JP2019106284A - Zinc battery negative electrode and zinc battery - Google Patents

Zinc battery negative electrode and zinc battery Download PDF

Info

Publication number
JP2019106284A
JP2019106284A JP2017237848A JP2017237848A JP2019106284A JP 2019106284 A JP2019106284 A JP 2019106284A JP 2017237848 A JP2017237848 A JP 2017237848A JP 2017237848 A JP2017237848 A JP 2017237848A JP 2019106284 A JP2019106284 A JP 2019106284A
Authority
JP
Japan
Prior art keywords
negative electrode
zinc
zinc battery
mass
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017237848A
Other languages
Japanese (ja)
Inventor
亮二 大坪
Ryoji Otsubo
亮二 大坪
美枝 阿部
Mie Abe
美枝 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017237848A priority Critical patent/JP2019106284A/en
Publication of JP2019106284A publication Critical patent/JP2019106284A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a zinc battery negative electrode capable of obtaining excellent life performance, and a zinc battery including the same.SOLUTION: The zinc battery negative electrode has a negative electrode material containing an active material containing zinc and a ferroelectric substance. The zinc battery includes the same.SELECTED DRAWING: None

Description

本発明は、亜鉛電池用負極及び亜鉛電池に関する。   The present invention relates to a zinc battery negative electrode and a zinc battery.

亜鉛負極を用いる亜鉛電池としては、ニッケル亜鉛電池、空気亜鉛電池、銀亜鉛電池等が知られている。例えば、ニッケル亜鉛電池は、水酸化カリウム水溶液等の水系電解液を用いる水系電池であることから、高い安全性を有すると共に、亜鉛電極とニッケル電極との組み合わせにより、水系電池としては高い起電力を有することが知られている。さらに、ニッケル亜鉛電池は、優れた入出力性能に加えて、低コストであることから、産業用途(例えば、バックアップ電源等の用途)及び自動車用途(例えば、ハイブリッド自動車等の用途)への適用可能性が検討されている。   As zinc batteries using zinc negative electrodes, nickel zinc batteries, air zinc batteries, silver zinc batteries and the like are known. For example, since a nickel zinc battery is a water based battery using a water based electrolyte such as a potassium hydroxide aqueous solution, it has high safety, and a combination of a zinc electrode and a nickel electrode makes it possible to obtain a high electromotive force as a water based battery. It is known to have. Furthermore, nickel zinc batteries are applicable to industrial applications (for example, applications such as backup power supplies) and automotive applications (for example, applications such as hybrid vehicles) due to their low cost in addition to excellent input / output performance. Sex is being considered.

ニッケル亜鉛電池の充放電反応は、例えば、下記式に従って進行する(放電反応:右向き、充電反応:左向き)。
(正極)2NiOOH+2HO+2e → 2Ni(OH)+2OH
(負極)Zn+2OH → Zn(OH)+2e
The charge / discharge reaction of the nickel zinc battery proceeds, for example, according to the following formula (discharge reaction: rightward, charge reaction: leftward).
(Positive electrode) 2NiOOH + 2H 2 O + 2e - → 2Ni (OH) 2 + 2OH -
(Negative electrode) Zn + 2OH - → Zn ( OH) 2 + 2e -

前記式に示されるように、亜鉛電池では、放電反応により水酸化亜鉛(Zn(OH))が生成する。水酸化亜鉛は電解液に可溶であり、水酸化亜鉛が電解液に溶解すると、テトラヒドロキシド亜鉛酸イオン([Zn(OH)2−)が電解液中に拡散する。その結果、負極の形態変化が進行すると共に充電電流の分布が不均一となること等により、負極上の局所で亜鉛の析出が起こり、デンドライト(樹枝状結晶)が発生する。亜鉛電池では、充放電の繰り返しによりデンドライトが成長した場合、デンドライトがセパレータを貫通して短絡が発生することにより寿命性能が劣化する場合がある(例えば、下記特許文献1参照)。 As shown in the above formula, in a zinc battery, zinc hydroxide (Zn (OH) 2 ) is generated by a discharge reaction. Zinc hydroxide is soluble in the electrolyte, and when zinc hydroxide is dissolved in the electrolyte, tetrahydroxy zincate ions ([Zn (OH) 4 ] 2− ) diffuse into the electrolyte. As a result, the morphological change of the negative electrode progresses and the distribution of the charging current becomes uneven, and the like, precipitation of zinc occurs locally on the negative electrode, and dendrites (dendrite crystals) are generated. In a zinc battery, when dendrite grows due to repeated charging and discharging, the dendrite may penetrate the separator and a short circuit may occur to deteriorate the life performance (for example, see Patent Document 1 below).

特開昭58−126665号公報JP-A-58-126665

このような亜鉛電池に対しては、寿命性能を改善することが求められる。   For such zinc batteries, it is required to improve the life performance.

本発明は、前記事情に鑑みてなされたものであり、優れた寿命性能を得ることが可能な亜鉛電池用負極、及び、当該負極を備える亜鉛電池を提供することを目的とする。   This invention is made in view of the said situation, and it aims at providing the zinc battery negative electrode which can obtain the outstanding lifetime performance, and the zinc battery provided with the said negative electrode.

本発明に係る亜鉛電池用負極は、亜鉛を含む活物質と、強誘電体と、を含有する負極材を有する。   The negative electrode for a zinc battery according to the present invention has a negative electrode material containing an active material containing zinc and a ferroelectric.

本発明に係る亜鉛電池用負極によれば、亜鉛電池において優れた寿命性能を得ることができる。   According to the negative electrode for a zinc battery according to the present invention, excellent life performance can be obtained in the zinc battery.

前記強誘電体は、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、ジルコン酸バリウム、ジルコン酸カルシウム、及び、ジルコン酸ストロンチウムからなる群より選ばれる少なくとも一種を含むことが好ましく、チタン酸バリウムを含むことがより好ましい。   The ferroelectric preferably includes at least one selected from the group consisting of barium titanate, calcium titanate, strontium titanate, barium zirconate, calcium zirconate, and strontium zirconate, and includes barium titanate. Is more preferred.

前記強誘電体の含有量は、前記負極材の全質量を基準として50質量%以下であることが好ましい。   The content of the ferroelectric is preferably 50% by mass or less based on the total mass of the negative electrode material.

本発明に係る亜鉛電池は、上述の亜鉛電池用負極を備える。   The zinc battery according to the present invention comprises the above-described zinc battery negative electrode.

本発明によれば、亜鉛電池において優れた寿命性能を得ることができる。   According to the present invention, excellent life performance can be obtained in a zinc battery.

