JP2001202944A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JP2001202944A
JP2001202944A JP2000011092A JP2000011092A JP2001202944A JP 2001202944 A JP2001202944 A JP 2001202944A JP 2000011092 A JP2000011092 A JP 2000011092A JP 2000011092 A JP2000011092 A JP 2000011092A JP 2001202944 A JP2001202944 A JP 2001202944A
Authority
JP
Japan
Prior art keywords
electrode
substrate
porous metal
metal substrate
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000011092A
Other languages
Japanese (ja)
Inventor
Masuhiro Onishi
益弘 大西
Masato Isogai
正人 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000011092A priority Critical patent/JP2001202944A/en
Publication of JP2001202944A publication Critical patent/JP2001202944A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline battery suitable for large current use by making the strength of porous metal substrate to be welded higher with respect to a current collector terminal of metal plate. SOLUTION: The alkaline battery is made by pacing a group of wound electrodes into a battery can. The wound electrode is made by winding a positive electrode, formed of a combined layer for positive electrode at least at a part of a substrate and a negative electrode, formed of a combined layer for negative electrode at least at a part of a substrate through the intermediary of a separator. For the substrate of the electrode of at least either of the positive or the negative electrode, a porous metal substrate is used of which width direction end part is filled with metal powder. The porous metal substrate is compressed, forming no combined layer for electrode at the width direction end part filled with metal powder and leaving it in imposed state. A current collector terminal is connected by means of welding at many points in the width direction end part of the porous metal substrate, filled with the metal powder and compressed, after forming a group of wound electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池に
関し、さらに詳しくは、10C以上の大電流で充放電可
能な大電流用途に適したアルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery, and more particularly, to an alkaline storage battery suitable for a large current application which can be charged and discharged with a large current of 10 C or more.

【0002】[0002]

【従来の技術】アルカリ蓄電池は、ポータブル電源とし
て汎用されており、一般にこれらの電池は巻回体電極群
の幅方向端部における基板の露出部分に金属端子を接続
して電流を取り出しているが、例えば、このアルカリ蓄
電池を電動工具に使用する場合、10A以上、特に大電
流が必要とされる場合には50A程度の大電流で使用し
なければならないため、その内部抵抗を小さくすること
が必要とされる。そのため、ニッケル−カドミウム電池
では、正極と負極とをセパレータを介して巻回して作製
した巻回体電極群の幅方向端部における基板の露出部分
に金属板集電端子を多数点で溶接することによって内部
抵抗を小さくすることが提案されている。これは、電極
の巻回方向に沿って電流の取り出し部位を多数設けるこ
とにより、電極各部の抵抗を比較的均一にしつつ内部抵
抗を小さくするためである。
2. Description of the Related Art Alkaline storage batteries are widely used as portable power supplies. Generally, these batteries connect a metal terminal to an exposed portion of a substrate at a widthwise end of a wound electrode group to extract current. For example, when this alkaline storage battery is used for a power tool, it must be used at a high current of 10 A or more, particularly when a large current is required, about 50 A, so that its internal resistance must be reduced. It is said. Therefore, in a nickel-cadmium battery, a metal plate current collector terminal is welded at many points to an exposed portion of a substrate at an end in a width direction of a wound body electrode group formed by winding a positive electrode and a negative electrode via a separator. To reduce the internal resistance. This is because the internal resistance is reduced while the resistance of each part of the electrode is made relatively uniform by providing a large number of current extraction sites along the winding direction of the electrode.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記ニッケ
ル−カドミウム電池では、負極の基板にはパンチングメ
タルが用いられ、正極にはシンター式電極と呼ばれる内
部に基板として穿孔鋼板を有するニッケル電極が用いら
れているので、巻回体電極群の幅方向端部は、負極側で
はパンチングメタルで構成され、正極側では穿孔鋼板の
鋼板部分で構成されているため、金属板集電端子を溶接
する場合に強度的に問題がない。
In the above-mentioned nickel-cadmium battery, a punched metal is used for a substrate of a negative electrode, and a nickel electrode having a perforated steel plate as a substrate is used as a positive electrode for a positive electrode. Therefore, the widthwise end of the wound electrode group is made of punched metal on the negative electrode side and made of a perforated steel plate on the positive electrode side. There is no problem in strength.

【0004】しかしながら、最近は電池の高容量化に対
する要求から、負極に水素吸蔵合金を用いたニッケル水
素蓄電池が主流を占めるようになってきており、このニ
ッケル水素蓄電池では、基板として金属多孔体基板を用
いたペースト式電極が多用されている。特に、ニッケル
水素蓄電池で正極をペースト式ニッケル電極にした場合
は、活物質である水酸化ニッケルの導電性が低いため、
大電流用途用のニッケル水素蓄電池では、電極内の導電
性を高めるために、基板として金属多孔体基板を用いる
必要がある。しかしながら、この金属多孔体基板は、穿
孔鋼板に比べて強度が低いため、巻回体電極群の幅方向
端部の金属多孔体基板の露出部分に金属板集電端子を溶
接しようとしたときに、金属多孔体基板の破壊が生じ、
そのため、溶接が確実に行えず、内部抵抗が上昇しやす
いという問題があった。
However, recently, due to the demand for higher capacity of the battery, nickel-metal hydride storage batteries using a hydrogen storage alloy for the negative electrode have become the mainstream. In this nickel-metal hydride storage battery, a porous metal substrate is used as a substrate. A paste-type electrode using is widely used. In particular, when the positive electrode of the nickel-metal hydride storage battery is a paste-type nickel electrode, the conductivity of nickel hydroxide, which is an active material, is low.
In a nickel-metal hydride storage battery for a large current application, it is necessary to use a porous metal substrate as a substrate in order to increase the conductivity in the electrode. However, since the strength of the porous metal substrate is lower than that of the perforated steel plate, when the metal plate current collector terminal is to be welded to the exposed portion of the porous metal substrate at the widthwise end of the wound electrode group. , Destruction of the porous metal substrate,
Therefore, there was a problem that welding could not be performed reliably and internal resistance was likely to increase.

