JPS59209274A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPS59209274A
JPS59209274A JP8385983A JP8385983A JPS59209274A JP S59209274 A JPS59209274 A JP S59209274A JP 8385983 A JP8385983 A JP 8385983A JP 8385983 A JP8385983 A JP 8385983A JP S59209274 A JPS59209274 A JP S59209274A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
positive electrode
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8385983A
Other languages
Japanese (ja)
Inventor
Kiyoshi Mitsuyasu
光安 清志
Takahisa Osaki
隆久 大崎
Shuji Yamada
修司 山田
Yuichi Sato
祐一 佐藤
Kazuya Hiratsuka
和也 平塚
Yoshiyasu Aoki
青木 良康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP8385983A priority Critical patent/JPS59209274A/en
Publication of JPS59209274A publication Critical patent/JPS59209274A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent voltage drop even in an initial stage of high rate discharge by adding a specified molar ratio of aluminium chloride and lithium carbonate to electrolyte also acting as positive active material mainly comprising oxyhalide of sulfur. CONSTITUTION:A negative electrode 2 comprising at least one of lithium, sodium, and aluminium and a positive electrode 3 mainly comprising porous carbon are accommodated in a can 1 with a separator 4 interposed, and electrolyte also acting as positive active material mainly comprising oxyhalide of sulfur is placed in the can 1. Electrolyte in which a molar ratio of lithium carbonate to aluminium chloride is 0.5 or more is used. Thereby, growth of a LiCl film generating on the lithium negative electrode is suppressed, and when the battery is discharged in a high rate, the LiCl film is easily broken and voltage drop is prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in non-aqueous solvent batteries.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウムを用いた非水溶
媒電池はエネルギー密度が大きく、1− 貯蔵特性に優れ、かつ作動温度範囲が広いという特長を
もち、電卓1時計、メモリがパ、クアッゾ電源として多
用されている。かかる電池は負極、電解液、正極から構
成されており、一般に負極としてリチウムやナトリウム
を、電解液としてプロピレンカーボネート、γ−ブチロ
ラクトン、ジメトキシエタンなどの非水溶媒中に過塩素
酸リチウム、ホウすッ化リチウムなどの電解質を溶解し
てなる溶液を、正極として二酸化マンガン、フ、化黒鉛
を夫々用いている。
Nonaqueous solvent batteries that use lithium and sodium as negative electrode active materials have a high energy density, excellent storage characteristics, and a wide operating temperature range, and are often used as power sources for calculators, watches, memory devices, and Quazzo batteries. has been done. Such batteries are composed of a negative electrode, an electrolyte, and a positive electrode. Generally, lithium or sodium is used as the negative electrode, and lithium perchlorate or borax is used as the electrolyte in a nonaqueous solvent such as propylene carbonate, γ-butyrolactone, or dimethoxyethane. A solution prepared by dissolving an electrolyte such as lithium chloride is used as the positive electrode, and manganese dioxide, fluoride, and graphite are respectively used as the positive electrode.

上述した電池の中でも負極にリチウムを用9、塩化チオ
ニル(socz2)を主正極活物質とした、いわゆるリ
チウム塩化チオニル系電池は特にエネルギー密度が大き
いため注目されている。こうした電池は炭素および金属
の集電体からなる正極を有し、ルイス酸とルイス塩基を
溶解した5OCt2を電解液として用いている。とりわ
けルイス酸としては、塩化アルミニウム(A/!、C2
3)、ルイス塩基としては塩化リチウム(LICt)、
炭酸リチウム(L12C03)等が用いられている。従
9− って5OC1y、ば正極活物質と電解液との双方を兼ね
ているが、リチウム負極上に生成する皮膜によって、正
負両極の直接接触は防止され、電池としての機能を保持
している。
Among the above-mentioned batteries, so-called lithium-thionyl chloride batteries, which use lithium in the negative electrode9 and thionyl chloride (SOcz2) as the main positive electrode active material, are attracting attention because of their particularly high energy density. Such a battery has a positive electrode made of a carbon and metal current collector, and uses 5OCt2 in which a Lewis acid and a Lewis base are dissolved as an electrolyte. Among the Lewis acids, aluminum chloride (A/!, C2
3), lithium chloride (LICt) as the Lewis base,
Lithium carbonate (L12C03) and the like are used. 9- 5OC1y serves as both a positive electrode active material and an electrolyte, but the film formed on the lithium negative electrode prevents direct contact between the positive and negative electrodes and maintains its function as a battery. .

