JP2005071964A - Alkaline accumulator - Google Patents

Alkaline accumulator Download PDF

Info

Publication number
JP2005071964A
JP2005071964A JP2003304202A JP2003304202A JP2005071964A JP 2005071964 A JP2005071964 A JP 2005071964A JP 2003304202 A JP2003304202 A JP 2003304202A JP 2003304202 A JP2003304202 A JP 2003304202A JP 2005071964 A JP2005071964 A JP 2005071964A
Authority
JP
Japan
Prior art keywords
substrate
electrode plate
active material
positive electrode
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003304202A
Other languages
Japanese (ja)
Other versions
JP4349042B2 (en
Inventor
Toshiki Tanaka
俊樹 田中
Yukio Yamamoto
幸雄 山本
Yoshikatsu Otani
佳克 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2003304202A priority Critical patent/JP4349042B2/en
Publication of JP2005071964A publication Critical patent/JP2005071964A/en
Application granted granted Critical
Publication of JP4349042B2 publication Critical patent/JP4349042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrict the generation of an internal short circuit in an alkaline accumulator in which a substrate exposing portion composed of a three-dimensional porous material is provided on one of long side edges of a rectangular electrode plate formed by providing an active material on a metallic substrate composed of three-dimensional porous material, the substrate exposing portion projects at the edge of a group of electrode plates and a current collection terminal is connected to the edge of the substrate. <P>SOLUTION: A rectangular substrate non-compressed portion 3 having one side which is a long side of the rectangle is provided on an exposing portion of a substrate composed of three-dimensional porous material, and a belt-shaped substrate compressed portion 4 is provided between the substrate non-compressed portion and the boundary of an active material non-filled portion and an active material filled portion 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電動工具や電動自転車またはハイブリッド電気自動車(HEV)等の動力電源として使用される大電流放電に適したアルカリ蓄電池に関するものである。   The present invention relates to an alkaline storage battery suitable for large current discharge used as a power source for an electric tool, an electric bicycle, a hybrid electric vehicle (HEV) or the like.

水素吸蔵合金を主材とした負極を用いた密閉形アルカリ蓄電池は、優れた充放電特性を有することおよび、環境保全に優れる等の点から用途が拡大しつつある。中でも、電動工具や電動自転車用の電源ならびにHEVの動力用電源として注目され、大きな需要が見込まれている。これらの用途は、一般的に大きな出力を必要とする。従って、前記用途に適用される電池は、優れた高率放電特性を備えることが求められる。   A sealed alkaline storage battery using a negative electrode mainly composed of a hydrogen storage alloy has been expanded in use from the viewpoint of having excellent charge / discharge characteristics and excellent environmental conservation. Among them, attention has been paid as a power source for electric tools and electric bicycles and a power source for HEV power, and a great demand is expected. These applications generally require a large output. Therefore, a battery applied to the above-described use is required to have excellent high rate discharge characteristics.

これらの電池に使用する正極板及び負極板は、厚さを薄くし極板の作用面積をできるだけ大きくしている。具体的には厚さを薄くして作用面積を大きくした矩形の1枚の正極板および1枚の負極板をセパレータを間に挟んで積層し、該積層体を図3に示すように渦巻き上に捲回した捲回式極板群としたり、複数枚の正極板と負極板をセパレータを挟んで交互に積層した図5に示す積層形極板群とする。   The positive electrode plate and the negative electrode plate used in these batteries are made thin to make the working area of the electrode plate as large as possible. Specifically, a rectangular positive electrode plate and a negative electrode plate having a reduced thickness and an increased working area are stacked with a separator interposed therebetween, and the stacked body is swirled as shown in FIG. Or a stacked electrode plate group shown in FIG. 5 in which a plurality of positive and negative electrode plates are alternately stacked with a separator interposed therebetween.

極板群の構造は、一般的にタブレス方式と称する構造が採用されている。図3に示した捲回式極板群においては、極板群11の一方の捲回端面(図では上側、11B)に正極板の一方の長辺端部18を突出させる。正極板(隠れているので図示せず)は発泡ニッケルなどの3次元多孔体基板に水酸化ニッケルを主成分とする活物質を担持させたものである。正極板の前記端部18には、活物質が充填されておらず基板が露出している(該部分を活物質非充填領域または基板露出領域と称するが、以下に基板露出領域と記述する)。前記基板露出部分の基板の端面に円盤状正極集電端子22を接合する。該接合は、通常抵抗溶接によって接合する。正極集電端子22の上面に該集電端子と正極端子(図示せず)を接続させるための正極リード辺23を接合する。   As the structure of the electrode plate group, a structure generally called a tabless system is adopted. In the wound electrode plate group shown in FIG. 3, one long side end portion 18 of the positive electrode plate protrudes from one wound end surface (upper side, 11B in the drawing) of the electrode plate group 11. The positive electrode plate (not shown because it is hidden) is obtained by supporting an active material mainly composed of nickel hydroxide on a three-dimensional porous substrate such as nickel foam. The end portion 18 of the positive electrode plate is not filled with an active material and the substrate is exposed (this portion is referred to as an active material non-filled region or a substrate exposed region, but is hereinafter referred to as a substrate exposed region). . A disc-shaped positive current collecting terminal 22 is joined to the end face of the substrate at the exposed portion of the substrate. The joining is usually joined by resistance welding. A positive electrode lead side 23 for connecting the current collector terminal and a positive electrode terminal (not shown) is joined to the upper surface of the positive electrode current collector terminal 22.

前記極板群の他方の捲回端面(図では下側、11A)に負極板11の一方の長辺端部17を突出させる。負極板12は、ニッケルメッキを施した鋼板に多数の孔を穿った穿孔鋼板や発泡ニッケルなどの3次元多孔体に水素吸蔵合金やカドミウムなどの活物質を担持させたものである。負極板11の前記端部には、活物質が充填されておらず基板が露出している(該部分を以下に基板露出領域と記述する)。前記基板露出部分の基板の端面に円盤状負極集電端子20を接合する。該接合は、通常、抵抗溶接によって接合する。前記負極集電端子20は負極端子を兼ねる金属製電槽(図示せず)に接合する。
正極および負極の集電端子には、図3の22や図4(イ)に示した単純なドーナツ型の金属製円盤の他、図3の20や図4の(ロ)に示した22と負極板の基板端面の溶接を助けるための凸片{図3では20A、図4(ロ)では26}を設けたり、溶接時の無効電流を低減するための切り欠き{図4(ロ)では25}を設けることもできる。
One long side end portion 17 of the negative electrode plate 11 protrudes from the other winding end surface (lower side, 11A in the figure) of the electrode plate group. The negative electrode plate 12 is obtained by supporting an active material such as a hydrogen storage alloy or cadmium on a three-dimensional porous body such as a perforated steel sheet having a large number of holes formed in a nickel plated steel sheet or foamed nickel. The end portion of the negative electrode plate 11 is not filled with an active material and the substrate is exposed (this portion is hereinafter referred to as a substrate exposed region). A disc-shaped negative electrode current collecting terminal 20 is bonded to the end face of the substrate at the exposed portion of the substrate. This joining is usually joined by resistance welding. The negative electrode current collecting terminal 20 is joined to a metal battery case (not shown) that also serves as a negative electrode terminal.
In addition to the simple donut-shaped metal disk shown in 22 of FIG. 3 and FIG. 4A, the current collector terminals of the positive electrode and the negative electrode, and 22 shown in FIG. A protruding piece {20A in FIG. 3; 26 in FIG. 4 (B)} is provided for assisting welding of the substrate end face of the negative electrode plate, or a notch {in FIG. 4 (B) is used to reduce reactive current during welding. 25} can also be provided.

