JP5016236B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP5016236B2
JP5016236B2 JP2006057052A JP2006057052A JP5016236B2 JP 5016236 B2 JP5016236 B2 JP 5016236B2 JP 2006057052 A JP2006057052 A JP 2006057052A JP 2006057052 A JP2006057052 A JP 2006057052A JP 5016236 B2 JP5016236 B2 JP 5016236B2
Authority
JP
Japan
Prior art keywords
lead
battery
current collector
lid
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006057052A
Other languages
Japanese (ja)
Other versions
JP2007234486A (en
Inventor
健吾 古川
寧 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2006057052A priority Critical patent/JP5016236B2/en
Publication of JP2007234486A publication Critical patent/JP2007234486A/en
Application granted granted Critical
Publication of JP5016236B2 publication Critical patent/JP5016236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、電池に関し、特に集電板と蓋とを接続するリードの構造に関するものである。   The present invention relates to a battery, and more particularly to a structure of a lead connecting a current collector plate and a lid.

近年、モバイルコンピュータ、デジタルカメラなどの移動体電子機器を始めとする小型軽量を求められる電動機器が急速に増加する傾向にあり、これら機器用電源として円筒形などの電池が使われている。また、ハイブリッド形電気自動車(HEV)や電動工具や玩具などの電源のように高出力特性に優れ、かつ長寿命特性が要求される分野の電源としても電池の需要が広がりつつある。   In recent years, there has been a rapid increase in the number of electric devices that are required to be compact and lightweight, such as mobile electronic devices such as mobile computers and digital cameras, and cylindrical batteries are used as power sources for these devices. In addition, the demand for batteries is expanding as a power source in a field where a high output characteristic and a long life characteristic are required, such as a power source for a hybrid electric vehicle (HEV), a power tool or a toy.

従来の電池は、図10に示すように、長尺状の正極板22および負極板23がセパレータ24を介して渦巻き状に巻いた極群25と、これを収容する有底円筒形の外装缶26と、この外装缶の開口部を封口するガス排出弁を有する蓋27から構成されている。   As shown in FIG. 10, the conventional battery includes a pole group 25 in which a long positive electrode plate 22 and a negative electrode plate 23 are wound in a spiral shape via a separator 24, and a bottomed cylindrical outer can that accommodates the electrode group 25. 26 and a lid 27 having a gas discharge valve for sealing the opening of the outer can.

正極および負極の集電のために、それぞれの極板の長手方向の一方の端部に活物質が充填されていない未充填部28、29を設け、これらの未充填部が互いに対向しない向きに極群が捲回されている。極群の両端に突出したこれらの未充填部にそれぞれ略円形の正極集電板30および負極集電板31が溶接され、次いで正極集電板と蓋部下面が集電リード21により接続されていることで、各々の極板の電気的接続が達成されており、捲回した極群の全周より集電して、電池出力を確保している。   In order to collect the positive electrode and the negative electrode, unfilled portions 28 and 29 that are not filled with an active material are provided at one end in the longitudinal direction of the respective electrode plates, and these unfilled portions are arranged so as not to face each other. The pole group is wound. A substantially circular positive electrode current collector plate 30 and negative electrode current collector plate 31 are welded to these unfilled portions protruding from both ends of the pole group, respectively, and then the positive electrode current collector plate and the lower surface of the lid portion are connected by a current collector lead 21. As a result, electrical connection of each electrode plate is achieved, and current is collected from the entire circumference of the wound electrode group to ensure battery output.

従来の電池における、蓋27を正極集電板30に電気的に接続する手段として、図11に示すリード21が提案されている。リード21の下端21bを正極集電板30に接合し、リード21の上端21aに形成した突起21cを蓋27に接合することにより、蓋27をリード21を介して正極集電板30に電気的に接続できる。   A lead 21 shown in FIG. 11 has been proposed as means for electrically connecting the lid 27 to the positive electrode current collector plate 30 in a conventional battery. The lower end 21b of the lead 21 is joined to the positive current collector plate 30 and the protrusion 21c formed on the upper end 21a of the lead 21 is joined to the lid 27, whereby the lid 27 is electrically connected to the positive current collector plate 30 via the lead 21. Can be connected.

このような電池が大電流で充放電を行う用途に使用される場合、電池構成要素の中でも特に、極群に接続された集電板と蓋との間を接続するリードの電気抵抗が電池特性に大きな影響を与えることがわかっている。これらの用途では極力内部抵抗を低減する必要があり、種々の技術が検討されている。   When such a battery is used for charging / discharging with a large current, among the battery components, the electrical resistance of the lead connecting the current collector plate connected to the electrode group and the lid is battery characteristics. Has been shown to have a significant impact on In these applications, it is necessary to reduce the internal resistance as much as possible, and various techniques have been studied.

内部抵抗を下げる技術としては、上記の電池のリードの断面積を大きくしたりリードの本数を増やしたりする方法が考えられる。しかし、つぎのような理由で十分なレベルまで内部抵抗を下げることができないので、そのような方法は実用的でない。断面積を大きくする方法を採用した場合は、その面積が大きくなるにしたがって、無効電流が増えるので溶接が困難になるという問題がある。ほかに、その面積が大きくなるにしたがって、リードの強度が高くなって柔軟性が下がるので、リードを折り曲げが困難になって生産性が低下するという問題や、リードを折り曲げた際に溶接が外れたり極群を圧迫して内部短絡を生じたりする可能性が高くなるという問題がある。また、本数を増やす方法を採用した場合は、本数が増えるにしたがって、部品点数が増えるので組立が煩雑になる。   As a technique for reducing the internal resistance, a method of increasing the cross-sectional area of the battery lead or increasing the number of leads can be considered. However, since the internal resistance cannot be lowered to a sufficient level for the following reasons, such a method is not practical. When the method of increasing the cross-sectional area is adopted, there is a problem that welding becomes difficult because the reactive current increases as the area increases. In addition, as the area increases, the strength of the lead increases and the flexibility decreases, which makes it difficult to fold the lead and decreases productivity, and when the lead is bent, the welding is disconnected. There is a problem that the possibility of causing an internal short circuit by pressing the pole group is increased. Further, when the method of increasing the number is adopted, the number of parts increases as the number increases, so that the assembly becomes complicated.

ほかに、内部抵抗を下げる技術として、「正極板と負極板とが両極板間にセパレータが挟まれた状態で巻回された電極体と、この電極体を収容可能なケースと、前記電極体の一方の極板と接続される集電体とを備えてなる円筒形電池において、前記集電体は、前記電極体の端面の略全域にわたって宛がわれる集電本体部と、この集電本体部の外周縁の略等角度間隔の複数箇所から延出したリード片部とを備えることを特徴とする円筒形電池」の発明が公知である(特許文献1、請求項1)。
特許文献1の発明によれば、リード片部を複数備えているので、「電流は集電本体部から複数の並列回路を介して均等に通ることになり、電流集中や抵抗損の発生を極力抑えることができる」という効果が得られる。
In addition, as a technique for reducing the internal resistance, “a positive electrode plate and a negative electrode plate wound in a state where a separator is sandwiched between both electrode plates, a case that can accommodate this electrode body, and the electrode body In the cylindrical battery comprising a current collector connected to one of the electrode plates, the current collector is a current collector main body addressed over substantially the entire end face of the electrode body, and the current collector main body The invention of a "cylindrical battery characterized by comprising lead piece portions extending from a plurality of locations at substantially equal angular intervals on the outer peripheral edge of the portion" is known (Patent Document 1, Claim 1).
According to the invention of Patent Document 1, since a plurality of lead pieces are provided, “the current flows evenly from the current collector body through a plurality of parallel circuits, and current concentration and resistance loss are minimized. The effect of “can be suppressed” is obtained.

しかし、特許文献1の発明では、リードと集電板とが一体であるためにつぎのような問題があった。まず、リードを上方に折り曲げる際に、集電板が変形する。この変形は、集電板と極群とを溶接するときの不良率を高める。つぎに、リードの断面積または本数が増えるにしたがって、集電板と極群との対向面積が小さくなる。これは、リードを上方に折り曲げる際に、集電板の周縁部も折り曲げてしまうことに起因する。さらに、リードの位置が集電板の周縁部であるために、電流分布の不均一化が生じる。   However, the invention of Patent Document 1 has the following problems because the lead and the current collecting plate are integrated. First, when the lead is bent upward, the current collector plate is deformed. This deformation increases the defect rate when the current collector plate and the pole group are welded. Next, as the cross-sectional area or the number of leads increases, the facing area between the current collector plate and the pole group decreases. This is because the peripheral edge of the current collector plate is also bent when the lead is bent upward. Furthermore, since the lead position is at the peripheral edge of the current collector plate, the current distribution becomes non-uniform.