本発明の効果が得られる要因の一例を説明するための図である。It is a figure for demonstrating an example of the factor from which the effect of this invention is acquired. 本発明の効果が得られる要因の一例を説明するための図である。It is a figure for demonstrating an example of the factor from which the effect of this invention is acquired. 寿命性能の評価結果を示す図である。It is a figure which shows the evaluation result of lifetime performance. 放電性能の評価結果を示す図である。It is a figure which shows the evaluation result of discharge performance.

以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the present invention.

本実施形態に係る亜鉛電池(例えば亜鉛二次電池)としては、ニッケル亜鉛電池、空気亜鉛電池、銀亜鉛電池等が挙げられる。本実施形態に係る亜鉛電池の基本構成としては、従来の亜鉛電池と同様の構成を用いることができる。   Examples of zinc batteries (for example, zinc secondary batteries) according to the present embodiment include nickel zinc batteries, air zinc batteries, silver zinc batteries and the like. As a basic composition of a zinc battery concerning this embodiment, composition same as a conventional zinc battery can be used.

本実施形態に係る亜鉛電池における負極(亜鉛電池用負極)は、亜鉛を含む活物質と、強誘電体と、を含有する負極材を有している。このような負極を用いることにより、亜鉛電池において優れた寿命性能を得ることができる。このような効果が得られる原因は明らかではないが、本発明者らは下記のように推察している。なお、図1及び図2は、本発明の効果が得られる要因の一例を説明するための図である。図1及び図2において、符号1は負極を示し、符号1aは負極集電体を示し、符号1bは負極材を示す。符号2はセパレータを示す。符号3は正極を示す。図1及び図2は、負極材における強誘電体の有無が異なる。   The negative electrode (negative electrode for zinc battery) in the zinc battery according to the present embodiment has a negative electrode material containing an active material containing zinc and a ferroelectric. By using such a negative electrode, excellent life performance can be obtained in a zinc battery. Although the cause by which such an effect is acquired is not clear, the present inventors guess as follows. FIG. 1 and FIG. 2 are diagrams for explaining an example of factors that can obtain the effects of the present invention. In FIG.1 and FIG.2, the code | symbol 1 shows a negative electrode, the code | symbol 1a shows a negative electrode collector, and the code | symbol 1b shows a negative electrode material. The code | symbol 2 shows a separator. The code | symbol 3 shows a positive electrode. 1 and 2 differ in the presence or absence of the ferroelectric in the negative electrode material.

すなわち、亜鉛電池の負極では、放電反応によって水酸化亜鉛(Zn(OH))が生成する。そして、水酸化亜鉛が電解液に溶解すると、テトラヒドロキシド亜鉛酸イオン([Zn(OH)2−)が生成する。ここで、テトラヒドロキシド亜鉛酸イオンが拡散して大きく移動可能である場合、充放電サイクルの進行に伴い、図1に示すように、負極の外部にテトラヒドロキシド亜鉛酸イオンが拡散すること、及び、電解液中のテトラヒドロキシド亜鉛酸イオンから水酸化亜鉛や亜鉛が負極材の一部(図1では、負極材の下方の端部)に局所的に析出して負極活物質の脱落が生じることがある。この場合、充放電サイクルの進行に伴い負極活物質の損失によって容量が低下するため、寿命性能が劣化する。 That is, in the negative electrode of a zinc battery, zinc hydroxide (Zn (OH) 2 ) is generated by a discharge reaction. Then, when zinc hydroxide is dissolved in the electrolytic solution, tetrahydroxyzinc acid ion ([Zn (OH) 4 ] 2− ) is generated. Here, in the case where the tetrahydroxy zincate ion is diffused and can be largely moved, the tetra hydroxide zincate ion is diffused to the outside of the negative electrode as shown in FIG. 1 as the charge and discharge cycle progresses, It is possible that zinc hydroxide or zinc is locally deposited on a part of the negative electrode material (in FIG. 1, the lower end of the negative electrode material) from tetrahydroxyzinc acid ion in the electrolytic solution to cause the negative electrode active material to fall off. is there. In this case, the capacity decreases due to the loss of the negative electrode active material as the charge and discharge cycles progress, and the life performance is degraded.

一方、本実施形態に係る亜鉛電池では、負極材が強誘電体を含有している。強誘電体(例えば強誘電体粒子)において分極が生じると、強誘電体の一方の表面側に正電荷が生じ、強誘電体の他方の表面(前記一方の表面とは反対側の表面)側に負電荷が生じる。このような強誘電体が負極材において存在していると、負極で生成するテトラヒドロキシド亜鉛酸イオンが誘電体における正電荷側の表面に吸着することから、図2に示すように、テトラヒドロキシド亜鉛酸イオンが拡散して大きく移動することが抑制される。これにより、負極活物質が損失することが抑制されるため、優れた寿命性能を得ることができる。   On the other hand, in the zinc battery according to the present embodiment, the negative electrode material contains a ferroelectric. When polarization occurs in a ferroelectric (for example, a ferroelectric particle), a positive charge is generated on one surface side of the ferroelectric, and the other surface of the ferroelectric (the surface opposite to the one surface) side Negative charge occurs on the When such a ferroelectric is present in the negative electrode material, the tetrahydroxy zincate ion generated at the negative electrode is adsorbed on the surface on the positive charge side of the dielectric, as shown in FIG. It is suppressed that the acid ion diffuses and moves largely. As a result, loss of the negative electrode active material is suppressed, so that excellent life performance can be obtained.

以下、本実施形態に係る亜鉛電池の一例として、ニッケル亜鉛電池について説明する。   Hereinafter, a nickel zinc battery will be described as an example of the zinc battery according to the present embodiment.

本実施形態に係る亜鉛電池は、例えば、電槽、電解液及び電極群(例えば極板群)を備えている。電極群及び電解液は、電槽内に収容されている。本実施形態に係る亜鉛電池は、化成前及び化成後のいずれであってもよい。   The zinc battery according to the present embodiment includes, for example, a battery case, an electrolytic solution, and an electrode assembly (for example, an electrode plate assembly). The electrode group and the electrolytic solution are contained in the battery case. The zinc battery according to the present embodiment may be either before or after formation.

