JPS60249252A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPS60249252A
JPS60249252A JP10403984A JP10403984A JPS60249252A JP S60249252 A JPS60249252 A JP S60249252A JP 10403984 A JP10403984 A JP 10403984A JP 10403984 A JP10403984 A JP 10403984A JP S60249252 A JPS60249252 A JP S60249252A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
methacrolein
positive electrode
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10403984A
Other languages
Japanese (ja)
Other versions
JPH0259589B2 (en
Inventor
Takahisa Osaki
隆久 大崎
Shuji Yamada
修司 山田
Kiyoshi Mitsuyasu
光安 清志
Yuichi Sato
祐一 佐藤
Yoshiyasu Aoki
青木 良康
Kazuya Hiratsuka
和也 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP10403984A priority Critical patent/JPS60249252A/en
Publication of JPS60249252A publication Critical patent/JPS60249252A/en
Publication of JPH0259589B2 publication Critical patent/JPH0259589B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To provide a nonaqueous solvent battery having low voltage drop in the initial stage of high rate discharge by using a solution prepared by adding methacrolein to a solution containing oxyhalide of sulfur as a positive active material and electrolyte. CONSTITUTION:Methacrolein is added to a solution mainly comprising oxyhalide of sulfur which serves as a positive active material and electrolyte. The amount of methacrolein is spacified to 1-25g per liter of electrolyte when monomer of methacrolein is added, but to 0.2-10g per liter when polymer of mechacrolein is added. The electrolyte, a negative electrode such as Li, Na, or Al, and a positive electrode mainly comprising carbon are used to assemble a nonaqueous solvent battery. By this battery, voltage drop in the initial stage of high rate discharge is suppressed and voltage recovery time is shortened.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極活物質を兼ねる
電解液を改良した非水溶媒電池に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and more particularly to a non-aqueous solvent battery in which an electrolytic solution that also serves as a positive electrode active material is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウム、アルミニウム
等の軽金属を用いた非水溶媒電池はエネルギー密度が大
きく、貯蔵特性に優れ、かつ作動温度範囲が広いという
特長をもつことから、電卓、時計、メモリのバックアッ
プ電池として多用されている。中でも負極にリチウム・
を用い、正極活物質として塩化チオニル(soct2)
、塩化スル7リル(SO□Ct2)等のイオウのオキシ
ノ飄ロrン化物を用いた電池は特にエネルギー密度が大
きいために注目されている。こうした電池性炭素及び金
属集電体からなる正極を有し、一般に塩化アルミニウム
(AtCt、) 、臭化アルミニウム(ムjBrs)等
のルイス酸と塩化リチウム、臭化リチウム等のルイス塩
基とを溶解したイオウの液体状オキシノ10rン化物を
電解液として用いている。このため、液体状オキシハロ
ダン化物は正極活物質と電解液との双方を兼用しており
1適幽な形状の正極を用いることにより高率放電特性の
優れた電池が期待できる。
Nonaqueous solvent batteries that use light metals such as lithium, sodium, and aluminum as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, making them useful as backups for calculators, watches, and memory. It is widely used as a battery. Among them, lithium is used as the negative electrode.
using thionyl chloride (SOCT2) as the positive electrode active material.
Batteries using oxynochlorinated sulfur compounds such as sulfuryl chloride (SO□Ct2) are attracting attention because of their particularly high energy density. It has a positive electrode made of such a battery-like carbon and metal current collector, and is generally made by dissolving a Lewis acid such as aluminum chloride (AtCt) or aluminum bromide (MujBrs) and a Lewis base such as lithium chloride or lithium bromide. A liquid oxinol-10 compound of sulfur is used as the electrolyte. Therefore, the liquid oxyhalodanide serves both as a positive electrode active material and as an electrolyte, and by using a positive electrode with a suitable shape, a battery with excellent high rate discharge characteristics can be expected.