【0005】そこで、金属多孔体基板を用いたペースト
式ニッケル電極では、巻回体電極群の幅方向端部の金属
多孔体基板の露出部分にニッケル薄板を溶接して補強す
ることも考えられるが、工程が煩雑化する上に、ニッケ
ル薄板と金属多孔体基板との密着性が悪く、溶接不良が
生じるおそれがあった。また、金属多孔体基板を用いた
ペースト式ニッケル電極は、電池缶内への活物質の充填
量を多くするため、電極をプレスして圧縮することが行
われているが、活物質やバインダーなどを含んだ電極合
剤層の形成前の金属多孔体基板の幅方向端部にニッケル
薄板を溶接した場合には、電極のプレス時にニッケル薄
板と電極合剤層の形成部分との間に伸びの相違が生じる
ため、電極のプレス工程が困難になり、生産性を低下さ
せる要因になる。さらに、電極合剤層の形成後の金属多
孔体基板の幅方向端部における露出部分にニッケル薄板
を溶接する場合には、電極合剤層の形成時に金属多孔体
基板の溶接予定部分に付着した電極合剤により溶接時に
スパークが生じやすいため、溶接工程自体が困難である
という問題があった。また、これらの問題は、程度の差
こそあれ、ニッケル水素蓄電池以外のアルカリ蓄電池に
おいても同様に発生した。
Therefore, in the case of a paste-type nickel electrode using a porous metal substrate, it is conceivable that a nickel thin plate is welded to the exposed portion of the porous metal substrate at the end in the width direction of the wound electrode group to reinforce it. In addition, the process becomes complicated, and the adhesion between the nickel thin plate and the porous metal substrate is poor, and there is a possibility that poor welding may occur. In the case of a paste-type nickel electrode using a porous metal substrate, the electrode is pressed and compressed in order to increase the amount of the active material filled in the battery can. When the nickel thin plate is welded to the width direction end of the porous metal substrate before the formation of the electrode mixture layer including the electrode mixture layer, the extension between the nickel thin plate and the portion where the electrode mixture layer is formed at the time of pressing the electrode. Because of the difference, the electrode pressing process becomes difficult, which causes a reduction in productivity. Furthermore, when the nickel thin plate is welded to the exposed portion at the width direction end of the porous metal substrate after the formation of the electrode mixture layer, the nickel thin plate adheres to the portion to be welded of the porous metal substrate during the formation of the electrode mixture layer. There is a problem that the welding process itself is difficult because sparks easily occur during welding due to the electrode mixture. In addition, these problems also occur in alkaline storage batteries other than nickel-metal hydride storage batteries to a greater or lesser extent.

【0006】本発明は、上記のような従来技術における
問題点を解決し、金属板集電端子と溶接する金属多孔体
基板の幅方向端部の強度を向上させ、大電流用途に適し
たアルカリ蓄電池を提供することを目的とする。
The present invention solves the above-mentioned problems in the prior art, improves the strength of the width direction end of a porous metal substrate to be welded to a current collector terminal of a metal plate, and provides an alkali suitable for a large current application. It is intended to provide a storage battery.

【0007】[0007]

【課題を解決するための手段】本発明は、基板の少なく
とも一部に正極合剤層を形成してなる正極と基板の少な
くとも一部に負極合剤層を形成してなる負極とをセパレ
ータを介して巻回して作製した巻回体電極群を電池缶内
に収容するアルカリ蓄電池において、正極、負極の少な
くとも一方の電極の基板として金属多孔体基板を用い、
その金属多孔体基板の幅方向端部に金属粉末を充填し、
その金属粉末を充填した金属多孔体基板の幅方向端部に
は電極合剤層を形成せず金属多孔体基板が露出した状態
でプレスして圧縮し、巻回体電極群の作製後に、前記金
属粉末を充填し圧縮した金属多孔体基板の幅方向端部に
金属板集電端子を多数点で接続する構成にすることによ
って、金属板集電端子との接続部分になる金属多孔体基
板の幅方向端部の強度を向上させ、溶接不良を低減して
大電流充放電に適したアルカリ蓄電池を提供し、上記課
題を解決したものである。
SUMMARY OF THE INVENTION The present invention provides a separator comprising a positive electrode having a positive electrode mixture layer formed on at least a part of a substrate and a negative electrode having a negative electrode mixture layer formed on at least a part of the substrate. In an alkaline storage battery containing a wound body electrode group manufactured by winding through a battery can, a positive electrode, a metal porous substrate is used as a substrate of at least one electrode of a negative electrode,
Fill the metal porous material at the width direction end of the porous metal substrate,
At the width direction end of the porous metal substrate filled with the metal powder, an electrode mixture layer is not formed and pressed and compressed in a state where the porous metal substrate is exposed, and after producing a wound electrode group, A metal plate current collecting terminal is connected at a number of points to the width direction end of the metal porous material substrate which is filled and compressed with metal powder, thereby forming a connection portion with the metal plate current collecting terminal. It is an object of the present invention to solve the above problems by providing an alkaline storage battery suitable for large-current charging and discharging by improving the strength of an end portion in a width direction and reducing welding defects.

