極がガラ
ス繊維不織布からなる籠状のセパレータ61,62
を介して設けられている。なお、前記正極は例
えば市販のアセチレンブラツクとポリテトラクロ
ロエチレンとを混合し、この混練物をステンレス
製網体からなる金属集電体3と共に該集電体3が
内側となるように円筒状に成形した後、150℃の
真空下で乾燥して前記混練物を多孔質炭素層4と
することにより作製される。 また、前記正極上方の缶体1内には、前記セ
パレータ61に支持された中央に穴を有する絶縁
紙7が配設されている。前記缶体1の上面開口部
にはメタルトツプ8がレーザ溶接等により封冠さ
れている。このメタルトツプ8の中心には穴9が
開口されており、この穴9にはパイプ状正極端子
10が金属−ガラス製のシール材11を介して前
記メタルトツプ8に対し電気的に絶縁して固定さ
れている。前記正極端子10は下端はリード線1
2を介して前記正極の金属集電体3に接続され
ている。そして、前記缶体1内には前記パイプ状
正極端子10から注入された電解液13が収容さ
れている。この電解液13は塩化チオニル
(SOCl2)中に塩化アルミニウム(AlCl3)と塩化
リチウム(LiCl)とを夫夫1.5モル/溶解した
溶液にメタクロレイン(モノマー液)を2c.c./
添加したものである。また、前記パイプ状正極端
子10には例えばステンレス製の針体14が挿入
され、該端子10先端と挿入した針体14とをレ
ーザ溶接することにより正極端子10の孔が封口
されている。 比較例 1 電解液としてSOCl2中にAlCl3とLiClを夫々1.5
モル/溶解したメタクロレイン無添加のものを
用いた以外、実施例1と同構造の電池を組立て
た。 しかして、本実施例1及び比較例1の電池につ
いて、組立て後25℃で3カ月間貯蔵を行ない、
30Ωの定抵抗放電を行なつて放電初期の特性を調
べたところ、第2図に示す特性図を得た。なお、
第2図中のAは実施例1の電池の放電曲線、Bは
比較例の電池の放電曲線、を夫々示す。第2図よ
り明らかな如く、メタクロレイン(モノマー液)
を添加した電解液を用いる本実施例1の電池はメ
タクロレイン無添加の電解液を用いる比較例1の
電池に比べて初期の電圧降下が小さく、かつ電圧
の回復時間が短かいことがわかる。 実施例 2 アゾビスイソブチロニトリルを重合開始剤と
し、ジメチルホルムアミド中で重合させて製造し
たポリメタクロレイン2gを、1の1.2モル/
AlCl3/LiCl系塩化チオニル溶液に添加した電
解液を用いた以外、実施例1と同構造の電池を組
立てた。 比較例 2 電解液としてSOCl2中にAlCl3とLiClを夫々1.2
モル/溶解したポリメタクロレイン無添加のも
のを用いた以外、実施例1と同構造の電池を組立
てた。 しかして、本実施例2及び比較例2の電池につ
いて、組立て後45℃で20日間貯蔵を行ない、30Ω
の定抵抗放電を行なつて放電開始時の最低電圧と
電圧が2.5Vにまで回復した時間を調べた。その
結果を下記表に示した。
[Technical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and particularly to a non-aqueous solvent battery with an improved electrolyte that also serves as a positive electrode active material. [Technical background of the invention and its problems] Nonaqueous solvent batteries that use light metals such as lithium, sodium, and aluminum as negative electrode active materials have the characteristics of high energy density, excellent storage characteristics, and a wide operating temperature range. Because of this, they are often used as backup batteries for calculators, watches, and memory. Among these, batteries that use lithium for the negative electrode and sulfur oxyhalides such as thionyl chloride (SOCl 2 ) and sulfuryl chloride (SO 2 Cl 2 ) as the positive electrode active material are attracting attention because of their high energy density. These cells have positive electrodes consisting of carbon and metal current collectors, typically aluminum chloride (AlCl 3 ), aluminum bromide (AlBr 3 )
A liquid oxyhalide of sulfur is used as an electrolyte, which is a solution of a Lewis acid such as lithium chloride or a Lewis base such as lithium chloride or lithium bromide. Therefore, the liquid oxyhalide serves both as a positive electrode active material and as an electrolyte, and by using a positive electrode with an appropriate shape, a battery with excellent high rate discharge characteristics can be expected. By the way, since the sulfur oxyhalide, which is the positive electrode active material of the battery described above, is in direct contact with the lithium of the negative electrode, a LiCl film, which is a reaction product, is generated on the surface of the negative electrode lithium. This LiCl film has the function of preventing direct contact between the negative electrode lithium and the oxyhalide, and serves to prevent battery capacity deterioration during storage. However, during discharge, it acts as a resistance component and causes a voltage drop in the early stage of discharge. The degree of this voltage drop is negligible when the discharge current is minute on the μA order, but it cannot be ignored when the discharge current is large, and especially when stored at high temperatures for a long time, considerable growth of the LiCl film occurs. After discharging or at low temperatures, there is a problem in that a significant voltage drop occurs at the start of discharge, and it takes a considerable amount of time to recover to a predetermined voltage. [Object of the Invention] The present invention aims to provide a non-aqueous solvent battery that exhibits a small voltage drop even in the early stages of large current discharge. [Summary of the invention] The present invention provides a negative electrode made of a light metal such as lithium,