ところで、上記リチウム塩化チオニル系電池は正極活物
質である5OCt2が負極リチウムと直接接触している
ため、負極リチウム表面に反応生成物であるLiCt皮
膜が生成さ詐る。この生成したLiC4皮膜は、負極リ
チウムと5OCt2との直接接触を防止する機能を有し
、貯蔵時において電池の容量劣化を防ぐ役割をするが、
放電時においては抵抗成分として働き放電初期の電圧降
下の原因となる。この電圧降下の程度は放電電流力マイ
クロアンペア−オーダーの微小な場合には無視できる程
小さいが、大電流放電の場合には無視し得す、特に高温
で長時間貯蔵してLICt皮膜の成長が相当起った後や
低温での放電時には、放電開始と共に大幅な電圧降下を
生じ、所定の電圧に回復するまでかカリの時間を必要と
する欠点があった。
By the way, in the lithium-thionyl chloride-based battery, since the positive electrode active material 5OCt2 is in direct contact with the negative electrode lithium, a LiCt film, which is a reaction product, is formed on the surface of the negative electrode lithium. This produced LiC4 film has the function of preventing direct contact between the negative electrode lithium and 5OCt2, and plays a role in preventing battery capacity deterioration during storage.
During discharge, it acts as a resistance component and causes a voltage drop at the beginning of discharge. The degree of this voltage drop is negligible when the discharge current is microampere-order, but it can be ignored when the discharge current is large, especially when stored at high temperatures for a long time and the growth of the LICt film is inhibited. When discharging occurs after a considerable discharge or at low temperatures, there is a drawback that a large voltage drop occurs at the start of discharging, and it takes a considerable amount of time to recover to a predetermined voltage.

一方、ルイス塩基としてL12CO3を用いる電解液を
備えた非水溶媒電池(特開昭57−3372号公報)が
提案されている。しかしながら、かかる電池は放電初期
における電圧降下を効果的に抑制できない。
On the other hand, a non-aqueous solvent battery (Japanese Unexamined Patent Publication No. 57-3372) has been proposed that includes an electrolytic solution using L12CO3 as a Lewis base. However, such a battery cannot effectively suppress the voltage drop in the early stage of discharge.

〔発明の目的〕[Purpose of the invention]

本発明は大電流放電初期においても電圧降下を生じない
非水溶媒電池を提供しようとするものである。
The present invention aims to provide a nonaqueous solvent battery that does not cause a voltage drop even during the initial stage of large current discharge.

〔発明の概要〕[Summary of the invention]

本発明は缶体内にリチウム等の負極を多孔質炭素を主構
成材とする正極とをセパレータを介して設け、かつ該缶
体内にイオウのオキシハロダン化物(例えば5oct2
)’を主な正極活物質とし、塩化アルミニウム(htc
t3)と炭酸リチウム(L12CO3)を含む電解液を
収容した電池において、前記塩化アルミニウムと炭酸リ
チウムのモル比率を塩化アルミニウムに対して炭酸リチ
ウムを0.5以上加えた電解液を用いることによって、
リチウム負極に生成するLiC4皮膜の成長を抑制し、
大電流放電時には、該LiC2皮膜の破壊を容易にして
顕著な電圧降下を防止することを骨分とする。
In the present invention, a negative electrode such as lithium and a positive electrode mainly composed of porous carbon are provided in a can with a separator interposed therebetween.
)' as the main positive electrode active material, aluminum chloride (HTC
In a battery containing an electrolytic solution containing t3) and lithium carbonate (L12CO3), by using an electrolytic solution in which the molar ratio of aluminum chloride and lithium carbonate is 0.5 or more of lithium carbonate to aluminum chloride,
Suppresses the growth of LiC4 film that forms on the lithium negative electrode,
When discharging a large current, the main purpose is to facilitate the destruction of the LiC2 film and prevent a significant voltage drop.

上記塩化アルミニウム(Atct3)と炭酸リチウム(
L12C03)のモル比率を限定した理由は、htct
、に対してLi3Co3を0.5未満になると、Li負
極へのLiC2皮膜の成長抑制効果を十分発揮できなく
なるからである。尚、htct3に対するLi2Co5
のモル比率は1.3にすれば十分である。
The above aluminum chloride (Atct3) and lithium carbonate (
The reason for limiting the molar ratio of L12C03) is that htct
, if Li3Co3 is less than 0.5, the effect of inhibiting the growth of the LiC2 film on the Li negative electrode cannot be sufficiently exerted. In addition, Li2Co5 for htct3
A molar ratio of 1.3 is sufficient.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図を参照して説明する。 Embodiments of the present invention will be described below with reference to FIG.

図中の1は負極端子を兼ねるステンレス製の缶体である
。この缶体1の内周面には金属リチウムからなる筒状の
負極2が圧着されている。
1 in the figure is a stainless steel can that also serves as a negative electrode terminal. A cylindrical negative electrode 2 made of metallic lithium is pressure-bonded to the inner peripheral surface of the can 1.

この負極2の内側の缶体1内には正極互が該内側及び缶
体1底面付近に配置された例えばガラス繊維製不織布か
らなるセパレータ41r42を介して収納されている。
Inside the can body 1 inside the negative electrode 2, the positive electrodes are housed via a separator 41r42 made of, for example, a nonwoven fabric made of glass fiber, which is disposed inside the can body 1 and near the bottom surface of the can body 1.

この正極互は例えば市販のポリテトラフルオロエチレン
の乳濁液を5− アセチレンブラックに1(hvt%の割合で配合し、水
及びエチルアルコールを添加して室温で2時間程度撹拌
した後、混線、シート化してステンレス製網体からなる
金属集電体5に圧着し、150℃の真空下で前記シート
を乾燥して多孔質炭素層6を有する帯状体とし、これを
渦巻状に巻回することにより造られる。
For example, to make this positive electrode, mix a commercially available polytetrafluoroethylene emulsion with 5-acetylene black at a ratio of 1 (hvt%), add water and ethyl alcohol, and stir at room temperature for about 2 hours. Forming into a sheet, pressing it onto a metal current collector 5 made of a stainless steel net, drying the sheet under vacuum at 150°C to form a band having a porous carbon layer 6, and winding this into a spiral shape. built by.

また、前記正極互上方の缶体1内には、前記セパレータ
41に支持された中央に穴を有する絶縁紙7が配設され
ている。前記缶体1の上面開口部にはメタルトップ8が
レーザ溶接等により封冠されている。このメタルトップ
8の中央には穴9が開口されている。この穴9にはノイ
プ状の正極端子10が金属−ガラス製のシール材11を
介して電気的に絶縁して固定されている。この正極端子
10の下端は前記正極3の金属集電体5にリード線12
を介して接続されている。そして、前記缶体1内には前
記)J?イブ状正正極端子10孔から注入された電解液
13が収容されている。この電解液13としては下記6
− に示すA−Cの3種の組成のものを用いた。また、電解
液13の注入後においては、前記/fイブ状正正極端子
0には、例えばステンレス製の封体14が挿入され、該
端子10と挿入した封体14とをレーザ溶接することに
よシ該正極端子10の孔が封口される。
Further, in the can body 1 above the positive electrode, an insulating paper 7 supported by the separator 41 and having a hole in the center is disposed. A metal top 8 is sealed to the upper opening of the can body 1 by laser welding or the like. A hole 9 is opened in the center of this metal top 8. A positive electrode terminal 10 in the form of a knob is fixed in this hole 9 through a metal-glass sealing material 11 in an electrically insulated manner. The lower end of this positive electrode terminal 10 is connected to the metal current collector 5 of the positive electrode 3 with a lead wire 12.
connected via. And, inside the can body 1 is the above-mentioned) J? Electrolytic solution 13 injected from the tube-shaped positive electrode terminal 10 hole is accommodated. As this electrolyte 13, the following 6
- Three types of compositions A to C shown below were used. After the electrolyte 13 is injected, a seal 14 made of stainless steel, for example, is inserted into the /f tube-shaped positive electrode terminal 0, and the terminal 10 and the inserted seal 14 are laser welded. The hole of the positive electrode terminal 10 is then sealed.

