JPS59128772A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPS59128772A
JPS59128772A JP453783A JP453783A JPS59128772A JP S59128772 A JPS59128772 A JP S59128772A JP 453783 A JP453783 A JP 453783A JP 453783 A JP453783 A JP 453783A JP S59128772 A JPS59128772 A JP S59128772A
Authority
JP
Japan
Prior art keywords
positive electrode
porous carbon
carbon body
battery
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP453783A
Other languages
Japanese (ja)
Other versions
JPH0318308B2 (en
Inventor
Shuji Yamada
修司 山田
Takahisa Osaki
隆久 大崎
Kiyoshi Mitsuyasu
光安 清志
Yuichi Sato
祐一 佐藤
Yoshiyasu Aoki
青木 良康
Kazuya Hiratsuka
和也 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP453783A priority Critical patent/JPS59128772A/en
Priority to DE8484100066T priority patent/DE3485349D1/en
Priority to EP19840100066 priority patent/EP0118657B1/en
Priority to CA000445273A priority patent/CA1222542A/en
Publication of JPS59128772A publication Critical patent/JPS59128772A/en
Priority to US07/129,902 priority patent/US4767683A/en
Publication of JPH0318308B2 publication Critical patent/JPH0318308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase discharge capacity and high rate discharge efficiency by using a porous carbon body having a specified range of porosity and pore distribution ratio as a positive electrode. CONSTITUTION:A cylindrical negative electrode 2 comprising metallic lithium is pressed in the inside of a can 1. A positive electrode 3 is placed in the inside of the negative electrode 2 with a separator 4 interposed. Thionyl chloride (SOCl2) solution containing LiAlCl4 is poured in the can 1. A porous carbon body whose porosity is 70-85% and distribution ratio of pores having a pore size of 0.1-2mum is 30% or more is used for the positive electrode. Thereby, a positive active material is easily supplied to the porous carbon body 6, and the reaction surface area is also increased. Therefore, a lithium-thionyl chloride battery having good high rate discharge performance and large discharge capacity is provided.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極材料を改良した
非水溶媒電池に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and particularly to a non-aqueous solvent battery with an improved positive electrode material.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウムを用いた非水溶
媒電池はエネルギー密度が大きく、貯蔵特性に優れ、し
かも作動温度範囲が広いという特長をもち、電卓2時計
、メモリのバックアップ電源として多用されている。か
かる′酸性は負極、電解液、正極からイを成されており
、一般に負極としてリチウムやナトリウムなどのアルカ
リ金属を、電解液としてプロピレンカーがネート、γ−
ブチロラクトン、ジメトキシエタンなどの非水溶媒中に
過塩木酸リチウム、ホウフッ化リチウムなどの電解質を
溶解してなる溶液を、正極として二酸化マンガン、フッ
化黒鉛等を、夫々用いている。
Nonaqueous solvent batteries that use lithium and sodium as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, and are often used as backup power sources for calculators, watches, and memories. Such acidity consists of a negative electrode, an electrolyte, and a positive electrode. Generally, the negative electrode is an alkali metal such as lithium or sodium, and the electrolyte is propylene carnate, γ-
A solution prepared by dissolving an electrolyte such as persalted lithium wood oxide or lithium fluoroborate in a nonaqueous solvent such as butyrolactone or dimethoxyethane is used, and manganese dioxide, graphite fluoride, or the like is used as the positive electrode, respectively.

上述した電池の中でも負極にリチウムを用い、塩化チオ
ニル(SOCl2)を主正極活物質とした、いわゆるリ
チウム塩化チオニル系電池は、特にエネルギー密度が大
きいため注目されている。
Among the above-mentioned batteries, so-called lithium-thionyl chloride batteries, which use lithium for the negative electrode and thionyl chloride (SOCl2) as the main positive electrode active material, are attracting attention because of their particularly high energy density.

こうした電池は多孔質炭素体及び金属集電体からなる正
極を有し、一般に塩化リチウム(LiC4)及び塩化ア
ルミニウム(htct3>を溶解した塩化チオニル(S
OCl2 )を電解液として用いている。
These batteries have a positive electrode made of a porous carbon body and a metal current collector, and generally have thionyl chloride (S) in which lithium chloride (LiC4) and aluminum chloride (htct
OCl2) is used as the electrolyte.

したがって、5OCt2は正極活物質と電解液との双方
を兼用している。
Therefore, 5OCt2 serves both as a positive electrode active material and as an electrolyte.