【0008】すなわち、本発明では、金属多孔体基板の
幅方向端部に金属粉末を充填後にプレス(押圧)して圧
縮することにより、金属多孔体基板の幅方向端部を電極
合剤層形成部分より金属割合を増加させ、それによって
金属板集電端子と溶接する部分となる金属多孔体基板の
幅方向端部の強度を増加させたのである。また、金属粉
末を充填することにより、ニッケル薄板を溶接していた
場合のような電極プレス時の伸びの相違が生じないた
め、プレス工程における不良率を低減することができ、
さらにニッケル薄板の溶接をしないので、これまでのよ
うな溶接時のスパークが生じることもない。
That is, according to the present invention, the widthwise end of the porous metal substrate is filled with metal powder and then pressed (compressed) and compressed to form an electrode mixture layer on the widthwise end of the porous metal substrate. The ratio of the metal was increased from that of the portion, thereby increasing the strength at the widthwise end of the porous metal substrate serving as a portion to be welded to the metal plate current collecting terminal. Also, by filling the metal powder, there is no difference in elongation at the time of pressing the electrode as in the case of welding a nickel thin plate, it is possible to reduce the defective rate in the pressing process,
Further, since the nickel thin plate is not welded, there is no spark at the time of welding as in the past.

【0009】[0009]

【発明の実施の形態】以下、本発明のおいて電極の基板
として用いる金属多孔体基板について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a porous metal substrate used as an electrode substrate in the present invention will be described in detail.

【0010】本発明において、金属多孔体基板として
は、種々のものを用い得るが、特に金属発泡体や金属板
または穿孔した金属板の片面または両面に金属発泡体層
を設けたものが好適に用いられる。金属発泡体の代表的
な製造方法としては、ウレタンフォームなどの樹脂発泡
体にニッケルメッキなどの金属メッキを施した後、その
骨格部分をなす樹脂の発泡体を加熱して燃焼させること
により除去し、その後、焼鈍する方法が挙げられる。つ
まり、前記のような骨格部分をなす樹脂発泡体を燃焼に
よって除去することにより、その樹脂発泡体上に多孔体
状態に形成されていた金属部分のみが残り、金属発泡体
が得られる。また、金属板または穿孔した金属板の片面
または両面に金属発泡体層を設けた金属多孔体基板は、
例えば、ウレタンフォームなどの樹脂発泡体にニッケル
メッキなどの金属メッキを施し、そのメッキを施した樹
脂発泡体を基材となる金属板または穿孔した金属板の片
面に配置するか、あるいは前記メッキを施した樹脂発泡
体で基材となる金属板または穿孔した金属板を挟み、加
熱して樹脂発泡体を燃焼させて除去し、さらに焼結する
ことによって得られる。
In the present invention, various substrates can be used as the porous metal substrate. In particular, a metal foam or a metal plate or a perforated metal plate provided with a metal foam layer on one or both sides thereof is preferably used. Used. As a typical method of manufacturing a metal foam, a resin foam such as urethane foam is subjected to metal plating such as nickel plating, and then the resin foam forming the skeleton is removed by heating and burning. Then, a method of annealing is given. That is, by removing the resin foam constituting the skeleton portion by burning as described above, only the metal portion formed in a porous state on the resin foam remains, and a metal foam is obtained. Further, a porous metal substrate provided with a metal foam layer on one or both sides of a metal plate or a perforated metal plate,
For example, a resin foam such as urethane foam is subjected to metal plating such as nickel plating, and the plated resin foam is disposed on one surface of a base metal plate or a perforated metal plate, or the plating is performed. It is obtained by sandwiching a metal plate as a base material or a perforated metal plate with the applied resin foam, heating the resin foam to remove it by burning, and further sintering.

【0011】本発明において、金属多孔体基板として
は、特に金属発泡体や金属板または穿孔した金属板の片
面または両面に金属発泡体層を設けたものが好適に用い
られることから、その金属発泡体を主たる対象としつ
つ、金属多孔体基板について詳細に説明すると、その材
質としては、例えば、ニッケル、鉄(ニッケルぬっき付
き)、銅などが挙げられるが、特にニッケルが適してい
る。また、金属粉末の材質としては、例えば、ニッケ
ル、銅、金、白金などが挙げられ、さらに、電極の作動
電位においてアルカリ電解液中で安定な状態を保つ合金
なども用い得る。
In the present invention, as the metal porous substrate, a metal foam or a metal plate or a perforated metal plate provided with a metal foam layer on one or both sides is preferably used. The porous metal substrate will be described in detail with the body as the main object. Examples of the material include nickel, iron (with nickel plating), copper and the like, and nickel is particularly suitable. Further, examples of the material of the metal powder include nickel, copper, gold, platinum, and the like. Further, an alloy that maintains a stable state in an alkaline electrolyte at the operating potential of the electrode may be used.

【0012】前記のような幅方向端部に金属粉末を充填
したのちプレスして圧縮した部分を有する金属多孔体基
板は、正極、負極のいずれの基板としても用いることが
できるが、特に大電流用途用アルカリ蓄電池の正極は、
導電性が悪いペースト式ニッケル電極で構成されるた
め、正極の基板として用いることが好ましく、もとよ
り、正極および負極の基板として用いてもよい。
[0012] The porous metal substrate having a portion in which the width direction end is filled with metal powder and then pressed and compressed can be used as either a positive electrode or a negative electrode. The positive electrode of the alkaline storage battery for the application is
Since it is composed of a paste-type nickel electrode having poor conductivity, it is preferably used as a substrate for a positive electrode, and may be used as a substrate for a positive electrode and a negative electrode.

【0013】上記金属多孔体基板の目付け量としては、
金属多孔体基板の単位面積当りの重量が350g/m2
以上、600g/m2 以下であることが好ましく、40
0g/m2 以上、500g/m2 以下であることがより
好ましい。
The basis weight of the porous metal substrate is as follows.
The weight per unit area of the porous metal substrate is 350 g / m 2.
It is preferably at least 600 g / m 2 ,
More preferably, it is 0 g / m 2 or more and 500 g / m 2 or less.

【0014】また、電極合剤含有ペーストの充填量を上
げるために、金属多孔体基板の多孔度としては90%以
上が好ましく、より好ましくは95%以上、99%以下
であり、孔径は100PPI〔25.4mm(1イン
チ)あたりの孔数〕以下が好ましく、110PPI以下
がより好ましい。なお、多孔度に関する%はいずれも体
積%である。
In order to increase the filling amount of the electrode mixture-containing paste, the porosity of the porous metal substrate is preferably 90% or more, more preferably 95% or more and 99% or less, and the pore size is 100 PPI [ No. of holes per 25.4 mm (1 inch)] or less, and more preferably 110 PPI or less. In addition, all the percentages related to the porosity are volume percentages.

【0015】ここで、本発明において用いる金属多孔体
基板の一例を図1に基づいて説明すると、金属多孔体基
板1は短冊状で使用に供され、その幅方向端部1aには
金属粉末が充填され、その金属粉末の充填後にプレスし
て圧縮される。ただし、このプレスによる圧縮は金属粉
末の充填に引き続いて行うことは必ずしも必要でなく、
次に示すように他の部分(幅方向端部1a以外の部分)
に形成した電極合剤層の圧縮と同時に行えばよい。すな
わち、金属粉末を充填した幅方向端部1aには電極合剤
含有ペーストを塗布、充填せず、金属多孔体基板1の他
の部分1b(つまり、金属粉末を充填した幅方向端部1
a以外の部分)には電極合剤含有ペーストを塗布、充填
し、乾燥して電極合剤層が形成される。従って、金属粉
末が充填されている金属多孔体基板1の幅方向端部1a
には電極合剤層が形成されず、この幅方向端部1aでは
金属多孔体基板が露出することになる。
Here, an example of the porous metal substrate used in the present invention will be described with reference to FIG. 1. The porous metal substrate 1 is used in the form of a strip, and a metal powder is applied to an end 1a in the width direction. It is filled and pressed and compressed after filling of the metal powder. However, the compression by this press is not necessarily performed subsequent to the filling of the metal powder,
Other parts as shown below (parts other than width direction end 1a)
The compression may be performed simultaneously with the compression of the electrode mixture layer formed as described above. That is, the electrode mixture-containing paste is not applied and filled on the width direction end 1a filled with the metal powder, and the other portion 1b of the metal porous substrate 1 (that is, the width direction end 1a filled with the metal powder) is not applied.
The electrode mixture-containing paste is applied, filled, and dried to form an electrode mixture layer. Accordingly, the width direction end portion 1a of the porous metal substrate 1 filled with the metal powder.
No electrode mixture layer is formed, and the metal porous body substrate is exposed at the width direction end 1a.

【0016】そして、上記のように電極合剤層を形成し
たのち、プレスして圧縮される。その際、金属多孔体基
板1は金属粉末を充填した幅方向端部1aも電極合剤層
が形成された他の部分1bとともに圧縮される。従っ
て、金属多孔体基板の幅方向端部1aは金属粉末の充填
に引き続いてプレスして圧縮することは必ずしも必要で
なく、他の部分1bに電極合剤層を形成した後に、電極
合剤層およびその電極合剤層が形成されている他の部分
1bと共にプレスして圧縮すればよく、このようにする
方がプレス工程が1回で済み、むしろ能率的である。た
だし、金属粉末の充填に引き続いてプレスして圧縮して
もよいことはもちろんである。
After the electrode mixture layer is formed as described above, it is pressed and compressed. At that time, the porous metal substrate 1 is also compressed in the width direction end 1a filled with the metal powder together with the other portion 1b on which the electrode mixture layer is formed. Therefore, it is not always necessary to press and compress the width direction end 1a of the porous metal substrate after the filling of the metal powder, and after forming the electrode mixture layer on the other portion 1b, the electrode mixture layer is formed. It is sufficient to press and compress together with the other portion 1b on which the electrode mixture layer is formed, and in such a case, only one pressing step is required, which is more efficient. However, it goes without saying that pressing and compression may be performed subsequent to filling of the metal powder.

【0017】上記のように作製した電極を図2に基づい
て説明すると、電極2は金属多孔体基板と電極合剤層3
とで構成される。ただし、この電極2になった状態で
は、外観上、金属多孔体基板はその幅方向端部1aしか
見えず、その幅方向端部1aは前記のように金属粉末の
充填後にプレスして圧縮したという特定の構成のもので
あり、電極合剤層3は金属多孔体基板の他の部分(つま
り、幅方向端部1a以外の部分)に電極合剤含有ペース
トを塗布、充填し、乾燥後、プレスして圧縮することに
より形成されたものであり、図2では、この電極合剤層
3にドットを入れて識別しやすくしている。
The electrode manufactured as described above will be described with reference to FIG. 2. The electrode 2 is composed of a porous metal substrate and an electrode mixture layer 3.
It is composed of However, when the electrode 2 is formed, the porous metal substrate can be seen only in the width direction end 1a, and the width direction end 1a is pressed and compressed after filling the metal powder as described above. The electrode mixture layer 3 is formed by applying and filling the electrode mixture-containing paste on the other portion of the porous metal substrate (that is, the portion other than the width direction end 1a), and then drying. It is formed by pressing and compressing. In FIG. 2, dots are provided in the electrode mixture layer 3 to facilitate identification.

【0018】そして、この金属多孔体基板を用いて上記
のように作製された電極とその対極の電極とをセパレー
タを介して巻回して巻回体電極群を作製し、その巻回体
電極群の幅方向端部における金属多孔体基板の幅方向端
部(つまり、内部に金属粉末を充填した後に圧縮して強
度を向上させた部分であって、外部側には金属多孔体基
板自身が露出している部分)に金属板集電端子が多数点
で溶接により接続される。
Using the porous metal substrate, the electrode fabricated as described above and the counter electrode are wound through a separator to form a wound electrode group, and the wound electrode group is fabricated. The width direction end of the porous metal substrate at the width direction end (that is, the portion where the inside is filled with metal powder and then compressed to improve the strength, and the metal porous substrate itself is exposed to the outside. Are connected to the metal plate current collector terminal by welding at many points.

【0019】[0019]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明は実施例に例示のもののみ
に限定されることはない。なお、以下において、「部」
とあるのは「重量部」を意味し、溶液や分散液の濃度を
示す「%」は特にその単位を付記していないかぎり「重
量%」を意味する。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those illustrated in the embodiments. In the following, "part"
The term “parts” means “parts by weight”, and “%” indicating the concentration of a solution or dispersion means “% by weight” unless the unit is specified.

【0020】実施例1 ニッケル粉末100部に対して2%カルボキシメチルセ
ルロース水溶液10部を混合し、ペースト状にした。
Example 1 100 parts of nickel powder was mixed with 10 parts of a 2% aqueous solution of carboxymethyl cellulose to form a paste.

【0021】基板として、目付け量400g/m2 、長
さ680mm、幅33mmのニッケル発泡体からなる金
属多孔体基板を用意し、この金属多孔体基板の一方の幅
方向端部に上記ニッケル粉末含有ペーストを幅2mmに
わたって塗布、充填し、乾燥した。なお、上記ニッケル
発泡体の多孔度は98%で、平均孔径は100PPIで
あった。
As a substrate, a porous metal substrate made of a nickel foam having a basis weight of 400 g / m 2 , a length of 680 mm and a width of 33 mm was prepared. The paste was applied over a width of 2 mm, filled, and dried. The porosity of the nickel foam was 98%, and the average pore size was 100 PPI.

【0022】また、粒子表面が4.7重量%の水酸化コ
バルトで被覆された水酸化ニッケル粉末(コバルト固溶
量1.2重量%)100部に、コバルト系導電助剤とし
て一酸化コバルト粉末2.9部、さらに2%カルボキシ
メチルセルロース水溶液10部および60%ポリテトラ
フルオロエチレン分散液2部を加えて混合し、正極合剤
含有ペーストを調製した。この正極合剤含有ペーストを
上記金属多孔体基板にその一方の幅方向端部(つまり、
ニッケル粉末を充填した部分)を除いて両面に塗布、充
填し、乾燥して正極合剤層を形成した後、プレスして圧
縮し、所定長さに裁断して、シート状の正極を作製し
た。上記正極合剤形成後のプレスにより金属多孔体基板
の一方の幅方向端部のニッケル粉末を充填した部分も圧
縮される。
Further, 100 parts of nickel hydroxide powder (cobalt solid solution amount: 1.2% by weight) coated with 4.7% by weight of cobalt hydroxide on the particle surface was added with cobalt monoxide powder as a cobalt-based conductive additive. 2.9 parts, 10 parts of a 2% carboxymethylcellulose aqueous solution and 2 parts of a 60% polytetrafluoroethylene dispersion were added and mixed to prepare a positive electrode mixture-containing paste. This positive electrode mixture-containing paste is applied to one of the widthwise ends of the porous metal substrate (that is,
Except for the nickel powder-filled portion), coated and filled on both sides and dried to form a positive electrode mixture layer, pressed, compressed and cut into a predetermined length to produce a sheet-shaped positive electrode . By pressing after the formation of the positive electrode mixture, a portion filled with nickel powder at one widthwise end of the porous metal substrate is also compressed.

【0023】上記とは別に、組成がMmNi4.05Co
0.45Mn0.5 Al0.3 Mo0.35(Mmの組成がLa:
0.32原子%、Ce:0.48原子%、Nd:0.1
5原子%、Pr:0.04原子%で、Mm1に対してN
i、Co、MnおよびAlの合計が5.35である)で
表される水素吸蔵合金粉末100部に、ニッケル粉末2
部を加え、さらにカルボキシメチルセルロース水溶液お
よびポリテトラフルオロエチレン分散液を適量加えて混
合して負極合剤含有ペーストを調製した。この負極合剤
含有ペーストを穿孔した鉄ニッケルメッキ鋼板からなる
基板にその一方の幅方向端部を除いて両面に塗布、充填
し、乾燥して負極合剤層を形成した後、プレスして圧縮
後、裁断して、シート状の負極を作製した。
Apart from the above, the composition is MmNi 4.05 Co
0.45 Mn 0.5 Al 0.3 Mo 0.35 (Mm composition is La:
0.32 atomic%, Ce: 0.48 atomic%, Nd: 0.1
5 atomic%, Pr: 0.04 atomic%, N
i, Co, Mn, and Al are 5.35 in total), and nickel powder 2
Then, an appropriate amount of an aqueous carboxymethylcellulose solution and a polytetrafluoroethylene dispersion were added and mixed to prepare a negative electrode mixture-containing paste. This negative electrode mixture-containing paste is applied to both sides of a substrate made of perforated iron-nickel plated steel plate except for one widthwise end portion, filled and dried to form a negative electrode mixture layer, and then pressed and compressed. Thereafter, the sheet was cut to produce a sheet-shaped negative electrode.

【0024】つぎに、これらの正極と負極をスルホン化
処理したポリプロピレン系セパレータを介して、正極、
負極が幅方向端部からずれた位置関係(つまり、正極の
一方の幅方向端部が負極の上端より上方に突出し、負極
の一方の幅方向端部が正極の下端より下方に突出する位
置関係)で対向するようにしつつ渦巻状に巻回し、単2
形電池用の巻回体電極群を100個作製した。
Next, the positive electrode and the negative electrode were passed through a polypropylene separator obtained by sulfonating the positive electrode and the negative electrode,
Positional relationship in which the negative electrode is shifted from the widthwise end (that is, positional relationship in which one widthwise end of the positive electrode protrudes above the upper end of the negative electrode and one widthwise end of the negative electrode protrudes below the lower end of the positive electrode) ), Spirally wind while facing each other,
100 wound electrode groups for a battery were manufactured.

【0025】このようにして作製した100個の巻回体
電極群の正極における金属多孔体基板の幅方向端部(つ
まり、この実施例1では、内部にニッケル粉末を充填後
に圧縮して強度を向上させた部分であって、外面側には
金属多孔体基板が露出した部分)に厚さ0.2mmの円
形の金属板集電端子を抵抗溶接機を用いて溶接端子のヘ
ッド圧49N(5kgf)/cm2 の条件で15点で溶
接し、溶接時に短絡が発生するものを溶接不良として、
その不良発生率を調べたところ、溶接不良の発生はまっ
たくなかった。また、この結果については後記の比較例
1における溶接時の不良発生率と併せて後記の表1に示
す。
The widthwise end of the porous metal substrate in the positive electrode of the group of 100 wound electrodes thus produced (that is, in Example 1, the inside was filled with nickel powder and then compressed to reduce the strength. Using a resistance welding machine, a 0.2 mm thick circular metal plate current collecting terminal was applied to the welded terminal with a head pressure of 49 N (5 kgf) on the improved portion (exposed portion where the porous metal substrate was exposed on the outer surface side). ) / Cm 2 , welding at 15 points, and a short-circuit occurring at the time of welding is regarded as poor welding.
When the defect occurrence rate was examined, no welding defect occurred. The results are shown in Table 1 below together with the defect occurrence rate during welding in Comparative Example 1 described later.

【0026】上記金属板集電端子を溶接後の巻回体電極
群を電池缶内に挿入し、正負極端子をそれぞれ封口体と
電池缶に溶接した後、30%水酸化カリウム水溶液に酸
化亜鉛を33g/リットル溶解してなる電解液を、所定
量注入し、封口することにより、密閉形ニッケル水素蓄
電池を作製した。このニッケル水素蓄電池を40℃で6
時間保持し、25℃に冷却後、25℃、0.2CAで7
時間の充電と0.2CAの放電(終止電圧1.0V)を
5サイクル繰り返し、引き続き0.2CAで7時間の充
電と10CAの放電(終止電圧1.0V)を行い、10
CA放電容量の0.2CA放電容量に対する比率〔(1
0CA放電容量/0.2CA放電容量)×100〕を求
めた。その結果を10CA放電容量(%)として後記の
表2に示す。
After the metal plate current collector terminal was welded, the wound electrode group was inserted into the battery can, the positive and negative terminals were welded to the sealing body and the battery can, respectively, and then zinc oxide was added to a 30% aqueous potassium hydroxide solution. Was dissolved in 33 g / liter, and a predetermined amount of an electrolytic solution was injected and sealed, thereby producing a sealed nickel-metal hydride battery. This nickel-metal hydride battery is
Hold for 25 hours, cool to 25 ° C, and then
The charging for 0.2 hours and discharging at 0.2 CA (final voltage 1.0 V) were repeated for 5 cycles, followed by charging for 7 hours at 0.2 CA and discharging at 10 CA (final voltage 1.0 V), and
Ratio of CA discharge capacity to 0.2 CA discharge capacity [(1
0 CA discharge capacity / 0.2 CA discharge capacity) × 100]. The results are shown in Table 2 below as 10 CA discharge capacity (%).

【0027】比較例1 基板として、その幅方向端部にニッケル粉末の充填を行
わなかった以外は実施例1の場合と同様の金属多孔体基
板を用い、その金属多孔体基板を用いた以外は実施例1
と同様にして巻回体電極群を100個作製した。
Comparative Example 1 A porous metal substrate similar to that of Example 1 was used as a substrate except that the nickel powder was not filled in the widthwise end portion, and except that the porous metal substrate was used. Example 1
100 wound electrode groups were produced in the same manner as described above.

【0028】このようにして作製した100個の巻回体
電極群の正極における金属多孔体基板の幅方向端部(つ
まり、金属多孔体基板が露出している部分)に実施例1
と同様の金属板集電端子を実施例1と同様の条件で溶接
し、溶接時の不良発生率を調べたところ、不良発生率は
97%であた。
Example 1 was formed at the widthwise end of the porous metal substrate (that is, the portion where the porous metal substrate was exposed) at the positive electrode of the 100 wound electrode groups manufactured as described above.
The same metal plate current collector terminal as in Example 1 was welded under the same conditions as in Example 1 and the occurrence rate of defects at the time of welding was examined. As a result, the occurrence rate of defects was 97%.

【0029】上記金属板集電端子を溶接したときに溶接
不良が発生しなかった巻回体電極群を用いた以外は実施
例1と同様に密閉形ニッケル水素蓄電池を作製し、その
電池について実施例1と同様に10CA放電容量の0.
2CA放電容量に対する比率〔(10CA放電容量/
0.2CA放電容量)×100〕を求めた。その結果を
10CA放電容量(%)として後記の表2に示す。
A sealed nickel-metal hydride storage battery was manufactured in the same manner as in Example 1 except that a wound electrode group in which welding failure did not occur when the above-mentioned metal plate current collecting terminal was welded was used. As in Example 1, a 10CA discharge capacity of 0.
Ratio to 2CA discharge capacity [(10CA discharge capacity /
0.2 CA discharge capacity) × 100]. The results are shown in Table 2 below as 10 CA discharge capacity (%).

【0030】前記のように、まず、実施例1および比較
例1の金属板集電端子を巻回体電極群に溶接した時の不
良発生率を表1に示す。
As described above, first, Table 1 shows a defect occurrence rate when the metal plate current collecting terminals of Example 1 and Comparative Example 1 were welded to the wound electrode group.

【0031】[0031]

【表1】 [Table 1]

【0032】表1に示す結果から明らかなように、実施
例1では、比較例1に比べて、巻回体電極群における金
属多孔体基板の幅方向端部と金属板集電端子との溶接時
の不良発生率が顕著に低減されている。このことから、
巻回体電極群における正極、負極の少なくとも一方の電
極の金属多孔体基板を、本発明のように幅方向端部に金
属粉末を充填した後に圧縮したものとすることにより、
巻回体電極群における金属多孔体基板の幅方向端部の強
度を向上させることができ、溶接時のヘッド圧に耐える
に充分な強度を確保することができることが明らかであ
る。従って、本発明によれば、内部抵抗を低減するため
に多数点で金属板集電端子と接続する必要のある大電流
用途に適したアルカリ蓄電池を作製することができる。
As is evident from the results shown in Table 1, in Example 1, compared to Comparative Example 1, welding of the width direction end of the porous metal substrate and the metal plate current collecting terminal in the wound electrode group was performed. The failure occurrence rate at the time is significantly reduced. From this,
The positive electrode in the wound electrode group, the metal porous body substrate of at least one electrode of the negative electrode, by filling the metal powder at the width direction end portion as in the present invention, by compressing,
It is clear that the strength of the end of the wound metal electrode group in the width direction of the porous metal substrate can be improved, and the strength sufficient to withstand the head pressure during welding can be secured. Therefore, according to the present invention, it is possible to manufacture an alkaline storage battery suitable for a large current application that needs to be connected to the metal plate current collector terminal at many points in order to reduce the internal resistance.

【0033】つぎに、実施例1および比較例1の密閉形
ニッケル水素蓄電池の10CA放電容量(%)、つま
り、10CA放電容量の0.2CA放電容量に対する比
率〔(10CA放電容量/0.2CA放電容量)×10
0〕を表2に示す。
Next, the 10CA discharge capacity (%) of the sealed nickel-metal hydride storage batteries of Example 1 and Comparative Example 1, that is, the ratio of 10CA discharge capacity to 0.2CA discharge capacity [(10CA discharge capacity / 0.2CA discharge capacity) Capacity) × 10
0] is shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】表2に示す結果から明らかなように、実施
例1の電池は10CAという大電流放電においても優れ
た放電特性を示していた。これに対して、比較例1の電
池の10CA放電容量(%)が低かったのは、金属板集
電端子を溶接した時に短絡が発生しなかった巻回体電極
群を用いたとはいえ、実施例1のようには金属板集電端
子が巻回体電極群の正極における金属多孔体基板の幅方
向端部にしっかりと溶接されておらず、その接続状態が
不安定であったことによるものと考えられる。
As is clear from the results shown in Table 2, the battery of Example 1 exhibited excellent discharge characteristics even at a large current discharge of 10 CA. On the other hand, the 10 CA discharge capacity (%) of the battery of Comparative Example 1 was low because the wound electrode group in which no short circuit occurred when the metal plate current collecting terminal was welded was used. As in Example 1, the metal plate collector terminal was not securely welded to the widthwise end of the porous metal substrate in the positive electrode of the wound electrode group, and the connection was unstable. it is conceivable that.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
大電流用途に適したアルカリ蓄電池を提供することがで
きた。
As described above, according to the present invention,
An alkaline storage battery suitable for high current applications could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において用いる金属多孔体基板の一例を
模式的に示す正面図である。
FIG. 1 is a front view schematically showing an example of a porous metal substrate used in the present invention.