図5に示すように、積層式極板群31においては、一方の積層端面(図では左側手前)に正極板(隠れているので図示せず)の一方の長辺端部32を突出させ、それと対向する積層端面(図では右手背面側)に負極板33一方の長辺端部34を突出させる。前記捲回式極板群の場合同様、突出させた正極の長辺端部32、負極板の長辺端部34はどちらも基板露出領域であり、それぞれの基板端面に矩形のニッケル板からなる正極集電端子36および負極集電端子37を接合する。該接合は、捲回式極板群の場合同様、通常、抵抗溶接によって接合する。なお、図の35は正極板と負極板の間に挿入したセパレータである。   As shown in FIG. 5, in the laminated electrode plate group 31, one long side end portion 32 of the positive electrode plate (not shown because it is hidden) protrudes from one laminated end surface (on the left side in the drawing), The long side end portion 34 of one of the negative electrode plates 33 is protruded on the opposite end face of the laminate (the right hand back side in the figure). As in the case of the wound-type electrode plate group, the protruding long-side end portion 32 of the positive electrode and the long-side end portion 34 of the negative electrode plate are both substrate exposed regions, and each substrate end face is made of a rectangular nickel plate. The positive current collecting terminal 36 and the negative current collecting terminal 37 are joined. The joint is usually joined by resistance welding as in the case of the wound electrode group. In the figure, reference numeral 35 denotes a separator inserted between the positive electrode plate and the negative electrode plate.

集電端子と基板の端面の接合方法として最も広く用いられるのはシリーズスポット溶接による接合である。正極集電端子22を正極板の基板に接合させる場合を例に採ると、図7に示すように正極集電端子22を正極板1の前記基板露出部分部分3の端面上に載置し、集電端子22の上面に溶接機の端子41を当接させる。そして、集電端子22が基板露出部分3の端面に密接するように集電端子22を基板端面に押しつけながら溶接電流を通電し両者を接合させる。図6は正極板1の断面を模式的に示す図であり、該正極板は発泡ニッケルからなる基板に活物質を充填した活物質充填領域2と正極板の一方の長辺に設けた基板露出領域3からなる。基板露出領域3は、柔らかいために、図7に示すように集電端子22を接合する過程で変形し、該変形部分がセパレータ13を貫通したり、変形にともなって活物質が脱落し、脱落した活物質塊がセパレータ13を貫通して極板群に短絡が生じる虞があった。尚、図7の12は負極板を示す。   The most widely used method of joining the current collecting terminal and the end face of the substrate is joining by series spot welding. Taking the case where the positive electrode current collector terminal 22 is bonded to the substrate of the positive electrode plate as an example, the positive electrode current collector terminal 22 is placed on the end surface of the substrate exposed portion 3 of the positive electrode plate 1 as shown in FIG. The terminal 41 of the welding machine is brought into contact with the upper surface of the current collecting terminal 22. Then, the current collector terminal 22 is pressed against the end surface of the substrate so that the current collector terminal 22 is in close contact with the end surface of the substrate exposed portion 3, and a welding current is applied to join the two. FIG. 6 is a diagram schematically showing a cross section of the positive electrode plate 1. The positive electrode plate is an active material filling region 2 in which a substrate made of foamed nickel is filled with an active material and a substrate exposed on one long side of the positive electrode plate. It consists of region 3. Since the substrate exposed region 3 is soft, it is deformed in the process of joining the current collecting terminals 22 as shown in FIG. 7, and the deformed portion penetrates the separator 13 or the active material falls off due to the deformation. There was a possibility that the active material mass penetrating the separator 13 might cause a short circuit in the electrode plate group. In addition, 12 of FIG. 7 shows a negative electrode plate.

前記集電端子板を基板の端面に密接させる過程で、基板の端面に押圧力が加わる。多孔性基板は元来柔らかいため、押圧力が加わると基板の活物質非充填部分は変形し極板の厚さ方向に膨らみ、活物質非充填部分の基板の厚さが極板の厚さを超えることもまれではない。また、基板の変形が活物質非充填部分に接する活物質充填部分にまでおよび活物質の脱落を引き起こすことがあった。このように、基板の厚さが極板の厚さを超えたり、活物質が脱落したりすると、基板を構成する金属多孔体の一部や活物質の塊がセパレータを貫通して内部短絡を起こす虞があった。   In the process of bringing the current collecting terminal plate into close contact with the end surface of the substrate, a pressing force is applied to the end surface of the substrate. Since the porous substrate is inherently soft, when the pressing force is applied, the active material unfilled portion of the substrate is deformed and swells in the thickness direction of the electrode plate, and the thickness of the substrate of the active material unfilled portion becomes the thickness of the electrode plate. It is not uncommon to exceed. In addition, the deformation of the substrate may cause the active material filling portion in contact with the active material non-filling portion and dropping of the active material. As described above, when the thickness of the substrate exceeds the thickness of the electrode plate or the active material falls off, a part of the metal porous body or the lump of the active material constituting the substrate penetrates the separator to cause an internal short circuit. There was a risk of it happening.

前記の虞をなくすために、基板端部に予め溶接時に加わる押圧力と同じ方向に力を加えて基板を圧縮し、該圧縮部分の基板の機械的強度を高める方法が提案されている。(特許文献1参照)
特開昭62−139251号公報{第1図(A)} しかしながら、この方法の場合、基板端部を圧縮させるときに活物質充填部分にまで圧力が及び、基板露出部分と活物質の充填部分との境目において基板の厚さが増大し、基板の厚さが極板の厚さより大きくなったり、活物質が脱落したりするのを防ぎきれない欠点があった。
In order to eliminate the fear, a method has been proposed in which the substrate is compressed by applying a force in the same direction as the pressing force applied to the end portion of the substrate in advance to increase the mechanical strength of the compressed portion of the substrate. (See Patent Document 1)
However, in this method, when the substrate end portion is compressed, pressure is applied to the active material filling portion and the substrate exposed portion and the active material filling portion. However, there is a drawback that the thickness of the substrate increases at the boundary between the thickness of the substrate and the thickness of the substrate becomes larger than the thickness of the electrode plate, and the active material cannot be prevented from falling off.

前記活物質非充填部分の基板の硬さの不足を補うために、図8に示すように、極板の長辺端部に矩形状に設けた活物質の非充填部分(基板露出部分)3を極板の厚さ方向に圧縮し、該活物質非充填部分とほぼ同じ幅を有し、厚さが0.1〜0.5mmの金属箔製のフープ5を前記圧縮された基板に接合する極板の構成が提案されている。(特許文献2参照)
特開昭56−86459号公報(頁3、実施例3) しかし、該極板構成とするには金属箔製のフープを必要とし、接合(溶接)工程も必要とする。また、基板の活物質非充填部分の基板の硬さが増し、該部分の基板の変形は抑制されるものの、押圧力が弱まることなく活物質充填部分にまで及ぶため、活物質脱落防止に対して十分な効果が得られない欠点があった。
In order to compensate for the lack of hardness of the substrate in the active material non-filled portion, as shown in FIG. 8, the active material non-filled portion (substrate exposed portion) 3 provided in a rectangular shape at the long side end of the electrode plate. Is compressed in the thickness direction of the electrode plate, and a metal foil hoop 5 having a width substantially equal to that of the non-filled portion of the active material and having a thickness of 0.1 to 0.5 mm is bonded to the compressed substrate. An electrode plate configuration has been proposed. (See Patent Document 2)
JP, 56-86459, A (page 3, Example 3) However, in order to make this electrode plate composition, a metal foil hoop is required and a joining (welding) process is also required. In addition, although the hardness of the substrate in the active material non-filled portion of the substrate is increased and deformation of the substrate in the portion is suppressed, it reaches the active material filled portion without weakening the pressing force. However, there was a drawback that a sufficient effect could not be obtained.