In a nonaqueous solvent battery composed of a positive electrode mainly composed of carbon and an electrolytic solution that also serves as a positive electrode active material and mainly composed of a sulfur oxyhalide, a solution containing the oxyhalide as the electrolytic solution is used. The main idea is to use one to which methacrolein is added. By using such an electrolytic solution containing methacrolein, a nonaqueous solvent battery with excellent initial discharge characteristics that does not show a significant voltage drop even when discharged at a large current after storage and has a short voltage recovery time can be obtained. can be obtained. The above methacrolein may be either a monomer or a polymer. Such methacrolein is 1 to 25 c.c. for monomers and 0.2 c.c. for polymers per 1 solution containing sulfur oxyhalides.
It is desirable to add in the range of ~10g. The reason for this is that if the amount of methacrolein added is less than the above lower limit value, the addition effect will be insufficient, whereas if it exceeds the upper limit value, no increase in effect will be observed, or the discharge capacity of the battery will decrease. . [Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to FIG. Example 1 Reference numeral 1 in the figure denotes a stainless steel can which also serves as a negative electrode terminal with an open top surface, and a cylindrical negative electrode 2 made of metallic lithium is crimped onto the inner surface of this can. Inside the can 1 inside the negative electrode 2, a positive electrode 5 having a structure in which a cylindrical porous carbon layer 4 is crimped onto the outside of a metal current collector 3 made of a cylindrical stainless steel mesh is housed in a cage made of glass fiber nonwoven fabric. shaped separators 6 1 , 6 2
It is provided through. The positive electrode 5 is made by mixing, for example, commercially available acetylene black and polytetrachloroethylene, and molding this mixture into a cylindrical shape together with a metal current collector 3 made of a stainless steel mesh so that the current collector 3 is on the inside. After that, the porous carbon layer 4 is produced by drying the kneaded product under vacuum at 150°C. Further, in the can body 1 above the positive electrode 5 , an insulating paper 7 having a hole in the center and supported by the separator 61 is disposed. A metal top 8 is sealed to the upper opening of the can body 1 by laser welding or the like. A hole 9 is opened in the center of the metal top 8, and a pipe-shaped positive electrode terminal 10 is fixed to the metal top 8 in an electrically insulated manner through a metal-glass sealing material 11. ing. The positive electrode terminal 10 has a lead wire 1 at its lower end.
2 to the metal current collector 3 of the positive electrode 5 . The can body 1 accommodates an electrolytic solution 13 injected from the pipe-shaped positive electrode terminal 10. This electrolytic solution 13 is a solution in which aluminum chloride (AlCl 3 ) and lithium chloride (LiCl) are dissolved in thionyl chloride (SOCl 2 ) at a concentration of 1.5 moles, and methacrolein (monomer liquid) is added at a concentration of 2 c.c.
It was added. Further, a needle body 14 made of stainless steel, for example, is inserted into the pipe-shaped positive electrode terminal 10, and the hole of the positive electrode terminal 10 is sealed by laser welding the tip of the terminal 10 and the inserted needle body 14. Comparative example 1 1.5 each of AlCl 3 and LiCl in SOCl 2 as electrolyte
A battery having the same structure as in Example 1 was assembled except that a battery without the addition of mol/dissolved methacrolein was used. Therefore, the batteries of Example 1 and Comparative Example 1 were stored at 25°C for 3 months after assembly.
When a constant resistance discharge of 30Ω was performed and the characteristics at the initial stage of discharge were investigated, the characteristic diagram shown in FIG. 2 was obtained. In addition,
In FIG. 2, A shows the discharge curve of the battery of Example 1, and B shows the discharge curve of the battery of Comparative Example. As is clear from Figure 2, methacrolein (monomer liquid)
It can be seen that the battery of Example 1, which uses an electrolytic solution to which . Example 2 2 g of polymethacrolein produced by polymerizing in dimethylformamide using azobisisobutyronitrile as a polymerization initiator was added at 1.2 mol/1.
A battery having the same structure as in Example 1 was assembled except that an electrolytic solution added to an AlCl 3 /LiCl-based thionyl chloride solution was used. Comparative example 2 1.2 each of AlCl 3 and LiCl in SOCl 2 as electrolyte
A battery having the same structure as in Example 1 was assembled except that a battery containing no added mole/dissolved polymethacrolein was used. Therefore, the batteries of Example 2 and Comparative Example 2 were stored at 45°C for 20 days after assembly, and 30Ω
A constant resistance discharge was conducted to examine the minimum voltage at the start of discharge and the time it took for the voltage to recover to 2.5V. The results are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電
初期においても電圧降下を抑制し、かつ電圧の回
復時間も短縮される等の初期放電特性の優れた非
水溶媒電池を提供できる。
As detailed above, according to the present invention, it is possible to provide a non-aqueous solvent battery with excellent initial discharge characteristics, such as suppressing voltage drop and shortening voltage recovery time even in the initial stage of large current discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す非水溶媒電池
の断面図、第2図は本実施例1の電池及び比較例
1の電池における大電流放電初期の放電特性を示
す線図である。 1……缶体、2……負極、3……金属集電体、
4……多孔質炭素層、……正極、61,62……
セパレータ、8……メタルトツプ、10……パイ
プ状正極端子、13……電解液。
FIG. 1 is a cross-sectional view of a nonaqueous solvent battery showing an example of the present invention, and FIG. 2 is a diagram showing the discharge characteristics at the initial stage of large current discharge in the battery of Example 1 and the battery of Comparative Example 1. . 1...Can body, 2...Negative electrode, 3...Metal current collector,
4... Porous carbon layer, 5 ... Positive electrode, 6 1 , 6 2 ...
Separator, 8... Metal top, 10... Pipe-shaped positive terminal, 13... Electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウム、ナトリウム、アルミニウムの軽金
属からなる負極と、炭素を主構成材とする正極
と、イオウのオキシハロゲン化物を主成分とする
正極活物質を兼ねる電解液とから構成された非水
溶媒電池において、前記電解液として前記オキシ
ハロゲン化物を含む溶液にメタクロレインを添加
したものを用いたことを特徴とする非水溶媒電
池。
1. In a nonaqueous solvent battery composed of a negative electrode made of light metals such as lithium, sodium, and aluminum, a positive electrode mainly composed of carbon, and an electrolyte that also serves as a positive electrode active material and mainly composed of sulfur oxyhalide. . A non-aqueous solvent battery, characterized in that the electrolyte is a solution containing the oxyhalide to which methacrolein is added.
JP10403984A 1984-05-23 1984-05-23 Nonaqueous solvent battery Granted JPS60249252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10403984A JPS60249252A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10403984A JPS60249252A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS60249252A JPS60249252A (en) 1985-12-09
JPH0259589B2 true JPH0259589B2 (en) 1990-12-12

Family

ID=14370078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10403984A Granted JPS60249252A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS60249252A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979215B2 (en) * 2005-09-12 2012-07-18 日立マクセルエナジー株式会社 Inorganic non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JPS60249252A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
US4421834A (en) Liquid cathode cells with a glass fiber separator
US4456665A (en) Calcium electrochemical reserve cell
US3829330A (en) High rate li/moo3 organic electrolyte cell
JPH0259589B2 (en)
JPS6039776A (en) Electrochemical battery
US4228228A (en) Electrode structure for energy cells
JPH0259590B2 (en)
JPH0763014B2 (en) Non-aqueous solvent battery
JPS6182674A (en) Nonaqueous solvent battery
JPS6154160A (en) Nonaqueous solvent battery
JPS6182673A (en) Nonaqueous solvent battery
JPS62128454A (en) Nonaqueous solvent cell
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPS62268058A (en) Negative electrode for secondary battery
JPS63175347A (en) Nonaqueous solvent battery
JPH07142092A (en) Nonaqueous solvent secondary battery
JPS60208055A (en) Manufacture of nonaqueous solvent battery
JPS5987771A (en) Nonaqueous solvent battery
JPH0532867B2 (en)
JPS60200464A (en) Nonaqueous-solvent cell
JPH0439187B2 (en)
JPS61190863A (en) Nonaqueous solvent battery
JPH09120824A (en) Inorganic nonaqueous solvent battery
JPS62274558A (en) Nonaqueous solvent battery
JPS59160974A (en) Nonaqueous solvent battery