JPH0554913A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH0554913A
JPH0554913A JP3233687A JP23368791A JPH0554913A JP H0554913 A JPH0554913 A JP H0554913A JP 3233687 A JP3233687 A JP 3233687A JP 23368791 A JP23368791 A JP 23368791A JP H0554913 A JPH0554913 A JP H0554913A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
aqueous electrolyte
active material
mixed solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3233687A
Other languages
Japanese (ja)
Inventor
Kuniaki Inada
圀昭 稲田
Norihito Kurisu
憲仁 栗栖
Hiroyoshi Nose
博義 能勢
Norio Takami
則雄 高見
Takahisa Osaki
隆久 大崎
Shuji Yamada
修司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP3233687A priority Critical patent/JPH0554913A/en
Publication of JPH0554913A publication Critical patent/JPH0554913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolytic secondary battery having a good charge/discharge cyclic life, high-output property, lithium charge/discharge efficiency, and storage performance by specifying active material and binding agent for a positive pole, and composition of nonaqueous electrolyte. CONSTITUTION:A negative pole 6 has active material of light metal or its alloy. A positive pole 4 includes active material mainly composed of spinal type lithium manganese oxide, conductive agent, and binding agent mainly comprising elastomer comprising copolymer mainly of ethylene-propylene. Nonaqueous electrolyte 11 comprises mixed solvent of ethylene carbonate and 2-methyl tetrahydrofuran or mixed solvent of ethylene carbonate, 2-methyl tetrahydrofuran, and tetrahydrofuran in which lithium hexafluorophosphate and/or lithium tetrafluoroborate is dissolved. A nonaqueous electrolytic secondary battery having a good charge/discharge cyclic life, high-output property, lithium charge/discharge efficiency, and storage performance can thus be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作動電圧、出力特性、
充放電効率、充放電サイクル寿命及び貯蔵特性等を改善
した非水電解液二次電池に関する。
The present invention relates to an operating voltage, an output characteristic,
The present invention relates to a non-aqueous electrolyte secondary battery having improved charge / discharge efficiency, charge / discharge cycle life, storage characteristics and the like.

【0002】[0002]

【従来の技術】近年、負極活物質としてリチウム、ナト
リウム、アルミニウム等の軽金属を用いた非水電解液電
池は高エネルギー密度電池として注目されており、正極
活物質に二酸化マンガン(MnO2 )、フッ化炭素
[(CF)n ]、塩化チオニル(SOCl 2)等を用い
た二次電池は既に電卓、時計の電源やメモリのバックア
ップ電池として多用されている。
2. Description of the Related Art In recent years, a non-aqueous electrolyte battery using a light metal such as lithium, sodium or aluminum as a negative electrode active material has been attracting attention as a high energy density battery, and manganese dioxide (MnO 2 ) or fluorine is used as a positive electrode active material. Secondary batteries using carbonized carbon [(CF) n ], thionyl chloride (SOCl 2 ) and the like are already widely used as power sources for calculators, watches, and backup batteries for memories.

【0003】更に、近年、VTR、通信機器等の各種の
電子機器の小型、軽量化に伴い、それらの電源として高
エネルギー密度の二次電池の要求が高まり、軽金属を負
極活物質とする非水電解液二次電池の研究が活発に行わ
れている。
Furthermore, in recent years, with the miniaturization and weight reduction of various electronic devices such as VTRs and communication devices, the demand for high energy density secondary batteries as their power source has increased, and non-aqueous solutions using light metals as negative electrode active materials have been increasing. Electrolyte secondary batteries are being actively researched.

【0004】これらの非水電解液二次電池は、一般的
に、負極活物質としてリチウム、ナトリウム、アルミニ
ウム等の軽金属が、電解液として炭酸プロピレン(P
C)、1,2−ジメトキシエタン(DME)、γ−ブチ
ロラクトン(γ−BL)、テトラヒドロフラン(TH
F)等の非水溶媒中にLiClO4 、LiBF4 、Li
AsF6 、LiPF6 等の電解質を溶解したものが、正
極活物質としてリチウムとの間でトポケミカル反応をす
るMnO2 、TiS2 、MoS2 、V25 、V613
等が用いられている。
In these non-aqueous electrolyte secondary batteries, generally, a light metal such as lithium, sodium or aluminum is used as a negative electrode active material, and propylene carbonate (P) is used as an electrolyte.
C), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL), tetrahydrofuran (TH
F) in a non-aqueous solvent such as LiClO 4 , LiBF 4 , Li
A solution of an electrolyte such as AsF 6 , LiPF 6 or the like, which has a topochemical reaction with lithium as a positive electrode active material, is MnO 2 , TiS 2 , MoS 2 , V 2 O 5 , V 6 O 13
Etc. are used.