本発明は、前記従来技術の課題に鑑みなされたものであって、基板端部に変形を生じさせたり、活物質が基板から脱落することなく基板露出部分の基板の端面に集電端子を接合することを可能にせんとするものである。   The present invention has been made in view of the above-described problems of the prior art, and the current collector terminal is bonded to the end surface of the substrate in the exposed portion of the substrate without causing deformation at the end of the substrate or dropping of the active material from the substrate. It is something that makes it possible to do.

本発明に係るアルカリ蓄電池においては、前記課題を解決するために、矩形の正極板と負極板をセパレータを介して積層した極板群を備え、前記正極板と負極板のうち少なくとも一方の極板が、3次元多孔体からな金属製の基板に活物質を担持させたものであり、前記極板群の一方の端面に正極板の一方の長辺端部を、極板群の前記端面と対向する端面に負極板の長辺端部を突出させ、正極板および負極板の前記長辺端部に該長辺を一辺とする矩形の活物質非充填部分を設け、前記長辺を形成する正極板および負極板の基板の端面に金属製の集電端子板を接合させたアルカリ蓄電池において、前記3次元多孔体からなる基板に、前記長辺を一辺とする矩形状の基板非圧縮部分を設け、該基板非圧縮部分と、活物質非充填部分と活物質充填部分との境界の間に帯状の基板圧縮部分を設ける。   In order to solve the above-described problem, the alkaline storage battery according to the present invention includes an electrode plate group in which a rectangular positive electrode plate and a negative electrode plate are stacked via a separator, and at least one of the positive electrode plate and the negative electrode plate. Is an active material supported on a metal substrate made of a three-dimensional porous body, and one long side end of the positive electrode plate is connected to one end surface of the electrode plate group and the end surface of the electrode plate group. A long-side end portion of the negative electrode plate is protruded from the opposing end surface, and a rectangular active material non-filling portion having the long side as one side is provided at the long-side end portions of the positive electrode plate and the negative electrode plate to form the long side. In an alkaline storage battery in which a metal current collector terminal plate is joined to end faces of a positive electrode plate and a negative electrode substrate, a rectangular substrate uncompressed portion having the long side as one side is formed on the substrate made of the three-dimensional porous body. The substrate non-compressed part, the active material non-filling part and the active material filling part Providing a substrate compression portion of the strip between the boundaries.

本発明においては、前記基板非圧縮部分が、対極と対向しないように配置することが好ましい。極板群の構成を該構成とすることによって、基板の端面に集電端子を取り付ける工程で、集電端子接合時に基板の端面に加わる押圧力によって基板の非圧縮領域が変形しその厚さが極板の厚さを超えたとしても基板がセパレータを貫通して対極に接触する虞を無くすことができる。   In this invention, it is preferable to arrange | position so that the said board | substrate uncompressed part may not oppose a counter electrode. By adopting the configuration of the electrode plate group as the configuration, in the step of attaching the current collecting terminal to the end surface of the substrate, the non-compressed region of the substrate is deformed by the pressing force applied to the end surface of the substrate when the current collecting terminal is joined, and the thickness thereof Even if the thickness of the electrode plate is exceeded, the possibility that the substrate penetrates the separator and contacts the counter electrode can be eliminated.

本発明においては、前記基板非圧縮部分の幅(短辺の長さ)を0.2mm以上、1.5mm以下とすることが好ましく、0.5mm以上、1.2mm以下とすることがさらに好ましい。基板非圧縮部分の幅(短辺の長さ)を1.5mm以下とすることによって、基板の端面に集電端子を取り付ける工程で、集電端子接合時に基板の端面に加わる押圧力によって基板の非圧縮部分が変形したとしても、該部分の基板の厚さが極板の厚さを超えるのを抑制することができる。基板非圧縮領域部分は押圧力が加わった場合、自らが変形して押圧力を吸収する役目をする。基板非圧縮領域の幅(短辺の長さ)を0.5mm以上とすることによって、前記押圧力が、基板非圧縮領域に続く基板圧縮領域に及ぶのを抑制することができる。   In the present invention, the width (short side length) of the non-compressed portion of the substrate is preferably 0.2 mm or more and 1.5 mm or less, and more preferably 0.5 mm or more and 1.2 mm or less. . By setting the width (short side length) of the uncompressed portion of the substrate to 1.5 mm or less, the step of attaching the current collecting terminal to the end surface of the substrate is performed by the pressing force applied to the end surface of the substrate during the current collecting terminal joining. Even if the non-compressed portion is deformed, the thickness of the substrate of the portion can be prevented from exceeding the thickness of the electrode plate. When a pressing force is applied to the non-compressed region of the substrate, the substrate is deformed and absorbs the pressing force. By setting the width (short side length) of the substrate non-compressed region to 0.5 mm or more, the pressing force can be prevented from reaching the substrate compressed region following the substrate non-compressed region.

本発明に係るアルカリ蓄電池においては、前記帯状領域の圧縮率を10〜60%とすることが好ましく、20〜40%とすることがさらに好ましい。圧縮率を10%以上とすることによって、基板圧縮部分の基板の硬さを高め、該領域に押圧力が加わった場合でもそれに耐え、変形するのを防ぐことができる。また、基板を圧縮すると硬さが増し、押圧には強くなるが曲げに対して弱くなる。圧縮率が60%を超えると該基板圧縮部分で基板の首折れが起き易くなるので好ましくない。なお、ここでいう圧縮率とは、圧縮後の圧縮部分の基板の断面積{図1(イ)の複数の点を施した部分)の、圧縮前の断面積(W2×T1)に対する比率をいう。 In the alkaline storage battery according to the present invention, the compression ratio of the band-shaped region is preferably 10 to 60%, and more preferably 20 to 40%. By setting the compression rate to 10% or more, the hardness of the substrate in the compressed portion of the substrate can be increased, and even when a pressing force is applied to the region, it can withstand and prevent deformation. In addition, when the substrate is compressed, the hardness increases, and the substrate is strong against pressing but weak against bending. If the compression ratio exceeds 60%, the substrate is likely to be broken at the compressed portion of the substrate, such being undesirable. Note that the compression ratio here refers to the cross-sectional area before compression (W 2 × T 1 ) of the cross-sectional area of the substrate of the compressed portion after compression (the portion provided with a plurality of points in FIG. 1A). Say ratio.

また、本発明に係るアルカリ蓄電池においては、前記基板圧縮部分の幅を0.2〜1.2mmとすることが好ましく、0.4〜1.0mmとすることがさらに好ましい。基板圧縮部分は硬さが大きく、基板が変形(膨れ)して活物質が脱落するのを抑制する。基板圧縮部分の幅が0.2mm未満では押圧力が活物質充填領域にまで伝達されるのを防ぐ効果が小さい。また。基板圧縮部分の幅が1.2mmを超えると基板圧縮部分で基板の首折れが起き易くなるので好ましくない。   In the alkaline storage battery according to the present invention, the width of the substrate compression portion is preferably 0.2 to 1.2 mm, and more preferably 0.4 to 1.0 mm. The substrate compression portion has a large hardness and suppresses the active material from dropping due to deformation (swelling) of the substrate. If the width of the substrate compression portion is less than 0.2 mm, the effect of preventing the pressing force from being transmitted to the active material filling region is small. Also. If the width of the substrate compression portion exceeds 1.2 mm, the substrate is likely to be broken at the substrate compression portion, which is not preferable.