【図2】本発明における電極の一例を模式的に示す正面
図である。
FIG. 2 is a front view schematically showing an example of an electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1 金属多孔体基板 1a 幅方向端部 1b 他の部分 2 電極 3 電極合剤層 DESCRIPTION OF SYMBOLS 1 Porous metal substrate 1a End in width direction 1b Other part 2 Electrode 3 Electrode mixture layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA02 BB06 BB13 CC25 5H022 AA04 AA18 BB01 CC08 CC12 CC16 CC21 5H028 AA05 BB04 BB05 BB07 CC13 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H017 AA02 BB06 BB13 CC25 5H022 AA04 AA18 BB01 CC08 CC12 CC16 CC21 5H028 AA05 BB04 BB05 BB07 CC13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の少なくとも一部に正極合剤層を形
成してなる正極と基板の少なくとも一部に負極合剤層を
形成してなる負極とをセパレータを介して巻回して作製
した巻回体電極群を電池缶内に収容するアルカリ蓄電池
において、正極、負極の少なくとも一方の電極の基板と
して金属多孔体基板を用い、その金属多孔体基板の幅方
向端部に金属粉末を充填し、その金属粉末を充填した金
属多孔体基板の幅方向端部には電極合剤層を形成せず金
属多孔体基板が露出した状態でプレスして圧縮し、巻回
体電極群の作製後に、前記金属粉末を充填し圧縮した金
属多孔体基板の幅方向端部に金属板集電端子を多数点で
接続したことを特徴とするアルカリ蓄電池。
1. A winding formed by winding a positive electrode having a positive electrode mixture layer formed on at least a part of a substrate and a negative electrode having a negative electrode mixture layer formed on at least a part of a substrate via a separator. In an alkaline storage battery accommodating the circulating electrode group in a battery can, a positive electrode, a porous metal substrate is used as a substrate of at least one electrode of the negative electrode, and a metal powder is filled into a width direction end of the porous metal substrate, At the width direction end of the porous metal substrate filled with the metal powder, an electrode mixture layer is not formed and pressed and compressed in a state where the porous metal substrate is exposed, and after producing a wound electrode group, An alkaline storage battery characterized in that a metal plate current collector terminal is connected at a number of points to an end portion in the width direction of a porous metal substrate filled with metal powder and compressed.
JP2000011092A 2000-01-20 2000-01-20 Alkaline battery Withdrawn JP2001202944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000011092A JP2001202944A (en) 2000-01-20 2000-01-20 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000011092A JP2001202944A (en) 2000-01-20 2000-01-20 Alkaline battery

Publications (1)

Publication Number Publication Date
JP2001202944A true JP2001202944A (en) 2001-07-27

Family

ID=18539005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000011092A Withdrawn JP2001202944A (en) 2000-01-20 2000-01-20 Alkaline battery

Country Status (1)

Country Link
JP (1) JP2001202944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224022A (en) * 2018-11-23 2020-06-02 常州微宙电子科技有限公司 Lithium ion battery and double-sided insulating metal cover plate thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224022A (en) * 2018-11-23 2020-06-02 常州微宙电子科技有限公司 Lithium ion battery and double-sided insulating metal cover plate thereof

Similar Documents

Publication Publication Date Title
JP2007012572A (en) Nickel hydrogen battery
JP4429569B2 (en) Nickel metal hydride storage battery
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP2001202944A (en) Alkaline battery
JP3764912B2 (en) Non-sintered electrode for alkaline storage battery, and alkaline storage battery using this electrode
JP3893856B2 (en) Square alkaline storage battery
JP2009187692A (en) Electrode for secondary battery, and secondary battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
JP4334783B2 (en) Negative electrode plate for nickel / hydrogen storage battery, method for producing the same, and nickel / hydrogen storage battery using the same
JP2984816B2 (en) How to attach tab to positive plate
JP2002319429A (en) Alkali storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH09259873A (en) Secondary battery electrode, its manufacture, and applying device of fluorine resin used for this manufacture
JP2007066836A (en) Manufacturing method of cylindrical alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP4187351B2 (en) Hydride secondary battery and manufacturing method thereof
JP2530281B2 (en) Alkaline storage battery
JP3374995B2 (en) Manufacturing method of nickel electrode
JPH09199163A (en) Nickel-hydrogen secondary battery
JPH1064533A (en) Electrode for secondary battery and manufacture thereof
JPH1021904A (en) Alkaline storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP2002319395A (en) Method of manufacturing hydrogen storage alloy electrode and secondary battery
JPS61259454A (en) Manufacture of battery plate

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403