ところで、5OCt2を正極活物質とする電池において
、負極反応は負極金属が金属イオンとして電解液中に溶
解する反応であり、一方正極反応はその正極の一構成材
である多孔質炭素体上で起こシ、反応主成物が該多孔質
炭素体表面に主成する反応である。しかし表から、アセ
チレンブラックをポリテトラフルオロエチレン等のポリ
マー結着材と共に混合し、所定形状に成形した後、乾燥
して得た多孔質炭素体からなる正極を有する従来の電池
では、前記反応主成物が該多孔質炭素体上に作られると
、電極反応が構しく阻害され、放電容量が低下する。し
かも、前記電池では、大電流放電では1.低電流放電に
比べて放電効率が著しく低下するという欠点があった。
By the way, in a battery using 5OCt2 as the positive electrode active material, the negative electrode reaction is a reaction in which the negative electrode metal dissolves in the electrolyte as metal ions, while the positive electrode reaction occurs on the porous carbon material that is one of the constituent materials of the positive electrode. (b) This is a reaction in which the main reaction product is mainly formed on the surface of the porous carbon body. However, the table shows that in conventional batteries having a positive electrode made of a porous carbon body obtained by mixing acetylene black with a polymer binder such as polytetrafluoroethylene, molding it into a predetermined shape, and drying it, the reaction When the composition is formed on the porous carbon body, the electrode reaction is severely inhibited and the discharge capacity is reduced. Moreover, in the above-mentioned battery, 1. The disadvantage is that the discharge efficiency is significantly lower than that of low current discharge.

〔発明の目的〕[Purpose of the invention]

本発明は放電容量及び大電流放電時での放電効率の優れ
た非水溶媒電池を提供しようとするものである。
The present invention aims to provide a non-aqueous solvent battery with excellent discharge capacity and discharge efficiency during large current discharge.

〔発明の概要〕[Summary of the invention]

本発明者は正極の多孔竹炭素体表面での反応主成物によ
る電極反応の阻害化が該多孔質炭素体の気孔率や気孔径
に顕著に影響されることに着目し、気孔率、気孔径を特
定化すると共に、特定化した径の気孔の占有割合を規定
した多孔質炭素体からなる正極を用いることによって、
放電力量及び大電流放電時での放電効率の優れた非水溶
媒電池を見い出したものである。
The present inventor focused on the fact that the inhibition of the electrode reaction by the main reaction components on the surface of the porous bamboo carbon body of the positive electrode is significantly influenced by the porosity and pore diameter of the porous carbon body. By using a positive electrode made of a porous carbon body with a specified pore diameter and a defined occupation ratio of pores with the specified diameter,
A non-aqueous solvent battery has been discovered that has excellent discharge power and discharge efficiency during large current discharge.

すなわち、本発明は缶体内面に設けられたアルカリ金属
からなる筒状の負極と、この負極内側の缶体内にセパレ
ータを介して配設され、多孔質炭素体及び金属集電体か
らなる正極と、前記缶体内に収容された塩化チオニルを
主成分とし、正極活物質を兼ねる電解液とを具備した非
水溶媒′電池において、前記正極の多孔質炭素体として
気孔率が70〜85%で、0.1〜2 tsnの細孔が
全気孔の30チ以上占める構造のものを用いたことを特
徴とするものである。
That is, the present invention comprises a cylindrical negative electrode made of an alkali metal provided on the inner surface of the can body, a positive electrode made of a porous carbon body and a metal current collector, and disposed inside the can body inside the negative electrode with a separator interposed therebetween. , in a non-aqueous solvent battery containing thionyl chloride as a main component housed in the can body and comprising an electrolytic solution that also serves as a positive electrode active material, the porous carbon body of the positive electrode has a porosity of 70 to 85%; It is characterized by using a structure in which pores of 0.1 to 2 tsn occupy 30 or more of the total pores.

上記多孔質炭素体の気孔率を限定した理由はその気孔率
を70チ未満にすると、反応効率の低下を招き、かとい
って85%を越えると、多孔質炭素体の強度低下等を招
くからである。また、この多孔質炭素体中の気孔の30
チ以上の気孔の径を限定した理由はその気孔径を0.1
μm未満にすると、正極活物質である塩化チオニルの反
応上酸物により気孔が塞がれて電池の機能低下を招き、
かといって2μmを越えると、多孔質炭素体の反応面積
が低下し、ひいては反応効率の低下を招くからである。
The reason for limiting the porosity of the porous carbon body is that if the porosity is less than 70%, the reaction efficiency will decrease, whereas if it exceeds 85%, it will cause a decrease in the strength of the porous carbon body. It is. In addition, 30 of the pores in this porous carbon body
The reason for limiting the diameter of pores larger than
If it is less than μm, the pores will be blocked by the acid due to the reaction of thionyl chloride, which is the positive electrode active material, leading to a decrease in battery function.
On the other hand, if it exceeds 2 μm, the reaction area of the porous carbon body decreases, which leads to a decrease in reaction efficiency.

更に、0.1〜2μmの気孔の全気孔中の占有割合を限
定した理由は、その占有割合を301未満にすると反応
効率の増大化を十分達成できなくなるからである。
Furthermore, the reason why the proportion of 0.1 to 2 μm pores in the total pores is limited is that if the proportion is less than 301, it will not be possible to sufficiently increase the reaction efficiency.

上記正極は例えば以下に示す方法によシ製造される。カ
ーデンブラック等の炭素材にポリテトラフルオロエチレ
ン等のポリマー結着剤を混合し、エチルアルコール等の
溶剤を添加して充分に攪拌、混練した後、この混線物を
金網、パンチメタル、エキスノJ?ンドメタル等の金属
集電5一 体に圧着し、乾燥することによシ正極を造る。
The above-mentioned positive electrode is manufactured, for example, by the method shown below. A polymer binder such as polytetrafluoroethylene is mixed with a carbon material such as carden black, a solvent such as ethyl alcohol is added, and the mixture is sufficiently stirred and kneaded.Then, the mixed wire is made into wire mesh, punch metal, or Exno J. A positive electrode is produced by pressing the electrode onto a metal current collector 5 such as a metal current collector and drying it.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はリチウム塩化チオニル電池の断面図であシ、図
中の1は負極端子を兼ねる上面が開口された例えばステ
ンレス製の缶体である。この缶体1の内面には金属リチ
ウムからなる筒状の負極2が圧着されている。この負極
2の内側の缶体1内には正極互が該負極2の内面に配置
されたガラス繊維の不織布からなる七ノやレータ4を介
して設けられている。なお、正極互と缶体1底面との間
には絶縁紙5が介装されている。
FIG. 1 is a cross-sectional view of a lithium-thionyl chloride battery, and numeral 1 in the figure is a can made of, for example, stainless steel and having an open top that also serves as a negative electrode terminal. A cylindrical negative electrode 2 made of metallic lithium is pressure-bonded to the inner surface of the can 1. Inside the can body 1 inside the negative electrode 2, a positive electrode is provided via a plate 4 made of a non-woven glass fiber fabric placed on the inner surface of the negative electrode 2. Note that an insulating paper 5 is interposed between the positive electrodes and the bottom surface of the can body 1.

前記正極1は気孔率70〜85%、0.1〜2μmの気
孔が全気孔中の30チ以上を占める筒状の多孔質炭素体
6と、この多孔質炭素体6の中空部内面に配設された筒
状の金属集電体7とから構成されている。
The positive electrode 1 includes a cylindrical porous carbon body 6 with a porosity of 70 to 85% and pores of 0.1 to 2 μm occupying 30 or more of the total pores, and a hollow inner surface of the porous carbon body 6. A cylindrical metal current collector 7 is provided.

また、前記正極l上方の缶体1内には前記セパレータ4
に支持された絶縁紙8が配設されて6一 いる。前記缶体1の上面開口部にはメタルトップ9がレ
ーザ溶接等によシ封着されている。このメタルトップ9
の中心には穴10が開孔されている。前記缶体1内には
LiAlCl4を溶解した塩化チオニル(SOCl2)
溶液からなる電解液が前記穴10を通して注入、収容さ
れている。また、前記メタルトップ9の穴10には正極
端子11がメタル−ガラスシール材12により電気的に
絶縁され、固定されている。この正極端子1ノしかして
、本発明によれば正極1の多孔質炭素体6は気孔率が7
0〜85 % 、 0.1〜2μmの気孔が全気孔中の
30チ以上占める構造になっているため、正極活物質の
多孔質炭素体6への供給を容易にすると共に反応表面積
の増大化が図られ、その結果、高率放電特性に優れ、放
電容量の大きいリチウム塩化チオニル電池を得ることが
できる。
Furthermore, the separator 4 is placed inside the can body 1 above the positive electrode l.
An insulating paper 8 supported by the insulating paper 8 is disposed. A metal top 9 is sealed to the upper opening of the can body 1 by laser welding or the like. This metal top 9
A hole 10 is bored in the center of the hole. Inside the can body 1 is thionyl chloride (SOCl2) in which LiAlCl4 is dissolved.
An electrolytic solution consisting of a solution is injected and contained through the hole 10. Further, a positive electrode terminal 11 is electrically insulated and fixed in the hole 10 of the metal top 9 by a metal-glass sealing material 12. According to the present invention, the porous carbon body 6 of the positive electrode 1 has a porosity of 7.
Since the structure is such that pores of 0 to 85% and 0.1 to 2 μm occupy 30 or more of the total pores, it is easy to supply the positive electrode active material to the porous carbon body 6, and the reaction surface area is increased. As a result, a lithium thionyl chloride battery with excellent high rate discharge characteristics and large discharge capacity can be obtained.

次に、本発明の具体的な実施例を説明する。Next, specific examples of the present invention will be described.

実施例1 平均粒径40 mμm 、 DBP吸油1jly 20
0 cm!1/100 、qのストラフチャーの高度に
発達しだカーデンブラックにポリテトラフルオロエチレ
ンを10 wt%の割合で混合した後、エタノールを添
加して十分に混練した。この混線物をステンレス製網体
から々る金属集電体7と共に該集電体7が内周面に配置
されるように成形して円筒状物を作り、つづいて150
℃の真空下で乾燥して同金属集電体7の外周に圧着され
た円筒状の多孔質炭素体6を形成することにより正極支
を作製した。この正極lの多孔質炭素体6は気孔率が8
0係で、水銀圧入法によシ細孔分布を調べたところ、0
.1〜2μmの気孔が全体の37%を占めていた。次い
で、この正極旦を内周面に負極2が圧着された缶体1内
にセパレータ4を介して収納し、絶縁紙8の配置、メタ
ルトップ9の封着、更に缶体1内にメタルトップ9の穴
10を通してLiAlCl4を溶解した1、8 mol
濃度の塩化チオニル(SOCl2)溶液からなる電解液
を収容した後、予め金属集電体7とリードを介して接続
した正他端子11をメタルトップ9の穴10にシール材
12を介して固定し、第1図図示のAA サイズのリチ
ウム塩化チオニル電池を組立てた。
Example 1 Average particle size 40 mμm, DBP oil absorption 1jly 20
0cm! Polytetrafluoroethylene was mixed with 10 wt % of polytetrafluoroethylene into carbon black with highly developed 1/100, q struts, and then ethanol was added and thoroughly kneaded. This mixed wire was molded together with a metal current collector 7 from a stainless steel net so that the current collector 7 was disposed on the inner peripheral surface to make a cylindrical object.
A positive electrode support was prepared by forming a cylindrical porous carbon body 6 which was dried under vacuum at a temperature of 0.degree. The porous carbon body 6 of this positive electrode l has a porosity of 8
When the pore distribution was investigated using the mercury intrusion method, it was found that 0
.. Pores of 1 to 2 μm accounted for 37% of the total. Next, this positive electrode plate is housed in a can body 1 with a negative electrode 2 crimped onto the inner peripheral surface via a separator 4, an insulating paper 8 is placed, a metal top 9 is sealed, and a metal top is placed inside the can body 1. 1.8 mol of LiAlCl4 dissolved through hole 10 of 9
After accommodating an electrolytic solution consisting of a concentrated thionyl chloride (SOCl2) solution, the positive and other terminals 11, which were previously connected to the metal current collector 7 via leads, were fixed in the holes 10 of the metal top 9 via the sealing material 12. The AA size lithium thionyl chloride battery shown in FIG. 1 was assembled.

実施例2 平均粒径30 mμm 、 DBP吸油量185 cm
3/100 gのストラフチャーのやや発達し九カーデ
ンブラックを用いて実施例1と同様な方法で正極を作製
した。なお、この正極の多孔質炭素体は気孔率が82係
で、0,1〜2μmの気孔の全気孔中の占有割合が34
q6のものであった。次いで、この正極を用いて実施例
1と同様な順序で第1図図示のリチウム塩化チオニル電
池を組立てた。
Example 2 Average particle size: 30 mμm, DBP oil absorption: 185 cm
A positive electrode was prepared in the same manner as in Example 1 using 3/100 g of slightly developed 9-carden black with stratus. The porous carbon body of this positive electrode has a porosity of 82, and the proportion of pores of 0.1 to 2 μm in total pores is 34.
It was from q6. Next, using this positive electrode, the lithium thionyl chloride battery shown in FIG. 1 was assembled in the same order as in Example 1.

比較例 平均粒径30 mμm11 DBP吸油量Zoo cI
n”/ 1009のストラックチャーのあまり発達して
いないカーがンブラックを用いて実施例1と同様に正極
を作製し、更にこの正極を用いて第1図図示と同構造の
リチウム塩化チオニル電池を組立てた。
Comparative example average particle size 30 mμm11 DBP oil absorption Zoo cI
A positive electrode was prepared in the same manner as in Example 1 using carton black with a less developed structure of n''/1009, and this positive electrode was further used to construct a lithium thionyl chloride battery having the same structure as shown in FIG. Assembled.

なお、前記正極の多孔質炭素体は、気孔率が849− チで、0.1〜2μmの気孔の全気孔中の占有割合が2
4チのものであった。
The porous carbon body of the positive electrode has a porosity of 849-chi, and the proportion of pores of 0.1 to 2 μm in the total pores is 2.
It belonged to 4chi.

しかして、上記実施例1,2の霜:池及び比較例の電池
について放゛屯電流に対する放電容量の関係を調べたと
ころ、第2図に示す特性図を得た。なお、第2図中のA
は本実施例1の知;池における放電電流対放電、容量の
特性曲線、Bは本実施例2の電池の同特性曲線、Cは比
較例の電池の同特性曲線、である。この第2図から明ら
かな如く、本発明の電池(図中のA、B)は従来の電池
(図中のΦ)に比べて小電流放電ではその放電容量はほ
ぼ等しいが、大電流放電では放電容量が極めて大きいこ
とがわかる。
When the relationship between discharge capacity and discharge current was investigated for the batteries of Examples 1 and 2 and the battery of Comparative Example, the characteristic diagram shown in FIG. 2 was obtained. In addition, A in Figure 2
B is the characteristic curve of the battery of Example 2; B is the characteristic curve of the battery of Example 2; and C is the characteristic curve of the battery of Comparative Example. As is clear from Fig. 2, the battery of the present invention (A, B in the figure) has almost the same discharge capacity as the conventional battery (Φ in the figure) in small current discharge, but in large current discharge. It can be seen that the discharge capacity is extremely large.

なお、上記実施例では正極として円筒状のものを用いた
が、これに限定されない。例えばカー?ンプラ、りとポ
リマー結着材との混線物を金属集電体に圧着して帯状物
とし、これを巻回して乾燥した渦巻状の正極を用いても
よい。
Note that in the above embodiments, a cylindrical positive electrode was used, but the positive electrode is not limited to this. For example, car? A spiral positive electrode may be used, in which a mixture of plastic, resin, and a polymer binder is crimped onto a metal current collector to form a strip, which is then wound and dried.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば放電容量−10= を大巾に向上し、かつ放電効率の優れた非水溶媒電池を
提供できるものである。
As described in detail above, according to the present invention, it is possible to provide a non-aqueous solvent battery that has a significantly improved discharge capacity -10 and excellent discharge efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すリチウム塩化チオニル
電池の断面図、第2図は本発明の電池及び従来の電池に
おける放電電流と放電容量との関係を示す特性図である
。 1・・・缶体、2・・・負極、互・・・正極、4・・・
セパレータ、6・・・多孔質炭素体、7・・・金属集電
体、9・・・メタルトップ、11・・・正極端子。 出願人代理人 弁理士 鈴 江 武 彦11− 才1図 東京部品用区南品用3丁目4番 10号東芝電池株式会社内 0出 願 人 東芝電池株式会社 東京部品用区南品用3丁目4番 10号
FIG. 1 is a cross-sectional view of a lithium thionyl chloride battery showing one embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between discharge current and discharge capacity in the battery of the present invention and a conventional battery. 1...Can body, 2...Negative electrode, Mutual...Positive electrode, 4...
Separator, 6... Porous carbon body, 7... Metal current collector, 9... Metal top, 11... Positive electrode terminal. Applicant's representative Patent attorney Takehiko Suzue 11-years old 3-4-10, Minamishinayo, Tokyo Parts Ward Toshiba Battery Co., Ltd. 0 Applicant Toshiba Battery Co., Ltd. 3-chome Minamishinayo, Tokyo Parts Ward No. 4 No. 10

Claims (1)

【特許請求の範囲】[Claims] 缶体内面に設けられたアルカリ金属からなる筒状の負極
と、この負極内側の缶体内にセA?レータを介して配設
され、多孔質炭素体及び金属集電体からなる正極と、前
記缶体内に収容された塩化チオニルを主成分とし、正極
活物質を兼ねた電解液とを具備した非水溶媒電池におい
て、前記正極の多孔質炭素体として気孔率70〜85チ
で、0.1〜2μmの細孔が全気孔の30チ以上占める
構造のものを用いたことを特徴とする非水溶媒電池。
A cylindrical negative electrode made of an alkali metal provided on the inner surface of the can, and a cell A? A non-aqueous non-aqueous cathode disposed through a lattice plate, comprising a cathode made of a porous carbon body and a metal current collector, and an electrolytic solution containing thionyl chloride as a main component and serving as a cathode active material housed in the can body. In the solvent battery, the nonaqueous solvent is characterized in that the porous carbon body of the positive electrode has a porosity of 70 to 85 cm and a structure in which pores of 0.1 to 2 μm occupy 30 cm or more of the total pores. battery.
JP453783A 1983-01-14 1983-01-14 Nonaqueous solvent battery Granted JPS59128772A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP453783A JPS59128772A (en) 1983-01-14 1983-01-14 Nonaqueous solvent battery
DE8484100066T DE3485349D1 (en) 1983-01-14 1984-01-04 NONWATER ELECTROCHEMICAL CELL.
EP19840100066 EP0118657B1 (en) 1983-01-14 1984-01-04 Non-aqueous electrochemical cell
CA000445273A CA1222542A (en) 1983-01-14 1984-01-13 Non-aqueous electrochemical cell
US07/129,902 US4767683A (en) 1983-01-14 1987-12-07 Non-aqueous electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP453783A JPS59128772A (en) 1983-01-14 1983-01-14 Nonaqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS59128772A true JPS59128772A (en) 1984-07-24
JPH0318308B2 JPH0318308B2 (en) 1991-03-12

Family

ID=11586788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP453783A Granted JPS59128772A (en) 1983-01-14 1983-01-14 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS59128772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119067A (en) * 1984-07-06 1986-01-27 Hitachi Maxell Ltd Nonaqueous electrolyte battery
US4790969A (en) * 1987-07-16 1988-12-13 Eveready Battery Company Dry molded cathode collector for liquid cathode systems
JP2006012840A (en) * 2004-06-25 2006-01-12 Saft (Soc Accumulateurs Fixes Traction) Sa Battery having cathode of carbon aerogel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116639A (en) * 1978-01-31 1979-09-11 Accumulateurs Fixes Primary cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116639A (en) * 1978-01-31 1979-09-11 Accumulateurs Fixes Primary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119067A (en) * 1984-07-06 1986-01-27 Hitachi Maxell Ltd Nonaqueous electrolyte battery
US4790969A (en) * 1987-07-16 1988-12-13 Eveready Battery Company Dry molded cathode collector for liquid cathode systems
JP2006012840A (en) * 2004-06-25 2006-01-12 Saft (Soc Accumulateurs Fixes Traction) Sa Battery having cathode of carbon aerogel

Also Published As

Publication number Publication date
JPH0318308B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
JPS59128772A (en) Nonaqueous solvent battery
US2814663A (en) Primary cell
JPH1197062A (en) Organic electrolyte secondary battery
JPS6381762A (en) Button type alkaline battery
JPS6110863A (en) Nonaqueous electrolyte batter
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPS59171470A (en) Nonaqueous solvent battery
JPH0439187B2 (en)
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPH0317346B2 (en)
JPH0545022Y2 (en)
JPS614170A (en) Nonaqueous electrolyte secondary battery
JPS5951470A (en) Non-aqueous solvent cell
JPS58209068A (en) Battery
JPS58137971A (en) Flat type battery
JPH01302659A (en) Organic solvent battery
JPH073785B2 (en) Non-aqueous electrolyte battery
JPH0439188B2 (en)
JPS59149656A (en) Nonaqueous solvent battery
JPH0855626A (en) Nonaqueous solvent battery
JPS59209276A (en) Nonaqueous solvent battery
JPS59209274A (en) Nonaqueous solvent battery
JPH01309251A (en) Flat type organic electrolyte battery
JPS5987773A (en) Organic electrolyte battery
JPH0415985B2 (en)