【0005】しかしながら、これらの非水電解液二次電
池では、充電時に、電解液中のリチウムイオンが金属リ
チウムとして析出するときに、溶媒とリチウムとが反応
し、リチウム表面の一部が不活性化する。そのため、充
放電を繰返すうちに、析出するリチウムがデンドライト
状(樹枝状)又は小球状を呈して集電体より脱離すると
いう欠点があり、また、成長したデンドライト状の金属
リチウムが、正極と負極を絶縁するセパレータを貫通
し、あるいはセパレータの周辺部から回り込んで正極に
達して短絡するという欠点があった。
However, in these non-aqueous electrolyte secondary batteries, when lithium ions in the electrolyte are deposited as metallic lithium during charging, the solvent reacts with lithium and a part of the lithium surface becomes inactive. Turn into. Therefore, during repeated charging and discharging, there is a drawback that the deposited lithium is dendrite-like (dendritic) or is desorbed from the current collector, and the grown dendrite-like metallic lithium is the positive electrode. There is a defect that the separator that insulates the negative electrode penetrates or wraps around the separator to reach the positive electrode and short-circuits.

【0006】このような欠点を解決する試みとして、電
解液中にデンドライト状のリチウム発生を防止する添加
剤を加えたり、あるいは負極材料としてリチウム−アル
ミニウム合金を用いること等が検討されているが、いず
れも満足する結果が得られてはいない。
As an attempt to solve such a drawback, addition of an additive for preventing the generation of dendrite-like lithium in the electrolytic solution or the use of a lithium-aluminum alloy as a negative electrode material has been studied. None of them have produced satisfactory results.

【0007】また、非水電解液として、リチウムと反応
しにくいエチレンカーボネートと2−メチルテトラヒド
ロフランとの混合溶媒に電解質を溶解したものが検討さ
れているが、例えば、電解質としてLiAsF6 を用い
たもの(Electrochim.Acta 30, 1715(1985))では、比較
的充放電効率の向上は見られるものの、LiAsF6
毒性を示す恐れがあり好ましくなく、またLiAsF6
に代えてLiPF6 やLiBF4 を用いたものでは、充
放電効率が劣るうえ、LiPF6 やLiBF4自体の安
定性が悪いことから十分な充放電サイクル寿命と貯蔵性
能が得られないという欠点があった。
As the non-aqueous electrolytic solution, a solution in which an electrolyte is dissolved in a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran, which hardly reacts with lithium, has been studied. For example, a solution using LiAsF 6 as the electrolyte. in (Electrochim.Acta 30, 1715 (1985) ), although relatively improvement of charge and discharge efficiency is observed, there is a risk that LiAsF 6 is toxic not preferred, also LiAsF 6
In the case of using LiPF 6 or LiBF 4 instead, the charge / discharge efficiency is inferior and the stability of LiPF 6 or LiBF 4 itself is poor, so that sufficient charge / discharge cycle life and storage performance cannot be obtained. there were.

【0008】また、このような従来の非水電解液二次電
池では、正極活物質としてTiS2、MoS2 等が用い
られてきたが、これらの活物質を用いた場合は、平均作
動電圧が低い(通常2V以下である)という欠点がある
とともに、これらの活物質と、例えばポリテトラフルオ
ロエチレン(PTFE)等の結着材及び導電材とを用い
て成型した正極では、充放電を繰り返すに従って、活物
質が膨張と収縮とを繰り返し、その結果、導電材と活物
質との接触が悪化し、あるいは活物質が電極から脱落し
て正極内に導電不良を生じさせるため、十分な充放電サ
イクル寿命が得られないという欠点があった。
Further, in such a conventional non-aqueous electrolyte secondary battery, TiS 2 , MoS 2, etc. have been used as the positive electrode active material, but when these active materials are used, the average operating voltage is In addition to having the drawback of being low (usually 2 V or less), the positive electrode molded using these active materials and a binder and a conductive material such as polytetrafluoroethylene (PTFE), etc. , The active material repeatedly expands and contracts, as a result, the contact between the conductive material and the active material deteriorates, or the active material falls off from the electrode to cause poor conductivity in the positive electrode, so sufficient charge / discharge cycle It had the drawback of not having a life.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、用い
る非水電解液の毒性が低く、しかも高電圧でエネルギー
密度が高く、また出力特性、充放電効率、充放電サイク
ル寿命及び貯蔵特性にも優れた非水電解液二次電池を提
供することにある。
The object of the present invention is to provide a non-aqueous electrolyte solution with low toxicity, high energy density at high voltage, output characteristics, charge / discharge efficiency, charge / discharge cycle life and storage characteristics. Another object is to provide an excellent non-aqueous electrolyte secondary battery.

