JPS5987771A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPS5987771A
JPS5987771A JP57198303A JP19830382A JPS5987771A JP S5987771 A JPS5987771 A JP S5987771A JP 57198303 A JP57198303 A JP 57198303A JP 19830382 A JP19830382 A JP 19830382A JP S5987771 A JPS5987771 A JP S5987771A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
positive electrode
discharge
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57198303A
Other languages
Japanese (ja)
Inventor
Takahisa Osaki
隆久 大崎
Yuichi Sato
祐一 佐藤
Shuji Yamada
修司 山田
Kiyoshi Mitsuyasu
光安 清志
Yoshiyasu Aoki
青木 良康
Kazuya Hiratsuka
和也 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP57198303A priority Critical patent/JPS5987771A/en
Publication of JPS5987771A publication Critical patent/JPS5987771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5072Preserving or storing cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5088Initial activation; predischarge; Stabilisation of initial voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent voltage drop in an initial stage of high rate discharge by electrically connecting a higher resistance compared with a conventional discharge load resistance between a negative electrode and a positive electrode. CONSTITUTION:A negative electrode 2 such as lithium is press-bonded on the inner surface of a can 1 and a positive electrode obtained by press-bonding a porous carbon layer 4 on the outer side of a metal current collector 3 is arranged inside the negative electrode 2 with a separator 6 interposed. Electrolyte prepared by dissolving LiAlCl4 in SOCl2 is poured in the can to form a nonaqueous solvent battery. The negative electrode and positive electrode are electrically connected through a resistance 13 having high resistance value to flow extremely small amount of current. Thereby, LiCl film formed on the surface of the negative electrode 2 during storage is kept thin. Therefore, the LiCl film on the surface of the negative electrode is immediately broken in high rate discharge, and voltage drop is prevented and desired voltage is obtained from an initial stage of discharge.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in non-aqueous solvent batteries.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウムを用いた非水溶
媒電池はエネルギー密度が大きく、貯蔵特性に優れ、か
つ作動温度範囲が広いといデ特長をもち、電卓1時計、
メモリがバックアップ電源として多用されている。かか
る電池は負極、電解液、正極から構成されておシ、一般
に負極としてリチウムやナトリウムを、電解液としてプ
ロピレンカーデネート、r−ブチロラクトン、シーメト
キシエタンなどの非水溶媒中に過塩素酸リチウA tホ
クフッ化リチウムなどの電解質を溶解してなる溶液を、
正極として二酸化マンガン、フッ化黒鉛を、夫々用いて
いる。
Nonaqueous solvent batteries that use lithium and sodium as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range.
Memory is often used as a backup power source. Such batteries are composed of a negative electrode, an electrolyte, and a positive electrode. Generally, lithium or sodium is used as the negative electrode, and lithium perchlorate A is used as the electrolyte in a nonaqueous solvent such as propylene cardenate, r-butyrolactone, or seamethoxyethane. A solution made by dissolving an electrolyte such as lithium fluoride,
Manganese dioxide and graphite fluoride are used as positive electrodes, respectively.

上述した電池の中でも負極にリチウムを用い、塩化チオ
ニル5OC62を主正極活物質とした、いわゆるリチウ
ム塩化チオニル系電池は特にエネルギー密度が大きいた
め注目されている。こうした電池は炭素及び金属の集電
体からなる正極を有し、一般に塩化リチウム(LiCt
)及び塩化アルミニウム(AlCl2)を溶解した5O
Ct2を電解液として用いている。このため、5OC4
2は正極活物質と電解液との双方を兼用しており、適当
な形状の正極を用いることによシ高率放電特性の優れた
電池が期待できる。
Among the above-mentioned batteries, so-called lithium-thionyl chloride batteries, in which lithium is used as the negative electrode and thionyl chloride 5OC62 is used as the main positive electrode active material, are attracting attention because of their particularly high energy density. These batteries have positive electrodes consisting of carbon and metal current collectors and are typically lithium chloride (LiCt).
) and 5O in which aluminum chloride (AlCl2) was dissolved
Ct2 is used as the electrolyte. For this reason, 5OC4
No. 2 serves as both a positive electrode active material and an electrolyte, and by using a positive electrode with an appropriate shape, a battery with excellent high rate discharge characteristics can be expected.

ところで、上記リチウム塩化チオニル系電池は正極活物
質である5OC42が負極リチウムと直接接触している
ため、負極リチウム表面に反応主成物であるLict皮
膜が生成される。この生成したLict皮膜は、負極リ
チウムと5oct2との直接接触を防止する機能を有し
、貯蔵時において電池の容量劣化を防ぐ役割をする)J
’;’ 、放電時においては抵抗成分として働き放電初
期の電圧降下の原因となる。この電圧降下の程度は放電
電流がフィクロアンペア−オーダーの微小な場合には無
視できる程小さいが、大電流放電の場合には無視し得す
、特に高温で長時間貯蔵してLiCt皮膜の成長が和尚
起った後や低温での放電時には、放電開始と共に大幅な
電圧降下を生じ、所定の電圧に回復するまでかなシの時
間を必要とする欠点があった。
By the way, in the lithium-thionyl chloride-based battery, since 5OC42, which is the positive electrode active material, is in direct contact with the negative electrode lithium, a LICT film, which is the main reaction product, is generated on the surface of the negative electrode lithium. This generated LICT film has the function of preventing direct contact between the negative electrode lithium and 5oct2, and plays the role of preventing battery capacity deterioration during storage)J
';' During discharge, it acts as a resistance component and causes a voltage drop at the beginning of discharge. The degree of this voltage drop is negligible when the discharge current is minute on the order of phycloamperes, but it can be ignored in the case of large current discharge, especially when stored at high temperatures for a long time, the LiCt film grows. However, when discharging occurs at low temperatures or after the discharge has started, there is a drawback that a large voltage drop occurs at the start of discharging, and it takes a long time for the voltage to recover to a predetermined level.

〔発明の目的〕[Purpose of the invention]

本発明は大電流放電初期においても電圧降下を生じない
非水溶媒電池を提供しようとするものである。
The present invention aims to provide a nonaqueous solvent battery that does not cause a voltage drop even during the initial stage of large current discharge.

〔発明の概要〕[Summary of the invention]

本発明は缶体内にリチウム等の負極と多孔質炭素を主構
成材とする正極とをセ・母レータを介して設け、かつ該
缶体内に正極活物質・を兼ねる塩化チオニル(socz
2)を主成分とする電解液を収容した電池において、前
記負極と正極とを通常の放電負荷抵抗に比べて高い抵抗
値をもつ抵抗体にて電気的に接続することによって、正
極負極間に常時、微小電流を流して負極リチウム表面へ
のLiCt皮腑の多大な成長を阻止し、大電流放電時に
は該Lict皮膜の破壊を容易にしてか“f」著な電圧
降下を防止するのを骨子とする。なお、本発明の電池構
造では抵抗体を介して電池が放電している状態にあるだ
め、抵抗体はそのI]的を達するに必要最低限の電流し
か流れないように充分大きな抵抗値を持つことが重要で
ある。
In the present invention, a negative electrode such as lithium and a positive electrode mainly composed of porous carbon are provided in a can via a separator, and thionyl chloride (socz), which also serves as a positive electrode active material, is provided in the can.
In a battery containing an electrolyte containing 2) as the main component, by electrically connecting the negative electrode and the positive electrode with a resistor having a higher resistance value than a normal discharge load resistance, a The main idea is to constantly flow a small current to prevent the large growth of LiCt film on the negative electrode lithium surface, and to facilitate the destruction of the LiCt film during large current discharge to prevent a significant voltage drop. shall be. In addition, in the battery structure of the present invention, since the battery is in a state where the battery is discharging through the resistor, the resistor has a sufficiently large resistance value so that only the minimum current necessary to reach the target I] flows. This is very important.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図を参照して説明する。 Embodiments of the present invention will be described below with reference to FIG.

図中の1は上面が開口し7た負椅哨子を兼ねるステン1
/ス製の缶体であシ、この缶体1の内面には金属リチウ
ムからガる筒状のf1極2が圧着されている7、この負
極2の内tμm1の缶体1内には筒状ステンレス製網体
からなる全屈集電体3の外側に筒状多孔質炭素層4を圧
着した構造の正極5がガラス繊維不織布からなる篭状の
化ツヤレータ6を介して設けられている。フロお、前記
正極5は例えば市販の7′セチレンブランクとポリテト
ラフロロエチレンとを混合し、この混線物をステンレス
製網体からなる金m1fj電休3と41;に該集電体3
が内側となるように一円筒状に成形後、150℃の真空
下で乾燥して前記混練物を多孔質炭素層4とすることに
より作製される。
1 in the figure is a stainless steel 1 whose top surface is open and which also serves as a chair guard.
A cylindrical f1 electrode 2 made of metallic lithium is crimped on the inner surface of the can body 1 made of steel. A positive electrode 5 having a structure in which a cylindrical porous carbon layer 4 is crimped onto the outside of a fully bent current collector 3 made of a mesh made of stainless steel is provided via a cage-shaped gloss layer 6 made of a glass fiber non-woven fabric. For the positive electrode 5, for example, a commercially available 7' cetylene blank and polytetrafluoroethylene are mixed, and this mixture is placed on the current collector 3 and 41 made of a stainless steel net.
The porous carbon layer 4 is produced by forming the kneaded material into a cylindrical shape so that the inner side faces the inside, and then drying it under vacuum at 150°C.

また、前記缶体1の上面開口部にはメタルトップ7がレ
ーザ溶接等により封着されておシ、かつ該メタルトップ
7の中心の穴8には正極端子9がガラス製のシール材’
10を介して電気的に絶縁して固定されている□。前記
正極端子9の下端はリード線11を介して前記正極5の
金端隼電体3に打゛続されている。更に、前記缶体1内
には前記メタルトップ7の注入口12より注入されたL
iAtCt4を例えば1モル儂度溶解しだ5oct2溶
液(電解液)が収容されている。な1=−1注入口12
は電解液の注入後においてはレーデ溶接等により刺止さ
れる。そして、前り負イ小端子と巻るメタルトップ7と
正4’t 端子9とは前記缶体1内に配置された例、(
ばIMΩの抵抗体13により電気的に接続されている。
Further, a metal top 7 is sealed to the upper opening of the can body 1 by laser welding or the like, and a positive electrode terminal 9 is attached to a hole 8 at the center of the metal top 7 using a sealing material made of glass.
□ is electrically insulated and fixed via 10. The lower end of the positive electrode terminal 9 is connected to the gold-end electric body 3 of the positive electrode 5 via a lead wire 11. Furthermore, L injected into the can body 1 from the injection port 12 of the metal top 7 is
A 5oct2 solution (electrolytic solution) in which iAtCt4 is dissolved by, for example, 1 molar amount is stored. 1=-1 inlet 12
After the electrolyte is injected, it is pierced by Rede welding or the like. The metal top 7 and the positive 4't terminal 9, which are wound around the front negative A small terminal, are arranged in the can body 1, (
For example, they are electrically connected by a resistor 13 of IMΩ.

しかして、本発明の非水溶媒電池は負極2と正極5とが
抵抗体13を介して14続しているため、常時微小電流
が流れている。その結果、長期間の貯蔵等においてリチ
ウムの負極2辰面に5OCt2の接触による厚いLiC
t皮膜が成長されるのを前記微小電流を流くことによシ
阻止できる。
In the nonaqueous solvent battery of the present invention, the negative electrode 2 and the positive electrode 5 are connected to each other via the resistor 13, so that a small current constantly flows. As a result, during long-term storage, etc., thick LiC due to contact of 5OCt2 on the two sides of the lithium negative electrode
The growth of the T film can be prevented by passing the minute current.

したがって、長期間の貯蔵中においてリチウムの負極2
表面のLiCt皮膜は薄い状態に維持されるため、大電
流放電時にはリチウムの負極2表面のLiC6皮膜は直
ちに破壊され、顕著な電圧降下が生じるのを防止でき、
ひいては大電流放電の初期から所定の電圧が得られる。
Therefore, during long-term storage, the lithium negative electrode 2
Since the LiCt film on the surface is maintained in a thin state, the LiC6 film on the surface of the lithium negative electrode 2 is immediately destroyed during large current discharge, preventing a significant voltage drop from occurring.
As a result, a predetermined voltage can be obtained from the initial stage of large current discharge.

事実、前記実施例のR14型リチウム−塩化チオニル電
池と抵抗体を用いない以外は実五例と同構成の従来の)
t14型リチウム−塩化チオニル電池について、製作後
60℃で10日間貯蔵し、しかる後25℃で300定抵
抗放電を杓ない、放電初期の電圧を調べだところ、第2
図に示す特性図を得た。なお、第2図のAは本実施例の
電池における放電特性線、Bは従来の電池における放電
特性線である。この第2図よシ明らかな如く、本発明の
電池は従来の′iT1シ池に比べてほとんど初期の電圧
降下が生じないことがわかる。
In fact, the R14 type lithium-thionyl chloride battery of the previous example and the conventional one having the same configuration as the five examples except that no resistor was used)
Regarding the T14 type lithium-thionyl chloride battery, it was stored at 60℃ for 10 days after fabrication, and then subjected to 300 constant resistance discharge at 25℃.The voltage at the initial stage of discharge was investigated.
The characteristic diagram shown in the figure was obtained. Note that A in FIG. 2 is a discharge characteristic line for the battery of this embodiment, and B is a discharge characteristic line for a conventional battery. As is clear from FIG. 2, the battery of the present invention has almost no initial voltage drop compared to the conventional iT1 battery.

ムお、上記実施例では正極として金属集電体の外側に多
孔質炭素層を圧着した筒状構造のものを用いたが、これ
に限定されない。例えば金属集電体に多孔質炭素層を圧
着して帯状体とし、これを渦巻状に巻回して正極とした
ものでも同様に適用できる。ここに用いる金属集電体は
網状に限らず、エキスフ4ンドメクル又はノ9ンチドメ
タルでもよい。
In the above embodiment, a cylindrical structure in which a porous carbon layer was bonded to the outside of a metal current collector was used as the positive electrode, but the present invention is not limited to this. For example, a porous carbon layer is pressure-bonded to a metal current collector to form a band, and this can be similarly applied by winding the band in a spiral to form a positive electrode. The metal current collector used here is not limited to a net shape, and may be an expanded metal or a nine sided metal.

上記実施例では抵抗体を缶体内に配置した状態で正極と
負極とを接続したが、缶体上(メタルトップ上)に配置
した状態で正極と負極とを接続してもよい。ここに用い
る抵抗体の抵抗値は上記実施例の如< (i MOyf
−する場合に限らず)電池の種類や容量によシ適宜選定
すればよい。
In the above embodiment, the positive and negative electrodes were connected while the resistor was placed inside the can, but the positive and negative electrodes may be connected while being placed on the can (on the metal top). The resistance value of the resistor used here is as in the above example < (i MOyf
- It may be selected appropriately depending on the type and capacity of the battery (not limited to cases where the battery is used).

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電初期にお
いても電圧降下を防止し、初期放電特性の優れた非水溶
媒電池を提供できるものである。
As described in detail above, according to the present invention, it is possible to prevent a voltage drop even in the initial stage of large current discharge and provide a non-aqueous solvent battery with excellent initial discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す非水溶媒電池の断面図
、第2図は本発明の電池及び従来の電池における大電流
放電初期の放電特性を示す線図である。 1・・・缶体、2・・・負極、3・・・金属集電体)4
・・・多孔質炭素層、互・・・正極、6・・・セパレー
タ、7・・・メタルトップ、9・・・正極端子、13・
・・抵抗体。 第1図 6x2 図 1 攻電時藺(分) 東京部品用区南品用3丁目4祁 10号東芝電池株式会社内 、ヰ出 願 人 東芝電池株式会社 東京部品川区南品川3丁目4祁 10号
FIG. 1 is a sectional view of a non-aqueous solvent battery showing an embodiment of the present invention, and FIG. 2 is a diagram showing discharge characteristics at the initial stage of large current discharge in the battery of the present invention and a conventional battery. 1... Can body, 2... Negative electrode, 3... Metal current collector) 4
... Porous carbon layer, mutually... Positive electrode, 6... Separator, 7... Metal top, 9... Positive electrode terminal, 13...
...Resistor. Fig. 1 6x2 Fig. 1 Power attack time (minutes) Toshiba Battery Co., Ltd., 10-3-4, Minamishinagawa, Tokyo Parts Ward, Toshiba Battery Co., Ltd., applicant: Toshiba Battery Co., Ltd., 3-4, Minamishinagawa, Parts-ku, Tokyo No. 10