ところで、上述した電池は正極活物質であるイオウのオ
キシハロダン化物が負極のリチウムと直接接触している
ため、負極リチウム表面に反応生成物であるLICt皮
膜が生成される。このLIC1皮膜は、負極リチウムと
オキシハロダン化物との直接接触を防止する機能を有し
、貯蔵時において電池の容量劣化を防ぐ役割シをする。
By the way, in the above-mentioned battery, since the sulfur oxyhalodide, which is the positive electrode active material, is in direct contact with the lithium, which is the negative electrode, a LICt film, which is a reaction product, is generated on the surface of the negative electrode lithium. This LIC1 film has the function of preventing direct contact between the negative electrode lithium and the oxyhalodide, and serves to prevent battery capacity deterioration during storage.

しかし、放電時には抵抗成分として働き、放電初期の電
圧降下の原因となる。この電圧降下の程度は放電電流が
μAオーダの微小な場合には無視できる程小さいが、大
電流放電の場合には無視できず、特に高温で長時間貯蔵
してLiCj皮膜の成長が相当起った後や、低温での放
電時には、放電開始と共に大幅な電圧降下が生じ、所定
の電圧に回復するまでかなシの時間を必要とする問題が
あった。
However, during discharge, it acts as a resistance component and causes a voltage drop in the early stage of discharge. The degree of this voltage drop is negligible when the discharge current is minute on the μA order, but it cannot be ignored when the discharge current is large, and especially when stored at high temperatures for long periods of time, considerable growth of the LiCj film occurs. After discharge or during discharge at low temperatures, there is a problem in that a significant voltage drop occurs at the start of discharge, and it takes a long time to recover to a predetermined voltage.

〔発明の目的〕[Purpose of the invention]

本発明は大電流放電初期においても電圧降下の小さい非
水溶媒電池を提供しようとするものである。
The present invention aims to provide a non-aqueous solvent battery that exhibits a small voltage drop even in the early stages of large current discharge.

〔発明の概要〕[Summary of the invention]

本発明はリチウム等の軽金属からなる負極と、炭素を主
構成材とする正極と、イオウのオキシハロダン化物を主
成分とする正極活物質を兼ねる電解液とから構成される
非水溶媒電池において、前記電解液として前記オキシ・
・ロダン化物を含む溶液にメタクロレインを添加したも
のを用いることを骨子とするものである。かかるメタク
ロレインを添加した電解液を用いることによって、貯蔵
後に大電流放電を行なっても大幅な電圧降下を示さず、
かつ電圧の回復時間も短い初期放電特性の優れた非水溶
媒電池を得ることができる。
The present invention provides a non-aqueous solvent battery comprising a negative electrode made of a light metal such as lithium, a positive electrode mainly made of carbon, and an electrolytic solution that also serves as a positive electrode active material and mainly made of sulfur oxyhalodanide. The above-mentioned oxygen as an electrolyte
・The main idea is to use a solution containing rhodanide with methacrolein added. By using such an electrolyte solution containing methacrolein, there is no significant voltage drop even when a large current is discharged after storage.
Moreover, a nonaqueous solvent battery with excellent initial discharge characteristics and short voltage recovery time can be obtained.

上記メタクロレインはモノマー又はポリマーいずれでも
よい。こうしたメタクロレインはイオウのオキシハロダ
ン化物を含む溶液IJに対してモノマーの場合は1〜2
5 cc 、ポリマーの場合は0.2〜10Iの範囲で
添加することが望ましい。この理由は、メタクロレイン
添加量を上記下限値未満にすると添加効果が不充分とな
)、かといって上限値を越えると、効果の増大が認られ
ないばかシか、かえって電池の放電容量が減少する。
The above methacrolein may be either a monomer or a polymer. When such methacrolein is a monomer, it is 1 to 2
5 cc, and in the case of polymers, it is desirable to add in the range of 0.2 to 10 I. The reason for this is that if the amount of methacrolein added is less than the lower limit above, the addition effect will be insufficient), but if it exceeds the upper limit, the effect will not increase or the discharge capacity of the battery will decrease. Decrease.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図を参照して詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