【0010】[0010]

【課題を解決するための手段】本発明の非水電解液二次
電池は、下記の負極、正極及び非水電解液を備えている
ことを特徴とする。
The non-aqueous electrolyte secondary battery of the present invention is characterized by comprising the following negative electrode, positive electrode and non-aqueous electrolyte.

【0011】A.軽金属又はその合金を活物質とする負
極。 B.スピネル型リチウムマンガン酸化物を主体とする活
物質と導電材とエチレン−プロピレンを主体とする共重
合体からなるエラストマーを主成分とする結着材とを含
有する正極。 C.エチレンカーボネートと2−メチルテトラヒドロフ
ランとの混合溶媒又はエチレンカーボネートと2−メチ
ルテトラヒドロフランとテトラヒドロフランとの混合溶
媒に、ヘキサフルオロリン酸リチウム及び/又はテトラ
フルオロホウ酸リチウムを溶解した非水電解液。
A. A negative electrode whose active material is a light metal or its alloy. B. A positive electrode comprising an active material mainly composed of spinel type lithium manganese oxide, a conductive material and a binder mainly composed of an elastomer composed of a copolymer mainly composed of ethylene-propylene. C. A non-aqueous electrolytic solution in which lithium hexafluorophosphate and / or lithium tetrafluoroborate are dissolved in a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran or a mixed solvent of ethylene carbonate, 2-methyltetrahydrofuran and tetrahydrofuran.

【0012】以下、本発明を詳細に説明する。本発明の
非水電解液二次電池は、次の負極、正極及び非水電解液
を備える。
The present invention will be described in detail below. The non-aqueous electrolyte secondary battery of the present invention includes the following negative electrode, positive electrode and non-aqueous electrolyte.

【0013】A.負極 負極を構成する軽金属又はその合金としては、例えばリ
チウム、アルミニウム、リチウム−アルミニウム合金等
を挙げることができる。
A. Negative Electrode Examples of the light metal or its alloy constituting the negative electrode include lithium, aluminum, and lithium-aluminum alloy.

【0014】B.正極 正極は、スピネル型リチウムマンガン酸化物(LiMn
24)を主体とする活物質と導電材とエチレン−プロ
ピレンを主体とする共重合体からなるエラストマーを主
成分とする結着材とを含有する。
B. Positive electrode The positive electrode is a spinel type lithium manganese oxide (LiMn
2 O 4 ) as an active material, a conductive material, and a binder having an elastomer composed of an ethylene-propylene copolymer as a main component.

【0015】導電材としては、アセチレンブラック、カ
ーボンンブラック、ニッケル等の金属粉等を挙げること
ができる。導電材に対するスピネル型リチウムマンガン
酸化物を主体とする活物質の配合率は、80〜98重量
%である。正極における前記結着材の含有率は、3〜1
5重量%が好ましい。
Examples of the conductive material include metal powder such as acetylene black, carbon black and nickel. The compounding ratio of the active material mainly composed of spinel type lithium manganese oxide to the conductive material is 80 to 98% by weight. The content of the binder in the positive electrode is 3 to 1
5% by weight is preferred.

【0016】C.非水電解液 非水電解液は、エチレンカーボネートと2−メチルテト
ラヒドロフランとの混合溶媒又はエチレンカーボネート
と2−メチルテトラヒドロフランとテトラヒドロフラン
との混合溶媒に、ヘキサフルオロリン酸リチウム(Li
PF6 )及び/又はテトラフルオロホウ酸リチウム(L
iBF4 )を溶解したものである。
C. Non-Aqueous Electrolyte Solution A non-aqueous electrolyte solution was prepared by adding lithium hexafluorophosphate (Li) to a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran or a mixed solvent of ethylene carbonate, 2-methyltetrahydrofuran and tetrahydrofuran.
PF 6 ) and / or lithium tetrafluoroborate (L
It is a solution of iBF 4 ).

【0017】エチレンカーボネートと2−メチルテトラ
ヒドロフランとの混合溶媒中のエチレンカーボネートの
混合率は、40〜80容量%、好ましくは45〜60容
量%である。この混合率が40容量%未満のときには、
負極リチウム極の分極が増進したり、充放電効率が低下
する場合があり、好ましくない。
The mixing ratio of ethylene carbonate in the mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran is 40 to 80% by volume, preferably 45 to 60% by volume. When the mixing ratio is less than 40% by volume,
The polarization of the negative electrode lithium electrode may be enhanced or the charge / discharge efficiency may be decreased, which is not preferable.