く電解液の組成〉 電解液A・・・AtCl3: 1.8モル/l 、 L
i2Co3: 0.6モル/lcモル比3:1)を蒸留
5OC62に添加。
Composition of electrolytic solution> Electrolytic solution A...AtCl3: 1.8 mol/l, L
i2Co3: 0.6 mol/lc molar ratio 3:1) was added to distilled 5OC62.

電解液B・・・AtC63: 1.8モル/l 、 L
i2Co3: O19モル/l(モル比2:1)を蒸留
5OC62に添加。
Electrolyte B...AtC63: 1.8 mol/l, L
i2Co3: O19 mol/l (molar ratio 2:1) was added to distilled 5OC62.

電解液C・・・htct3: t、sモル/l 、 L
12Co3: 1.8モル/l(モル比1:1)を蒸留
5OCt2に添加・ しかして、上記3種の電解液を用いた各々の電池につい
て、組立て後25℃下で1週間貯蔵し、8Ωの定抵抗で
放電を行なったところ、第2図に示す特性図を得た。な
お、第2図中のAは上記電解液Aを用いた電池における
放電初期の放電曲線、Bは上記電解液Bを用いた電池に
おける同放電曲線、Cは上記電解液Cを用いた電池にお
ける同放電曲線である。この第2図から明らかな如く、
電解液Aを用いた電池に比べて電解液B、Cを用いた電
池は電圧降下が格段に小さく、htct3とLi2CO
3のモル比がhtct、に対しLi2Co310.5以
上にした電解液を用いた電池は優れた初期放電特性を有
することがわかる。
Electrolyte C...htct3: t, s mol/l, L
12Co3: 1.8 mol/l (molar ratio 1:1) was added to distilled 5OCt2. Therefore, each battery using the above three types of electrolytes was stored at 25°C for one week after assembly, and the 8Ω When discharge was performed with a constant resistance of , the characteristic diagram shown in FIG. 2 was obtained. In Fig. 2, A indicates the initial discharge curve of the battery using electrolyte A, B indicates the discharge curve of the battery using electrolyte B, and C indicates the discharge curve of the battery using electrolyte C. This is the same discharge curve. As is clear from this figure 2,
Compared to batteries using electrolyte A, batteries using electrolytes B and C have much smaller voltage drops, and htct3 and Li2CO
It can be seen that a battery using an electrolytic solution having a molar ratio of 10.5 or more to Li2Co3 to htct has excellent initial discharge characteristics.

なお、上記実施例では正極として金属集電体に多孔質炭
素層を圧着した帯状体を渦巻状に巻回したものを用いた
が、これに限定されない。
In the above embodiments, a spirally wound strip of a metal current collector with a porous carbon layer crimped onto the metal current collector was used as the positive electrode, but the present invention is not limited thereto.

例えば、金属集電体が外周面又は内周面に配置された筒
状の多孔質炭素体からなる正極を用いてもよい。
For example, a positive electrode made of a cylindrical porous carbon body with a metal current collector disposed on the outer or inner circumferential surface may be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電初期にお
いても電圧降下を顕著に抑制し、初期放電特性の優れた
非水溶媒電池を提供できる。
As described in detail above, according to the present invention, a voltage drop can be significantly suppressed even in the initial stage of large current discharge, and a non-aqueous solvent battery with excellent initial discharge characteristics can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す非水溶媒電池の断面図
、第2図は本実施例の電池における大電池放電初期の放
電特性を示す線図である。 1・・・缶体、2・・・負極、l・・・正極、4! 、
4□・・・セパレータ、5・・・金属集電体、6・・・
多孔質炭素層、8・・・メタルト、ノ、10・・・パイ
プ状正極端子、13・・・電解液。 出願人代理人 弁理士 鈴 江 武 彦9− 第1頁の続き 0発 明 者 青木良康 東京部品用区南品用3丁目4番 10号東芝電池株式会社内 0出 願 人 東芝電池株式会社 東京部品用区南品用3丁目4番 10号 322−
FIG. 1 is a cross-sectional view of a non-aqueous solvent battery showing an embodiment of the present invention, and FIG. 2 is a diagram showing the discharge characteristics of the battery of this embodiment at the initial stage of large battery discharge. 1... Can body, 2... Negative electrode, l... Positive electrode, 4! ,
4□...Separator, 5...Metal current collector, 6...
Porous carbon layer, 8...Metal, 10... Pipe-shaped positive electrode terminal, 13... Electrolyte. Applicant's representative Patent attorney Takehiko Suzue 9- Continued from page 1 0 Inventor Yoshiyasu Aoki 3-4-10 Minamishinyo, Tokyo Parts Store Toshiba Battery Co., Ltd. 0 Applicant Toshiba Battery Co., Ltd. 322-3-4-10, Minamishinayo, Tokyo Parts Store

Claims (1)

【特許請求の範囲】[Claims] 缶体内にリチウム、ナトリウム、アルミニウムのうちの
少なくとも1種からなる負極と多孔質炭素を主構成材と
する正極とをセパレータを介して設け、かつ該缶体内に
イオウのオキシハロゲン化物を主な正極活物質とする電
解液を収容した非水溶媒電池において、前記電解液とし
て塩化アルミニウムと炭酸リチウムとをモル比で塩化ア
ルミニウムに対して炭酸リチウムを0.5以上添加した
ものを用いたことを特徴とする非水溶媒電池。
A negative electrode made of at least one of lithium, sodium, and aluminum and a positive electrode mainly composed of porous carbon are provided in the can with a separator interposed therebetween, and the positive electrode mainly contains sulfur oxyhalide in the can. A non-aqueous solvent battery containing an electrolyte as an active material, characterized in that the electrolyte contains aluminum chloride and lithium carbonate in a molar ratio of 0.5 or more of lithium carbonate to aluminum chloride. A non-aqueous solvent battery.
JP8385983A 1983-05-13 1983-05-13 Nonaqueous solvent battery Pending JPS59209274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8385983A JPS59209274A (en) 1983-05-13 1983-05-13 Nonaqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8385983A JPS59209274A (en) 1983-05-13 1983-05-13 Nonaqueous solvent battery

Publications (1)

Publication Number Publication Date
JPS59209274A true JPS59209274A (en) 1984-11-27

Family

ID=13814402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8385983A Pending JPS59209274A (en) 1983-05-13 1983-05-13 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS59209274A (en)

Similar Documents

Publication Publication Date Title
JPS59209274A (en) Nonaqueous solvent battery
JPH0439187B2 (en)
JPS59209275A (en) Nonaqueous solvent battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2609609B2 (en) Alkaline battery
JPH067483B2 (en) Non-aqueous electrolyte battery
JPH0318308B2 (en)
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPS59160974A (en) Nonaqueous solvent battery
JP2980618B2 (en) Organic electrolyte primary battery
JPS59230262A (en) Nonaqueous solvent battery
JPH0532867B2 (en)
JPH0259590B2 (en)
JPH022270B2 (en)
JPS5951470A (en) Non-aqueous solvent cell
JPS6182674A (en) Nonaqueous solvent battery
JPS5987771A (en) Nonaqueous solvent battery
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPS59160973A (en) Nonaqueous solvent battery
JPS6352749B2 (en)
JPS58209068A (en) Battery
JPS58209070A (en) Nonaqueous electrolyte battery
JPS61190863A (en) Nonaqueous solvent battery
JPH04192262A (en) Thionyl chloride lithium cell
JPS63307662A (en) Organic electrolyte battery