JPS63175347A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPS63175347A
JPS63175347A JP611887A JP611887A JPS63175347A JP S63175347 A JPS63175347 A JP S63175347A JP 611887 A JP611887 A JP 611887A JP 611887 A JP611887 A JP 611887A JP S63175347 A JPS63175347 A JP S63175347A
Authority
JP
Japan
Prior art keywords
lead
vinyl
chloride
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP611887A
Other languages
Japanese (ja)
Other versions
JPH0824046B2 (en
Inventor
Takahisa Osaki
大▲崎▼ 隆久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62006118A priority Critical patent/JPH0824046B2/en
Publication of JPS63175347A publication Critical patent/JPS63175347A/en
Publication of JPH0824046B2 publication Critical patent/JPH0824046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To shorten a voltage recovering time in the beginning of a large current discharging and furthermore prevent a long-time deterioration of a discharge voltage and discharge capacity by adding a vinyl-based polymer having a chlorine substituent and lead compound to an electrolyte. CONSTITUTION:Polyvinyl chloride, polyvinylidene chloride, vinyl chloride- vinylidene chloride copolymer, and ethylenevinyl chloride copolymer etc., for instance, are used for a vinyl-based polymer having a chlorine substituent. An adding quantity to an electrolyte of the vinyl-based polyger is to be 0.2-10 g per 1l of the electrolyte. Organic lead compounds, for instance, basic phthalic acid lead and lead stearate etc., basic lead sulfate, and basic phasphorous acid lead etc. are used for lead compounds. An adding quantity of lead compounds is to be 1-10 wt.% of vinyl-based polymer quantity to be added.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は非水溶媒電池に関し、特に正極活物質を兼ねる
電解、液を改良した非水溶媒電池に係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent battery, and more particularly to a non-aqueous solvent battery in which an electrolytic solution that also serves as a positive electrode active material is improved.

(従来の技術) 負極活物質としてリチウム、ナトリウム、アルミニウム
、カリウム、カルシウムの軽金属の少なくとも1種を用
いた非水溶媒電池は、エネルギー密度が大きく、貯蔵特
性に優れ、かつ作動温度範囲が広いという特長をもつこ
とから、電卓2時計。
(Prior art) Nonaqueous solvent batteries using at least one of the light metals lithium, sodium, aluminum, potassium, and calcium as negative electrode active materials have a high energy density, excellent storage characteristics, and a wide operating temperature range. Calculator 2 watch due to its features.

メモリのバックアップ電源として多用されている。It is often used as a backup power source for memory.

中でも負極にリチウムを用い、正極活物質として塩化チ
オニル(sOcL ) 、塩化スルフリル(So□Cβ
2)等のイオウのオキシハロゲン化物を用いた電池は、
特にエネルギー密度が大きいために注目されている。こ
うした電池は炭素及び金属集電体からなる正極を有し、
一般に塩化アルミニウム(AlCI23)。
Among them, lithium is used for the negative electrode, and thionyl chloride (sOcL) and sulfuryl chloride (So□Cβ) are used as the positive electrode active material.
Batteries using sulfur oxyhalides such as 2) are
It has attracted particular attention because of its high energy density. These batteries have a positive electrode consisting of carbon and a metal current collector;
Generally aluminum chloride (AlCI23).

臭化アルミニウム(AlBr3)等のルイス酸と塩化リ
チウム、臭化リチウム等のルイス塩基とを溶解したイオ
ウの液体状オキシハロゲン化物を電解液として用いてい
る。このため、液体状オキシハロゲン化物は、正極活物
質と電解液との双方を兼用しており、適当な形、状の正
極を用いることにより高率放電特性の優れた電池が期待
できる。
A liquid sulfur oxyhalide obtained by dissolving a Lewis acid such as aluminum bromide (AlBr3) and a Lewis base such as lithium chloride or lithium bromide is used as the electrolyte. Therefore, the liquid oxyhalide serves both as a positive electrode active material and as an electrolyte, and by using a positive electrode with an appropriate shape and shape, a battery with excellent high rate discharge characteristics can be expected.

ところで、上述した電池は正極活物質であるイオウのオ
キシハロゲン化物が負極のリチウムと直接接触している
ため、負極リチウム表面に反応生酸物であるLiCff
1皮膜が生成される。このLi(Q皮膜は、負極リチウ
ムとオキシハロゲン化物との直接接触を防止する機能を
有し、貯蔵時において電池の容量劣化を防ぐ役割りをす
る。しかし、放電時には抵抗成分として働き、放電初期
の電圧降下の原因となる。この電圧降下の程度は、放電
電流がμAオーダーの微小な場合には無視できる径小さ
いが、大電流放電の場合には無視できず、特に高温で長
時間貯蔵してLiCj!皮膜の成長が相当起った後や、
低温での放電時には放電開始と共に大幅な電圧降下を生
じ、所定の電圧に回復するまでかなりの時間を必要とす
る、いわゆる電圧遅延現象と呼ばれる問題があった。
By the way, in the above-mentioned battery, since the sulfur oxyhalide, which is the positive electrode active material, is in direct contact with the lithium of the negative electrode, LiCff, which is a reactive oxide, is formed on the surface of the negative electrode lithium.
1 film is produced. This Li(Q film) has the function of preventing direct contact between the negative electrode lithium and the oxyhalide, and plays a role in preventing battery capacity deterioration during storage.However, during discharging, it acts as a resistance component, The degree of this voltage drop is small and can be ignored when the discharge current is minute on the order of μA, but it cannot be ignored when the discharge current is large, especially when stored at high temperatures for long periods of time. After considerable film growth has occurred,
When discharging at low temperatures, a large voltage drop occurs at the start of discharge, and it takes a considerable amount of time to recover to a predetermined voltage, which is a problem known as the so-called voltage delay phenomenon.

このようなことから、上記問題を解決するためにいくつ
かの提案がなされており、例えば特開昭56−7360
号公報には電解中に塩化ビニル、塩化ビニリデンのホモ
ポリマーや塩化ビニルと酢酸ビニルとの共重合体等のビ
ニル系ポリマーを溶解することが開示されている。
For this reason, several proposals have been made to solve the above problems, such as Japanese Patent Application Laid-Open No. 56-7360.
The publication discloses dissolving vinyl polymers such as vinyl chloride, homopolymers of vinylidene chloride, and copolymers of vinyl chloride and vinyl acetate during electrolysis.

(発明が解決しようとする問題点) このように塩素置換基を有するビニル系ポリマーを電解
液中に溶解することによって確かに電圧遅延現象は改善
されるが、ビニル系ポリマーのみを溶解した電解液を用
いた場合、電池を長期間貯蔵するとビニルポリマーの添
加効果が薄れ、放電開始時の電圧降下が大きくなったり
、所定の電圧に回復するまでの時間が長くなったりする
問題点があった。
(Problems to be Solved by the Invention) Although it is true that the voltage delay phenomenon is improved by dissolving a vinyl polymer having a chlorine substituent in an electrolytic solution, an electrolytic solution in which only a vinyl polymer is dissolved When a battery is used, the effect of adding the vinyl polymer weakens when the battery is stored for a long period of time, resulting in a problem that the voltage drop at the start of discharge becomes large and the time required to recover to a predetermined voltage becomes long.

本発明の目的は上記した問題点を解消し、大電流放電初
期においても電圧降下が小さく、かつ電圧の回復時間も
短く、更に、電池の長期貯蔵によってもこの効果が劣化
しない非水溶媒電池を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, and to provide a non-aqueous solvent battery that has a small voltage drop even in the early stages of large current discharge, has a short voltage recovery time, and does not deteriorate even after long-term storage of the battery. It is about providing.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明の非水溶
媒電池はリチウム、ナトリウム。
(Means and effects for solving the problems) The non-aqueous solvent battery of the present invention uses lithium and sodium.

アルミニウム、カリウム、カルシウムの軽金属の少なく
とも一種よりなる負極と、炭素を主構成材とする正極と
、イオウのオキシハロゲン化物を主成分とする正極活物
質を兼ねる電解液とから構成される非水溶媒電池におい
て、前記電解液に塩素置換基をもつビニル系ポリマーと
、鉛化合物とを添加したことを特徴とする。
A non-aqueous solvent consisting of a negative electrode made of at least one of light metals such as aluminum, potassium, and calcium, a positive electrode mainly made of carbon, and an electrolytic solution that also serves as a positive electrode active material and mainly made of sulfur oxyhalide. The battery is characterized in that a vinyl polymer having a chlorine substituent and a lead compound are added to the electrolyte.