【0018】エチレンカーボネートと2−メチルテトラ
ヒドロフランとテトラヒドロフランとの混合溶媒中のそ
れぞれの混合率は、エチレンカーボネートが30〜70
容量%、2−メチルテトラヒドロフランが10〜60容
量%、テトラヒドロフランが10〜40容量%であるの
が好ましい。テトラヒドロフランの混合率が40容量%
を超えるときには、リチウムと混合溶媒との反応性が高
まる場合がある。
The mixing ratio of ethylene carbonate, 2-methyltetrahydrofuran, and tetrahydrofuran in the mixed solvent is 30 to 70 for ethylene carbonate.
%, 2-methyltetrahydrofuran 10 to 60% by volume, and tetrahydrofuran 10 to 40% by volume. The mixing ratio of tetrahydrofuran is 40% by volume
When it exceeds, the reactivity between lithium and the mixed solvent may increase.

【0019】ヘキサフルオロリン酸リチウム(LiPF
6 )及び/又はテトラフルオロホウ酸リチウム(LiB
4 )の混合溶媒に対する含有率は、0.1モル/l 以
上、1モル/l 未満、好ましくは0.2〜0.8モル/
l である。
Lithium hexafluorophosphate (LiPF
6 ) and / or lithium tetrafluoroborate (LiB
The content of F 4 ) in the mixed solvent is 0.1 mol / l or more and less than 1 mol / l, preferably 0.2 to 0.8 mol / l.
l.

【0020】混合溶媒に対する含有率を前記範囲にする
ことにより、ヘキサフルオロリン酸リチウム及びテトラ
フルオロホウ酸リチウムの安定性を高めることができる
とともに、高出力で放電したときに、リチウム極の表面
で、ヘキサフルオロリン酸リチウム及び/又はテトラフ
ルオロホウ酸リチウムが過飽和状態にならないので、リ
チウム極の表面でのこれらの析出を抑制することがで
き、電池の高出力特性と貯蔵性能を向上させることがで
きる。混合溶媒に対する含有率が1モル/l 以上のとき
には、非水電解液の安定性が悪くなって、リチウムの充
放電効率が低下する場合があり、0.1モル/l 未満の
ときには、正極及び負極の分極が急激に増進する場合が
あり好ましくない。
By controlling the content ratio to the mixed solvent within the above range, the stability of lithium hexafluorophosphate and lithium tetrafluoroborate can be enhanced, and at the time of discharging at high output, the surface of the lithium electrode is Since lithium hexafluorophosphate and / or lithium tetrafluoroborate do not become supersaturated, their deposition on the surface of the lithium electrode can be suppressed, and high output characteristics and storage performance of the battery can be improved. it can. When the content ratio to the mixed solvent is 1 mol / l or more, the stability of the non-aqueous electrolyte may be deteriorated and the lithium charge / discharge efficiency may decrease. The polarization of the negative electrode may be rapidly increased, which is not preferable.

【0021】本発明の非水電解液二次電池は、このよう
な負極、正極及び非水電解液のそれぞれを常法により公
知の電池容器内に収納することにより作製することがで
きる。
The non-aqueous electrolyte secondary battery of the present invention can be prepared by accommodating each of the negative electrode, the positive electrode and the non-aqueous electrolyte in a known battery container by a conventional method.

【0022】なお、前記非水電解液は、電池容器内に封
入する前に、アルミナ等の不活性吸着剤に接触させて処
理するか、通電処理するか又はこれらの処理を併せて行
うのが好ましい。
The non-aqueous electrolyte may be treated by contacting it with an inert adsorbent such as alumina, energization treatment, or a combination of these treatments before being sealed in the battery container. preferable.

【0023】このように非水電解液を処理することによ
り、非水電解液中の不純物を除去することができるの
で、負極リチウムと非水電解液との反応を抑制すること
ができ、リチウムの劣化を防止する。
By treating the non-aqueous electrolytic solution in this way, impurities in the non-aqueous electrolytic solution can be removed, so that the reaction between the negative electrode lithium and the non-aqueous electrolytic solution can be suppressed, and the lithium Prevent deterioration.