本発明の請求項1によれば、3次元多孔体から基板を備える極板の基板の端面に集電端子を接合してなう極板を備えるアルカリ蓄電池において、前記基板の変形や活物質の脱落を抑制して内部短絡の虞のないアルカリ蓄電池を提供することができる。   According to claim 1 of the present invention, in an alkaline storage battery comprising an electrode plate formed by joining a current collecting terminal to an end face of a substrate comprising a substrate from a three-dimensional porous body, the deformation of the substrate and the active material It is possible to provide an alkaline storage battery that suppresses dropping and has no risk of an internal short circuit.

本発明の請求項2〜請求項5によれば、請求項1に係る発明の効果をさらに高めたアルカリ蓄電池を提供することができる。   According to claims 2 to 5 of the present invention, it is possible to provide an alkaline storage battery in which the effect of the invention according to claim 1 is further enhanced.

本発明に係るアルカリ蓄電池においては、前記正極板と負極板のうち、少なくとも一方の極板の基板が3次元多孔体であり、具体的には発泡ニッケルなどのスポンジ状多孔体や多数のニッケル繊維を絡ませて焼結させたフェルト状(マット状)の金属製多孔体である。   In the alkaline storage battery according to the present invention, the substrate of at least one of the positive electrode plate and the negative electrode plate is a three-dimensional porous material, specifically, a sponge-like porous material such as foamed nickel or a number of nickel fibers. It is a felt-like (matte) metal porous body that is entangled and sintered.

本発明に係るアルカリ蓄電池においては、前記活物質非充填部分のうち前記極板の長辺と接する端部と、活物質非充填部分と活物質充填部分との境界の間に前記基板の帯状領域を圧縮して、該圧縮部分の基板の見かけ密度を、前記活物質非充填部分の前記長辺と接する端部に設けた非圧縮部分の基板の見かけ密度に比べて高くする。   In the alkaline storage battery according to the present invention, a band-like region of the substrate between an end portion in contact with the long side of the electrode plate of the active material non-filled portion and a boundary between the active material non-filled portion and the active material filled portion. And the apparent density of the substrate in the compressed portion is made higher than the apparent density of the substrate in the non-compressed portion provided at the end of the active material unfilled portion in contact with the long side.

本発明に係るアルカリ蓄電池の極板の1例を図1に示す。図1の(イ)は極板の部分断面図であり、(ロ)は極板の部分平面図である。図1において、2は極板1の活物質充填部分であり、3は基板露出部分のうちの基板非圧縮部分である。また、4は基板露出部分のうちの基板圧縮部分である。該基板圧縮部分4は、基板露出部分を金型を用いて押圧することによって所定の圧縮率で圧縮することによって形成したもので、前記基板非圧縮部分と活物質充填部分2の間に帯状に設ける。なお、基板圧縮部分の断面形状は特に限定されるものではなく、前記図1(イ)に示した形状の他に、例えば、図2の(イ)、(ロ)、(ハ)に示した形状など種々の形状とすることができる。ただし、前記の如く基板の圧縮部分の圧縮率を、10〜60%とすることが好ましく、幅W2を、0.2から1.5mmとすることが好ましい。 An example of the electrode plate of the alkaline storage battery according to the present invention is shown in FIG. 1A is a partial cross-sectional view of the electrode plate, and FIG. 1B is a partial plan view of the electrode plate. In FIG. 1, 2 is an active material filling portion of the electrode plate 1, and 3 is a substrate uncompressed portion of the substrate exposed portion. Reference numeral 4 denotes a substrate compression portion of the substrate exposed portion. The substrate compression portion 4 is formed by compressing a substrate exposed portion with a predetermined compression rate by pressing it using a mold, and is formed in a band shape between the substrate non-compressed portion and the active material filling portion 2. Provide. The cross-sectional shape of the substrate compression portion is not particularly limited. For example, in addition to the shape shown in FIG. 1 (a), for example, as shown in FIG. 2 (a), (b), and (c). Various shapes such as a shape can be used. However, as described above, the compression ratio of the compressed portion of the substrate is preferably 10 to 60%, and the width W 2 is preferably 0.2 to 1.5 mm.

基板をこのような構成とすることによって、基板の活物質非充填部分のうち帯状に設けた圧縮部分の硬さが増大する。従って、集電端子板を基板の端面に密接させたときに基板長辺に接する部分に設けた非圧縮部分には変形が生じるが、該非圧縮領域の幅は極めて小さいので変形が生じても基板の厚さが極板の厚さを超える虞はない。また、前記非圧縮領域の基板の変形によって押圧力が吸収され、基板の圧縮領域に伝わる押圧力は弱められている。さらに前記のように圧縮によって基板の硬さが増しているので押圧力によって圧縮領域の基板が及ぶことがない。さらに、活物質充填部分の基板が変形することがなく、活物質が脱落する虞がない。   By setting the substrate in such a configuration, the hardness of the compressed portion provided in a band shape in the active material non-filled portion of the substrate is increased. Therefore, when the current collector terminal plate is brought into close contact with the end surface of the substrate, deformation occurs in the non-compressed portion provided in the portion in contact with the long side of the substrate. There is no possibility that the thickness of the electrode exceeds the thickness of the electrode plate. Further, the pressing force is absorbed by the deformation of the substrate in the non-compressed region, and the pressing force transmitted to the compressed region of the substrate is weakened. Further, since the hardness of the substrate is increased by the compression as described above, the substrate in the compression region does not reach due to the pressing force. Furthermore, the active material-filled portion of the substrate is not deformed, and there is no possibility of the active material falling off.

以下、捲回式極板群を備えた円筒型のニッケル水素蓄電池を例に採り上げ、該実施例に基づいて本発明の詳細を説明する。なお、本発明の形状等は、以下に示した例に限定されるものではない。   Hereinafter, a cylindrical nickel-metal hydride storage battery having a wound electrode group will be taken as an example, and the details of the present invention will be described based on the examples. The shape and the like of the present invention are not limited to the examples shown below.

(実施例1)
亜鉛及びコバルトを固溶させた高密度水酸化ニッケルの表面にオキシ水酸化コバルトからなる被覆層を形成した平均粒径10μm活物質粉末に所定濃度のカルボキシメチルセルロース(CMC)水溶液を所定量添加混練して正極ペーストとなし、該正極ペーストを厚さが1.3mm、目付量が420g/m2である発泡状ニッケル基板に充填し、乾燥した後、ロール掛けして厚さを0.5mm長尺状の正極原板を得た。該原板を長辺が650mm、短辺が50mmの矩形に裁断し、一方の長辺に幅1.5mmの活物質を除去し、基板露出部分を端部に設けた(正極板の活物質充填部分の短辺の長さを48.5mmとした)。該正極板は、高さが50mm、長さが650mm、厚さが0.5mmであり、その容量は8Ahである。
(Example 1)
A predetermined amount of a carboxymethyl cellulose (CMC) aqueous solution with a predetermined concentration was added to and kneaded with an active material powder having an average particle diameter of 10 μm, on which a coating layer made of cobalt oxyhydroxide was formed on the surface of high-density nickel hydroxide in which zinc and cobalt were dissolved. The positive electrode paste was filled into a foamed nickel substrate having a thickness of 1.3 mm and a basis weight of 420 g / m 2 , dried, and then rolled to a thickness of 0.5 mm. A positive electrode original plate was obtained. The original plate was cut into a rectangle having a long side of 650 mm and a short side of 50 mm, an active material having a width of 1.5 mm was removed on one long side, and an exposed portion of the substrate was provided at the end (filling of the positive plate active material) The length of the short side of the part was 48.5 mm). The positive electrode plate has a height of 50 mm, a length of 650 mm, a thickness of 0.5 mm, and a capacity of 8 Ah.