電解液は、例えば、溶媒及び電解質を含有している。溶媒としては、水(例えばイオン交換水)等が挙げられる。電解質としては、塩基性化合物等が挙げられ、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)等のアルカリ金属水酸化物などが挙げられる。本実施形態に係る亜鉛電池は、アルカリ電解液を用いたアルカリ亜鉛電池として用いることができる。電解液は、溶媒及び電解質以外の成分を含有してもよく、例えば、リン酸カリウム、フッ化カリウム、炭酸カリウム、リン酸ナトリウム、フッ化ナトリウム、酸化亜鉛、酸化アンチモン、二酸化チタン等を含有してもよい。   The electrolytic solution contains, for example, a solvent and an electrolyte. Examples of the solvent include water (for example, ion exchanged water) and the like. As an electrolyte, a basic compound etc. are mentioned, Alkali metal hydroxides, such as potassium hydroxide (KOH), sodium hydroxide (NaOH), lithium hydroxide (LiOH), etc. are mentioned. The zinc battery according to the present embodiment can be used as an alkaline zinc battery using an alkaline electrolyte. The electrolytic solution may contain components other than the solvent and the electrolyte, and for example, contains potassium phosphate, potassium fluoride, potassium carbonate, sodium phosphate, sodium fluoride, zinc oxide, antimony oxide, titanium dioxide, etc. May be

電極群は、例えば、セパレータと、当該セパレータを介して対向する正極(正極板等)及び負極(負極板等)によって構成されている。電極群において、正極同士及び負極同士は、例えば、ストラップで連結されている。   The electrode group includes, for example, a separator, and a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like) facing each other via the separator. In the electrode group, the positive electrodes and the negative electrodes are connected by, for example, a strap.

セパレータは、例えば、平板状、シート状等の形状を有するセパレータであってもよい。セパレータとしては、ポリオレフィン系微多孔膜、ナイロン系微多孔膜、耐酸化性のイオン交換樹脂膜、セロハン系再生樹脂膜、無機−有機セパレータ、ポリオレフィン系不織布等が挙げられる。   The separator may be, for example, a separator having a flat plate shape, a sheet shape or the like. Examples of the separator include polyolefin-based microporous membranes, nylon-based microporous membranes, oxidation-resistant ion exchange resin membranes, cellophane-based regenerated resin membranes, inorganic-organic separators, and polyolefin-based nonwoven fabrics.

正極は、例えば、正極集電体と、当該正極集電体に支持された正極材と、を有している。   The positive electrode includes, for example, a positive electrode current collector and a positive electrode material supported by the positive electrode current collector.

正極集電体は、正極材からの電流の導電路を構成する。正極集電体は、例えば、平板状、シート状等の形状を有している。正極集電体は、発泡金属、エキスパンドメタル、パンチングメタル、金属繊維のフェルト状物等によって構成された3次元網目構造の集電体などであってもよい。正極集電体は、導電性及び耐アルカリ性を有する材料で構成されている。このような材料としては、例えば、正極の反応電位でも安定である材料(正極の反応電位よりも貴な酸化還元電位を有する材料、アルカリ水溶液中で基材表面に酸化被膜等の保護被膜を形成して安定化する材料など)を用いることができる。また、正極においては、副反応として電解液の分解反応が進行し酸素が発生するが、酸素過電圧の高い材料はこのような副反応の進行を抑制できる点で好ましい。正極集電体を構成する材料の具体例としては、白金、ニッケル、ニッケル等のメッキを施した金属材料(銅、真鍮、鋼等)などが挙げられる。   The positive electrode current collector constitutes a conductive path for current from the positive electrode material. The positive electrode current collector has, for example, a flat plate shape, a sheet shape or the like. The positive electrode current collector may be a current collector having a three-dimensional network structure formed of a foam metal, an expanded metal, a punching metal, a felt of a metal fiber, or the like. The positive electrode current collector is made of a material having conductivity and alkali resistance. As such a material, for example, a material which is stable even at the reaction potential of the positive electrode (a material having a redox potential nobler than the reaction potential of the positive electrode, a protective coating such as an oxide film is formed on the substrate surface in an alkaline aqueous solution) And the like) can be used. Further, in the positive electrode, decomposition reaction of the electrolytic solution proceeds as a side reaction to generate oxygen, but a material having a high oxygen overvoltage is preferable in that the progress of such a side reaction can be suppressed. Specific examples of the material constituting the positive electrode current collector include metal materials plated with platinum, nickel, nickel and the like (copper, brass, steel and the like), and the like.

正極材は、層状(正極材層)であってもよい。例えば、正極集電体上に正極材層が形成されていてもよく、正極集電体が3次元網目構造を有する場合には、正極集電体の網目の間に正極材が充填されて正極材層が形成されていてもよい。   The positive electrode material may be layered (positive electrode material layer). For example, the positive electrode material layer may be formed on the positive electrode current collector, and when the positive electrode current collector has a three-dimensional network structure, the positive electrode material is filled between the meshes of the positive electrode current collector. A material layer may be formed.

正極材は、正極活物質を含有する。正極活物質としては、オキシ水酸化ニッケル(NiOOH)、水酸化ニッケル等が挙げられる。正極材は、例えば、満充電状態ではオキシ水酸化ニッケルを含有し、放電末状態では水酸化ニッケルを含有する。正極活物質の含有量は、例えば、正極材の全質量を基準として50〜95質量%であってもよい。   The positive electrode material contains a positive electrode active material. Examples of the positive electrode active material include nickel oxyhydroxide (NiOOH) and nickel hydroxide. The positive electrode material contains, for example, nickel oxyhydroxide in a fully charged state, and contains nickel hydroxide in a discharged state. The content of the positive electrode active material may be, for example, 50 to 95% by mass based on the total mass of the positive electrode material.

正極材は、添加剤を含有することができる。添加剤としては、結着剤等が挙げられる。結着剤としては、親水性又は疎水性のポリマー等が挙げられ、ヒドロキシプロピルメチルセルロース(HPMC)、カルボキシメチルセルロース(CMC)、ポリアクリル酸ナトリウム(SPA)、フッ素系ポリマー(ポリテトラフルオロエチレン(PTFE)等)などが挙げられる。結着剤の含有量は、例えば、正極活物質100質量部に対して0.01〜5質量部であってもよい。   The positive electrode material can contain an additive. As an additive, a binder etc. are mentioned. Examples of the binder include hydrophilic or hydrophobic polymers, and hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose (CMC), sodium polyacrylate (SPA), and fluorine-based polymer (polytetrafluoroethylene (PTFE) Etc.). The content of the binder may be, for example, 0.01 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.

負極は、例えば、負極集電体と、当該負極集電体に支持された負極材と、を有している。   The negative electrode includes, for example, a negative electrode current collector and a negative electrode material supported by the negative electrode current collector.

