JPS60208055A - Manufacture of nonaqueous solvent battery - Google Patents

Manufacture of nonaqueous solvent battery

Info

Publication number
JPS60208055A
JPS60208055A JP59063600A JP6360084A JPS60208055A JP S60208055 A JPS60208055 A JP S60208055A JP 59063600 A JP59063600 A JP 59063600A JP 6360084 A JP6360084 A JP 6360084A JP S60208055 A JPS60208055 A JP S60208055A
Authority
JP
Japan
Prior art keywords
battery
discharge
post
positive electrode
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59063600A
Other languages
Japanese (ja)
Other versions
JPH065621B2 (en
Inventor
Takafumi Osaki
大崎 ▲隆▼久
Shuji Yamada
修司 山田
Seiji Mitsuyasu
光安 清司
Yuichi Sato
祐一 佐藤
Yoshiyasu Aoki
青木 良康
Kazuya Hiratsuka
和也 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP59063600A priority Critical patent/JPH065621B2/en
Publication of JPS60208055A publication Critical patent/JPS60208055A/en
Publication of JPH065621B2 publication Critical patent/JPH065621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Abstract

PURPOSE:To obtain a battery whose voltage drop in an initial stage of high rate discharge is small and recovery time of voltage is short by performing a specified capacity of discharge as post-treatment after assembly of a nonaqueous solvent battery. CONSTITUTION:A negative electrode 2 such as lithium and a positive electrode 3 are accommodated into a can 1 with separators 41 and 42 interposed between them, then electrolyte 13 which also serves as positive active material mainly comprising sulfur oxyhalide is put therein to fabricate a nonaqueous solvent battery. After the battery was assembled, preferably within 10 days, the battery is discharged by 0.5-10% of the total discharge capacity by constant current discharge procedure. By this post-treatment, a battery having good discharge performance whose voltage or current is steady is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池の製造方法に関し、特に電池組立
て後の後処理を改良した非水溶媒電池の製造方法に係る
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a non-aqueous solvent battery, and more particularly to a method for manufacturing a non-aqueous battery with improved post-processing after battery assembly.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウム、アルミニウム
等の軽金属を用いた非水溶媒電池はエネルギー密度が大
きく、貯蔵特性に優れ、かつ作動温度範囲が広いという
特長をもつことから、電卓、時計、メモリのノ々ツクア
ップ電池として多用されている。中でも負極にリチウム
を用い、正極活物質として塩化チオニル(SOCl2)
、塩化スルフリル(SO2Cl2)等のイオウのオキシ
ノ10ダン化物を用いた電池は特にエネルギー密度が大
きいために注目されている。こうした電池は炭素及び金
属集電体からなる正極を有し、一般に塩化アルミニウム
(htct3)、臭化アルミニウム(AtBr3 )等
のルイス酸と塩化リチウム、臭化リチウム等のルイス塩
基とを溶解したイオウの液体状オキシノ・ロダン化物を
電解液として用いている。このため、液体状オキシハロ
ゲン化物は正極活物質と電解液との双方を兼用しておシ
、適当な形状の正極を用いることにより高率放電特性の
優れた電池が期待できる。
Nonaqueous solvent batteries that use light metals such as lithium, sodium, and aluminum as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, so they are used in calculators, watches, and memory devices. It is often used as a backup battery. Among them, lithium is used for the negative electrode, and thionyl chloride (SOCl2) is used as the positive electrode active material.
Batteries using sulfur oxynodecadides, such as sulfuryl chloride (SO2Cl2), are attracting attention because of their particularly high energy density. These batteries have a positive electrode made of carbon and a metal current collector, and are generally made of sulfur, which is a mixture of a Lewis acid such as aluminum chloride (HTCT3) or aluminum bromide (AtBr3) and a Lewis base such as lithium chloride or lithium bromide. Liquid oxyno-rhodanide is used as the electrolyte. Therefore, a liquid oxyhalide can be used both as a positive electrode active material and as an electrolyte, and by using a positive electrode with an appropriate shape, a battery with excellent high rate discharge characteristics can be expected.