【0024】[0024]

【作用】(1) 正極に、エチレンープロピレンを主体とす
る共重合体からなるエラストマーを主成分とする結着剤
を、活物質と導電材と共に含むので、活物質と導電材と
の密着性が高まり、充放電に伴う活物質の膨張又は収縮
によって活物質が正極から脱落したり、活物質と導電材
との接触が悪化するのを防止する。
[Operation] (1) Since the positive electrode contains a binder containing an elastomer composed of a copolymer mainly composed of ethylene-propylene as a main component together with the active material and the conductive material, the adhesion between the active material and the conductive material is improved. This prevents the active material from falling out of the positive electrode due to expansion or contraction of the active material due to charge / discharge, and deterioration of contact between the active material and the conductive material.

【0025】(2) 正極の活物質として、充放電に伴う膨
張、収縮率の大きいスピネル型リチウムマンガン酸化物
を用いているので、正極が、この膨張及び収縮を繰り返
しながらしだいに膨張して、これに対向する負極を圧迫
するため、リチウムがデンドライト状に析出するのを防
止する。
(2) Since the spinel type lithium manganese oxide, which has a large expansion and contraction rate due to charge and discharge, is used as the active material of the positive electrode, the positive electrode expands gradually while repeating this expansion and contraction, Since the negative electrode facing this is pressed, lithium is prevented from being deposited in a dendrite form.

【0026】(3) 非水電解液の溶媒として、エチレンカ
ーボネートと2−メチルテトラヒドロフランとの混合溶
媒を用いることにより、リチウムとの反応を抑制する。 (4) 非水電解液の溶媒として、エチレンカーボネートと
2−メチルテトラヒドロフランとテトラヒドロフランと
の混合溶媒を用いることにより、非水電解液の導電率を
高め、また負極リチウムの分極を抑制する。
(3) The reaction with lithium is suppressed by using a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran as the solvent of the non-aqueous electrolyte. (4) By using a mixed solvent of ethylene carbonate, 2-methyltetrahydrofuran, and tetrahydrofuran as the solvent of the non-aqueous electrolyte, the conductivity of the non-aqueous electrolyte is increased and the polarization of the negative electrode lithium is suppressed.

【0027】[0027]

【実施例】以下、本発明を図面により、さらに具体的に
説明する。 実施例1 本実施例の非水電解液二次電池では、図1に示すよう
に、底部に絶縁体2を配置した、負極端子を兼ねる有底
円筒状のステンレス容器1を用いた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically with reference to the drawings. Example 1 In the non-aqueous electrolyte secondary battery of this example, as shown in FIG. 1, a bottomed cylindrical stainless steel container 1 also serving as a negative electrode terminal, in which an insulator 2 was disposed, was used.

【0028】この容器1内には、負極6、セパレータ5
及び正極4をこの順序で積層した帯状物を該負極6が外
側に位置するように渦巻き状にした電極群3を収納し
た。
In this container 1, a negative electrode 6 and a separator 5 are provided.
An electrode group 3 was housed in which a band-shaped material in which the positive electrode 4 was laminated in this order was formed into a spiral shape so that the negative electrode 6 was located outside.

【0029】負極6としては、帯状リチウム箔を、セパ
レータ5としては、ポリプロピレン性多孔質フィルム
を、正極4としては、スピネル型リチウムマンガン酸化
物(LiMn24 )粉末80重量%、導電材としての
アセチレンブラック15重量%及びエチレンープロピレ
ンを主体とする共重合体よりなるエラストマーを主成分
とする結着材(EPT)5重量%を共に混合し、さらに
シート化してエキスパンドメタル集電体に圧着したもの
を用いた。
A strip-shaped lithium foil is used as the negative electrode 6, a polypropylene porous film is used as the separator 5, 80% by weight of spinel type lithium manganese oxide (LiMn 2 O 4 ) powder is used as the positive electrode 4, and a conductive material is used. 15% by weight of acetylene black and 5% by weight of a binder (EPT) containing an elastomer composed of a copolymer mainly composed of ethylene-propylene as a main component are mixed together, and further formed into a sheet and pressure-bonded to an expanded metal current collector. What was done was used.

【0030】容器1内の電極群3の上端部近傍には、中
央部が開口した絶縁紙7を配置し、さらに絶縁紙7の上
に、中央部が開口した絶縁封口板8を容器1の上部をか
しめて気密に配置した。
An insulating paper 7 having a central opening is arranged near the upper end of the electrode group 3 in the container 1, and an insulating sealing plate 8 having a central opening is provided on the insulating paper 7. The upper part was crimped and placed airtight.

【0031】絶縁封口板8の中央開口部には、正極端子
9を嵌合した。この正極端子9は、前記電極群3の正極
4に正極リード10を介して接続した。電極群3の負極
6は図示しない負極リードを介して負極端子である前記
容器1に接続した。
The positive electrode terminal 9 was fitted in the central opening of the insulating sealing plate 8. The positive electrode terminal 9 was connected to the positive electrode 4 of the electrode group 3 via a positive electrode lead 10. The negative electrode 6 of the electrode group 3 was connected to the container 1 serving as a negative electrode terminal via a negative electrode lead (not shown).