負極集電体は、負極材からの電流の導電路を構成する。負極集電体は、例えば、平板状、シート状等の形状を有している。負極集電体は、発泡金属、エキスパンドメタル、パンチングメタル、金属繊維のフェルト状物等によって構成された3次元網目構造の集電体などであってもよい。負極集電体は、導電性及び耐アルカリ性を有する材料で構成されている。このような材料としては、例えば、負極の反応電位でも安定である材料(負極の反応電位よりも貴な酸化還元電位を有する材料、アルカリ水溶液中で基材表面に酸化被膜等の保護被膜を形成して安定化する材料など)を用いることができる。また、負極においては、副反応として電解液の分解反応が進行し水素が発生するが、水素過電圧の高い材料はこのような副反応の進行を抑制できる点で好ましい。負極集電体を構成する材料の具体例としては、亜鉛、鉛、スズ、スズ等の金属メッキを施した金属材料(銅、真鍮、鋼、ニッケル等)などが挙げられる。   The negative electrode current collector constitutes a conductive path for current from the negative electrode material. The negative electrode current collector has, for example, a flat plate shape, a sheet shape or the like. The negative electrode current collector may be a current collector having a three-dimensional network structure formed of a foam metal, an expanded metal, a punching metal, a felt of a metal fiber, or the like. The negative electrode current collector is made of a material having conductivity and alkali resistance. As such a material, for example, a material which is stable even at the reaction potential of the negative electrode (a material having a redox potential nobler than the reaction potential of the negative electrode, a protective film such as an oxide film is formed on the substrate surface in an alkaline aqueous solution) And the like) can be used. In the negative electrode, the decomposition reaction of the electrolytic solution proceeds as a side reaction to generate hydrogen, but a material having a high hydrogen overvoltage is preferable in that the progress of such a side reaction can be suppressed. Specific examples of the material constituting the negative electrode current collector include metal materials (copper, brass, steel, nickel, etc.) plated with metal such as zinc, lead, tin, tin and the like.

負極材は、層状(負極材層)であってもよい。例えば、負極集電体上に負極材層が形成されていてもよく、負極集電体が3次元網目構造を有する場合には、負極集電体の網目の間に負極材が充填されて負極材層が形成されていてもよい。   The negative electrode material may be layered (negative electrode material layer). For example, the negative electrode material layer may be formed on the negative electrode current collector, and when the negative electrode current collector has a three-dimensional network structure, the negative electrode material is filled between the meshes of the negative electrode current collector. A material layer may be formed.

本実施形態において負極材は、亜鉛を含む負極活物質と、強誘電体(亜鉛を含む活物質に該当する化合物を除く)と、を含有する。本実施形態に係る負極は、化成前及び化成後のいずれであってもよい。   In the present embodiment, the negative electrode material contains a negative electrode active material containing zinc and a ferroelectric (excluding a compound corresponding to the active material containing zinc). The negative electrode according to the present embodiment may be either before or after formation.

亜鉛を含む負極活物質としては、金属亜鉛、酸化亜鉛、水酸化亜鉛等が挙げられる。負極材は、例えば、満充電状態では金属亜鉛を含有し、放電末状態では酸化亜鉛及び水酸化亜鉛を含有する。   Examples of the negative electrode active material containing zinc include metallic zinc, zinc oxide, zinc hydroxide and the like. The negative electrode material contains, for example, metallic zinc in a fully charged state, and zinc oxide and zinc hydroxide in a discharged state.

負極活物質の含有量は、負極材の全質量を基準として下記の範囲が好ましい。負極活物質の含有量は、優れた寿命性能と高率放電性能とを両立しやすい観点から、50質量%以上が好ましく、70質量%以上がより好ましく、75質量%以上が更に好ましい。負極活物質の含有量は、優れた寿命性能と高率放電性能とを両立しやすい観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましい。これらの観点から、負極活物質の含有量は、50〜95質量%が好ましい。負極活物質の含有量は、高い放電レート(例えば5Cを超える放電レート)において更に優れた寿命性能が得られる観点から、75質量%を超えることが好ましく、80質量%以上がより好ましい。負極活物質の含有量は、低い放電レート(例えば5C以下の放電レート)において更に優れた寿命性能が得られる観点から、83質量%未満が好ましく、80質量%以下がより好ましい。   The content of the negative electrode active material is preferably in the following range based on the total mass of the negative electrode material. The content of the negative electrode active material is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 75% by mass or more, from the viewpoint of easily achieving both excellent life performance and high-rate discharge performance. The content of the negative electrode active material is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less, from the viewpoint of easily achieving both excellent life performance and high-rate discharge performance. From these viewpoints, the content of the negative electrode active material is preferably 50 to 95% by mass. The content of the negative electrode active material is preferably more than 75% by mass, and more preferably 80% by mass or more, from the viewpoint of achieving further excellent life performance at high discharge rates (for example, discharge rates exceeding 5C). The content of the negative electrode active material is preferably less than 83% by mass, and more preferably 80% by mass or less, from the viewpoint of achieving further excellent life performance at a low discharge rate (for example, a discharge rate of 5C or less).

強誘電体は、外部に電場がなくても電気双極子が整列しており、かつ、電気双極子の方向が電場によって変化できる物質である。強誘電体としては、耐アルカリ性を有する材料を用いることができる。強誘電体の比誘電率は、例えば1000以上である。強誘電体の結晶構造としては、ペロブスカイト構造、ビスマス層状構造、タングステンブロンズ構造等が挙げられる。   A ferroelectric is a substance in which electric dipoles are aligned without an external electric field, and the direction of the electric dipole can be changed by the electric field. As the ferroelectric, a material having alkali resistance can be used. The relative permittivity of the ferroelectric is, for example, 1000 or more. The crystal structure of the ferroelectric includes a perovskite structure, a bismuth layer structure, a tungsten bronze structure and the like.

強誘電体は、更に優れた寿命性能が得られる観点から、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、ジルコン酸バリウム、ジルコン酸カルシウム、及び、ジルコン酸ストロンチウムからなる群より選ばれる少なくとも一種を含むことが好ましく、チタン酸バリウムを含むことがより好ましい。   The ferroelectric material is at least one selected from the group consisting of barium titanate, calcium titanate, strontium titanate, barium zirconate, calcium zirconate, and strontium zirconate from the viewpoint of obtaining further excellent life performance. It is preferable to contain, and it is more preferable to contain barium titanate.

強誘電体の含有量は、負極材の全質量を基準として下記の範囲が好ましい。強誘電体の含有量は、更に優れた寿命性能が得られる観点から、0.1質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上が更に好ましく、7質量%以上が特に好ましく、10質量%以上が極めて好ましい。強誘電体の含有量は、優れた寿命性能と高率放電性能とを両立しやすい観点から、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましく、25質量%以下が特に好ましく、20質量%以下が極めて好ましい。これらの観点から、強誘電体の含有量は、0.1〜50質量%が好ましく、0.1〜40質量%がより好ましく、0.1〜30質量%が更に好ましい。強誘電体の含有量は、高い放電レート(例えば5Cを超える放電レート)において更に優れた寿命性能が得られる観点から、20質量%未満が好ましく、15質量%以下がより好ましい。強誘電体の含有量は、低い放電レート(例えば5C以下の放電レート)において更に優れた寿命性能が得られる観点から、11質量%を超えることが好ましく、15質量%以上がより好ましい。   The content of the ferroelectric is preferably in the following range based on the total mass of the negative electrode material. The content of the ferroelectric is preferably 0.1% by mass or more, more preferably 1% by mass or more, further preferably 5% by mass or more, particularly preferably 7% by mass or more, from the viewpoint of obtaining further excellent life performance. Preferably, 10% by mass or more is very preferable. The content of the ferroelectric is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, from the viewpoint of easily achieving both excellent life performance and high-rate discharge performance. % Or less is particularly preferable, and 20% by mass or less is very preferable. From these viewpoints, the content of the ferroelectric is preferably 0.1 to 50% by mass, more preferably 0.1 to 40% by mass, and still more preferably 0.1 to 30% by mass. The content of the ferroelectric is preferably less than 20% by mass, and more preferably 15% by mass or less, from the viewpoint of achieving further excellent life performance at a high discharge rate (for example, a discharge rate exceeding 5C). The content of the ferroelectric is preferably more than 11% by mass, and more preferably 15% by mass or more, from the viewpoint of achieving further excellent life performance at a low discharge rate (for example, a discharge rate of 5C or less).

強誘電体の含有量は、負極活物質100質量部に対して下記の範囲が好ましい。強誘電体の含有量は、更に優れた寿命性能が得られる観点から、1質量部以上が好ましく、3質量部以上がより好ましく、7質量部以上が更に好ましく、10質量部以上が特に好ましい。強誘電体の含有量は、優れた寿命性能と高率放電性能とを両立しやすい観点から、90質量部以下が好ましく、50質量部以下がより好ましく、30質量部以下が更に好ましい。これらの観点から、強誘電体の含有量は、1〜90質量部が好ましい。強誘電体の含有量は、低い放電レート(例えば5C以下の放電レート)において優れた寿命性能と高率放電性能とを両立しやすい観点から、15質量部以上が好ましく、20質量部以上がより好ましい。強誘電体の含有量は、高い放電レート(例えば5Cを超える放電レート)において優れた寿命性能と高率放電性能とを両立しやすい観点から、20質量部以下が好ましく、15質量部以下がより好ましい。   The content of the ferroelectric is preferably in the following range with respect to 100 parts by mass of the negative electrode active material. The content of the ferroelectric is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 7 parts by mass or more, and particularly preferably 10 parts by mass or more from the viewpoint of obtaining further excellent life performance. The content of the ferroelectric is preferably 90 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 30 parts by mass or less, from the viewpoint of easily achieving both excellent life performance and high-rate discharge performance. From these viewpoints, the content of the ferroelectric is preferably 1 to 90 parts by mass. The content of the ferroelectric is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, from the viewpoint of easily achieving both excellent life performance and high rate discharge performance at a low discharge rate (for example, a discharge rate of 5 C or less). preferable. The content of the ferroelectric is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, from the viewpoint of easily achieving both long life performance and high rate discharge performance at high discharge rates (for example, discharge rates exceeding 5 C). preferable.

負極材は、負極活物質及び強誘電体以外の添加剤を含有することができる。添加剤としては、結着剤等が挙げられる。結着剤としては、ポリテトラフルオロエチレン、ヒドロキシエチルセルロース、ポリエチレンオキシド、ポリエチレン、ポリプロピレン等が挙げられる。結着剤の含有量は、例えば、負極活物質100質量部に対して0.5〜10質量部であってもよい。   The negative electrode material can contain an additive other than the negative electrode active material and the ferroelectric. As an additive, a binder etc. are mentioned. As the binder, polytetrafluoroethylene, hydroxyethyl cellulose, polyethylene oxide, polyethylene, polypropylene and the like can be mentioned. The content of the binder may be, for example, 0.5 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.

本実施形態に係るニッケル亜鉛電池の製造方法は、例えば、電極(正極及び負極)を得る電極製造工程と、電極を含む構成部材を組み立ててニッケル亜鉛電池を得る組立工程と、を備える。   The method of manufacturing a nickel zinc battery according to the present embodiment includes, for example, an electrode manufacturing step of obtaining an electrode (positive electrode and negative electrode), and an assembly step of assembling a component including the electrode to obtain a nickel zinc battery.

電極製造工程では、正極及び負極を製造する。例えば、電極材(正極材及び負極材)の原料に対して溶媒(例えば水)を加えて混練することによりペースト状の電極材(電極材ペースト)を得た後、電極材ペーストを用いて電極材層を形成する。   In the electrode manufacturing process, a positive electrode and a negative electrode are manufactured. For example, a paste-like electrode material (electrode material paste) is obtained by adding a solvent (for example, water) to the raw material of the electrode material (positive electrode material and negative electrode material) and kneading, and then using the electrode material paste Form a material layer.

正極材の原料としては、正極活物質の原料(例えば水酸化ニッケル)、添加剤(例えば前記結着剤)等が挙げられる。負極材の原料としては、負極活物質の原料(例えば金属亜鉛、酸化亜鉛及び水酸化亜鉛)、強誘電体、添加剤(例えば前記結着剤)等が挙げられる。   As a raw material of positive electrode material, the raw material (for example, nickel hydroxide) of a positive electrode active material, an additive (for example, the said binder), etc. are mentioned. As a raw material of the negative electrode material, a raw material of a negative electrode active material (for example, metal zinc, zinc oxide and zinc hydroxide), a ferroelectric, an additive (for example, the above-mentioned binder) and the like can be mentioned.

電極材層を形成する方法としては、例えば、電極材ペーストを集電体に塗布又は充填した後に乾燥することで電極材層を得る方法が挙げられる。電極材層は、必要に応じて、プレス等によって密度を高めてもよい。   Examples of a method of forming an electrode material layer include a method of obtaining an electrode material layer by applying or filling an electrode material paste on a current collector and then drying it. The electrode material layer may have its density increased by pressing or the like, as necessary.

組立工程では、例えば、まず、電極製造工程で得られた正極及び負極を、セパレータを介して交互に積層し、正極同士及び負極同士をストラップで連結させて電極群を作製する。次いで、この電極群を電槽内に配置した後、電槽の上面に蓋体を接着して未化成のニッケル亜鉛電池を得る。   In the assembly process, for example, first, the positive electrode and the negative electrode obtained in the electrode manufacturing process are alternately stacked via a separator, and the positive electrode and the negative electrode are connected by a strap to produce an electrode group. Next, this electrode group is placed in a battery case, and then a lid is adhered to the upper surface of the battery case to obtain an unformed nickel zinc battery.

次いで、電解液を未化成のニッケル亜鉛電池の電槽内に注入した後、一定時間放置する。次いで、所定の条件にて充電を行うことで化成することによりニッケル亜鉛電池を得る。化成条件は、電極活物質(正極活物質及び負極活物質)の性状に応じて調整することができる。   Next, the electrolytic solution is poured into the battery case of an unformed nickel zinc battery, and then left for a fixed time. Then, a nickel zinc battery is obtained by performing conversion by charging under predetermined conditions. The formation conditions can be adjusted according to the properties of the electrode active material (positive electrode active material and negative electrode active material).

以上、本発明の実施形態について説明したが、本発明は、前記実施形態に限定されるものではない。例えば、前記実施形態では、ニッケル亜鉛電池の例を説明したが、亜鉛電池は、正極が空気極である空気亜鉛電池(例えば空気亜鉛二次電池)であってもよく、正極が酸化銀極である銀亜鉛電池(例えば銀亜鉛二次電池)であってもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, although an example of a nickel zinc battery has been described in the above embodiment, the zinc battery may be an air zinc battery (for example, an air zinc secondary battery) whose positive electrode is an air electrode, and the positive electrode is a silver oxide electrode. It may be a silver-zinc battery (for example, a silver-zinc secondary battery).

空気亜鉛電池の空気極としては、空気亜鉛電池に使用される公知の空気極を用いることができる。空気極は、例えば、空気極触媒、電子伝導性材料等を含む。空気極触媒としては、電子伝導性材料としても機能する空気極触媒を用いることができる。   As an air electrode of an air zinc battery, the well-known air electrode used for an air zinc battery can be used. The air electrode includes, for example, an air electrode catalyst, an electron conductive material, and the like. As the air electrode catalyst, an air electrode catalyst that also functions as an electron conductive material can be used.

空気極触媒としては、空気亜鉛電池における正極として機能するものを用いることが可能であり、酸素を正極活物質として利用可能な種々の空気極触媒が使用可能である。空気極触媒としては、酸化還元触媒機能を有するカーボン系材料(黒鉛等)、酸化還元触媒機能を有する金属材料(白金、ニッケル等)、酸化還元触媒機能を有する無機酸化物材料(ペロブスカイト型酸化物、二酸化マンガン、酸化ニッケル、酸化コバルト、スピネル酸化物等)などが挙げられる。空気極触媒の形状は、特に限定されないが、例えば粒子状であってもよい。空気極における空気極触媒の含有量は、空気極の合計量に対して、5〜70体積%であってもよく、5〜60体積%であってもよく、5〜50体積%であってもよい。   As an air electrode catalyst, what functions as a positive electrode in an air zinc battery can be used, and various air electrode catalysts which can use oxygen as a positive electrode active material can be used. As an air electrode catalyst, carbon-based materials (graphite etc.) having a redox catalyst function, metal materials (platinum, nickel etc.) having a redox catalyst function, inorganic oxide materials (perovskite-type oxide having a redox catalyst function) And manganese dioxide, nickel oxide, cobalt oxide, spinel oxide and the like). The shape of the cathode catalyst is not particularly limited, but may be, for example, in the form of particles. The content of the air electrode catalyst in the air electrode may be 5 to 70% by volume, may be 5 to 60% by volume, or 5 to 50% by volume with respect to the total amount of the air electrode. It is also good.

電子伝導性材料としては、導電性を有し、かつ、空気極触媒とセパレータとの間の電子伝導を可能とするものを用いることができる。電子伝導性材料としては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;鱗片状黒鉛のような天然黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類;炭素繊維、金属繊維等の導電性繊維類;銅、銀、ニッケル、アルミニウム等の金属粉末類;ポリフェニレン誘導体等の有機電子伝導性材料;これらの任意の混合物などが挙げられる。電子伝導性材料の形状は、粒子状であってもよく、その他の形状であってもよい。電子伝導性材料は、空気極において厚さ方向に連続した相をもたらす形態で用いられることが好ましい。例えば、電子伝導性材料は、多孔質材料であってもよい。また、電子伝導性材料は、空気極触媒との混合物又は複合体の形態であってもよく、前述したように、電子伝導性材料としても機能する空気極触媒であってもよい。空気極における電子伝導性材料の含有量は、空気極の合計量に対して、10〜80体積%であってもよく、15〜80体積%であってもよく、20〜80体積%であってもよい。   As the electron conductive material, a material having conductivity and capable of electron conduction between the cathode catalyst and the separator can be used. Electron conductive materials include carbon blacks such as ketjen black, acetylene black, channel blacks, furnace blacks, lamp blacks, thermal blacks, etc .; natural graphites such as scaly graphites; graphites such as artificial graphites and exfoliated graphites; Conductive fibers such as carbon fibers and metal fibers; metal powders such as copper, silver, nickel, and aluminum; organic electron conductive materials such as polyphenylene derivatives; and arbitrary mixtures of these. The shape of the electron conductive material may be in the form of particles or other shapes. The electron conductive material is preferably used in a form that provides a continuous phase in the thickness direction at the air electrode. For example, the electron conducting material may be a porous material. In addition, the electron conductive material may be in the form of a mixture or complex with an air electrode catalyst, and as described above, may be an air electrode catalyst that also functions as an electron conductive material. The content of the electron conductive material in the air electrode may be 10 to 80% by volume, may be 15 to 80% by volume, or 20 to 80% by volume with respect to the total amount of the air electrode. May be

銀亜鉛電池の酸化銀極としては、銀亜鉛電池に使用される公知の酸化銀極を用いることができる。酸化銀極は、例えば酸化銀(I)を含む。   As a silver oxide electrode of a silver-zinc battery, the well-known silver oxide electrode used for a silver-zinc battery can be used. The silver oxide electrode contains, for example, silver (I) oxide.

以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.

<ニッケル亜鉛電池の作製>
(実施例1)
正極集電体として空隙率90%の発泡ニッケルを用意した。次いで、水酸化ニッケル粉末、金属コバルト、水酸化コバルト、CMC、PTFE、及び、イオン交換水を混合して得られた混合液を攪拌することにより正極材ペーストを作製した。この際、固形分の質量比を「水酸化ニッケル:金属コバルト:水酸化コバルト:CMC:PTFE=85:8:5:1:1」に調整した。正極材ペーストの水分量は、正極材ペーストの全質量基準で27.5質量%に調整した。次いで、正極材ペーストを正極集電体上に塗布した後、80℃で30分乾燥した。その後、ロールプレスにて加圧成形し、正極材層を有する正極を得た。
<Fabrication of nickel zinc battery>
Example 1
An expanded nickel with a porosity of 90% was prepared as a positive electrode current collector. Then, a positive electrode material paste was produced by stirring a mixed solution obtained by mixing nickel hydroxide powder, metallic cobalt, cobalt hydroxide, CMC, PTFE, and ion exchange water. At this time, the mass ratio of the solid content was adjusted to “nickel hydroxide: metal cobalt: cobalt hydroxide: CMC: PTFE = 85: 8: 5: 1: 1”. The water content of the positive electrode material paste was adjusted to 27.5% by mass based on the total mass of the positive electrode material paste. Subsequently, after apply | coating a positive electrode material paste on a positive electrode collector, it dried at 80 degreeC for 30 minutes. Then, it pressure-molded by the roll press and obtained the positive electrode which has a positive electrode material layer.

負極集電体として、空隙率60%のスズメッキを施した鋼板パンチングメタルを用意した。次いで、酸化亜鉛、金属亜鉛、チタン酸バリウム、PTFE、及び、イオン交換水を混合して得られた混合液を攪拌することにより負極材ペーストを作製した。この際、固形分の質量比を「酸化亜鉛:金属亜鉛:チタン酸バリウム:PTFE=50:25:20:5」に調整した。負極材ペーストの水分量は、負極材ペーストの全質量基準で32.5質量%に調整した。次いで、負極材ペーストを負極集電体上に塗布した後、80℃で30分乾燥した。その後、ロールプレスにて加圧成形し、負極材層を有する負極を得た。   As a negative electrode current collector, a steel plate punching metal plated with tin and having a porosity of 60% was prepared. Subsequently, a negative electrode material paste was produced by stirring a mixed solution obtained by mixing zinc oxide, metallic zinc, barium titanate, PTFE, and ion exchange water. At this time, the mass ratio of the solid content was adjusted to "zinc oxide: metallic zinc: barium titanate: PTFE = 50: 25: 20: 5". The water content of the negative electrode material paste was adjusted to 32.5% by mass based on the total mass of the negative electrode material paste. Next, the negative electrode material paste was applied onto the negative electrode current collector, and then dried at 80 ° C. for 30 minutes. Then, it pressure-molded by the roll press and obtained the negative electrode which has a negative electrode material layer.

セパレータには、微多孔膜としてCelgard2500、不織布としてVL100(ニッポン高度紙工業製)をそれぞれ用いた。微多孔膜は、電池組立て前に界面活性剤Triton−X100(ダウケミカル株式会社製)で親水化処理した。親水化処理は、Triton−X100が1質量%の量で含まれる水溶液に微多孔膜を24時間浸漬した後に室温で1時間乾燥する方法で行った。さらに、微多孔膜は、所定の大きさに裁断し、それを半分に折り、側面を熱溶着することで袋状に加工した。袋状に加工した微多孔膜に、正極及び負極のそれぞれを1枚収納した。不織布は、所定の大きさに裁断したものを使用した。   For the separator, Celgard 2500 as a microporous membrane and VL 100 (manufactured by Nippon High Paper Industry) as a non-woven fabric were used respectively. The microporous membrane was hydrophilized with surfactant Triton-X100 (manufactured by Dow Chemical Co.) before assembly of the battery. The hydrophilization treatment was performed by immersing the microporous membrane in an aqueous solution containing Triton-X100 in an amount of 1% by mass for 24 hours and then drying for 1 hour at room temperature. Furthermore, the microporous film was cut into a predetermined size, folded in half, and heat-sealed on the side to form a bag. One sheet of each of the positive electrode and the negative electrode was housed in a microporous film processed into a bag shape. The nonwoven fabric used what was cut | judged to the predetermined | prescribed size.

袋状の微多孔膜に収納された正極と、袋状の微多孔膜に収納された負極と、不織布とを積層した後、同極性の電極同士をストラップで連結させて電極群(極板群)を作製した。電極群は、正極1枚及び負極2枚で、正極と負極との間に不織布を配置した構成とした。この電極群を電槽内に配置した後、電槽の上面に蓋体を接着して未化成のニッケル亜鉛電池を得た。次いで、イオン交換水に水酸化カリウム(KOH)及び水酸化リチウム(LiOH)を混合することにより電解液(水酸化カリウム濃度:30質量%、水酸化リチウム濃度:1質量%)を調製した。そして、電解液を未化成のニッケル亜鉛電池の電槽内に注入した後、24時間放置した。その後、16mA、15時間の条件で充電を行い、公称容量160mAhのニッケル亜鉛電池を作製した。   After laminating the positive electrode contained in the bag-like microporous membrane, the negative electrode contained in the bag-like microporous membrane, and the non-woven fabric, electrodes of the same polarity are connected by straps to form an electrode group (electrode plate group ) Was produced. The electrode group had one positive electrode and two negative electrodes, and a non-woven fabric was disposed between the positive electrode and the negative electrode. After arranging this electrode group in the battery case, a lid was adhered to the upper surface of the battery case to obtain an unformed nickel zinc battery. Then, potassium hydroxide (KOH) and lithium hydroxide (LiOH) were mixed with ion exchanged water to prepare an electrolytic solution (potassium hydroxide concentration: 30% by mass, lithium hydroxide concentration: 1% by mass). Then, after the electrolytic solution was injected into the battery case of the non-formed nickel zinc battery, it was left for 24 hours. Thereafter, the battery was charged under the conditions of 16 mA and 15 hours to produce a nickel zinc battery having a nominal capacity of 160 mAh.

(実施例2)
負極材ペーストの作製に際して固形分の質量比を「酸化亜鉛:金属亜鉛:チタン酸バリウム:PTFE=55:28:11:6」に変更したことを除き実施例1と同様にしてニッケル亜鉛電池を作製した。
(Example 2)
A nickel zinc battery was prepared in the same manner as in Example 1, except that the mass ratio of the solid content in the preparation of the negative electrode material paste was changed to "zinc oxide: metallic zinc: barium titanate: PTFE = 55: 28: 11: 6". Made.

(比較例1)
負極材ペーストの作製に際して固形分の質量比を「酸化亜鉛:金属亜鉛:PTFE=63:32:5」に変更したことを除き実施例1と同様にしてニッケル亜鉛電池を作製した。
(Comparative example 1)
A nickel zinc battery was produced in the same manner as in Example 1 except that the mass ratio of the solid content in the preparation of the negative electrode material paste was changed to "zinc oxide: metallic zinc: PTFE = 63: 32: 5".

<電池性能評価>
前記ニッケル亜鉛電池を用いてサイクル寿命性能及び高率放電性能の評価を行った。
<Battery performance evaluation>
The cycle life performance and the high rate discharge performance were evaluated using the nickel zinc battery.

(サイクル寿命性能評価)
下記の操作を1サイクルとする試験(25℃)を前記ニッケル亜鉛電池に対して行い、各サイクルの放電容量を測定した。そして、初回サイクル時の放電容量に対する各サイクル時の放電容量の維持率(%)を算出した。結果を図3に示す。実施例では、比較例に比べてサイクル寿命性能が優れることが確認される。
・160mA(1C)、1.9Vの定電圧充電(電流値8mA(0.05C)まで減衰した時点で充電終止)
・電池電圧が1.1Vに到達するまで80mA(0.5C)の定電流放電
(Cycle life performance evaluation)
A test (25 ° C.) in which the following operation is one cycle was performed on the nickel zinc battery, and the discharge capacity of each cycle was measured. And the maintenance factor (%) of the discharge capacity at each cycle to the discharge capacity at the first cycle was calculated. The results are shown in FIG. In the example, it is confirmed that the cycle life performance is superior to the comparative example.
・ 160mA (1C), constant voltage charge of 1.9V (charge termination when the current value decreases to 8mA (0.05C))
・ 80 mA (0.5 C) constant current discharge until the battery voltage reaches 1.1 V

前記「C」とは、満充電状態から定格容量を定電流放電するときの電流の大きさを相対的に表したものである。前記「C」は、“放電電流値(A)/電池容量(Ah)”を意味する。例えば、定格容量を1時間で放電させることができる電流を「1C」、2時間で放電させることができる電流を「0.5C」と表現する。   The “C” is a relative expression of the magnitude of the current when performing constant current discharge of the rated capacity from the fully charged state. The “C” means “discharge current value (A) / battery capacity (Ah)”. For example, a current capable of discharging the rated capacity in one hour is expressed as “1 C”, and a current capable of discharging in two hours is expressed as “0.5 C”.

(高率放電性能評価)
25℃、160mA(1C)、1.9Vの定電圧で、電流値が8mA(0.05C)まで減衰するまで前記ニッケル亜鉛電池の充電を行った後、電池電圧が1.1Vに到達するまで8mA(0.05C)、32mA(0.2C)、160mA(1C)、480mA(3C)、800mA(5C)又は1600mA(10C)の定電流でニッケル亜鉛電池の放電を行い、放電容量を測定した。0.05C時の放電容量に対する各放電電流時の放電容量の割合(放電容量比(%))を算出した。結果を表1及び図4に示す。実施例1と実施例2とを比較すると、実施例1の放電容量が実施例2よりも優れることが確認される。また、放電電流が5C以下の場合には、実施例1及び実施例2の放電容量比は同等であるが、放電電流が5Cを超える場合には、実施例2の放電容量比が実施例1よりも優れることが確認される。
(High rate discharge performance evaluation)
After charging the nickel-zinc battery at a constant voltage of 25 ° C., 160 mA (1 C) and 1.9 V until the current value falls to 8 mA (0.05 C), the battery voltage reaches 1.1 V The nickel zinc battery was discharged at a constant current of 8 mA (0.05 C), 32 mA (0.2 C), 160 mA (1 C), 480 mA (3 C), 800 mA (5 C) or 1600 mA (10 C), and the discharge capacity was measured. . The ratio of the discharge capacity at each discharge current to the discharge capacity at 0.05 C (discharge capacity ratio (%)) was calculated. The results are shown in Table 1 and FIG. When Example 1 and Example 2 are compared, it is confirmed that the discharge capacity of Example 1 is superior to Example 2. Further, when the discharge current is 5 C or less, the discharge capacity ratio of Example 1 and Example 2 is equal, but when the discharge current exceeds 5 C, the discharge capacity ratio of Example 2 is Example 1 It is confirmed that it is superior to the above.

Figure 2019106284
Figure 2019106284

1…負極、1a…負極集電体、1b…負極材、2…セパレータ、3…正極。   1: Negative electrode, 1a: Negative electrode current collector, 1b: Negative electrode material, 2: Separator, 3: Positive electrode.

Claims (5)

亜鉛を含む活物質と、強誘電体と、を含有する負極材を有する、亜鉛電池用負極。   A negative electrode for a zinc battery, comprising a negative electrode material containing an active material containing zinc and a ferroelectric. 前記強誘電体が、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、ジルコン酸バリウム、ジルコン酸カルシウム、及び、ジルコン酸ストロンチウムからなる群より選ばれる少なくとも一種を含む、請求項1に記載の亜鉛電池用負極。   The zinc battery according to claim 1, wherein the ferroelectric includes at least one selected from the group consisting of barium titanate, calcium titanate, strontium titanate, barium zirconate, calcium zirconate, and strontium zirconate. Negative electrode. 前記強誘電体がチタン酸バリウムを含む、請求項1又は2に記載の亜鉛電池用負極。   The zinc battery negative electrode according to claim 1, wherein the ferroelectric material includes barium titanate. 前記強誘電体の含有量が、前記負極材の全質量を基準として50質量%以下である、請求項1〜3のいずれか一項に記載の亜鉛電池用負極。   The zinc battery negative electrode according to any one of claims 1 to 3, wherein the content of the ferroelectric is 50% by mass or less based on the total mass of the negative electrode material. 請求項1〜4のいずれか一項に記載の亜鉛電池用負極を備える、亜鉛電池。   A zinc battery comprising the zinc battery negative electrode according to any one of claims 1 to 4.
JP2017237848A 2017-12-12 2017-12-12 Zinc battery negative electrode and zinc battery Pending JP2019106284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017237848A JP2019106284A (en) 2017-12-12 2017-12-12 Zinc battery negative electrode and zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017237848A JP2019106284A (en) 2017-12-12 2017-12-12 Zinc battery negative electrode and zinc battery

Publications (1)

Publication Number Publication Date
JP2019106284A true JP2019106284A (en) 2019-06-27

Family

ID=67062012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017237848A Pending JP2019106284A (en) 2017-12-12 2017-12-12 Zinc battery negative electrode and zinc battery

Country Status (1)

Country Link
JP (1) JP2019106284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082383A (en) * 2019-11-14 2021-05-27 昭和電工マテリアルズ株式会社 Negative electrode for zinc battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082383A (en) * 2019-11-14 2021-05-27 昭和電工マテリアルズ株式会社 Negative electrode for zinc battery
JP7412143B2 (en) 2019-11-14 2024-01-12 エナジーウィズ株式会社 Negative electrode for zinc batteries

Similar Documents

Publication Publication Date Title
US20150303461A1 (en) Composite materials for rechargeable zinc electrodes
JP2018147738A (en) Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
US10079385B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
JP6819402B2 (en) Electrolyte and zinc battery
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP2019185863A (en) Zinc battery, electrode and manufacturing method therefor, and laminated film
JP7025097B2 (en) Electrode material for zinc electrode and its manufacturing method, and manufacturing method of zinc battery
JP2020087516A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery
JP2019106284A (en) Zinc battery negative electrode and zinc battery
JP2022081421A (en) Negative electrode body for zinc battery and zinc battery
JP7467213B2 (en) Anode for zinc battery and zinc battery
JP2019079701A (en) Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
JP7105525B2 (en) zinc battery
JP2019139986A (en) Negative electrode for zinc battery and zinc battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery
JP2020176210A (en) Porous film and zinc battery
JP2020061222A (en) Negative electrode for nickel zinc battery and nickel zinc battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP2021185560A (en) Negative electrode for zinc battery and zinc battery
JP2021185559A (en) Negative electrode for zinc battery and zinc battery
JP2021174609A (en) Zinc battery
JP2018147739A (en) Separator for zinc negative electrode secondary battery