ところで、上述した電池は正極活物質であるイオウのオ
キシハロゲン化物が負極のリチウムと直接接触している
ため、負極リチウム表面に反応生成物であるLiCt皮
膜が生成される。このLICtIC上、負極リチウムと
オキシハロゲン化物との直接接触を防止する機能を有し
、貯蔵時において電池の容量劣化を防ぐ役割シをする。
By the way, in the above-mentioned battery, since the sulfur oxyhalide which is the positive electrode active material is in direct contact with the lithium of the negative electrode, a LiCt film which is a reaction product is generated on the surface of the negative electrode lithium. This LICtIC has a function of preventing direct contact between the negative electrode lithium and the oxyhalide, and serves to prevent battery capacity deterioration during storage.

しかし、放電時には抵抗成分として働き、放電初期の電
圧降下の原因となる。この電圧降下の程度は放電電流が
μAオーダの微小な場合には無視できる程小さいが、木
・電流放電の場合には無視できず、特に高温で長時間貯
蔵してLICl 皮膜の成長が相当起った後や、低温で
の放電時には、放電開始と共に大幅な電圧降下が生じ、
所定の電圧に回復するまでかなりの時間を必要とする問
題があった。
However, during discharge, it acts as a resistance component and causes a voltage drop in the early stage of discharge. The degree of this voltage drop is negligible when the discharge current is minute on the μA order, but it cannot be ignored in the case of wood/current discharge, and especially when stored at high temperatures for long periods of time, the growth of the LICl film can occur considerably. After discharge or during discharge at low temperatures, a significant voltage drop occurs at the beginning of discharge.
There was a problem in that it required a considerable amount of time to recover to a predetermined voltage.

〔発明の目的〕[Purpose of the invention]

本発明は大電流放電初期においても電圧降下が小さく、
かつ電圧の回復時間が短かい非水溶媒電池の製造方法を
提供しようとするものである。
The present invention has a small voltage drop even at the initial stage of large current discharge,
The present invention also aims to provide a method for manufacturing a non-aqueous solvent battery that has a short voltage recovery time.

〔発明の概要〕 本発明は電池容器内にリチウム等の軽金属からなる負極
と正極とをセパレータを介して収納し、かつ該容器内に
イオウのオキシハロゲン化物を主成分とする正極活物質
を兼ねる電解液を収容した構造の非水溶媒電池の製造に
おいて、前記電池の組立て後、電池の全放電容量のO1
5〜10チの放電を後処理として行なうことを特徴とす
るものである。かかる本発明方法によれば、貯蔵後に大
電流放電を行なっても大幅な電圧降下を示さず、かつ電
圧の回復時間も短かい非水溶媒電池を得ることができる
。このように優れた特性を発揮できるのは、放電反応生
成物がリチウム負極上のLiCt皮膜の成長に対して抑
制作用を示すことに起因するものと考えられる。
[Summary of the Invention] The present invention stores a negative electrode and a positive electrode made of a light metal such as lithium in a battery container with a separator interposed therebetween, and the container also serves as a positive electrode active material mainly composed of sulfur oxyhalide. In manufacturing a nonaqueous solvent battery having a structure containing an electrolyte, after assembling the battery, O1 of the total discharge capacity of the battery is
This method is characterized by performing 5 to 10 discharges as a post-treatment. According to the method of the present invention, it is possible to obtain a non-aqueous solvent battery that does not show a significant voltage drop even when subjected to large current discharge after storage and has a short voltage recovery time. The reason why such excellent characteristics can be exhibited is considered to be that the discharge reaction product exhibits an inhibitory effect on the growth of the LiCt film on the lithium negative electrode.