特許文献1に関連のある技術として、「筒状の電池缶(1)の内部に、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させてこれらを渦巻状に巻き取った巻き取り電極体(4)が収容され、正極(41)及び負極(43)にはそれぞれ、帯状芯体の表面に活物質を塗布して構成され、巻き取り電極体(4)が発生する電力を一対の電極端子部から外部へ取り出すことが出来る筒型二次電池において、巻き取り電極体(4)の少なくとも何れか一方の端部には、正極(41)或いは負極(43)を構成する帯状芯体の端縁(48)が突出し、該端縁(48)を覆って集電板(5)が設置され、該集電板(5)は、外周縁の少なくとも一部が円弧状を呈する平板状の本体(51)と、該本体(51)の前記円弧状外周縁に突設された帯状のリード板(55)とを具え、該リード板(55)には、前記本体(51)から離間する方向に伸びる複数本の切り込み(57)が施され、各切り込み(57)は、基端を前記本体(51)の円弧状外周縁又はその近傍に有し、該リード板(55)の先端部は、一方の電極端子部と連結されていることを特徴とする円筒型二次電池。」の発明が公知である(特許文献2、請求項1)。   As a technology related to Patent Document 1, “in a cylindrical battery can (1), a separator (42) is interposed between a strip-like positive electrode (41) and a negative electrode (43), respectively, and these are spirally formed. The take-up electrode body (4) wound around is accommodated, and each of the positive electrode (41) and the negative electrode (43) is configured by applying an active material to the surface of the belt-like core body, and the take-up electrode body (4) In the cylindrical secondary battery capable of taking out the electric power generated by the pair of electrode terminal portions to the outside, at least one end of the take-up electrode body (4) has a positive electrode (41) or a negative electrode (43 The edge (48) of the belt-shaped core body constituting the projection protrudes, and the current collector plate (5) is installed to cover the edge (48). The current collector plate (5) is at least a part of the outer peripheral edge. A flat plate-like main body (51) having an arc shape, and the arc-shaped outside of the main body (51) A strip-shaped lead plate (55) protruding from the edge, and the lead plate (55) is provided with a plurality of cuts (57) extending in a direction away from the main body (51). (57) has a proximal end at or near the arcuate outer periphery of the main body (51), and the distal end of the lead plate (55) is connected to one of the electrode terminal portions. The invention of “cylindrical secondary battery” is known (Patent Document 2, Claim 1).

特許文献2の発明によれば、リード板が複数本の切り込みによって複数のリード部に分割されているので、該リード部を、個々に切り込みの基端位置から折り曲げることが可能となり、これによって、リード板は、リード部毎に前記本体の円弧状外周縁に沿って折り曲げられる。そのため、特許文献1の場合に問題となった集電板と極群との対向面積が小さくなるという問題は幾分改善される。   According to the invention of Patent Document 2, since the lead plate is divided into a plurality of lead portions by a plurality of cuts, the lead portions can be bent individually from the base end positions of the cuts. The lead plate is bent along the arcuate outer periphery of the main body for each lead portion. Therefore, the problem that the facing area between the current collector plate and the pole group, which is a problem in Patent Document 1, is somewhat improved.

しかし、特許文献2の発明は、特許文献1の場合と同様に、リードと集電板とが一体であるので、リードを折り曲げる際に生じる集電板の変形の問題と集電板の周縁部から集電することによる電流分布の不均一化の問題とは避けられない。また、特許文献2の実施例のように、リード板を集電板の周囲の一部のみに配置した場合は、この部分に、他の部分からの電流が集中するので集電板の全周から均一に集電する場合と比べて内部抵抗が高くなる傾向があり、電極群の全周より集電して抵抗を下げるという効果は期待できない
ほかに、内部抵抗を下げる技術の一つとして、「一方極の端子を兼ねる開口部を備えた電池ケースと、前記開口部を密封する他方極の端子を兼ねる封口体と、前記電池ケース内に収容される正・負極の少なくとも一方の端部に集電体が接続された電極体とを備えた蓄電池であって、前記封口体と前記集電体とが中空部を備えた筒状体からなるリード部に溶接されていることを特徴とする蓄電池。」の発明が公知である(特許文献3、請求項1)。
However, as in the case of Patent Document 1, since the lead and the current collector plate are integrated in the invention of Patent Document 2, the problem of deformation of the current collector plate that occurs when the lead is bent and the peripheral portion of the current collector plate The problem of non-uniform current distribution due to current collection is unavoidable. Further, when the lead plate is arranged only in a part of the periphery of the current collector plate as in the embodiment of Patent Document 2, the current from the other part concentrates on this part, so that the entire circumference of the current collector plate The internal resistance tends to be higher than when collecting current uniformly, and the effect of lowering the resistance by collecting current from the entire circumference of the electrode group cannot be expected. “A battery case having an opening that also serves as a terminal of one electrode, a sealing body that also serves as a terminal of the other electrode that seals the opening, and at least one end of positive and negative electrodes accommodated in the battery case A storage battery including an electrode body to which a current collector is connected, wherein the sealing body and the current collector are welded to a lead portion made of a cylindrical body having a hollow portion. The storage battery "is known (Patent Document 3, Claim 1).