Claims (1)

【特許請求の範囲】[Claims] 缶体内にリチウム、ナトリウム、アルミニウムのうちの
少なくとも1種からなる負極と多孔質炭素を主構成材と
する正極とをセパレータを介して設け、かつ該缶体内に
正極活物質を兼ねる塩化チオニルを主成分とする電解液
を収容した非水溶媒電池において、前記負極と正4+i
jとを通常の放電負荷抵抗に比べて高い抵抗値荀もつ抵
抗体にて電気的に接続したことを特徴とする非水溶媒電
池。
A negative electrode made of at least one of lithium, sodium, and aluminum and a positive electrode mainly composed of porous carbon are provided in the can with a separator interposed therebetween, and thionyl chloride, which also serves as a positive electrode active material, is provided in the can. In a non-aqueous solvent battery containing an electrolyte as a component, the negative electrode and the positive 4+i
1. A non-aqueous solvent battery, characterized in that the battery is electrically connected to the battery by a resistor having a higher resistance value than a normal discharge load resistance.
JP57198303A 1982-11-11 1982-11-11 Nonaqueous solvent battery Pending JPS5987771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57198303A JPS5987771A (en) 1982-11-11 1982-11-11 Nonaqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57198303A JPS5987771A (en) 1982-11-11 1982-11-11 Nonaqueous solvent battery

Publications (1)

Publication Number Publication Date
JPS5987771A true JPS5987771A (en) 1984-05-21

Family

ID=16388884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57198303A Pending JPS5987771A (en) 1982-11-11 1982-11-11 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS5987771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142867A (en) * 1984-08-06 1986-03-01 Hitachi Maxell Ltd Inorganic nonaqueous electrolyte battery
JPH0357865U (en) * 1989-10-06 1991-06-04
WO2010102646A1 (en) * 2009-03-10 2010-09-16 Ab Skf Power supply

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142867A (en) * 1984-08-06 1986-03-01 Hitachi Maxell Ltd Inorganic nonaqueous electrolyte battery
JPH0570269B2 (en) * 1984-08-06 1993-10-04 Hitachi Maxell
JPH0357865U (en) * 1989-10-06 1991-06-04
WO2010102646A1 (en) * 2009-03-10 2010-09-16 Ab Skf Power supply
US9214681B2 (en) 2009-03-10 2015-12-15 Aktiebolaget Skf Extended duration power supply

Similar Documents

Publication Publication Date Title
US20080131769A1 (en) Nonaqueous electrolyte secondary battery
JP3570768B2 (en) Stacked organic electrolyte battery
JPH0516140B2 (en)
JPS5987771A (en) Nonaqueous solvent battery
JPS63308866A (en) Nonaqueous electrolytic solution battery
JPH09134730A (en) Solid electrolyte battery and its manufacture
JPS6110863A (en) Nonaqueous electrolyte batter
JP2980618B2 (en) Organic electrolyte primary battery
JPS6182674A (en) Nonaqueous solvent battery
JPS6154160A (en) Nonaqueous solvent battery
JPH0259590B2 (en)
JPH0439187B2 (en)
JP3108142B2 (en) Non-aqueous electrolyte battery
JP3082551B2 (en) Non-aqueous electrolyte battery and its manufacturing method
JPH05159766A (en) Nonaqueous electrolyte secondary battery
JPS58209068A (en) Battery
JP2974739B2 (en) Organic electrolyte battery
JPH0439188B2 (en)
JPS6023971A (en) Manufacture of electrolyte for nonaqueous solvent battery
JPS63307662A (en) Organic electrolyte battery
JPH05251073A (en) Cylindrical type nonaqueous electrolyte secondary battery
JPH022270B2 (en)
JP2005100930A (en) Lamination type organic electrolyte battery
JPS59209274A (en) Nonaqueous solvent battery
JPH04355069A (en) Lithium secondary battery