前記正極板の基板露出部分の活物質充填部分に接する部分を帯状に加圧圧縮し、基板露出部分に図1(イ)に示す断面形状を有し、幅(W2)が0.7mm、圧縮率40%、圧縮された首の部分の基板の厚さT2が0.3mmの基板圧縮部分を設けた。 A portion of the positive electrode plate that is in contact with the active material filling portion is pressed and compressed into a band shape, and the substrate exposed portion has a cross-sectional shape shown in FIG. 1 (a), with a width (W 2 ) of 0.7 mm, A substrate compression portion having a compression rate of 40% and a substrate thickness T 2 of 0.3 mm at the compressed neck portion was provided.

負極板は、平均粒径が40μmの水素吸蔵合金粉末に所定量のポリテトラフロロエチレン粉末からなる結着剤およびカルボキシメチルセルロースの水溶液を主体とする活物質の厚さが0.06mm、直径が1mmの開口を有し、開口率が40%のニッケルメッキを施したパンチング鋼板製の基板に塗着したもので、活物質充填部分の短辺の長さが48.5mm、長辺の長さが720mm、厚みが0.33mmであり、その容量は14Ahである。該負極には、正極と同様に長辺端部に幅1.5mmの基板露出部分を設けた(負極板の短辺の長さを48.5+1.5=50mmとした)。   The negative electrode plate has a thickness of 0.06 mm and a diameter of 1 mm, mainly composed of a hydrogen storage alloy powder having an average particle size of 40 μm, a binder composed of a predetermined amount of polytetrafluoroethylene powder, and an aqueous solution of carboxymethyl cellulose. Is applied to a nickel-plated punched steel substrate having an aperture ratio of 40%. The length of the short side of the active material filling portion is 48.5 mm, and the length of the long side is The thickness is 720 mm, the thickness is 0.33 mm, and the capacity is 14 Ah. Similarly to the positive electrode, the negative electrode was provided with a substrate exposed portion having a width of 1.5 mm at the end of the long side (the length of the short side of the negative electrode plate was 48.5 + 1.5 = 50 mm).

前記帯状の正極板と負極板とをセパレータである不織布を介して捲回し、直径が30mmφ、高さが51.5mmの円筒形の極板群とした。該極板群の作製に際し、正極板と負極板の活物質充填部分が重なるように正極板と負極板とを幅方向に1.5mmずらし、正極板と負極板の活物質充填部分同士が重なり、前記正極板の基板非圧縮部分が負極板と重ならないように積層した状態で捲回し、正極板の基板露出部分を極板群の一方の捲回端面に、負極板の基板露出部分を極板群の他方の捲回端面に、それぞれ突出させた。   The strip-like positive electrode plate and negative electrode plate were wound through a nonwoven fabric as a separator to form a cylindrical electrode plate group having a diameter of 30 mmφ and a height of 51.5 mm. When producing the electrode plate group, the positive electrode plate and the negative electrode plate are shifted by 1.5 mm in the width direction so that the active material filling portions of the positive electrode plate and the negative electrode plate overlap, and the active material filling portions of the positive electrode plate and the negative electrode plate overlap each other. Then, the substrate is wound in a state where the substrate uncompressed portion of the positive electrode plate is laminated so as not to overlap the negative electrode plate. It protruded from the other winding end face of the plate group.

前記極板群の一方の捲回端面に突出させた正極板の基板端面に外径が29.5mmφ、内径が4mmφ、厚さが0.2mmのニッケル板製で、図4(ロ)に示したように中心から外に向かって4方向に延び、幅1.5mmの切り欠き25を有する(但し、凸片26を備えない)円盤状の正極集電を載置し、シリーズスポット溶接により接合した。溶接点は前記切り欠きの両側に4点ずつ合計16点とした。また、中心に円形の穴を有しない以外は前記正極集電端子と同じ集電端子を用意し、該集電端子を正極の場合と同様に前記負極基板の端面に接合した。   The substrate end surface of the positive electrode plate projected from one winding end surface of the electrode plate group is made of a nickel plate having an outer diameter of 29.5 mmφ, an inner diameter of 4 mmφ, and a thickness of 0.2 mm, as shown in FIG. In this way, a disk-shaped positive current collector extending in four directions from the center to the outside and having a notch 25 with a width of 1.5 mm (but not having a convex piece 26) is placed and joined by series spot welding. did. There were 16 welding points, 4 on each side of the notch. Further, a current collecting terminal that was the same as the positive electrode current collecting terminal was prepared except that a circular hole was not provided at the center, and the current collecting terminal was joined to the end face of the negative electrode substrate in the same manner as in the case of the positive electrode.

前記正極集電端子と正極リード板を溶接により接合して、正極板と正極端子を兼ねる電池蓋に接続させた。また、負極集電端子の中心部を、負極集電端子を兼ねる電槽の内底面に溶接により接合した。次いで公知の方法により、水酸化カリウム水溶液を主体とする電解液を10.7ml注入し、封口してDサイズの円筒型電池とした。該電池を実施例1とする。   The positive electrode current collecting terminal and the positive electrode lead plate were joined by welding, and connected to a battery lid that also served as the positive electrode plate and the positive electrode terminal. Moreover, the center part of the negative electrode current collection terminal was joined to the inner bottom face of the battery case also serving as the negative electrode current collection terminal by welding. Next, 10.7 ml of an electrolyte mainly composed of an aqueous potassium hydroxide solution was injected and sealed by a known method to obtain a D size cylindrical battery. This battery is referred to as Example 1.

(実施例2〜実施例4)
前記実施例1において正極基板の圧縮部分の圧縮率をそれぞれ20%{図1(イ)に示すT2が0.4mm}、60%(T2が0.2mm)、10%(T2が0.45mm)とし、それ以外の構成を実施例1と同じとした。該電池をそれぞれ実施例2、実施例3、実施例4とする。
(Example 2 to Example 4)
In Example 1, the compression ratio of the compressed portion of the positive electrode substrate is 20% {T 2 shown in FIG. 1 (a) is 0.4 mm}, 60% (T 2 is 0.2 mm), 10% (T 2 is 0.45 mm), and the rest of the configuration was the same as in Example 1. The batteries are referred to as Example 2, Example 3, and Example 4, respectively.

(実施例5〜実施例8)
前記実施例1において、正極基板の非圧縮部分の幅(W1)、活物質充填部分の短辺の長さを変えずに、正極基板の圧縮部分の幅W2をそれぞれ0.4mm、1.0mm、0.2mm、1.2mmとし、正極板と負極板の活物質充填部分が重なるように積層した。それ以外の構成を実施例1と同じとした。該電池をそれぞれ実施例5、実施例6、実施例7、実施例8とする。
(Examples 5 to 8)
In Example 1, the width (W 1 ) of the non-compressed portion of the positive electrode substrate and the width W 2 of the compressed portion of the positive substrate without changing the length of the short side of the active material filling portion were 0.4 mm, 1 The thickness was set to 0.0 mm, 0.2 mm, and 1.2 mm so that the active material filling portions of the positive electrode plate and the negative electrode plate overlapped. The rest of the configuration was the same as in Example 1. The batteries are referred to as Example 5, Example 6, Example 7, and Example 8, respectively.