実施例1 図中の1は上面が開口した負極端子を兼ねるステンレス
製の缶体であシ、この缶体1の内面には金属リチウムか
らなる筒状の負極2が圧着されている。この負極2の内
側の缶体1内には、筒状ステンレス製網体からなる金属
集電体3の外側に筒状多孔質炭素層4を圧着した構造の
正極!がガラス繊維不織布からなる筒状のセパレータ6
1r6mを介して設けられている。なお、前記正極百は
例えば市販のアセチレンfラックとポリテトラクロロエ
チレンとを混合し、この混線物をステンレス製網体から
なる金属集電体3と共に該集電体3が内側となるように
円筒状に成形した後、150℃の真空下で乾燥して前記
混練物を多孔質炭素層4とすることによシ作製される。
Embodiment 1 Reference numeral 1 in the figure denotes a stainless steel can which doubles as a negative electrode terminal and has an open top surface, and a cylindrical negative electrode 2 made of metallic lithium is crimped onto the inner surface of this can. Inside the can 1 inside the negative electrode 2 is a positive electrode having a structure in which a cylindrical porous carbon layer 4 is crimped onto the outside of a metal current collector 3 made of a cylindrical stainless steel mesh! A cylindrical separator 6 made of glass fiber nonwoven fabric
It is provided via 1r6m. The positive electrode is made by mixing commercially available acetylene f-lac and polytetrachloroethylene, and forming the mixture into a cylindrical shape together with a metal current collector 3 made of a stainless steel mesh so that the current collector 3 is on the inside. After molding, the porous carbon layer 4 is produced by drying the kneaded material under vacuum at 150°C.

また、前記正極i上方の缶体1内には、前記セパレータ
61に支持された中央に穴を有する絶縁紙7が配設され
ている。前記缶体1の上面開口部にはメタルトラ7°8
がレーデ溶接尋によシ封冠されている。このメタルトラ
f8の中心には穴9が開口されておシ、この六9には・
々イノ拭上極端子、10が金属−ガラス製のシール材1
1を介して前記メタルトッゾ8に対し電気的に絶縁して
固定されている。前記正極端子10の下端はリード線1
2を介して前記正極iの金属集電体8に接続されている
。そして、前記缶体1内には前記A?イグ状正正極端子
0から注入された電解液13が収容されている。この電
解液13は塩化チオニル(SOCl2)中に塩化アルミ
ニウム(htct、 )と塩化リチウム(LiCj )
とを夫夫1.5モル/!溶解し九溶液にメタクロレイン
(モノマー液)を2ca/、#添加したものである。
Further, in the can body 1 above the positive electrode i, an insulating paper 7 supported by the separator 61 and having a hole in the center is disposed. The top opening of the can body 1 has a metal track 7°8.
was crowned by Rede Welder. A hole 9 is opened in the center of this metal tiger f8.
Inno wipe upper terminal, 10 is metal-glass sealing material 1
It is electrically insulated and fixed to the metal TOZZO 8 via 1. The lower end of the positive electrode terminal 10 is connected to the lead wire 1
2 to the metal current collector 8 of the positive electrode i. In the can body 1, there is the A? An electrolytic solution 13 injected from the pig-shaped positive electrode terminal 0 is accommodated therein. This electrolyte 13 contains aluminum chloride (HTCT) and lithium chloride (LiCj) in thionyl chloride (SOCl2).
1.5 mol/! 2 ca/# of methacrolein (monomer liquid) was added to the dissolved solution.

また、前記ノ9イゾ状正極端子1oには例えばステンレ
ス製の針体14が挿入され、該端子1゜先端と挿入した
針体14とをレーザ溶接するととによシ正極端子10の
孔が封口されている。
Further, a needle body 14 made of stainless steel, for example, is inserted into the positive electrode terminal 1o, and when the tip of the terminal 1° and the inserted needle body 14 are laser welded, the hole of the positive electrode terminal 10 is sealed. has been done.

比較例1 電解液として5oct2中にhtct、とLICtを夫
々1.5モル/J溶解したメタクロレイン無添加のもの
を用いた以外、実施例1と同構造の電池を組立てた。
Comparative Example 1 A battery having the same structure as in Example 1 was assembled, except that an electrolytic solution containing 1.5 mol/J of htct and LICt dissolved in 5oct2 without the addition of methacrolein was used.

しかして、本実施例1及び比較例1の電池について、組
立て後25℃で3力月間貯蔵を行ない、30Ωの定抵抗
放電を行なって放電初期の特性を調べたところ、第2図
に示す特性図を得た。なお、第2図中のAは実施例1の
電池の放電曲線、Bは比較例の電池の放電曲線、を夫々
示す。第2図より明らかな如く、メタクロレイン(モノ
マー液)を添加し九電解液を用いる本実施例1の電池は
メタクロレイン無添加の電解液を用いる比較例1の電池
に比べて初期の電圧降下が小さく、かつ電圧の回復時間
が短かいことがわかる。
After assembly, the batteries of Example 1 and Comparative Example 1 were stored at 25°C for 3 months, and a constant resistance discharge of 30Ω was performed to examine the characteristics at the initial stage of discharge. I got the diagram. In addition, in FIG. 2, A shows the discharge curve of the battery of Example 1, and B shows the discharge curve of the battery of Comparative Example. As is clear from Figure 2, the battery of Example 1, which uses an electrolyte with methacrolein (monomer liquid) added, has a lower initial voltage drop than the battery of Comparative Example 1, which uses an electrolyte without methacrolein. It can be seen that the voltage is small and the voltage recovery time is short.

実施例2 アゾビスイソブチロニトリルを重合開始剤とし、ジメチ
ルホルムアミド中で重合させて製造したポリメタクロレ
イン2gを、IJの1.2モル/J AICt3/Li
CtIC化3/LiCtに添加した電解液を用いた以外
、実施例1と同構造の電池を組立てた〇 比較例2 電解液として5OC42中にhtct3とLICtを夫
々1.2モル/!溶解したポリメタクロレイン無添加の
ものを用いた以外、実施例1と同構造の電池を組立てた
Example 2 2 g of polymethacrolein produced by polymerizing in dimethylformamide using azobisisobutyronitrile as a polymerization initiator was added to 1.2 mol of IJ/J AICt3/Li
Comparative Example 2 A battery with the same structure as Example 1 was assembled except that an electrolyte added to CtIC3/LiCt was used. 1.2 mol/! of htct3 and LICt each in 5OC42 as an electrolyte! A battery having the same structure as in Example 1 was assembled, except that a battery without the addition of dissolved polymethacrolein was used.

しかして、本実施例2及び比較例2の電池について、組
立て後45℃で20日間貯蔵を行ない、30Ωの定抵抗
放電を行なって放電開始時の最低電圧と電圧が2.5v
にまで回復した時間を調べた。その結果を下記表に示し
た。
Therefore, the batteries of Example 2 and Comparative Example 2 were stored at 45°C for 20 days after assembly, and a constant resistance discharge of 30Ω was performed, and the lowest voltage at the start of discharge was 2.5V.
We investigated the time it took to recover. The results are shown in the table below.

表 上記表から明らかな如く、ポリメタクロレインを添加し
た電解液を用いる本実施例2の電池はポリメタクロレイ
ン無添加の電解液を用いる比較例2の電池に比べて高温
貯蔵後も初期の電圧降下が小さく、かつ電圧の回復時間
も短かいことがわかる。
Table As is clear from the above table, the battery of Example 2 using the electrolyte containing polymethacrolein has a higher initial voltage even after high temperature storage than the battery of Comparative Example 2 using the electrolyte without polymethacrolein. It can be seen that the drop is small and the voltage recovery time is short.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電初期にお
いても電圧降下を抑制し、かつ電圧の回復時間も短縮さ
れる等の初期放電特性の優れた非水溶媒電池を提供でき
る。
As described in detail above, according to the present invention, it is possible to provide a non-aqueous solvent battery with excellent initial discharge characteristics, such as suppressing voltage drop and shortening voltage recovery time even in the initial stage of large current discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す非水溶媒゛電池の断面
図、第2図は本実施例1の電池及び比較例1の電池にお
ける大電流放電初期の放電特性を示す線図である。 1・・・缶体、2・・・負極、3・・・金属集電体、4
・・・多孔質炭素層、!・・・正極、61Ω6g・軸セ
ルレータ、8・・・メタルトップ、1o・・・パイプ状
正極端子、13・・・電解液。 第1図 L
FIG. 1 is a cross-sectional view of a non-aqueous solvent battery showing an example of the present invention, and FIG. 2 is a diagram showing the discharge characteristics of the battery of Example 1 and the battery of Comparative Example 1 at the initial stage of large current discharge. be. 1... Can body, 2... Negative electrode, 3... Metal current collector, 4
...Porous carbon layer! . . . Positive electrode, 61Ω 6g/shaft cell unit, 8 . . . Metal top, 1o . . . Pipe-shaped positive terminal, 13 . . . Figure 1 L

Claims (1)

【特許請求の範囲】[Claims] リチウム、ナトリウム、アルミニウムの軽金属からなる
負極と、炭素を主構成材とする正極と、イオウのオキシ
ハロダン化物を主成分とする正極活物質を兼ねる電解液
とから構成された非水溶媒電池において、前記電解液と
して前記オキシハロダン化物を含む溶液にメタク四レイ
ンを添加したものを用いたことを特徴とする非水溶媒電
池。
In a non-aqueous solvent battery comprising a negative electrode made of light metals such as lithium, sodium, and aluminum, a positive electrode mainly made of carbon, and an electrolytic solution serving as a positive electrode active material mainly composed of sulfur oxyhalodanide, the above-mentioned 1. A non-aqueous solvent battery, characterized in that an electrolyte containing a solution containing the oxyhalodanide to which methaqutetralein is added is used.
JP10403984A 1984-05-23 1984-05-23 Nonaqueous solvent battery Granted JPS60249252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10403984A JPS60249252A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10403984A JPS60249252A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS60249252A true JPS60249252A (en) 1985-12-09
JPH0259589B2 JPH0259589B2 (en) 1990-12-12

Family

ID=14370078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10403984A Granted JPS60249252A (en) 1984-05-23 1984-05-23 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS60249252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080570A (en) * 2005-09-12 2007-03-29 Hitachi Maxell Ltd Inorganic nonaqueous electrolyte solution battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080570A (en) * 2005-09-12 2007-03-29 Hitachi Maxell Ltd Inorganic nonaqueous electrolyte solution battery

Also Published As

Publication number Publication date
JPH0259589B2 (en) 1990-12-12

Similar Documents

Publication Publication Date Title
US4548881A (en) High energy density battery with cathode composition
JPS60249252A (en) Nonaqueous solvent battery
US4228228A (en) Electrode structure for energy cells
JPS60249253A (en) Nonaqueous solvent battery
JPS6154160A (en) Nonaqueous solvent battery
JPS60208055A (en) Manufacture of nonaqueous solvent battery
JPS6182674A (en) Nonaqueous solvent battery
JPS6182673A (en) Nonaqueous solvent battery
JPH0763014B2 (en) Non-aqueous solvent battery
JPS62128454A (en) Nonaqueous solvent cell
JP3236121B2 (en) Electrochemical equipment
JPS60240060A (en) Nonaqueous solvent cell
JPH1064551A (en) Inorganic nonaqueous solvent battery
JPS63175347A (en) Nonaqueous solvent battery
JPH07142092A (en) Nonaqueous solvent secondary battery
JPS61190863A (en) Nonaqueous solvent battery
JPS60200464A (en) Nonaqueous-solvent cell
JPS5973849A (en) Nonaqueous electrolyte battery
JPH09120824A (en) Inorganic nonaqueous solvent battery
JPH04351862A (en) Lithium secondary cell
JPH0570268B2 (en)
JPH0855626A (en) Nonaqueous solvent battery
JPH0439187B2 (en)
JPH09320613A (en) Inorganic nonaqueous solvent battery
JPS62290073A (en) Organic electrolyte secondary battery