【0032】本実施例では、このような電極群3等を収
納する容器1内に、0.5モル/l濃度のヘキサフルオ
ロリン酸リチウム(LiPF6 )をエチレンカーボネー
トと2−メチルテトラヒドロフランとの混合溶媒(混合
体積比率50:50)に溶解した組成の非水電解液11
を封入し、非水電解液二次電池を作製した。
In this embodiment, lithium hexafluorophosphate (LiPF 6 ) having a concentration of 0.5 mol / l was mixed with ethylene carbonate and 2-methyltetrahydrofuran in a container 1 containing such an electrode group 3 and the like. Non-aqueous electrolyte solution 11 having a composition dissolved in a mixed solvent (mixing volume ratio 50:50)
Then, a non-aqueous electrolyte secondary battery was produced.

【0033】実施例2 非水電解液として、0.5モル/l 濃度のヘキサフルオ
ロリン酸リチウム(LiPF6 )をエチレンカーボネー
トと2−メチルテトラヒドロフランとテトラヒドロフラ
ンとの混合溶媒(混合体積比率50:25:25)に溶
解したものを用いたほかは、実施例1と同構成の非水電
解液二次電池を作製した。
Example 2 As a non-aqueous electrolytic solution, lithium hexafluorophosphate (LiPF 6 ) having a concentration of 0.5 mol / l was mixed solvent of ethylene carbonate, 2-methyltetrahydrofuran and tetrahydrofuran (mixing volume ratio 50:25). No. 25) was used to prepare a non-aqueous electrolyte secondary battery having the same configuration as in Example 1.

【0034】実施例3 非水電解液として、0.5モル/l 濃度のテトラフルオ
ロホウ酸リチウム(LiBF4 )をエチレンカーボネー
トと2−メチルテトラヒドロフランとの混合溶媒(混合
体積比率50:50)に溶解したものを用いたほかは、
実施例1と同構成の非水電解液二次電池を作製した。
Example 3 As a non-aqueous electrolytic solution, lithium tetrafluoroborate (LiBF 4 ) at a concentration of 0.5 mol / l was added to a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran (mixing volume ratio 50:50). Other than using the dissolved one,
A non-aqueous electrolyte secondary battery having the same structure as in Example 1 was produced.

【0035】実施例4 非水電解液として、0.5モル/l 濃度のテトラフルオ
ロホウ酸リチウム(LiBF4 )をエチレンカーボネー
トと2−メチルテトラヒドロフランとテトラヒドロフラ
ンとの混合溶媒(混合体積比率50:25:25)に溶
解したものを用いたほかは、実施例1と同構成の非水電
解液二次電池を作製した。
Example 4 As a non-aqueous electrolytic solution, lithium tetrafluoroborate (LiBF 4 ) at a concentration of 0.5 mol / l was mixed solvent of ethylene carbonate, 2-methyltetrahydrofuran and tetrahydrofuran (mixing volume ratio 50:25). No. 25) was used to prepare a non-aqueous electrolyte secondary battery having the same configuration as in Example 1.

【0036】比較例1 結着剤として、テフロン粉末を用いたほかは、実施例1
と同様に非水電解液二次電池を作製した。
Comparative Example 1 Example 1 was repeated except that Teflon powder was used as the binder.
A non-aqueous electrolyte secondary battery was prepared in the same manner as in.

【0037】比較例2 非水電解液として、1.0モル/l 濃度の過塩素酸リチ
ウム(LiClO4 )をプロピレンカーボネートと1,
2−ジメトキシエタンとの混合溶媒(混合体積比率5
0:50)に溶解したものを用いたほかは、実施例1と
同構成の非水電解液二次電池を作製した。
Comparative Example 2 As a non-aqueous electrolyte, lithium perchlorate (LiClO 4 ) at a concentration of 1.0 mol / l and propylene carbonate and 1,
Mixed solvent with 2-dimethoxyethane (mixed volume ratio 5
A non-aqueous electrolyte secondary battery having the same structure as in Example 1 was prepared except that the one dissolved in 0:50) was used.