(実施例9〜実施例12)
前記実施例1において、正極基板の圧縮部分の幅(W2)、活物質充填部分の短辺の長さを変えずに、正極基板の非圧縮部分の幅W1をそれぞれ0.2mm、0.5mm、1.2mm、1.5mmとし、正極板と負極板の活物質充填部分が重なるように積層した。それ以外の構成を実施例1と同じとした。該電池をそれぞれ実施例9、実施例10、実施例11、実施例12とする。
(Example 9 to Example 12)
In Example 1, the width W 1 of the non-compressed portion of the positive electrode substrate was set to 0.2 mm and 0 mm without changing the width (W 2 ) of the compressed portion of the positive substrate and the length of the short side of the active material filling portion, respectively. The layers were laminated so that the active material filling portions of the positive electrode plate and the negative electrode plate overlap each other. The rest of the configuration was the same as in Example 1. The batteries are referred to as Example 9, Example 10, Example 11, and Example 12, respectively.

(比較例1)
前記実施例1において、正極基板に圧縮部分を設けなかった。それ以外の構成を実施例1と同じとした。該電池を比較例1とする。
(Comparative Example 1)
In Example 1, the positive electrode substrate was not provided with a compression portion. The rest of the configuration was the same as in Example 1. This battery is referred to as Comparative Example 1.

(比較例2)
前記実施例6において、正極基板の一方の長辺と圧縮部分の間に、基板非圧縮部分を設けなかった。それ以外は実施例6と同じ構成とした。
(Comparative Example 2)
In Example 6, the substrate non-compressed portion was not provided between one long side of the positive electrode substrate and the compressed portion. Otherwise, the configuration was the same as in Example 6.

(化成)
前記実施例1〜実施例11および比較例1,比較例2に係る電池をおのおの50個用意し、電池組立後室温において24時間放置した後、周囲温度20℃において化成した。初回の充電を1/30ItAで30時間充電した後、さらに1/10ItAで6時間充電した。初回充電後1/5ItAで終止電圧を1.0Vとして放電した。2サイクル目以降10サイクル目まで、1/10ItAで6時間充電した後、1/5ItAで終止電圧を1.0Vとして放電を1サイクルとする充放電を繰り返し実施した。該化成工程中、全ての電池について電池電圧をモニターし、異常発生の有無を調べた。
(Chemical formation)
Fifty batteries according to Examples 1 to 11 and Comparative Examples 1 and 2 were prepared and left at room temperature for 24 hours after battery assembly, and then formed at an ambient temperature of 20 ° C. The first charge was charged at 1/30 ItA for 30 hours, and then charged at 1/10 ItA for 6 hours. After the first charge, the battery was discharged at 1/5 ItA with a final voltage of 1.0V. From the 2nd cycle to the 10th cycle, after charging for 6 hours at 1/10 ItA, charging / discharging was repeated at 1/5 ItA with a final voltage of 1.0 V and a discharge of 1 cycle. During the chemical conversion step, the battery voltage was monitored for all the batteries to check for the occurrence of abnormalities.

(解体調査)
前記化成終了後、全ての電池を解体し、正極基板の変形(湾曲または膨れが発生して基板の厚さが極板の厚さを超えているものおよび正極基板の首折れ)発生の有無、正極板の活物質の脱落発生の有無を調べた。
(Dismantling survey)
After the chemical conversion is completed, all the batteries are disassembled, and the positive electrode substrate is deformed (curved or swollen and the thickness of the substrate exceeds the thickness of the electrode plate and the positive electrode substrate is broken). The presence or absence of the falling off of the active material of the positive electrode plate was examined.

前記化成中の電池電圧の異常発生、化成後の解体調査結果を表1に示す。   Table 1 shows the occurrence of abnormal battery voltage during the formation and the results of the dismantling investigation after the formation.

Figure 2005071964
表1に示したように、比較例1で6個、比較例2で3個電池電圧異常品が認められた。これら電池電圧異常品は、初回の充電で電圧が規定値にまで上昇しなかったので、途中で充電を打ち切り解体調査に回した。解体調査の結果比較例1の電圧異常品6個全てに正極基板の膨れと活物質の脱落が観察され、変形した正極基板または脱落した活物質塊の何れかがセパレータを貫通して内部短絡を起こしたものと推定された。また、比較例2では電圧異常が認められた3個の電池全てに、正極基板の極度(90度ないしそれを超える角度に折れている)の首折れおよび活物質の脱落が認められ、比較例1と同様、変形した正極基板または脱落した活物質塊の何れかがセパレータを貫通して内部短絡を起こしたものと推定された。比較例1では基板露出部分に基板圧縮部分を設けなかったために基板の変形(膨れや湾曲)が発生したものと考えられる。また、比較例2では、基板露出部分の長辺と基板圧縮部分の間に基板非圧縮部分を設けなかったために、集電端子を接合する時に基板に加わる押圧力を吸収できずに基板圧縮部分に首折れが発生したものと考えられる。
Figure 2005071964
As shown in Table 1, 6 battery voltage abnormal products were found in Comparative Example 1 and 3 battery samples in Comparative Example 2. Since the voltage did not rise to the specified value in the first charge, these battery voltage abnormal products were discontinued during charging and sent for dismantling investigation. As a result of the dismantling investigation, swelling of the positive electrode substrate and falling off of the active material were observed in all six voltage abnormal products of Comparative Example 1, and either the deformed positive electrode substrate or the dropped active material lump penetrated the separator and caused an internal short circuit. Presumed to have occurred. Further, in Comparative Example 2, all of the three batteries in which voltage abnormality was observed showed that the positive electrode substrate was severely broken (folded at an angle of 90 degrees or more) and the active material was dropped. As in Example 1, it was estimated that either the deformed positive electrode substrate or the dropped active material mass penetrated the separator and caused an internal short circuit. In Comparative Example 1, it is considered that the substrate was deformed (swelled or curved) because the substrate compression portion was not provided in the substrate exposed portion. Further, in Comparative Example 2, since the substrate non-compressed portion was not provided between the long side of the substrate exposed portion and the substrate compressed portion, the pressing force applied to the substrate when the current collecting terminal was joined could not be absorbed and the substrate compressed portion It is probable that a neck break occurred.

また、電池全数を解体調査した結果、比較例1においては、電圧異常が認められなかったものの中にも正極基板に変形が発生しているものが10個、活物質脱落が発生しているものが3個認められた。また、比較例2の場合も、正極基板に変形が発生しているもの6個、活物質が脱落しているもの1個が認められた。   In addition, as a result of disassembling and investigating the total number of batteries, in Comparative Example 1, 10 positive electrode substrates were deformed among those in which no voltage abnormality was observed, and active material loss occurred 3 were recognized. In the case of Comparative Example 2 as well, six samples in which the positive electrode substrate was deformed and one sample in which the active material was removed were observed.

他方、実施例電池には、全電池に電圧異常品の発生は認められなかった。但し、実施例3において3個、実施例8および実施例9おいて2個、正極基板に程度の軽い首折れ(曲がり)が認められた。実施例3の場合は、基板圧縮部分の圧縮率が60%と高く、実施例8の場合は基板圧縮部分の幅W2が1.2mmと大きいために基板圧縮部分に曲がりが生じたものである。また、実施例9の場合は、基板非圧縮部分の幅W1が0.2mmと小さいために基板を集電端子に溶接するときの押圧力を吸収しきれずに基板の圧縮部分に曲がりが生じたものである。但し、これらの電池においては変形の度合いが軽微であるために内部短絡には至らなかったものである。 On the other hand, in the example batteries, no abnormal voltage product was observed in all the batteries. However, 3 in Example 3, 2 in Example 8 and Example 9, and slight neck bending (bending) were recognized in the positive electrode substrate. In the case of Example 3, the compression ratio of the substrate compression portion is as high as 60%, and in the case of Example 8, the width W 2 of the substrate compression portion is as large as 1.2 mm, so that the substrate compression portion is bent. is there. In Example 9, since the width W1 of the non-compressed portion of the substrate was as small as 0.2 mm, the pressing force when welding the substrate to the current collecting terminal could not be absorbed, and the compressed portion of the substrate was bent. Is. However, in these batteries, since the degree of deformation was slight, the internal short circuit was not reached.