特許文献3の発明のように、封口体と集電体とが中空部を備えた筒状体6からなるリード部に溶接されていると、通電時の電流経路は筒状体の周側壁に沿って集電体から封口体に向けて2経路に分かれて流れるため、リード部の集電距離は筒状体の半円周となってリード部での電圧降下を半分に低減させることが可能になる。   As in the invention of Patent Document 3, when the sealing body and the current collector are welded to the lead portion made of the cylindrical body 6 having a hollow portion, the current path during energization is on the peripheral side wall of the cylindrical body. Since the current flows from the current collector to the sealing body in two separate paths, the current collection distance of the lead part becomes the semicircular shape of the cylindrical body, and the voltage drop at the lead part can be reduced by half. become.

しかし、このようなリードを蓋と集電板とに溶接して取り付けるためには、「電池ケースと封口体との間に溶接電流を流してリード部を封口体あるいは集電体のいずれか一方に溶接する溶接工程」(段落0013)をおこなう必要があり、このような溶接工程を実施するために高価な溶接設備が必要となってしまうという問題があった。さらに、この溶接工程でリードを溶接する場合の特有の現象として、溶接電流が大きくなるにしたがって、リードが溶接対象に押し当てられる力が低下するというものがある。この現象は、溶接時の電流によってリードが発熱して軟化することに起因する。そのため、溶接点数を増やす設計を実現するために大電流で溶接工程をおこなうと、溶接の確実性が低下し溶接のばらつきが大きいと言う問題があった。そのため、特許文献3に記載の技術では、溶接点数を増やして抵抗を下げるという設計は実施困難である。このような問題は、特許文献4の発明でも認められる。
特開平11−297301号公報 特開2004−273288号公報 特開2001−143684号公報 特開2004−235036号公報
However, in order to weld and attach such a lead to the lid and the current collector plate, a welding current is passed between the battery case and the sealing body, and the lead portion is either the sealing body or the current collector. There is a problem that it is necessary to carry out a “welding process for welding” (paragraph 0013), and expensive welding equipment is required to carry out such a welding process. Further, as a characteristic phenomenon when the lead is welded in this welding process, there is a phenomenon that the force with which the lead is pressed against the object to be welded decreases as the welding current increases. This phenomenon is caused by the lead being heated and softened by the current during welding. For this reason, when the welding process is performed with a large current in order to realize a design for increasing the number of welding points, there is a problem that the reliability of welding is lowered and the variation in welding is large. Therefore, with the technique described in Patent Document 3, it is difficult to implement a design in which the number of welding points is increased to reduce the resistance. Such a problem is also recognized in the invention of Patent Document 4.
JP 11-297301 A JP 2004-273288 A JP 2001-143684 A Japanese Patent Laid-Open No. 2004-235036

上記のように、正極、セパレータおよび負極を渦巻き状に巻いた極群に溶接した集電板と蓋とをリードで接続した電池においては、内部抵抗を十分に低いレベルまで低減するための技術がなかった。そのため、従来の技術では、大電流で充放電する用途に適した電池は得られなかった。したがって、本発明の課題は、内部抵抗を大幅に低減した電池を提供することにある。   As described above, in a battery in which a current collector plate and a lid welded to a pole group in which a positive electrode, a separator, and a negative electrode are wound in a spiral shape are connected by leads, there is a technique for reducing internal resistance to a sufficiently low level. There wasn't. Therefore, in the conventional technology, a battery suitable for the purpose of charging / discharging with a large current cannot be obtained. Accordingly, an object of the present invention is to provide a battery having a greatly reduced internal resistance.

本発明者らは鋭意検討の結果、リードの形状を特定のものとすることにより、安価な設備と安価な材料コストで電圧損失を最小限にとどめることができることを見いだし、本発明を完成した。   As a result of intensive studies, the present inventors have found that voltage loss can be minimized with inexpensive equipment and inexpensive material cost by making the shape of the lead specific, and the present invention has been completed.

本発明は、上記の課題を解決するために以下の手段を採用するものである。
(1)正極、セパレータおよび負極を渦巻き状に巻いた極群に溶接した集電板と蓋とをリードで接続した電池において、前記リードは、環状部と複数の短冊部とで構成され、前記環状部は、蓋に接続されており、前記短冊部は、一端が前記環状部につながっているとともに他端が集電板に接続されており、前記リードは、展開図が櫛状であることを特徴とする電池。
The present invention employs the following means in order to solve the above problems.
(1) In a battery in which a current collector plate and a lid welded to a pole group in which a positive electrode, a separator, and a negative electrode are wound in a spiral shape are connected by a lead, the lead is composed of an annular portion and a plurality of strip portions, The annular part is connected to the lid, the strip part has one end connected to the annular part and the other end connected to the current collector plate, and the lead has a comb-like development. A battery characterized by.

(2)正極、セパレータおよび負極を渦巻き状に巻いた極群に溶接した集電板と蓋とをリードで接続した電池において、前記リードは、環状部と複数の短冊部とで構成され、前記環状部は、集電板に接続されており、前記短冊部は、一端が前記環状部につながっているとともに他端が蓋に接続されており、前記リードは、展開図が櫛状であることを特徴とする電池。
(2) In a battery in which a current collector plate and a lid welded to a pole group in which a positive electrode, a separator, and a negative electrode are wound in a spiral shape are connected by a lead, the lead includes an annular portion and a plurality of strip portions, The annular part is connected to a current collector plate, the strip part has one end connected to the annular part and the other end connected to a lid, and the lead has a comb-like development. A battery characterized by.

(3)前記リードの短冊部は、少なくとも3個所で折り曲げられていることを特徴とする前記電池。   (3) The battery, wherein the strip portion of the lead is bent at at least three locations.

本発明によれば、リードを介して接続された集電板から蓋までの経路の電気抵抗を大幅に小さくできるので、従来のものと比べて内部抵抗が大幅に低い電池を提供することができる。したがって、この電池は、大電流で充放電する用途に適している。しかも、この電池は、安価な設備で製造することができる。さらに、本発明によれば、集電板から蓋までの経路の電気抵抗が小さい電池を安価な材料コストで提供することができる。 According to the present invention, since the electrical resistance of the path from the current collector plate connected to the lead to the lid can be greatly reduced, it is possible to provide a battery having a significantly lower internal resistance than the conventional one. . Therefore, this battery is suitable for applications that charge and discharge with a large current. Moreover, this battery can be manufactured with inexpensive equipment. Furthermore, according to the present invention, it is possible to provide a battery having a small electrical resistance in the path from the current collector plate to the lid at a low material cost.

本発明者らは、密閉型電池の抵抗成分分析を行うことによって、電池の抵抗の大きな部分を蓋と正極集電板の間の抵抗が占めることを確認した。そこで、本発明者らは、蓋と正極集電板の接続抵抗を低減するために種々検討した結果、リードの集電経路の長さ及び断面積だけでなく溶接点数が極めて重要な因子であることを見いだすとともに、本発明の特定形状のリードを用いた電池を見いだすに至った。さらに、本発明者らは、溶接点数を増やすべく検討した結果、蓋と正極集電板を接続する少なくとも4本以上8本以下の集電経路を備えた本発明の電池は、極めて低い抵抗で蓋と正極集電板とが接続されていることが明らかにした。さらに、本発明者らは、それらの集電経路を1枚の板から構成することによって、安価な材料コストを実現し、集電経路と蓋との接合部分もしくは集電経路と正極集電板との接合部分における溶接点数を接合部分1個所あたり複数点とすることによって、極めて低い抵抗で蓋と正極集電板の接続が可能となることを見いだした。なお、上記の集電経路とは、集電板から蓋までの間の電流が通る経路を意味する。 The inventors of the present invention have confirmed that the resistance between the lid and the positive electrode current collector plate occupies a large portion of the battery resistance by analyzing the resistance component of the sealed battery. Therefore, as a result of various studies to reduce the connection resistance between the lid and the positive electrode current collector plate, the present inventors have found that the number of welding points as well as the length and cross-sectional area of the current collection path of the lead are extremely important factors. As a result, the present inventors have found a battery using a lead having a specific shape according to the present invention. Furthermore, as a result of studying to increase the number of welding points, the present inventors have found that the battery of the present invention having at least four and not more than eight current collecting paths connecting the lid and the positive electrode current collector plate has an extremely low resistance. It was clarified that the lid and the positive electrode current collector were connected. Furthermore, the present inventors realized an inexpensive material cost by configuring the current collecting paths from a single plate, and the junction between the current collecting path and the lid or the current collecting path and the positive current collecting plate. It was found that the lid and the positive electrode current collector plate can be connected with extremely low resistance by setting the number of welding points in the joint portion to a plurality of points per joint portion. In addition, said current collection path | route means the path | route through which the electric current from a current collection board to a lid | cover passes.

本発明の電池で使用するリードは、環状部と複数の短冊部とで構成され、前記環状部は、蓋に接続されており、前記短冊部は、一端が前記環状部につながっているとともに他端が集電板に接続されていることを特徴とする。このリードについて、図を用いて説明する。図1は、本発明で使用するリードの一例の展開図であって、厚さ0.2〜0.4mmのNiまたはFeNi(ニッケルメッキ鋼板)を打ち抜きまたはワイヤカットで加工したものである。このリードは、環状部1と短冊部2とで構成される。この図のように、環状部1は、透孔7を備えた環状である。そして、短冊部2は、複数備えられており、それぞれの一端が環状部1につながっている。環状部1の透孔7は、溶接電極を挿入するためのものである。この図の8は切り欠き部分、9は突起であって、いずれも溶接強度を高めるためのものである。切り欠き部分8は、溶接電流が集中して、リードが破断したりすることのないよう、溶接を確実にするためのものである。   The lead used in the battery of the present invention is composed of an annular portion and a plurality of strip portions, the annular portion is connected to a lid, and one end of the strip portion is connected to the annular portion. The end is connected to the current collector plate. This lead will be described with reference to the drawings. FIG. 1 is a developed view of an example of a lead used in the present invention, in which Ni or FeNi (nickel plated steel plate) having a thickness of 0.2 to 0.4 mm is punched or processed by wire cutting. This lead is composed of an annular portion 1 and a strip portion 2. As shown in this figure, the annular portion 1 is annular with a through hole 7. A plurality of strip portions 2 are provided, and one end of each strip portion 2 is connected to the annular portion 1. The through hole 7 of the annular portion 1 is for inserting a welding electrode. In this figure, reference numeral 8 denotes a notch, and 9 denotes a protrusion, both of which are for increasing the welding strength. The notch portion 8 is used to ensure welding so that the welding current does not concentrate and the lead does not break.

本発明の電池では、上記のようなリードを用いることによって、蓋と正極集電板との間の集電経路が複数形成されている。この電池では、図10で示した従来のリードを用いた場合と比べて集電経路の合計の断面積が大きいので、蓋と正極集電板との間の電気抵抗が低い。このリードにおける短冊部は、環状部に連続した構成となっている。そのため、短冊部の本数を増やして集電経路を多くした場合でも部品点数は増えないので、単にリード本数を増やした場合と比べて電池の組立が容易である。したがって、本発明によれば、蓋と正極集電板との間の集電経路の本数を従来技術では達成できなかったレベルにまで増やすことができ、その結果、低抵抗を達成できる4本以上8本以下の集電経路を実施することができる。また、リードが環状部を備えるので、集電板の全周から均一な集電が可能である。均一な集電は、短冊部を、図1のように環状部の周囲に等間隔に配置したときに得られる。ここでの「等間隔」は、当然に誤差を含んでも良く、この誤差の上限は、短冊部の幅に相当する長さとするのが好ましい。間隔長さの誤差の上限をこのようにすることによって、短冊部の少なくとも一部が、環状部の周囲に等間隔に配置されるようになる。   In the battery of the present invention, a plurality of current collecting paths between the lid and the positive electrode current collecting plate are formed by using the leads as described above. In this battery, since the total cross-sectional area of the current collecting path is larger than when the conventional lead shown in FIG. 10 is used, the electric resistance between the lid and the positive electrode current collecting plate is low. The strip portion of the lead has a structure that is continuous with the annular portion. Therefore, even if the number of strips is increased and the current collecting paths are increased, the number of parts does not increase. Therefore, it is easier to assemble the battery than when the number of leads is simply increased. Therefore, according to the present invention, the number of current collecting paths between the lid and the positive electrode current collecting plate can be increased to a level that cannot be achieved by the prior art, and as a result, four or more that can achieve low resistance. Eight or less current collecting paths can be implemented. In addition, since the lead has an annular portion, uniform current collection is possible from the entire circumference of the current collector plate. Uniform current collection is obtained when the strips are arranged at equal intervals around the annular part as shown in FIG. The “equal interval” here may naturally include an error, and the upper limit of the error is preferably a length corresponding to the width of the strip portion. By setting the upper limit of the error of the interval length in this way, at least a part of the strip portion is arranged at equal intervals around the annular portion.

本発明の電池では、リードと蓋との接合部分もしくはリードと正極集電板との接合部分の溶接点数を接合部分1個所あたり複数点とすることによって、溶接不良が激減し、溶接部抵抗をさらに小さくすることができる。溶接点数は、集電経路の抵抗を削減するのに極めて重要であるが、接合部分1個所につき1点のみしか溶接されていない場合、電池を使用している間に、溶接強度が不十分な溶接点がはずれたりして抵抗が増加して、電池の寿命性能が低下する虞がある。また、上記のリードは、一枚の原料板から切り出して製作する方法が採用できる。この方法は、環状部と短冊部とをそれぞれ別の原料板から切り出したあとに接続する方法と比べて工程数が少なく、安価な材料コストを実現できる。   In the battery of the present invention, the number of welding points at the joint between the lead and the lid or the joint between the lead and the positive electrode current collector plate is set to a plurality of points per joint, thereby greatly reducing welding defects and reducing the weld resistance. It can be further reduced. The number of welding points is extremely important for reducing the resistance of the current collecting path, but if only one point is welded per joint, the welding strength is insufficient while using the battery. There is a possibility that the welding point may come off and the resistance may increase, resulting in a decrease in battery life performance. In addition, the above lead can be manufactured by cutting out from a single raw material plate. This method has fewer steps than the method of connecting the annular portion and the strip portion after cutting them from different raw material plates, and can realize an inexpensive material cost.

本発明で使用するリードのほかの例として、図2の展開図のようなものがある。この図は、このリードの展開図が、環状部1と複数の短冊部2とで構成されていることと、環状部1が帯状であり、短冊部2が環状部1の一つの長辺から一方向に延びており、全体として櫛状であることとを示している。なお、「櫛状」は、図2のように、板材に複数の隙間を設けた形状のものを意味する。このリードは、帯状の環状部1を環状に丸めてから電池内に収納する方法で使用される。そのため、短冊部が伸びている方向は、すべての短冊部が同一方向でなくても良く、外装缶に収納したときに集電板に接触できる方向であれば良い。環状に丸めたあとの状態を図3の側面図と斜視図とに示す。帯状の部分を環状に丸めて環状部1とすることによって、極群の全集より集電する構成とすることができる。   As another example of the lead used in the present invention, there is a developed view of FIG. This drawing shows that the developed view of this lead is composed of an annular portion 1 and a plurality of strip portions 2, the annular portion 1 is in a strip shape, and the strip portion 2 is from one long side of the annular portion 1. It extends in one direction, indicating that it is comb-like as a whole. In addition, "comb shape" means the thing of the shape which provided the several clearance gap in the board | plate material like FIG. This lead is used by a method in which the belt-like annular portion 1 is rolled into an annular shape and then stored in a battery. Therefore, the direction in which the strips extend is not limited to the same direction for all the strips, and may be any direction that can contact the current collector plate when stored in the outer can. The state after being rolled into an annular shape is shown in the side view and perspective view of FIG. By rounding the belt-like portion into an annular shape to form the annular portion 1, the current can be collected from the entire collection of pole groups.