【0038】(評価)このようにして得られた実施例1
〜4及び比較例1〜2で作製したそれぞれの非水電解液
二次電池について、放電容量とサイクル寿命を測定し
た。放電容量及びサイクル寿命の測定は、充電電流10
0mA、放電電流100mAの条件で充放電を繰り返し行っ
た。結果を図2に示す。
(Evaluation) Example 1 thus obtained
4 and Comparative Examples 1 and 2, the discharge capacities and cycle lives of the respective non-aqueous electrolyte secondary batteries were measured. Discharge capacity and cycle life are measured by charging current 10
Charging and discharging were repeated under the conditions of 0 mA and discharge current of 100 mA. The results are shown in Figure 2.

【0039】図2から明らかなように、実施例1〜4で
作製した非水電解液二次電池は、比較例1〜2で作製し
たものに比べ、初期の放電容量では同等の値を示した
が、サイクル寿命では格段に優れていた。特に実施例2
で作製した非水電解液二次電池では、その差が顕著にあ
らわれた。
As is apparent from FIG. 2, the non-aqueous electrolyte secondary batteries produced in Examples 1 to 4 showed equivalent initial discharge capacities as compared with those produced in Comparative Examples 1 and 2. However, the cycle life was remarkably excellent. Especially Example 2
In the non-aqueous electrolyte secondary battery prepared in step 2, the difference was remarkable.

【0040】次に、実施例1〜4で作製したそれぞれの
非水電解液二次電池について、放電電流を100〜10
00mAに増加させたときの放電容量の変化を測定した。
結果を図3に示す。図3のABCDのカーブから明らか
なように、実施例1〜4で作製した非水電解液二次電池
は、放電容量の低下が緩やかで、特に実施例2で作製し
た電解液二次電池では、高電流密度放電を行うことがで
きた。
Next, the discharge current of each of the non-aqueous electrolyte secondary batteries prepared in Examples 1 to 4 was set to 100 to 10.
The change in discharge capacity when increasing to 00 mA was measured.
Results are shown in FIG. As is clear from the ABCD curve in FIG. 3, the non-aqueous electrolyte secondary batteries produced in Examples 1 to 4 showed a gradual decrease in discharge capacity, and particularly in the electrolyte secondary batteries produced in Example 2, It was possible to perform high current density discharge.

【0041】さらに、貯蔵性能の評価として、実施例1
〜4及び比較例2で作製した非水電解液二次電池を、4
5℃で6か月放置し、その非水電解液二次電池につい
て、前記と同様にしてサイクル寿命を測定した。
Furthermore, as an evaluation of storage performance, Example 1 was used.
4 and the non-aqueous electrolyte secondary battery prepared in Comparative Example 2
The sample was left at 5 ° C. for 6 months, and the cycle life of the non-aqueous electrolyte secondary battery was measured in the same manner as above.

【0042】その結果、比較例2で作製した非水電解液
二次電池では、サイクル寿命が、35%減少したが、実
施例1〜4で作製した非水電解液二次電池は、いずれも
10%未満であり、貯蔵性能が優れていた。
As a result, the cycle life of the non-aqueous electrolyte secondary batteries produced in Comparative Example 2 was reduced by 35%, but the non-aqueous electrolyte secondary batteries produced in Examples 1 to 4 were all produced. It was less than 10% and the storage performance was excellent.

【0043】[0043]

【発明の効果】本発明によると、充放電サイクル寿命、
高出力特性、リチウムの充放電効率及び貯蔵性能が優れ
た非水電解液二次電池を提供することができる。
According to the present invention, the charge / discharge cycle life,
It is possible to provide a non-aqueous electrolyte secondary battery having high output characteristics, lithium charge / discharge efficiency, and excellent storage performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の円筒形非水電解液二次電池を示す断面
図である。
FIG. 1 is a cross-sectional view showing a cylindrical non-aqueous electrolyte secondary battery of an example.

【図2】本実施例1〜4及び比較例1〜2で作製した非
水電解液二次電池の充放電サイクル数と放電容量との関
係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity of the non-aqueous electrolyte secondary batteries produced in Examples 1-4 and Comparative Examples 1-2.

【図3】本実施例1〜4で作製した非水電解液二次電池
の放電容量と放電電流との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the discharge capacity and the discharge current of the non-aqueous electrolyte secondary batteries produced in Examples 1-4.

【符号の説明】[Explanation of symbols]

1…ステンレス容器 3…電極群 4…正極 5…セパレータ 6…負極 8…封口板 9…正極端子 11…非水電解液 A…実施例1の非水電解液二次電池 B…実施例2の非水電解液二次電池 C…実施例3の非水電解液二次電池 D…実施例4の非水電解液二次電池 a…比較例1の非水電解液二次電池 b…比較例2の非水電解液二次電池 DESCRIPTION OF SYMBOLS 1 ... Stainless steel container 3 ... Electrode group 4 ... Positive electrode 5 ... Separator 6 ... Negative electrode 8 ... Sealing plate 9 ... Positive electrode terminal 11 ... Nonaqueous electrolytic solution A ... Nonaqueous electrolytic solution secondary battery B of Example 1 ... Nonaqueous Electrolyte Secondary Battery C ... Nonaqueous Electrolyte Secondary Battery of Example 3 D ... Nonaqueous Electrolyte Secondary Battery of Example 4 a ... Nonaqueous Electrolyte Secondary Battery of Comparative Example 1 b ... Comparative Example 2 non-aqueous electrolyte secondary battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能勢 博義 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 (72)発明者 高見 則雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 大崎 隆久 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 山田 修司 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroyoshi Nose, 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo, Toshiba Battery Co., Ltd. (72) Norio Takami, Komukai Toshiba-cho, Kawasaki-shi, Kanagawa Prefecture 1 Incorporated company Toshiba Research Institute (72) Inventor Takahisa Osaki 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research Institute (72) Inventor Shuji Yamada Komukai-Toshiba, Kawasaki-shi, Kanagawa No. 1 Incorporated company Toshiba Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記の負極、正極及び非水電解液を備え
ていることを特徴とする非水電解液二次電池。 A.軽金属又はその合金を活物質とする負極。 B.スピネル型リチウムマンガン酸化物を主体とする活
物質と導電材とエチレン−プロピレンを主体とする共重
合体からなるエラストマーを主成分とする結着材とを含
有する正極。 C.エチレンカーボネートと2−メチルテトラヒドロフ
ランとの混合溶媒又はエチレンカーボネートと2−メチ
ルテトラヒドロフランとテトラヒドロフランとの混合溶
媒に、ヘキサフルオロリン酸リチウム及び/又はテトラ
フルオロホウ酸リチウムを溶解した非水電解液。
1. A non-aqueous electrolyte secondary battery comprising the following negative electrode, positive electrode and non-aqueous electrolyte. A. A negative electrode whose active material is a light metal or its alloy. B. A positive electrode comprising an active material mainly composed of spinel type lithium manganese oxide, a conductive material and a binder mainly composed of an elastomer composed of a copolymer mainly composed of ethylene-propylene. C. A non-aqueous electrolytic solution in which lithium hexafluorophosphate and / or lithium tetrafluoroborate are dissolved in a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran or a mixed solvent of ethylene carbonate, 2-methyltetrahydrofuran and tetrahydrofuran.
JP3233687A 1991-08-22 1991-08-22 Nonaqueous electrolytic secondary battery Pending JPH0554913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233687A JPH0554913A (en) 1991-08-22 1991-08-22 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233687A JPH0554913A (en) 1991-08-22 1991-08-22 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH0554913A true JPH0554913A (en) 1993-03-05

Family

ID=16958970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233687A Pending JPH0554913A (en) 1991-08-22 1991-08-22 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH0554913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480551A (en) * 1993-06-23 1996-01-02 Degremont Process for the biological treatment of water
KR20180067586A (en) * 2015-11-18 2018-06-20 센젠 인스티튜트스 오브 어드밴스트 테크놀로지, 차이니즈 아카데미 오브 사이언시스 Secondary battery and manufacturing method thereof
US11029035B2 (en) 2018-04-03 2021-06-08 Lg Electronics Inc. Oven
CN115051034A (en) * 2022-07-15 2022-09-13 南开大学 Wide-temperature-range sodium ion battery electrolyte

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480551A (en) * 1993-06-23 1996-01-02 Degremont Process for the biological treatment of water
KR20180067586A (en) * 2015-11-18 2018-06-20 센젠 인스티튜트스 오브 어드밴스트 테크놀로지, 차이니즈 아카데미 오브 사이언시스 Secondary battery and manufacturing method thereof
EP3379619A4 (en) * 2015-11-18 2018-10-03 Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Secondary battery and preparation method therefor
US11029035B2 (en) 2018-04-03 2021-06-08 Lg Electronics Inc. Oven
CN115051034A (en) * 2022-07-15 2022-09-13 南开大学 Wide-temperature-range sodium ion battery electrolyte

Similar Documents

Publication Publication Date Title
US6274271B1 (en) Non-aqueous electrolyte lithium secondary battery
KR100439448B1 (en) Aqueous electrolyte and a lithium secondary battery using the same
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH08241731A (en) Organic electrolytic secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
JP2002324584A (en) Flat nonaqueous electrolyte secondary battery with lead terminal
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JPH1021961A (en) Organic electrolyte lithium secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JPH07169504A (en) Nonaqueous electrolytic secondary battery
JP2002025607A (en) Battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees