JPH0640492B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0640492B2
JPH0640492B2 JP517485A JP517485A JPH0640492B2 JP H0640492 B2 JPH0640492 B2 JP H0640492B2 JP 517485 A JP517485 A JP 517485A JP 517485 A JP517485 A JP 517485A JP H0640492 B2 JPH0640492 B2 JP H0640492B2
Authority
JP
Japan
Prior art keywords
battery
electrolytic solution
cesium carbonate
organic electrolyte
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP517485A
Other languages
Japanese (ja)
Other versions
JPS61165961A (en
Inventor
秀 越名
信夫 江田
隆文 藤井
薫 村上
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP517485A priority Critical patent/JPH0640492B2/en
Publication of JPS61165961A publication Critical patent/JPS61165961A/en
Publication of JPH0640492B2 publication Critical patent/JPH0640492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液電池に関し、特にその保存特性の
向上に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to an organic electrolyte battery, and more particularly to improving its storage characteristics.

従来の技術 有機電解液電池は、エネルギー密度の大きいリチウムを
負極活物質とし、その活物質と反応しない非水溶媒を溶
質を溶解した電解液を用いて電池を構成したものが多
い。
2. Description of the Related Art In many cases, an organic electrolyte battery uses lithium, which has a high energy density, as a negative electrode active material, and uses a nonaqueous solvent that does not react with the active material in which an electrolyte is dissolved to form a battery.

このような電池系では、電池構成時、部品に含まれる水
分や構成後に侵入する水分が電池電圧の変化や内部イン
ピーダンスの増加など、性能に悪影響を及ぼす。
In such a battery system, when the battery is constructed, the water contained in the parts and the water that enters after the construction adversely affect the performance such as a change in battery voltage and an increase in internal impedance.

水分を低減させる従来の方法して以下のようなものがあ
る。
There are the following conventional methods for reducing water content.

(1) 十分に脱水した構成材料を用いる。(1) Use fully dehydrated constituent materials.

(2) 封口部の面積を小さくするか、水分の侵入経路を
長くする。
(2) Reduce the area of the sealing part or lengthen the moisture invasion route.

(3) 予め、正極と負極の集電体の絶縁部にガラスを用
い、集電体部分に封口部を設け、レーザ溶接で封口す
る。
(3) Glass is used in advance for the insulating portion of the current collectors of the positive electrode and the negative electrode, a sealing portion is provided in the current collector portion, and laser sealing is performed.

発明が解決しようとする問題点 上記の方法のうち、(1)は有機電解電池には必要不可欠
なものである。(2)はコイン形もしくはボタン形電池に
おいて、ガスケットの材料や形状、さらにはガスケット
の締付率を決定するのに多くの開発期間を必要とする。
その上に充分に水分の侵入を防ぐことはできず、微量の
水分と敏感に反応する活物質は用いることができない。
(3)は(2)の方法と比較して水分の侵入は十分に防ぐこと
はできるが、製造工程が複雑になり、コストも高くな
る。また電極のふくれが大きい場合、ハーメチックシー
ル部の強度が問題となる。
Problems to be Solved by the Invention Of the above methods, (1) is indispensable for organic electrolysis batteries. (2) requires a lot of development time for determining the material and shape of the gasket and the tightening rate of the gasket in the coin type or button type battery.
In addition, it is impossible to sufficiently prevent invasion of water, and it is impossible to use an active material that reacts sensitively with a small amount of water.
Compared to the method (2), the method (3) can sufficiently prevent the intrusion of water, but the manufacturing process is complicated and the cost is high. Further, when the electrode has a large bulge, the strength of the hermetically sealed portion becomes a problem.

本発明は上記のような力学的または構造的な封内の問題
点を化学的に解消し、保存特性の向上した有機電解液電
池を提供することを目的とする。
An object of the present invention is to provide an organic electrolyte battery having improved storage characteristics by chemically solving the above-mentioned problems of mechanical or structural sealing.

問題点を解決するための手段 この問題点を解決するため、本発明は有機溶媒に支持電
解質を溶かし、さらに炭酸セシウムを溶解させたもので
ある。
Means for Solving the Problem In order to solve this problem, the present invention is one in which a supporting electrolyte is dissolved in an organic solvent, and further cesium carbonate is dissolved.

作 用 この有機電解液を用いることにより、電池内部に侵入す
る水分によって生じる電池電圧の変化や内部インピーダ
ンスの増加など種々の悪影響を除くことができ、保存特
性の良好な電池が得られる。さらに前記(2)の方法を用
いた場合、製造工程が簡単となり、(3)の方法よりも安
価で信頼性のある電池を得ることができる。
Operation By using this organic electrolyte, it is possible to eliminate various adverse effects such as a change in battery voltage and an increase in internal impedance caused by water invading the battery, and a battery having good storage characteristics can be obtained. Furthermore, when the method (2) is used, the manufacturing process is simplified, and a cheaper and more reliable battery than the method (3) can be obtained.

実施例 以下本発明の実施例を第1図,第2図を参照して説明す
る。
Embodiments Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明を実施するために用いた電池の構成を示
す。図において1はステンレス鋼製封口板、2は1に圧
着したリチウム金属片からなる負極、3はニッケルメッ
キした鉄製ケースである。
FIG. 1 shows the structure of the battery used to carry out the present invention. In the figure, 1 is a stainless steel sealing plate, 2 is a negative electrode made of a lithium metal piece pressed onto 1, and 3 is a nickel-plated iron case.

4は正極合剤で、活物質である酸化銅45重量パーセト
ン、黄銅鉱40重量パーセントに導電剤としてのカーボ
ンブラック10重量パーセント、フッ素樹脂系結着剤5
重量パーセントを混合したものである。5はポリプロピ
レン製セパレータ、6はポリプロピレン製ガスケット、
7はステンレス鋼製リングである。
4 is a positive electrode mixture, which is 45 weight percent copper oxide as an active material, 40 weight percent of chalcopyrite, 10 weight percent of carbon black as a conductive agent, and 5 fluororesin binder.
It is a mixture of weight percentages. 5 is a polypropylene separator, 6 is a polypropylene gasket,
7 is a stainless steel ring.

電解液には、プロピンレンカーボネイトと1,2−ジメ
トキシエタンとの等容積混合溶媒に、過塩素酸リチウム
を1モル/、炭酸カルシウム0.1モル/の割合で
溶解したものを用いた。炭酸セシウムの添加量は0.01モ
ル/以下では効果のある期間が短かくなり、また0.
3モル/よりも多いと電解液が飽和し析出するため、
セパレータを破損する原因となる。
The electrolytic solution used was prepared by dissolving lithium perchlorate in a mixed solvent of equal volume of propylene glycol and 1,2-dimethoxyethane at a ratio of 1 mol / and calcium carbonate 0.1 mol /. If the amount of cesium carbonate added is less than 0.01 mol / min, the effective period will be short, and
If the amount is more than 3 mol / mol, the electrolyte is saturated and precipitates.
It may damage the separator.

この電池は総高2.0mm、容量50mAhである。なおこ
の例では、正極活物質として酸化銅と黄銅鉱の混合物を
用いたが、他に有機電解液電池の活物質として知られて
いる二酸化マンガン,フッ化黒鉛,酸化モリブデンなど
多種類にわたり適用できる。また有機溶媒としてプロピ
レンカーボネイトと1,2−ジメトキシエタンを用いた
が、エーテル系を含む混合有機溶媒には全て適用でき
る。
This battery has a total height of 2.0 mm and a capacity of 50 mAh. In this example, a mixture of copper oxide and chalcopyrite was used as the positive electrode active material, but it can be applied to various types such as manganese dioxide, graphite fluoride, and molybdenum oxide, which are known as active materials for organic electrolyte batteries. . Although propylene carbonate and 1,2-dimethoxyethane were used as the organic solvent, they can be applied to any mixed organic solvent containing ether.

第2図は第1図に示した電池を温度60℃、相対湿度9
0パーセントの高温多湿下で保存した時の電池電圧の変
化と、内部インピーダンスの変化を示したものである。
図において、Aは炭酸セシウムの所定量を溶解した有機
溶解液を用いたもの、Bは炭酸セシウムを添加していな
い同組成の有機電解液を用いたものである。
FIG. 2 shows the battery shown in FIG. 1 at a temperature of 60 ° C. and a relative humidity of 9
It shows changes in battery voltage and changes in internal impedance when stored under high temperature and high humidity of 0%.
In the figure, A is an organic solution in which a predetermined amount of cesium carbonate is dissolved, and B is an organic electrolytic solution of the same composition to which cesium carbonate is not added.

またこれらの電池を製造直後と、60℃,90パーセン
トの高温多湿下で60日保存経過した電池を20℃にお
いて51KΩの抵抗負荷で放電させた時の特性を第3図
に示す。図において、イは製造直後のもので、炭酸セシ
ウムを添加しているものと添加していないものの放電曲
線である。ロとハは60℃,90パーセントで保存した
もので、ロは炭酸セシウム添加のもの、ハは無添加のも
のである。
In addition, FIG. 3 shows the characteristics of these batteries immediately after production and when the batteries that had been stored for 60 days at 60 ° C. and 90% high temperature and high humidity were discharged at 20 ° C. with a resistance load of 51 KΩ. In the figure, (a) is a discharge curve immediately after the production, and is a discharge curve with and without addition of cesium carbonate. (B) and (c) were stored at 60 ° C. and 90%, (b) was added with cesium carbonate, and (c) was not added.

発明の効果 以上の説明から明らかなように支持電解質を溶かした有
機溶媒にさらに炭酸セシウムを溶解した電解液を用いた
本発明の電池は、電池内へ侵入する微量水分を化学的に
処理することができるため保存特性が良好であり、かつ
その製造工程には従来の方法が適用でき、安価で信頼性
を高めることができるという効果が得られる。
EFFECTS OF THE INVENTION As is clear from the above description, the battery of the present invention using the electrolytic solution in which cesium carbonate is further dissolved in the organic solvent in which the supporting electrolyte is dissolved is chemically treated with a small amount of water invading into the battery. Therefore, the storage characteristics are good, and the conventional method can be applied to the manufacturing process, which is inexpensive and the reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例におけるボタン形電池の半断面
図、第2図は同電池の保存特性を示す図、第3図は放電
特性の比較を示す図である。 2……リチウム、4……正極合剤、5……セパレータ。
FIG. 1 is a half sectional view of a button type battery in an embodiment of the present invention, FIG. 2 is a diagram showing storage characteristics of the battery, and FIG. 3 is a diagram showing comparison of discharge characteristics. 2 ... Lithium, 4 ... Positive electrode mixture, 5 ... Separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 薫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaoru Murakami 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Akikatsu Morita, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルカリ金属またはアルカリ土類金属を負
極活物質とする有機電解液電池であって、有機電解液に
炭酸セシウムを溶解したことを特徴とする有機電解液電
池。
1. An organic electrolytic solution battery using an alkali metal or an alkaline earth metal as a negative electrode active material, wherein cesium carbonate is dissolved in the organic electrolytic solution.
【請求項2】炭酸セシウムの添加量を、有機電解液1リ
ットルに対し、0.01モルから0.3モルとした特許請求の
範囲第1項記載の有機電解液電池。
2. The organic electrolytic solution battery according to claim 1, wherein the added amount of cesium carbonate is 0.01 mol to 0.3 mol per 1 liter of the organic electrolytic solution.
JP517485A 1985-01-16 1985-01-16 Organic electrolyte battery Expired - Lifetime JPH0640492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP517485A JPH0640492B2 (en) 1985-01-16 1985-01-16 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP517485A JPH0640492B2 (en) 1985-01-16 1985-01-16 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS61165961A JPS61165961A (en) 1986-07-26
JPH0640492B2 true JPH0640492B2 (en) 1994-05-25

Family

ID=11603871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP517485A Expired - Lifetime JPH0640492B2 (en) 1985-01-16 1985-01-16 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0640492B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183718B1 (en) 1996-12-09 2001-02-06 Valence Technology, Inc. Method of making stabilized electrochemical cell active material of lithium manganese oxide
US6869547B2 (en) 1996-12-09 2005-03-22 Valence Technology, Inc. Stabilized electrochemical cell active material
US5869207A (en) * 1996-12-09 1999-02-09 Valence Technology, Inc. Stabilized electrochemical cell
US6322744B1 (en) 1999-02-17 2001-11-27 Valence Technology, Inc. Lithium manganese oxide-based active material
US6468695B1 (en) 1999-08-18 2002-10-22 Valence Technology Inc. Active material having extended cycle life

Also Published As

Publication number Publication date
JPS61165961A (en) 1986-07-26

Similar Documents

Publication Publication Date Title
JP4064492B2 (en) Electrochemical cell and method for reducing its voltage delay
RU95119852A (en) Rechargeable Electrochemical Cell
US3413154A (en) Organic electrolyte cells
EP1867001B1 (en) Non-aqueous primary electrochemical cells
JPH0750165A (en) Non-aqueous electrolyte battery
JPH05190171A (en) Nonaqueous electrolyte secondary battery
JPH0640492B2 (en) Organic electrolyte battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JP2002260728A (en) Lithium secondary battery using nonaqueous electrolyte solution
GB2038537A (en) Lithium-lead sulphate primary electrochemical cell
JPH1197062A (en) Organic electrolyte secondary battery
JP3451601B2 (en) Lithium battery
JPS62186470A (en) Non-aqueous electrolytic solution cell
JP2865387B2 (en) Non-aqueous electrolyte secondary battery
JP3281701B2 (en) Non-aqueous electrolyte battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP3163444B2 (en) Lithium secondary battery
JP2767853B2 (en) Cylindrical lithium secondary battery
JP2552438B2 (en) Non-aqueous electrolyte battery
JPH05326018A (en) Lithium secondary battery
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JP2974739B2 (en) Organic electrolyte battery
JPH0935716A (en) Lithium battery
JPH0630256B2 (en) Non-aqueous electrolyte secondary battery
JPS59128772A (en) Nonaqueous solvent battery