本発明でいう塩素置換基をもつビニル系ポリマーとは、
主に下記の一般式で表わされる構造をもつポリマーの単
独又は共重合体並びに混合物をいう。
The vinyl polymer having a chlorine substituent in the present invention is
Mainly refers to single polymers, copolymers, and mixtures of polymers having a structure represented by the following general formula.

例をあげるならば、ポリ塩化ビニル、ポリ塩化ビニリデ
ン、塩化ビニル−塩化ビニリデン共重合体、エチレン−
塩化ビニル共重合体、塩化ビニル−酢酸ビニル共重合体
などである。
Examples include polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinylidene chloride copolymer, ethylene-vinylidene chloride,
These include vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, and the like.

これらビニル系ポリマーの上記電解液中への添加量は、
電解液1aあたり0.2〜1(19すなわち0.2〜1
0%/fi  +71範囲、特ニ0.3〜59.l )
範囲にすることが望ましい、これは、ビニル系ポリマー
の添加量を0.2910未満にすると、電圧降下の抑制
効果等を十分に発揮できず、かといってその量が10i
/a を越えると、その効果が殆ど増大しないばかりか
、かえって電池の放電容量が減少する恐れがあるという
理由による。
The amount of these vinyl polymers added to the electrolyte is as follows:
0.2-1 (19 i.e. 0.2-1
0%/fi +71 range, special 0.3~59. l)
This is because if the amount of vinyl polymer added is less than 0.2910, the effect of suppressing voltage drop etc. cannot be sufficiently exhibited;
This is because if it exceeds /a, not only will the effect hardly increase, but the discharge capacity of the battery may even decrease.

また、本発明における鉛化合物とは塩基性フタル酸鉛、
ステアリン酸鉛等の有機鉛化合物や、塩基性硫酸鉛、塩
基性亜すン酸鉛、塩基性亜硫酸鉛。
In addition, the lead compounds in the present invention include basic lead phthalate,
Organic lead compounds such as lead stearate, basic lead sulfate, basic lead sulfite, and basic lead sulfite.

二酸化鉛、塩化鉛等の無機鉛化合物のいずれでも良い。Any inorganic lead compound such as lead dioxide or lead chloride may be used.

そしてこれら鉛化合物の添加量は、電解液中へ添加する
ビニル系ポリマーの量の1〜10%+1%で良い、この
鉛化合物の添加量が1wt%未滴の場合は電圧降下抑制
の効果が長期間持続せず、一方10vt%を越えてもそ
の効果の長期間持続性は殆ど向上せず、かえって電池性
能の劣化を招く恐れがある。
The amount of these lead compounds added may be 1 to 10% + 1% of the amount of vinyl polymer added to the electrolyte.If the amount of lead compounds added is less than 1 wt%, the voltage drop suppression effect will be reduced. It does not last for a long period of time, and on the other hand, even if it exceeds 10 vt%, the long-term sustainability of the effect will hardly improve, and there is a risk that the battery performance will deteriorate on the contrary.

本発明による非水溶媒電池においては、所定量のビニル
系ポリマーにさらに鉛化合物を加えることにより電圧遅
延現象改善の効果を長期間持続させることかできる。こ
の理由は詳細には明らかではないが、微量の鉛化合物と
ビニル系ポリマーとが電解液中で相乗的に作用すること
により、上記の効果を示すものと考えられる。
In the non-aqueous solvent battery according to the present invention, by further adding a lead compound to a predetermined amount of the vinyl polymer, the effect of improving the voltage delay phenomenon can be maintained for a long period of time. The reason for this is not clear in detail, but it is thought that the above effect is produced by a small amount of lead compound and vinyl polymer acting synergistically in the electrolyte.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

実施例 第1図は本実施例及び比較例における非水溶媒電池の構
造を示した断面図を示す。
Example FIG. 1 shows a sectional view showing the structure of a non-aqueous solvent battery in this example and a comparative example.

図中の1は負極端子を兼ねる上面が開口した、例えばス
テンレス製の有底円筒形の缶体である。
Reference numeral 1 in the figure is a bottomed cylindrical can made of stainless steel, for example, with an open top that also serves as a negative electrode terminal.

この缶体1の内面には金属リチウムからなる筒状の負極
2が圧着されている。この負極2の内側の缶体1内には
、筒状ステンレス製網体の金属集電体3の外側に筒状多
孔質炭素層4を圧着した構造の正極一旦一がガラス不織
布からなるセパレータ61゜62を介して設けられてい
る。なお、前記正極−5−は例えば市販のアセチレンブ
ラックとポリテトラフルオロエチレンとを混合し、この
混練物をステンレス製網体の金属集電体3と共に該集電
体が内側となるように円筒状に成形した後、150℃の
真空下で乾燥して前記混線物を多孔質炭素層4とするこ
とにより作製される。
A cylindrical negative electrode 2 made of metallic lithium is pressure-bonded to the inner surface of the can 1. Inside the can 1 inside the negative electrode 2, a positive electrode having a structure in which a cylindrical porous carbon layer 4 is crimped onto the outside of a metal current collector 3 made of a cylindrical stainless steel net is provided with a separator 61 made of a glass nonwoven fabric. 62. The positive electrode 5 is made by mixing commercially available acetylene black and polytetrafluoroethylene, and molding the mixture together with a stainless steel mesh metal current collector 3 into a cylindrical shape so that the current collector is on the inside. The porous carbon layer 4 is produced by forming the hybrid material into a porous carbon layer 4 by drying it under vacuum at 150°C.

また、前記正極−巨一上方の缶体1内には、前記セパレ
ータ 6□に支持された中央に穴を有する絶縁紙7が配
設されている。前記缶体1の上面開口部にはメタルトッ
プ8がレーザ溶接等により封着されており、かつ該メタ
ルトップ8の中心の穴9にはパイプ状正極端子10がガ
ラス製のシール材11を介してメタルトップ8に対し電
気的に絶縁して固定されている。前記正極端子10の下
端はリード線12を介して前記正極互の金属集電体3に
接続されている。そして、前記缶体1内には前記パイプ
状正極端子10から注入された電解液13が収容されて
いる。
Further, in the can body 1 above the positive electrode giant, an insulating paper 7 having a hole in the center and supported by the separator 6 □ is disposed. A metal top 8 is sealed to the upper opening of the can body 1 by laser welding or the like, and a pipe-shaped positive electrode terminal 10 is connected to a hole 9 in the center of the metal top 8 through a sealing material 11 made of glass. The metal top 8 is electrically insulated and fixed to the metal top 8. The lower end of the positive electrode terminal 10 is connected to the metal current collector 3 of the positive electrode via a lead wire 12. The can body 1 accommodates an electrolytic solution 13 injected from the pipe-shaped positive electrode terminal 10.

さらに、前記パイプ状正極端子10には例えばステンレ
ス製の封体14が挿入され、該端子10先端と挿入した
封体14とをレーザ溶接することにより該正極端子10
が封口される。
Furthermore, an enclosure 14 made of stainless steel, for example, is inserted into the pipe-shaped positive terminal 10, and the tip of the terminal 10 and the inserted enclosure 14 are laser welded to
is sealed.

実施例として、塩化チオニル(SOCg、)中に塩化ア
ルミニウムCAQcQs)と塩化リチウム(LiCjり
とを各々1.5モル/Ω溶解した電解液中に、5vt%
の塩基性硫酸鉛(3PbO・pbso、 >を添加した
ポリ塩化ビニルを2S)/Qの濃度で添加、溶解させた
電解液を用いた電池を90個作製した。
As an example, 5vt% of aluminum chloride (CAQcQs) and lithium chloride (LiCj) were dissolved in thionyl chloride (SOCg) at 1.5 mol/Ω each.
Ninety batteries were fabricated using an electrolyte in which polyvinyl chloride added with basic lead sulfate (3PbO.pbso, 2S)/Q was added and dissolved.

比較例l 5OCQ□中にAnICI!、とLiCQとを各々1.
5モル/Ω溶解した電解液中に、塩基性硫酸鉛(3Pb
O−PbSO4)を添加しないポリ塩化ビニルを2.0
9 /j!の濃度で添加、溶解させた電解液を用いた以
外実施例と同構造の電池(90個)を組み立てた。
Comparative example l AnICI in 5OCQ□! , and LiCQ each at 1.
Basic lead sulfate (3Pb
2.0% polyvinyl chloride without adding O-PbSO4)
9/j! Batteries (90 batteries) having the same structure as in Example except that an electrolyte solution added and dissolved at a concentration of

比較例2 SOCQ、中に1cffi、とLi(4とを各々1.5
モル/It溶解した電解液中に、塩基性硫酸鉛(3Pb
O・pbso4)を0.1 t /Qの濃度で添加、溶
解させた電解液を用いた以外実施例と同構造の電池(9
0個)を組み立てた。
Comparative Example 2 SOCQ, 1cffi, Li(4) and 1.5% each
Basic lead sulfate (3Pb
A battery (9
0 pieces) were assembled.

しかして本実施例及び比較例1.・2の電池について組
立後20℃で貯蔵を行い、6ケ月後、12ケ月後、24
ケ月後にそれぞれ30個ずつとり出して30Ωの定抵抗
放電を行い、放電開始後電圧が2.5vに戻るまでの時
間並びに平均作動電圧及び放電容量を測定した。
However, this example and comparative example 1.・Storage the batteries at 20°C after assembly, after 6 months, 12 months, and 24
After several months, 30 pieces of each were taken out and subjected to a constant resistance discharge of 30Ω, and the time taken for the voltage to return to 2.5V after the start of discharge, the average operating voltage, and the discharge capacity were measured.

その結果を第1表に示した。The results are shown in Table 1.

第1表 (数値は30個の平均値) 第1表より明らかな如く、電解液中に塩基性硫酸鉛(3
PbO・pbso4)とポリ塩化ビニルの双方を添加し
た実施例の電池は、塩基性硫酸鉛(3PbO−PbSO
,)を添加せず、ポリ塩化ビニルのみを添加した比較例
1の電池に比べて放電開始時の電圧回復時間が短いこと
がわかる。この電圧回復時間の差は貯蔵期間が長くなる
にしたがってより顕著と、なる、また、実施例の電池は
、塩基性硫酸鉛(3PbO・pbso4)のみを添加し
た比較例2の電池に比べても放電開始時の電圧回復時間
が著しく短いことがわかる。
Table 1 (values are average values of 30 samples) As is clear from Table 1, basic lead sulfate (3
The battery of the example in which both PbO/pbso4) and polyvinyl chloride were added was basic lead sulfate (3PbO-PbSO4) and polyvinyl chloride.
It can be seen that the voltage recovery time at the start of discharge is shorter than that of the battery of Comparative Example 1 in which only polyvinyl chloride was added without adding polyvinyl chloride. This difference in voltage recovery time becomes more pronounced as the storage period becomes longer.Also, the battery of the example is even better than the battery of comparative example 2 in which only basic lead sulfate (3PbO・pbso4) is added. It can be seen that the voltage recovery time at the start of discharge is extremely short.

更に、実施例の電池は比較例1.比較例2の電池に比べ
貯蔵後に大電流放電を行なっても放電開始時に大幅な電
圧降下を示さず、平均作動電圧や放電容量も大きく長期
貯蔵による劣化も殆んど無い。
Furthermore, the battery of Example is Comparative Example 1. Compared to the battery of Comparative Example 2, even if a large current is discharged after storage, there is no significant voltage drop at the start of discharge, the average operating voltage and discharge capacity are large, and there is almost no deterioration due to long-term storage.

そして、本発明の電池は上述した効果に加え低温での放
電特性にすぐれ低温での長期貯蔵による容量劣化も少な
い。
In addition to the above-mentioned effects, the battery of the present invention has excellent discharge characteristics at low temperatures and suffers little capacity deterioration due to long-term storage at low temperatures.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く1本発明によれば大電流放電初期の電
圧回復時間が短く、更に放電電圧、放電容量の長期劣化
も抑制される等、長期保存後の放電特性にもすぐれた非
水溶媒電池を得ることができる。
As detailed above, according to the present invention, the voltage recovery time at the initial stage of large current discharge is short, long-term deterioration of discharge voltage and discharge capacity is also suppressed, and the non-aqueous solvent has excellent discharge characteristics after long-term storage. You can get batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非水溶媒電池の構造の一例を示した断面図であ
る。 1・・・缶体、       2・・・負極、3・・・
金属集電体、   4・・・多孔質炭素層、l・・・正
極、       6□、6.・・・セパレータ。 8・・・メタルトップ、  10・・・パイプ状正極端
子、13・・・電解液。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男
FIG. 1 is a sectional view showing an example of the structure of a nonaqueous solvent battery. 1...Can body, 2...Negative electrode, 3...
Metal current collector, 4... Porous carbon layer, l... Positive electrode, 6□, 6. ...Separator. 8...Metal top, 10...Pipe-shaped positive electrode terminal, 13...Electrolyte solution. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム、ナトリウム、アルミニウム、カリウム
、カルシウムの軽金属の少なくとも一種よりなる負極と
、炭素を主構成材とする正極と、イオウのオキシハロゲ
ン化物を主成分とする正極活物質を兼ねる電解液とから
構成される非水溶媒電池において、前記電解液に塩素置
換基をもつビニル系ポリマーと鉛化合物とを添加したこ
とを特徴とする非水溶媒電池。
(1) A negative electrode made of at least one of light metals such as lithium, sodium, aluminum, potassium, and calcium, a positive electrode mainly composed of carbon, and an electrolytic solution that also serves as a positive electrode active material and mainly composed of sulfur oxyhalide. A non-aqueous solvent battery comprising: a vinyl polymer having a chlorine substituent and a lead compound added to the electrolytic solution.
JP62006118A 1987-01-16 1987-01-16 Non-aqueous solvent battery Expired - Lifetime JPH0824046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62006118A JPH0824046B2 (en) 1987-01-16 1987-01-16 Non-aqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62006118A JPH0824046B2 (en) 1987-01-16 1987-01-16 Non-aqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS63175347A true JPS63175347A (en) 1988-07-19
JPH0824046B2 JPH0824046B2 (en) 1996-03-06

Family

ID=11629591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62006118A Expired - Lifetime JPH0824046B2 (en) 1987-01-16 1987-01-16 Non-aqueous solvent battery

Country Status (1)

Country Link
JP (1) JPH0824046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050307A (en) * 2021-11-17 2022-02-15 深圳市汉清达科技有限公司 High-performance lithium battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154160A (en) * 1984-08-24 1986-03-18 Toshiba Battery Co Ltd Nonaqueous solvent battery
JPS61161663A (en) * 1984-12-27 1986-07-22 ユニオン、カーバイド、コーポレーシヨン Non-water battery using positive pole electrolytic solution containing additive containing borone
JPS61161633A (en) * 1985-01-07 1986-07-22 株式会社東芝 Circuit breaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154160A (en) * 1984-08-24 1986-03-18 Toshiba Battery Co Ltd Nonaqueous solvent battery
JPS61161663A (en) * 1984-12-27 1986-07-22 ユニオン、カーバイド、コーポレーシヨン Non-water battery using positive pole electrolytic solution containing additive containing borone
JPS61161633A (en) * 1985-01-07 1986-07-22 株式会社東芝 Circuit breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050307A (en) * 2021-11-17 2022-02-15 深圳市汉清达科技有限公司 High-performance lithium battery
CN114050307B (en) * 2021-11-17 2024-04-12 深圳市汉清达科技有限公司 High-performance lithium battery

Also Published As

Publication number Publication date
JPH0824046B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JPH05190171A (en) Nonaqueous electrolyte secondary battery
JPS63175347A (en) Nonaqueous solvent battery
JPH0425676B2 (en)
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH0640492B2 (en) Organic electrolyte battery
JPS62274558A (en) Nonaqueous solvent battery
JP3384632B2 (en) Non-aqueous electrolyte battery
JPS6154160A (en) Nonaqueous solvent battery
JPH0259590B2 (en)
JPS61294756A (en) Organic electrolyte battery
JPS6269466A (en) Nonaqueous-solvent battery
JPH05326018A (en) Lithium secondary battery
JPS6182674A (en) Nonaqueous solvent battery
JPH0259589B2 (en)
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPS6023971A (en) Manufacture of electrolyte for nonaqueous solvent battery
JPS62128454A (en) Nonaqueous solvent cell
JPS5987771A (en) Nonaqueous solvent battery
JPS63121250A (en) Nonaqueous electrolyte battery
JPS6182673A (en) Nonaqueous solvent battery
JPS5973849A (en) Nonaqueous electrolyte battery
JPH0532867B2 (en)
JPS63307662A (en) Organic electrolyte battery
JP2005100929A (en) Lamination type organic electrolyte battery
JPH022270B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term