また、前記後処理を行なうことによって、電圧値や電流
値が一定に揃った幸定した特性を有する電池を供給でき
る効果も期待できる。
Moreover, by performing the above-mentioned post-processing, it can be expected that a battery having stable characteristics with constant voltage and current values can be supplied.

上記後処理時の放電容量を限定した理由は、その放電容
量倉電池の全放電容量に対し0.5%未満にすると、後
処理による電圧降下抑制効果を十分に発揮できず、かと
いってその放電容量が10チを越えると、前記効果が増
大せず、電池寿命の点でマイナスとなるからである・こ
うした後処理は、電池の組立て後、10日以内に行なう
ことが望ましい。この理由は、10日を越える長い日数
の経過後に後処理を行なっても電圧降下の抑制作用を充
分に発揮できなくなる恐れがある。
The reason for limiting the discharge capacity during the above post-treatment is that if the discharge capacity is less than 0.5% of the total discharge capacity of the battery, the post-treatment will not be able to sufficiently suppress the voltage drop. This is because if the discharge capacity exceeds 10 inches, the above-mentioned effect will not increase and the battery life will be negative. It is desirable that such post-treatment be performed within 10 days after the battery is assembled. The reason for this is that even if post-treatment is performed after a long period of time exceeding 10 days, the voltage drop suppressing effect may not be sufficiently exerted.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の実施例を図面を参照して詳細に説明する
Next, embodiments of the present invention will be described in detail with reference to the drawings.

実施例1〜4 まず、負極端子を兼ねる上面が開口されたステンレス族
の有底円筒状をなす缶体1内に金属リチウムから女る筒
状の負極2を圧着した。つづいて、前記缶体)の負極2
の内側に正極3を該負極2内面及び前記缶体1底面に配
置されたガラス繊維製不織布からなる七ノやレータ’l
 +4、を介して配設した。この正極3はポリテトラフ
ロロエチレンを結合剤としたカーゼンブラックからなる
筒状の多孔質炭素体5と、該多孔質炭素体5の中空部内
面に配置された筒状の金網からなる金属集電体6とから
構成されている。
Examples 1 to 4 First, a cylindrical negative electrode 2 made of metallic lithium was crimped into a bottomed cylindrical stainless steel can body 1 with an open upper surface that also served as a negative electrode terminal. Next, the negative electrode 2 of the can body)
A positive electrode 3 is disposed inside the negative electrode 2 and a nanolayer plate made of a nonwoven glass fiber fabric is placed on the inner surface of the negative electrode 2 and the bottom surface of the can body 1.
+4. This positive electrode 3 consists of a cylindrical porous carbon body 5 made of carzen black using polytetrafluoroethylene as a binder, and a metal collection consisting of a cylindrical wire mesh placed inside the hollow part of the porous carbon body 5. It is composed of an electric body 6.

こうした正極3は、例えば市販のポリテトラフロロエチ
レンの乳濁液をブー4レンブラツクに10wt%の割合
で配合し、水及びエチルアルコールを添加して室温で2
時間攪拌した後、混練し、二、ケル製金網からなる金属
集電体6を圧着し、該集電体6が内側になるように筒状
体とし、更に150℃の真空下で乾燥して混線シートを
多孔質炭素体5とすることによシ作製される。
Such a positive electrode 3 can be prepared, for example, by blending a commercially available polytetrafluoroethylene emulsion into a Boolean black at a ratio of 10 wt%, adding water and ethyl alcohol, and then adding water and ethyl alcohol to the mixture at room temperature.
After stirring for a period of time, kneading is carried out. 2. A metal current collector 6 made of KEL wire mesh is crimped to form a cylindrical body with the current collector 6 facing inside, and then dried under vacuum at 150°C. It is produced by using the porous carbon body 5 as the crosstalk sheet.

次いで、前記缶体1内のセパレータ4□の上部に中央に
穴を有する絶縁紙7を収納、支持した。つづいて、中央
に穴8を有し、ここに金属−ガラス製シール材9を介し
て注液用のステンレスパイプからなる正極端子10が挿
着されたステンレス族の蓋体11を用意し、この俗体1
1の正極端子10下端にリード線12を接続し、該リー
ド線12の他端を前記缶体1内の金属集電体6に接続し
た後、該蓋体IIを缶体ノの上部開口部に嵌合した。ひ
きつづき、レーデ溶接管により缶体J内の上端開口部と
嵌合された蓋体11とを溶着して、蓋体1ノを液密に封
目した。
Next, an insulating paper 7 having a hole in the center was housed and supported above the separator 4□ in the can body 1. Next, a lid body 11 made of stainless steel, which has a hole 8 in the center and into which a positive terminal 10 made of a stainless steel pipe for liquid injection is inserted through a metal-glass sealing material 9, is prepared. Common form 1
After connecting the lead wire 12 to the lower end of the positive electrode terminal 10 of the can body 1 and connecting the other end of the lead wire 12 to the metal current collector 6 inside the can body 1, the lid body II is inserted into the upper opening of the can body. mated to. Subsequently, the upper end opening in the can body J and the fitted lid 11 were welded using a Rede welding tube to seal the lid 1 in a liquid-tight manner.

次いで、前記蓋体1ノのパイプ状正極端子10から電解
液を注入し、缶体1内に電解液J3を収容した。この電
解液としては塩化チオニル(5ocz2)に塩化・アル
ミニウム(htct5)と塩化リチウム(LICt)と
を夫々1.5モyb/を溶解したものを用いた。つづい
て、前記・ぐイブ状の正極端子10にステンレス製の封
体14を挿入し、正極端子10先端と封体14とをレー
ザ溶接して該端子JOの孔を封口して電池を組立てた。
Next, an electrolytic solution was injected from the pipe-shaped positive electrode terminal 10 of the lid 1, and the electrolytic solution J3 was accommodated in the can body 1. The electrolytic solution used was one in which 1.5 moyb/aluminum chloride (htct5) and lithium chloride (LICt) were each dissolved in thionyl chloride (5ocz2). Next, a stainless steel envelope 14 was inserted into the tube-shaped positive terminal 10, and the tip of the positive terminal 10 and the envelope 14 were laser welded to seal the hole of the terminal JO to assemble the battery. .

次いで、組立て後10日以内に得られた電池4個を定電
流放電装置にセットし、50 mA定電流放電にて電流
の全放電容量の夫々0.5%。
Next, four batteries obtained within 10 days after assembly were set in a constant current discharge device, and each battery was discharged at a constant current of 50 mA to 0.5% of the total discharge capacity.

2.5%、5チ、10チの放電を行ない4種類の電池を
製造した。
Four types of batteries were manufactured by performing discharges of 2.5%, 5chi, and 10chi.

比較例 電池組立後、放電による後処理を行なわ々い以外、実施
例と同構造の電池を製造した。
Comparative Example A battery having the same structure as that of the example was manufactured except that no post-treatment by discharging was performed after battery assembly.

しかして、本実施例1〜4及び比較例の電池について、
製造後25℃で3チ月間貯蔵した後、30Ωの定抵抗放
電を行ない放電開始後、電圧が3.Ovに回復するまで
の時間を測定したところ、下記表に示す結果を得た。な
お、同表中には、参照例1,2として、電池組立後、実
施例と同様々定電流放電装置を用いて電池の全放電容量
の夫々0.2fi、12%の放電を行なうことにより製
造した電池についても併記した。
Therefore, regarding the batteries of Examples 1 to 4 and Comparative Example,
After being stored at 25°C for 3 months after manufacture, a constant resistance discharge of 30Ω was performed, and after the discharge started, the voltage was 3. When the time taken to recover to Ov was measured, the results shown in the table below were obtained. In addition, in the same table, as Reference Examples 1 and 2, after battery assembly, by discharging 0.2fi and 12% of the total discharge capacity of the battery using the same constant current discharge device as in the example, The manufactured batteries are also listed.

上表よシ明らかな如く、電池組立て後に放電による後処
理を施した本実施例1〜4及び参照例1,2の電池は後
処理を行なわない電池(比較例)に比べて電圧の回復時
間が短かくなることがわかる。また、本実施への如く放
電容量を05〜10%とした場合、参照例IK比べて回
ゆ時間が5秒以内と格段に優れている。なお、放電容量
を12チとした電池(参照例2)f′i放電容量を10
チとした本実施例4の電池と電圧の回復時間が同等で、
10%を越える放電を行なりても電圧の回復時間が変わ
らず、参照例2の電池は寿命の点で不利であることがわ
かる。
As is clear from the table above, the batteries of Examples 1 to 4 and Reference Examples 1 and 2, which were subjected to post-treatment by discharging after battery assembly, had a shorter voltage recovery time than the batteries that were not subjected to post-treatment (comparative example). It can be seen that it becomes shorter. Further, when the discharge capacity is set to 05 to 10% as in the present embodiment, the rotation time is within 5 seconds, which is significantly superior to that of the reference example IK. In addition, a battery with a discharge capacity of 12 inches (Reference Example 2) f'i discharge capacity of 10
The voltage recovery time is the same as that of the battery of Example 4, which was
It can be seen that the voltage recovery time does not change even after discharging more than 10%, indicating that the battery of Reference Example 2 is disadvantageous in terms of service life.

また、放電開始時の電圧降下は、比較例の電池tiO,
9Vまで降下するのに対し、本実施例2(放電割合2.
5%)O電池は2.55Vまでしか降下せず、電圧降下
も小さいことがわかった。
In addition, the voltage drop at the start of discharge is as follows:
9V, whereas in Example 2 (discharge rate 2.
It was found that the voltage drop of the 5%) O battery only dropped to 2.55V, and the voltage drop was small.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば大電流放電初期にお
いても電圧降下を抑制し、かつ電圧の回復時間も短縮で
きる等初期放電特性の優れた非水溶媒電池の製造方法を
提供できる。
As detailed above, according to the present invention, it is possible to provide a method for manufacturing a non-aqueous solvent battery that has excellent initial discharge characteristics, such as suppressing voltage drop and shortening voltage recovery time even at the initial stage of large current discharge.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例で組立てられた非水溶媒電池の断面
図である。 l・・・缶体、2・・・負極、3・・・正極、’I+1
!・・・セパレータ、5・・・多一孔質炭素体、6・・
・金属集電体、10・・・パイプ状の正極端子、1ノ・
・・蓋体、J3・・・電解液。 出願人代理人 弁理士 鈴 江 武 彦第1頁の続き 0発明者 佐原 祐− [相]発明者青木 良康 @発明者平塚 和也
The figure is a sectional view of a non-aqueous solvent battery assembled in an embodiment of the present invention. l... Can body, 2... Negative electrode, 3... Positive electrode, 'I+1
! ... Separator, 5... Porous carbon body, 6...
・Metal current collector, 10...pipe-shaped positive electrode terminal, 1 no.
... Lid, J3... Electrolyte. Applicant's representative Patent attorney Takehiko Suzue Continued from page 1 0 Inventor Yu Sahara - [Partner] Inventor Yoshiyasu Aoki @ Inventor Kazuya Hiratsuka

Claims (1)

【特許請求の範囲】[Claims] 電池容器内に軽金属からなる負極と正極とをセパレータ
を介して収納し、かつ該容器内にイオウのオキシハロダ
ン化物を主成分とする正極活物質を兼ねる電−!!IQ
を収容した構造の非水溶媒電池の製造において、前記電
池の組立て後、電池の全放電容量の0.5〜10%の放
電を後処理として行なうことを特徴とする非水溶媒電池
の製造方法。
A negative electrode and a positive electrode made of a light metal are housed in a battery container with a separator interposed therebetween, and an electrode which also serves as a positive electrode active material whose main component is sulfur oxyhalodanide is placed in the container! ! IQ
A method for manufacturing a non-aqueous solvent battery, characterized in that after the battery is assembled, a discharge of 0.5 to 10% of the total discharge capacity of the battery is performed as a post-treatment. .
JP59063600A 1984-03-31 1984-03-31 Method for manufacturing non-aqueous solvent battery Expired - Fee Related JPH065621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063600A JPH065621B2 (en) 1984-03-31 1984-03-31 Method for manufacturing non-aqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063600A JPH065621B2 (en) 1984-03-31 1984-03-31 Method for manufacturing non-aqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS60208055A true JPS60208055A (en) 1985-10-19
JPH065621B2 JPH065621B2 (en) 1994-01-19

Family

ID=13233928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063600A Expired - Fee Related JPH065621B2 (en) 1984-03-31 1984-03-31 Method for manufacturing non-aqueous solvent battery

Country Status (1)

Country Link
JP (1) JPH065621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142867A (en) * 1984-08-06 1986-03-01 Hitachi Maxell Ltd Inorganic nonaqueous electrolyte battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199180A (en) * 1981-06-03 1982-12-07 Toshiba Battery Co Ltd Manufacturing method of organic solvent battery
JPS58194260A (en) * 1982-05-07 1983-11-12 Matsushita Electric Ind Co Ltd Manufacturing method for battery
JPS58209067A (en) * 1982-05-28 1983-12-05 Toshiba Corp Battery
JPS58209069A (en) * 1982-05-31 1983-12-05 Toshiba Corp Battery
JPS59154768A (en) * 1983-02-22 1984-09-03 Japan Storage Battery Co Ltd Method for using thionylchloride-lithic battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199180A (en) * 1981-06-03 1982-12-07 Toshiba Battery Co Ltd Manufacturing method of organic solvent battery
JPS58194260A (en) * 1982-05-07 1983-11-12 Matsushita Electric Ind Co Ltd Manufacturing method for battery
JPS58209067A (en) * 1982-05-28 1983-12-05 Toshiba Corp Battery
JPS58209069A (en) * 1982-05-31 1983-12-05 Toshiba Corp Battery
JPS59154768A (en) * 1983-02-22 1984-09-03 Japan Storage Battery Co Ltd Method for using thionylchloride-lithic battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142867A (en) * 1984-08-06 1986-03-01 Hitachi Maxell Ltd Inorganic nonaqueous electrolyte battery
JPH0570269B2 (en) * 1984-08-06 1993-10-04 Hitachi Maxell

Also Published As

Publication number Publication date
JPH065621B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JPS60208055A (en) Manufacture of nonaqueous solvent battery
US4228228A (en) Electrode structure for energy cells
JPS60249252A (en) Nonaqueous solvent battery
JPS60249253A (en) Nonaqueous solvent battery
JPS6182674A (en) Nonaqueous solvent battery
JPS61190863A (en) Nonaqueous solvent battery
JPS6154160A (en) Nonaqueous solvent battery
JPS6182673A (en) Nonaqueous solvent battery
JP2980618B2 (en) Organic electrolyte primary battery
JPH1064551A (en) Inorganic nonaqueous solvent battery
JPS59171470A (en) Nonaqueous solvent battery
JPH0713898B2 (en) Non-aqueous solvent battery
JPH0318308B2 (en)
JPH0560228B2 (en)
JPH0439187B2 (en)
JPS60200464A (en) Nonaqueous-solvent cell
JPH0532867B2 (en)
JPS59160974A (en) Nonaqueous solvent battery
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPS6269466A (en) Nonaqueous-solvent battery
JPH10284038A (en) Nonaqueous solvent battery
JPH04192262A (en) Thionyl chloride lithium cell
JPS60205969A (en) Nonaqueous solvent battery
JPS61190864A (en) Nonaqueous solvent battery
JPS58209068A (en) Battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees