JPS62128454A - Nonaqueous solvent cell - Google Patents

Nonaqueous solvent cell

Info

Publication number
JPS62128454A
JPS62128454A JP26722185A JP26722185A JPS62128454A JP S62128454 A JPS62128454 A JP S62128454A JP 26722185 A JP26722185 A JP 26722185A JP 26722185 A JP26722185 A JP 26722185A JP S62128454 A JPS62128454 A JP S62128454A
Authority
JP
Japan
Prior art keywords
discharge
vinyl polymer
voltage
negative electrode
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26722185A
Other languages
Japanese (ja)
Other versions
JPH0713898B2 (en
Inventor
Takahisa Osaki
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26722185A priority Critical patent/JPH0713898B2/en
Publication of JPS62128454A publication Critical patent/JPS62128454A/en
Publication of JPH0713898B2 publication Critical patent/JPH0713898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To shorten voltage recovering time and improve discharge characteristics, by adding a vinyl polymer having the chlorine substituent of 57-70wt% into electrolytic solution. CONSTITUTION:A vinyl polymer having the chlorine substituent of 57-70wt% is added into electrolytic solution. The vinyl polymer having the chlorine substitu ent is the simple substance, the copolymer, or the mixture of a construction represented by the attached chemical formula. The content of these vinyl polymers in the electrolyte is kept in the range of 0.2-10g/l. In a concrete form, the cylindrical negative electrode 2 of metal lithium is fixedly pressed to the inner surface of a can 1, and the positive electrode 5 of a construction in which a cylindrical porous carbon layer 4 is fixedly pressed to the outside of the metal current collecting body 3 of the cylindrical mesh body made of stainless steel is provided into the can 1 inside the negative electrode 2, with being intervened by the separators 61, 62 of glass nonwoven fabric. Thus, voltage recovering time on the early time of great current discharge is shortened, further discharge voltage and discharge capacity are improved and so on, a nonaqueous solvent cell which is excellent in discharge characteristics can be obtained.

Description

【発明の詳細な説明】 〔発明の練術分野〕 本発明は非水溶媒電池lこ関し、特に正極活物質を兼ね
る電解液を改良した非水溶媒電池に係る。
DETAILED DESCRIPTION OF THE INVENTION [Practical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and more particularly to a non-aqueous solvent battery having an improved electrolyte that also serves as a positive electrode active material.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウム、アルミニウム
、カリウム、カルシウムの軽金属の少なくとも1$1を
用いた非水溶媒電池は、エネルギー密度が大きく、貯蔵
特性に優れ、かつ作動温度範囲が広いという特長をもっ
ことから、電卓1時計。
Non-aqueous solvent batteries that use at least 1 of light metals such as lithium, sodium, aluminum, potassium, and calcium as negative electrode active materials have the features of high energy density, excellent storage characteristics, and a wide operating temperature range. From, one calculator watch.

メモリのバックアップ電源として多用されている。 1
中でも負極にリチウムを用い、正極活物質として塩化チ
オニル(socz、 )、塩化スルフリル(80゜CI
!t)等のイオウのオキシハロゲン化物を用いた電池は
、特にエネルギー密度が大きいために注目されている。
It is often used as a backup power source for memory. 1
Among them, lithium was used for the negative electrode, and thionyl chloride (SOcz) and sulfuryl chloride (80° CI) were used as the positive electrode active material.
! Batteries using sulfur oxyhalides such as t) are attracting attention because of their particularly high energy density.

こうした電池は炭素及び金属集電体からなる正極を有し
、一般に塩化アルミニウム(AICJm )、臭化アル
ミニウム(AIBra)等のルイス酸と塩化リチウム、
臭化リチウム等のルイス・塩基とを溶解したイオウの液
体状オキシハロゲン化物を電解液として用いている。こ
のため、液体状オキシハロゲン化物は、正極活物質と電
解液との双方を兼用しており、適当な形状の正極を用い
ることにより高率放電特性の優れた電池が期待できる。
These cells have positive electrodes consisting of carbon and metal current collectors, typically Lewis acids such as aluminum chloride (AICJm), aluminum bromide (AIBra), and lithium chloride.
A liquid oxyhalide of sulfur in which a Lewis base such as lithium bromide is dissolved is used as the electrolyte. Therefore, the liquid oxyhalide serves both as a positive electrode active material and as an electrolyte, and by using a positive electrode with an appropriate shape, a battery with excellent high rate discharge characteristics can be expected.

ところで、上述した電池は正極活物質であるイオウのオ
キシハロゲン化物が負極のリチウムと直接接触している
ため、負極リチウム表面に反応生放物であるLiC1皮
膜が生成される。このL rcl皮膜は、負極リチウム
とオキシハロゲン化物との直接接触を防止する機能を有
し、貯蔵時において電池の容量劣化を防ぐ役割りをする
。しかし、放電時には抵抗成分として働き、放電初期の
電圧降下の原因となる。この電圧降下の程度は、放電電
流がパオーダーの微小な場合には無視できる程小さいが
、大電流放電の場合には無視できず、特に高温で長時間
貯蔵してLiCA!皮膜の成長が相当起った後や、低温
での放電時には放電開始と共に太陽な電圧降下を生じ、
所定の電圧に回復するまでかなりの時間を必要とする、
いわゆる電圧遅延現象と呼ばれる問題があった。この電
圧遅延現象の程度は電池貯蔵時の温度や時間及び放電時
の電流等により大きく異なるが、電圧回復時間に15秒
以上を要するような場合は実用上問題があると考えられ
る。
By the way, in the above-mentioned battery, since the sulfur oxyhalide which is the positive electrode active material is in direct contact with the lithium of the negative electrode, a LiCl film which is a reaction product is generated on the surface of the negative electrode lithium. This L rcl film has the function of preventing direct contact between the negative electrode lithium and the oxyhalide, and serves to prevent battery capacity deterioration during storage. However, during discharge, it acts as a resistance component and causes a voltage drop in the early stage of discharge. The degree of this voltage drop is negligible when the discharge current is on the order of Pa orders, but it cannot be ignored when the discharge current is large, especially when stored at high temperatures for long periods of time. After considerable film growth has occurred or during discharge at low temperatures, a solar voltage drop occurs as soon as discharge begins.
It takes a considerable amount of time to recover to the specified voltage.
There was a problem called the so-called voltage delay phenomenon. The degree of this voltage delay phenomenon varies greatly depending on the temperature and time during battery storage, the current during discharge, etc., but it is considered that there is a practical problem if the voltage recovery time takes 15 seconds or more.

このようなことから、上記問題を解決するためにいくつ
かの提案がなされており、例えば特開昭56−7360
号公報には電解液中に塩化ビニル、塩化ビニリデンのホ
モポリマーや塩化ビニルと酢酸ビニルとの共重合体等の
ビニル系ポリマーを溶解することが開示されている。こ
のように塩素置換基を有するビニル系ポリマーを電解液
中に溶解することによって確かに電圧遅延現象は改善さ
れるが、我々は研究の結果、電圧回復の程度は添加する
塩素置換基を有するビニルポリマー中の塩素置換基の量
に大きく依存することを見い出し、本発明を成すに散っ
た。
For this reason, several proposals have been made to solve the above problems, such as Japanese Patent Application Laid-Open No. 56-7360.
The publication discloses dissolving a vinyl polymer such as a homopolymer of vinyl chloride, vinylidene chloride, or a copolymer of vinyl chloride and vinyl acetate in an electrolytic solution. Although the voltage retardation phenomenon is certainly improved by dissolving vinyl polymers with chlorine substituents in the electrolyte, as a result of our research, we found that the degree of voltage recovery is lower than that of vinyl polymers with chlorine substituents. It has been found that the amount of chlorine substituents in the polymer is highly dependent on the amount of chlorine substituents in the polymer.

〔発明の目的〕[Purpose of the invention]

本発明は、大電流放電初期においても電圧降下が小さく
、かつ電圧の回復時間も短く、更に放電特性の優れた非
水溶媒電池を提供しようとするものである。
The present invention aims to provide a non-aqueous solvent battery that has a small voltage drop even in the early stages of large current discharge, a short voltage recovery time, and excellent discharge characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、リチウム等の軽金属からなる負極と、炭素を
主構成材とする正極と、イオウのオキシハロゲン化物を
主成分とする正極活物質を兼ねる電解液とから構成され
る非水溶媒電池において、前記電解液中に57〜70重
量%の塩素置換基をもつビニル系ポリマーを添加したこ
とを特徴とするものである。このように57〜70重量
%の塩素置換基をもつビニル系ポリマーを添加した電解
液を用いた電池は、貯蔵後に大電流放電を行っても放電
開始時に大幅な電圧降下を示さず、しかも電圧の回復時
間も短い。
The present invention relates to a non-aqueous solvent battery comprising a negative electrode made of a light metal such as lithium, a positive electrode mainly made of carbon, and an electrolyte that also serves as a positive electrode active material and made mainly of sulfur oxyhalide. , is characterized in that a vinyl polymer having 57 to 70% by weight of chlorine substituents is added to the electrolytic solution. In this way, a battery using an electrolyte containing a vinyl polymer having 57 to 70% by weight of chlorine substituents does not show a significant voltage drop at the start of discharge even when discharged at a large current after storage. recovery time is also short.

この場合、電圧回復時間短縮の程度は、同じ塩素置換基
をもつビニル系ポリマーでも塩素置換基の量が上記範囲
外にあるポリマニを添加した場合に比べ格段にすぐれて
いる。更に本発明の電池は上述した効果に加え、低温で
の放電特性にすぐれている、長期貯蔵による容量劣化が
少ない等の特長がある。
In this case, the degree of shortening of the voltage recovery time is much better than when a vinyl polymer having the same chlorine substituent group is added, but the amount of the chlorine substituent group is outside the above range. Furthermore, in addition to the above-mentioned effects, the battery of the present invention has features such as excellent discharge characteristics at low temperatures and little capacity deterioration due to long-term storage.

本発明でいう塩素置換基をもつビニル系ポリマーとは、
下記の一般式で表わされる構造をもつポリマーの単独又
は共重合体並びに混合物をいう。
The vinyl polymer having a chlorine substituent in the present invention is
Refers to single polymers, copolymers, and mixtures of polymers having the structure represented by the following general formula.

またこれらビニル系ポリマーの上記電解液中への含有量
は、0.2〜lo9/lの範囲、特にOl−〜旦9/l
の範囲にすることが望ましい。これは、共重合体の含有
量を0.211/1未満にすると、電圧降下の抑制効果
等を十分に発揮できず、かといってその量が10.!i
I/lを越えると、その効果が殆んど増大しないばかり
か、かえって電池の放電容量が減少する恐れがあるとい
う理由による。
The content of these vinyl polymers in the electrolyte is in the range of 0.2 to 9/l, particularly 0.2 to 9/l.
It is desirable to keep it within the range of . This is because if the content of the copolymer is less than 0.211/1, the effect of suppressing voltage drop etc. cannot be sufficiently exerted, and on the other hand, the amount is less than 0.211/1. ! i
This is because if it exceeds I/l, not only will the effect hardly increase, but the discharge capacity of the battery may even decrease.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1へ6 第1図に本実施例及び比較例におけ、る非水溶媒電池の
構造を示した断面図を示す。
Example 1 to 6 FIG. 1 is a sectional view showing the structure of a non-aqueous solvent battery in this example and a comparative example.

図中の1は負極端子を兼ねる上面が開口した、例えばス
テンレス裂の有底円筒形の缶体である。
1 in the figure is a bottomed cylindrical can made of stainless steel, for example, with an open top that also serves as a negative electrode terminal.

この缶体1の内面には金属リチウムからなる筒状の負極
2が圧着されている。この負極2の内側の缶体l内には
、筒状ステンレス裂網体の金属集電体3の外側に筒状多
孔質炭素層4を圧着した構造の正極5がガラス不織布か
らなるモノ4レータ6、。
A cylindrical negative electrode 2 made of metallic lithium is pressure-bonded to the inner surface of the can 1. Inside the can 1 inside the negative electrode 2, a positive electrode 5 having a structure in which a cylindrical porous carbon layer 4 is crimped onto the outside of a metal current collector 3 made of a cylindrical stainless steel mesh is mounted. 6.

6!を介して設けられている。なお、前記正極5は例え
ば市販のアセチレンブラックとポリテトラフルオロエチ
レンとを混合し、この混練物をステンレス製網体の金属
集電体3と共に該集電体が内側となるように円筒状に成
形した後、150℃の真空下で乾燥して前記混線物を多
孔質炭素層4とすることにより作製される。
6! provided through. The positive electrode 5 is made by, for example, mixing commercially available acetylene black and polytetrafluoroethylene, and molding this mixture together with a stainless steel mesh metal current collector 3 into a cylindrical shape so that the current collector is on the inside. After that, it is dried under vacuum at 150° C. to form the porous carbon layer 4 from the mixed wire.

また、前記正極5上方の缶体1内には、前記セパレータ
6、に支持された中央lこ穴を有する絶縁紙7が配設さ
れている。前記缶体1の上面開口部にはメタルトップ8
がレーザ溶接等により封着されており、かつ該メタルト
ップ8の中心の穴9にはパイプ状正極端子10がガラス
典のシール材11を介してメタルトップ8に対し電気的
に絶縁して固定されている。前記正極端子10の下端は
リード線12を介して前記正極5の金属集電体3に接続
されている。そして、前記缶体1内には前記パイプ状正
極端子10から注入された電解液13が収容されている
Further, in the can body 1 above the positive electrode 5, an insulating paper 7 having a central hole supported by the separator 6 is disposed. A metal top 8 is provided at the top opening of the can body 1.
is sealed by laser welding or the like, and a pipe-shaped positive electrode terminal 10 is electrically insulated and fixed to the metal top 8 through a glass sealing material 11 in the hole 9 at the center of the metal top 8. has been done. The lower end of the positive electrode terminal 10 is connected to the metal current collector 3 of the positive electrode 5 via a lead wire 12. The can body 1 accommodates an electrolytic solution 13 injected from the pipe-shaped positive electrode terminal 10.

さらに、前記パイプ状正極端子10には例えばステンレ
ス環の封体14が挿入され、該端子1゜先端と挿入した
封体工4とをレーザI@接することにより該正極端子1
0が封口される。。
Furthermore, an enclosure 14 made of, for example, a stainless steel ring is inserted into the pipe-shaped positive terminal 10, and the positive terminal 1
0 is sealed. .

実施例1〜6として、塩化チオニル(socz、)中に
塩化アルミニウム(AICIs )と塩化リチウム(L
iCA’)とを各々1.5モル/l溶解させた電解液中
に、それぞれ57.5,58.6,60,64.5,6
7.5,69.5重量係の塩素置換基をもつビニル系ポ
リマー(2y/Il)を添加した電解液を用いた6種類
の電池を作製した。
As Examples 1 to 6, aluminum chlorides (AICIs) and lithium chloride (L
57.5, 58.6, 60, 64.5, 6, respectively, in an electrolytic solution containing 1.5 mol/l of iCA')
Six types of batteries were fabricated using electrolytes to which vinyl polymers (2y/Il) having chlorine substituents of weight coefficients of 7.5 and 69.5 were added.

比較例1゜ 5OCI、中にAlCl!とL iCA!を各/F 1
−、5 mo l / l溶解させた電解液中に、40
1[:1%の塩素置換基をもつビニル系ポリマー(塩素
化ポリエチレンの一種)を添加した電解液を用いた以外
実施例と同構造の電池を組み立てた。
Comparative Example 1゜5OCI, AlCl! and L iCA! each/F 1
-, 40 mol/l dissolved in electrolyte solution
1[: A battery having the same structure as in Example was assembled except that an electrolyte containing a vinyl polymer (a type of chlorinated polyethylene) having 1% of chlorine substituents was used.

比較例2゜ 5OCIt中にAlC1sとLiC1とを各々1.5モ
ル/l溶解させた電解液中に、56.7重itチの塩素
、ft置換基もつビニル系ポリマー(ポリ塩化ビニル)
を添加した電解液を用いた以外、実施例と同構造の電池
を組み立てた。
Comparative Example 2 A vinyl polymer (polyvinyl chloride) with chlorine and ft substituents of 56.7 to 1 was added to an electrolytic solution in which 1.5 mol/l each of AlCls and LiCl were dissolved in 5OCIt.
A battery having the same structure as the example was assembled except that an electrolyte containing .

比較例3゜ 5OCI、 中lCAlCl、 トLiC1トラ各/z
 1.5モル/1溶屏させた電解液中に、73.1重量
%の塩素置換基をもつビニル系ポリマー(ポリ塩化ビニ
リデン)を添加した電解液を用いた以外、実施例と同構
造の電池を組み立てた。しかして、本実施例1へ6及び
比較例1〜3の電池について組立後60℃で40日間貯
蔵を行った後3oΩの定抵抗放電を行い、電圧が2.5
vに戻るまでの時間並びに平均作動電圧及び放電容量を
測定した。
Comparative Example 3゜5OCI, Medium 1CAlCl, LiC1T each/z
The structure was the same as that of the example except that an electrolytic solution in which a vinyl polymer (polyvinylidene chloride) having 73.1% by weight of chlorine substituents was added to an electrolytic solution containing 1.5 mol/1 atom was used. Assembled the battery. After assembling, the batteries of Examples 1 to 6 and Comparative Examples 1 to 3 were stored at 60°C for 40 days, and then discharged at a constant resistance of 30Ω, resulting in a voltage of 2.5
The time taken to return to v, the average operating voltage, and the discharge capacity were measured.

その結果を第2図及び第1表に示した。The results are shown in FIG. 2 and Table 1.

第2図及び第1表より明らかな如く、電解液中に57〜
70重41%の塩素置換基をもつビニルポリマーを添加
した電池は、塩素量が上記範囲外のビニルポリマーを添
加した電池Iこ比べて放電開始時の電圧回復時間がいず
れも15秒以内と短く、かつ放電容量も大きいことがわ
かる。また、本発明に係る電池は比較例の電池に比べて
低温での放電特性にすぐれ、長期貯蔵による容量劣化も
少ないことが確かめられた。
As is clear from Figure 2 and Table 1, 57~
The battery containing a vinyl polymer with chlorine substituents of 70% and 41% has a shorter voltage recovery time of less than 15 seconds at the start of discharge compared to the battery containing a vinyl polymer with a chlorine content outside the above range. , and the discharge capacity is also large. Furthermore, it was confirmed that the battery according to the present invention has excellent discharge characteristics at low temperatures and less capacity deterioration due to long-term storage compared to the battery of the comparative example.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電初期の電
圧回復時間が短縮され、更に放電電圧、放電容量も向上
する等、放電特性にすぐれた非水溶媒電池を提供できる
As detailed above, according to the present invention, it is possible to provide a non-aqueous solvent battery with excellent discharge characteristics, such as shortening the voltage recovery time at the initial stage of large current discharge, and further improving discharge voltage and discharge capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非水溶媒電池の構造の一例を示した断面図、第
2図は本発明に係る非水溶媒電池の放電特性図である。 1・・・缶体、2・・・負極、3・・・金属集電体、4
・・・多孔質炭素層、5・・・正極、6..6.・・・
セパレータ、8・・・メタルトップ、10・・・パイプ
状正極端子、13・・・電解液。
FIG. 1 is a sectional view showing an example of the structure of a non-aqueous solvent battery, and FIG. 2 is a discharge characteristic diagram of the non-aqueous solvent battery according to the present invention. 1... Can body, 2... Negative electrode, 3... Metal current collector, 4
... Porous carbon layer, 5... Positive electrode, 6. .. 6. ...
Separator, 8... Metal top, 10... Pipe-shaped positive terminal, 13... Electrolyte.

Claims (1)

【特許請求の範囲】[Claims] リチウム、ナトリウム、アルミニウム、カリウム、カル
シウムの軽金属の少なくとも1種からなる負極と、炭素
を主構成材とする正極と、イオウのオキシハロゲン化物
を主成分とする正極活物質を兼ねる電解液とから構成さ
れた非水溶媒電池において、前記電解液中に57〜70
重量%の塩素置換基をもつビニル系ポリマーを添加した
ことを特徴とする非水溶媒電池。
Consisting of a negative electrode made of at least one of the light metals lithium, sodium, aluminum, potassium, and calcium, a positive electrode mainly made of carbon, and an electrolyte that also serves as a positive electrode active material and made mainly of sulfur oxyhalide. In the non-aqueous solvent battery, 57 to 70
A non-aqueous solvent battery characterized by adding a vinyl polymer having chlorine substituents in the amount of % by weight.
JP26722185A 1985-11-29 1985-11-29 Non-aqueous solvent battery Expired - Lifetime JPH0713898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26722185A JPH0713898B2 (en) 1985-11-29 1985-11-29 Non-aqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26722185A JPH0713898B2 (en) 1985-11-29 1985-11-29 Non-aqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS62128454A true JPS62128454A (en) 1987-06-10
JPH0713898B2 JPH0713898B2 (en) 1995-02-15

Family

ID=17441816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26722185A Expired - Lifetime JPH0713898B2 (en) 1985-11-29 1985-11-29 Non-aqueous solvent battery

Country Status (1)

Country Link
JP (1) JPH0713898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278156A (en) * 1988-09-12 1990-03-19 Toshiba Battery Co Ltd Battery with nonaqueous solvent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278156A (en) * 1988-09-12 1990-03-19 Toshiba Battery Co Ltd Battery with nonaqueous solvent

Also Published As

Publication number Publication date
JPH0713898B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPS6057188B2 (en) Chemical battery with rechargeable lithium-aluminum negative electrode
USH723H (en) Lithium electrochemical cell containing diethylcarbonate as an electrolyte solvent additive
Licht Aluminum/sulfur battery discharge in the high current domain
JP2940015B2 (en) Organic electrolyte secondary battery
JPS62128454A (en) Nonaqueous solvent cell
US4228228A (en) Electrode structure for energy cells
US4621036A (en) Halogenated organic solid depolarizer
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPS6154160A (en) Nonaqueous solvent battery
JPH0359963A (en) Lithium secondary battery
JPS6269466A (en) Nonaqueous-solvent battery
JPS6182674A (en) Nonaqueous solvent battery
JPS62160671A (en) Nonaqueous solvent secondary battery
JPS581973A (en) Solid electrolyte battery
JPH0259590B2 (en)
JPS61190863A (en) Nonaqueous solvent battery
JPH0259589B2 (en)
JPS6182673A (en) Nonaqueous solvent battery
JPS62290073A (en) Organic electrolyte secondary battery
JPS58209070A (en) Nonaqueous electrolyte battery
JPH0439187B2 (en)
JPS6154159A (en) Nonaqueous solvent battery
JPS59160974A (en) Nonaqueous solvent battery
JPH056309B2 (en)
JPH0824046B2 (en) Non-aqueous solvent battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term