実施例4においては2個、実施例12においては4個、比較例1に比べて程度は軽いが、正極基板に膨れや湾曲が認められた。実施例12の場合は基板の非圧縮部分の幅が1.5mmと大きいために、基板の非圧縮部分に膨れや湾曲が生じたものである。また、実施例4において2個、実施例7および実施例9において1個、微細な活物質の脱落が認められた。実施例電池の場合、基板に変形が発生したもの、あるいは活物質が脱落したもの、何れの場合も比較例に比べてその程度が軽微であり、且つ、正極板の基板非圧縮部分が負極板と重なっていないために短絡発生に至らなかったものと考えられる。一方、実施例1、実施例2、実施例5、実施例6、実施例10、実施例11においては正極基板の変形、活物質の脱落が認められなかった。   In Example 4, two pieces were used, in Example 12, four pieces, and the degree was lighter than that of Comparative Example 1, but swelling and bending were observed in the positive electrode substrate. In Example 12, since the width of the non-compressed portion of the substrate is as large as 1.5 mm, the uncompressed portion of the substrate is swollen or curved. In addition, two pieces in Example 4 and one piece in Examples 7 and 9 were observed to drop out of the fine active material. In the case of the battery of the example, the substrate was deformed, or the active material was dropped. In either case, the degree was less than that of the comparative example, and the non-compressed portion of the positive electrode plate was the negative electrode plate. It is thought that the short circuit did not occur because it did not overlap. On the other hand, in Example 1, Example 2, Example 5, Example 6, Example 10, and Example 11, no deformation of the positive electrode substrate and dropout of the active material were observed.

以上の結果より、矩形の正極板と負極板をセパレータを介して積層した極板群を備え、前記正極板と負極板のうち少なくとも一方の極板が、3次元多孔体からな金属製の基板に活物質を担持させたものであり、前記極板群の一方の端面に正極板の一方の長辺端部を、極板群の前記端面と対向する端面に負極板の長辺端部を突出させ、正極板および負極板の前記長辺端部に該長辺を一辺とする矩形の活物質非充填部分を設け、前記長辺を形成する正極板および負極板の基板の端面に金属製の集電端子板を接合させたアルカリ蓄電池において、本初明に係る電池のように、前記3次元多孔体からなる基板に、前記長辺を一辺とする矩形状の基板非圧縮部分を設け、該基板非圧縮部分と、活物質非充填部分と活物質充填部分との境界の間に帯状の基板圧縮部分を設けることによって基板の変形および活物質の脱落が抑制でき、内部短絡の発生を防ぐことができることが分かった。
3次元多孔体の基板を備える場合
また、基板の変形および活物質の脱落を防ぐには、基板の圧縮部分の圧縮率を、10〜60%とすることが好ましく、さらには20〜40%とすることがさらに好ましいこと、基板の圧縮部分の幅W2を、0.2から1.2mmとすることが好ましく、さらには0.4〜1.0mmとすることがさらに好ましいこと、基板の非圧縮部分の幅W1を0.2〜1.5mmとすることが好ましく、0.5〜1.2mmとすることがさらに好ましいことが分かった。
From the above results, it is provided with an electrode plate group in which a rectangular positive electrode plate and a negative electrode plate are laminated via a separator, and at least one of the positive electrode plate and the negative electrode plate is a metal substrate made of a three-dimensional porous body. An active material is supported on one end face of the positive electrode plate group on one end face of the electrode plate group, and an end face of the negative electrode plate on the end face facing the end face of the electrode plate group. Protruding, providing a rectangular active material non-filling portion with the long side as one side at the end of the long side of the positive electrode plate and the negative electrode plate, and making metal on the end surfaces of the positive electrode plate and the negative electrode plate forming the long side In the alkaline storage battery to which the current collector terminal plate is bonded, as in the battery according to the present invention, the substrate made of the three-dimensional porous body is provided with a rectangular substrate uncompressed portion having the long side as one side, A band-like base is formed between the uncompressed portion of the substrate and the boundary between the active material unfilled portion and the active material filled portion. By providing the compression part can fall off suppression of deformation and the active material of the substrate, it has been found that it is possible to prevent the occurrence of internal short circuit.
When a three-dimensional porous substrate is provided Further, in order to prevent deformation of the substrate and dropping of the active material, the compression ratio of the compressed portion of the substrate is preferably 10 to 60%, more preferably 20 to 40%. More preferably, the width W 2 of the compressed portion of the substrate is preferably 0.2 to 1.2 mm, more preferably 0.4 to 1.0 mm, It has been found that the width W 1 of the compressed portion is preferably 0.2 to 1.5 mm, and more preferably 0.5 to 1.2 mm.

以上、捲回型極板を有するニッケル水素蓄電池を例にとって詳細な説明をしたが、本発明はこれに限定されるものではなく、前記図3に示した積層型極板群を有する蓄電池にも適用できる。また、ニッケルカドミウム蓄電池など、ニッケル水素蓄電池以外のアルカリ蓄電池にも適用できる。また、前記実施例では、正極板が3次元多孔体の基板を備える例を採り上げたが、負極板が3次元多孔体の基板を備える場合あるいは、正極板、負極板共に3次元多孔体の基板を備える場合にも有効である。また、本発明においては、前記図1(イ)に示した如く、基板圧縮部分と活物質充填部分とが接していてもよいし、図2の(イ)、(ロ)、(ハ)に示す如く、基板圧縮部分と活物質充填部分との間に基板非圧縮部分が存在してもよい。   As described above, the nickel hydride storage battery having the wound electrode plate has been described in detail, but the present invention is not limited to this, and the storage battery having the stacked electrode plate group shown in FIG. Applicable. Moreover, it is applicable also to alkaline storage batteries other than nickel hydride storage batteries, such as a nickel cadmium storage battery. In the above-described embodiments, the positive electrode plate is provided with a three-dimensional porous substrate. However, when the negative electrode plate is provided with a three-dimensional porous substrate, or both the positive electrode plate and the negative electrode plate are three-dimensional porous substrates. It is also effective when provided with. In the present invention, as shown in FIG. 1 (a), the substrate compression portion and the active material filling portion may be in contact with each other, or in FIGS. 2 (a), (b) and (c). As shown, a substrate uncompressed portion may exist between the substrate compressed portion and the active material filled portion.

本発明に係るアルカリ蓄電池用極板の部分断面図および部分平面図である。It is the fragmentary sectional view and partial plan view of the electrode plate for alkaline storage batteries which concerns on this invention. 本発明に係るアルカリ蓄電池用極板の部分断面図である。It is a fragmentary sectional view of the electrode plate for alkaline storage batteries concerning the present invention. アルカリ蓄電池の捲回式極板群の1構成例を示す説明図である。It is explanatory drawing which shows one structural example of the winding type | formula electrode group of an alkaline storage battery. アルカリ蓄電池の捲回式極板群に適用する集電端子の1例を示す斜視図である。It is a perspective view which shows one example of the current collection terminal applied to the winding type electrode group of an alkaline storage battery. アルカリ蓄電池の積層式極板群の1構成例を示す斜視図である。It is a perspective view which shows 1 structural example of the laminated type electrode group of an alkaline storage battery. 従来の極板の1例を示す部分断面図である。It is a fragmentary sectional view showing an example of the conventional electrode plate. 極板の基板端面に集電端子を接合する工程を示す模式図である。It is a schematic diagram which shows the process of joining a current collection terminal to the board | substrate end surface of an electrode plate. 従来の極板の1例を示す部分断面図である。It is a fragmentary sectional view showing an example of the conventional electrode plate.

符号の説明Explanation of symbols

1 正極板
2 活物質充填部分
3 基板非圧縮部分
4 基板圧縮部分
11 捲回式極板群
11A 11B 捲回式極板群の捲回端面
17 18 捲回式極板群の捲回端面に突出させた基板端部
20 22 捲回式極板群の集電端子
32 34 積層式極板群の端面に突出させた基板端部
36 37 積層式極板群の集電端子
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Active material filling part 3 Substrate uncompressed part 4 Substrate compression part 11 Winding type electrode plate group 11A 11B Winding end surface of winding type electrode plate group 17 18 It protrudes on the winding end surface of winding type electrode plate group Collected substrate end 20 22 Current collector terminal of wound electrode group 32 34 Substrate end projected on end surface of stacked electrode group 36 37 Current collector terminal of stacked electrode group

Claims (5)

矩形の正極板と負極板をセパレータを介して積層した極板群を備え、前記正極板と負極板のうち少なくとも一方の極板が、3次元多孔体からなる金属製の基板に活物質を担持させたものであり、前記極板群の一方の端面に正極板の一方の長辺端部を、極板群の前記端面と対向する端面に負極板の長辺端部を突出させ、正極板および負極板の前記長辺端部に該長辺を一辺とする矩形の基板露出部分を設け、前記長辺を形成する正極板および負極板の基板の端面に金属製の集電端子板を接合させたアルカリ蓄電池において、前記3次元多孔体からなる基板に、前記長辺を一辺とする矩形状の基板非圧縮部分を設け、該基板非圧縮部分と、基板露出部分と活物質充填部分との境界の間に帯状の基板圧縮部分を設けたことを特徴とするアルカリ蓄電池。 An electrode plate group in which a rectangular positive electrode plate and a negative electrode plate are stacked via a separator is provided, and at least one of the positive electrode plate and the negative electrode plate carries an active material on a metal substrate made of a three-dimensional porous body. The positive electrode plate has one long side end portion of the positive electrode plate protruding from one end surface of the electrode plate group, and the long side end portion of the negative electrode plate protruded from the end surface facing the end surface of the electrode plate group. In addition, a rectangular substrate exposed portion having the long side as one side is provided at the end of the long side of the negative electrode plate, and a metal current collector terminal plate is bonded to the end surface of the positive electrode plate and the negative plate substrate forming the long side In the alkaline storage battery, the substrate made of the three-dimensional porous body is provided with a rectangular substrate uncompressed portion having the long side as one side, and the substrate uncompressed portion, the substrate exposed portion, and the active material filling portion Alkaline storage battery characterized in that a band-like substrate compression portion is provided between the boundaries 前記基板非圧縮部分が、対極と対向しないように配置した極板群を備える請求項1に記載のアルカリ蓄電池。 The alkaline storage battery according to claim 1, further comprising an electrode plate group disposed so that the substrate non-compressed portion does not face the counter electrode. 前記基板非圧縮部分の幅(短辺の長さ)が0.2〜1.5mmであることを特徴とする請求項1に記載のアルカリ蓄電池。 2. The alkaline storage battery according to claim 1, wherein a width (length of a short side) of the non-compressed portion of the substrate is 0.2 to 1.5 mm. 前記基板圧縮部分の圧縮率が10〜60%であることを特徴とする請求項1記載のアルカリ蓄電池。 2. The alkaline storage battery according to claim 1, wherein the compression ratio of the substrate compression portion is 10 to 60%. 前記基板圧縮部分の幅が0.2〜1.2mmであることを特徴とする請求項1記載のアルカリ蓄電池。 2. The alkaline storage battery according to claim 1, wherein the width of the substrate compression portion is 0.2 to 1.2 mm.
JP2003304202A 2003-08-28 2003-08-28 Alkaline storage battery Expired - Lifetime JP4349042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304202A JP4349042B2 (en) 2003-08-28 2003-08-28 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304202A JP4349042B2 (en) 2003-08-28 2003-08-28 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2005071964A true JP2005071964A (en) 2005-03-17
JP4349042B2 JP4349042B2 (en) 2009-10-21

Family

ID=34407958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304202A Expired - Lifetime JP4349042B2 (en) 2003-08-28 2003-08-28 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4349042B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273301A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Manufacturing method of non-sintered type electrode for battery
JP2009295317A (en) * 2008-06-03 2009-12-17 Panasonic Corp Cylindrical alkaline storage battery and method of manufacturing the same
JP2019523975A (en) * 2016-06-15 2019-08-29 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Electrode for electrochemical bundle of metal ion storage battery or supercapacitor, related bundle manufacturing method and storage battery
WO2020129999A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Electrode plate for secondary cell, and secondary cell using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273301A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Manufacturing method of non-sintered type electrode for battery
JP2009295317A (en) * 2008-06-03 2009-12-17 Panasonic Corp Cylindrical alkaline storage battery and method of manufacturing the same
JP2019523975A (en) * 2016-06-15 2019-08-29 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Electrode for electrochemical bundle of metal ion storage battery or supercapacitor, related bundle manufacturing method and storage battery
WO2020129999A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Electrode plate for secondary cell, and secondary cell using same
CN112970144A (en) * 2018-12-19 2021-06-15 三洋电机株式会社 Electrode plate for secondary battery and secondary battery using the same
JPWO2020129999A1 (en) * 2018-12-19 2021-11-04 三洋電機株式会社 Electrode plate for secondary battery and secondary battery using it
JP7356455B2 (en) 2018-12-19 2023-10-04 三洋電機株式会社 Electrode plate for secondary batteries and secondary batteries using the same
CN112970144B (en) * 2018-12-19 2023-11-17 三洋电机株式会社 Electrode plate for secondary battery and secondary battery using the same

Also Published As

Publication number Publication date
JP4349042B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP5004452B2 (en) Battery manufacturing method
JP5016238B2 (en) Battery and manufacturing method thereof
JP4342160B2 (en) Storage battery and manufacturing method thereof
JPH10125348A (en) Battery
JP4349042B2 (en) Alkaline storage battery
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP2002298906A (en) Nickel-hydrogen secondary battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP4016214B2 (en) Battery electrode manufacturing method
JP2002260628A (en) Positive electrode for alkaline secondary battery, manufacturing method of positive electrode for the alkaline secondary battery, and the alkaline secondary battery
JP3893856B2 (en) Square alkaline storage battery
EP1039562A2 (en) Rectangular battery
JP3849478B2 (en) Alkaline storage battery and method of manufacturing the same
JP2020068172A (en) Secondary battery
JP7283854B1 (en) zinc battery
JP4334386B2 (en) battery
JP3625731B2 (en) Square battery
JP2002260672A (en) Rectangular alkaline storage battery
WO2022190460A1 (en) Zinc secondary battery
JP4413294B2 (en) Alkaline secondary battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP2000030736A (en) Nickel hydrogen secondary battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPH1064533A (en) Electrode for secondary battery and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

EXPY Cancellation because of completion of term