本発明で使用するリードは、電池に収納する際には、リードにおける短冊部2を図3のように折り曲げ加工する。また、この図の短冊部2の先端の切り欠き部6は、溶接電流が集中してリードが破断したりすることのないよう、溶接を確実にするための加工である。また、環状部1には、この図に示したように、蓋との接続を確実におこなうために、接続タブ3を設けても良い。接続タブ3は、二枚以上を等間隔で配置することが通電経路を全周に分散できる点で好ましく、図2のように環状部1に対向する位置に配置することがとくに好ましい。また、接続タブ3には、溶接電流が集中してリードが破断したりすることのないよう図2のように切り欠き部を設けることが好ましい。なお、図3の斜視図では、正面左右側の接続タブ2枚を省略している。すなわち、全8枚のタブのうち、6枚のみ図示している。   When the lead used in the present invention is housed in a battery, the strip portion 2 of the lead is bent as shown in FIG. Further, the notch 6 at the tip of the strip 2 in this figure is a process for ensuring welding so that the welding current is not concentrated and the lead is not broken. Further, as shown in this figure, the annular portion 1 may be provided with a connection tab 3 in order to securely connect the lid. Two or more connecting tabs 3 are preferably arranged at equal intervals from the viewpoint that the energization path can be distributed over the entire circumference, and particularly preferably arranged at a position facing the annular portion 1 as shown in FIG. Further, the connection tab 3 is preferably provided with a notch as shown in FIG. 2 so that the welding current is not concentrated and the lead is not broken. In addition, in the perspective view of FIG. 3, two connection tabs on the front left and right sides are omitted. That is, only six of the eight tabs are shown.

本発明で使用するリードは、図4のように、短冊部2が正極集電板に抵抗溶接により接続されたあと、接続タブ3を蓋内面へ溶接して、さらに、短冊部2をつづら折り状に折りたたんで電池内部に収納される。そのあと、電槽缶の開口部はカシメて密閉化される。つづら折り状に折りたたむ形状とすることによって、短冊部2が上下方向に伸縮自在となる。そのため、蓋と電槽缶との間の空間を確保できるので、溶接電極35の挿入が容易である。このとき、短冊部2の折り曲げ加工は、少なくとも、3個所で折り曲げられることが好ましく、とくに、1個所の山折り部4と2個所の谷折り部5との3個所で折り曲げる加工であることが好ましい。このようにして3個所で折り曲げることによって、短冊部2のうち集電板に溶接される部分が、集電板に対して平行に配置できるようになる。そのため、その部分の抵抗溶接が確実におこなうことができる。また、「山折り」とは、リードを環状に丸めた後、短冊部2を環の中心向きに凸となるように折り曲げることを意味し、一方、「谷折り」とは環の外周向きに凸となるように折り曲げることを意味する。「つづら折り状に折りたたむ」とは、折り曲げ加工を行った後、折り目に沿って短冊部2を上下方向に折りたたむことを意味する。上記のように、本発明では、リードを蓋と集電板とに溶接するための装置として、大容量の溶接装置を必要としない。   As shown in FIG. 4, the lead used in the present invention is connected to the positive electrode current collector plate by resistance welding, the connection tab 3 is welded to the inner surface of the lid, and the strip portion 2 is further folded in a zigzag manner. Folded into a battery and stored inside the battery. After that, the opening of the battery case can be crimped and sealed. By forming the shape to be folded in a zigzag shape, the strip portion 2 can be expanded and contracted in the vertical direction. Therefore, since the space between the lid and the battery case can be secured, the welding electrode 35 can be easily inserted. At this time, it is preferable that the strip portion 2 is bent at least at three places, and in particular, the strip portion 2 is bent at three places, ie, one mountain fold portion 4 and two valley fold portions 5. preferable. By bending in three places in this way, a portion of the strip portion 2 that is welded to the current collector plate can be arranged in parallel to the current collector plate. Therefore, resistance welding of that part can be performed reliably. In addition, “mountain fold” means that the lead 2 is rolled into an annular shape, and then the strip portion 2 is bent so as to be convex toward the center of the ring. It means to bend so that it becomes convex. “Fold in a zigzag” means that the strip 2 is folded in the vertical direction along the fold after the folding process. As described above, the present invention does not require a large-capacity welding apparatus as an apparatus for welding the lead to the lid and the current collector plate.

本発明で使用するリードのほかの例として、環状部と複数の短冊部とで構成され、前記環状部は、集電板に接続されており、前記短冊部は、一端が前記環状部につながっているとともに他端が蓋に接続されていることを特徴とするものがある。このリードは、たとえば、図1または図2のリードを倒立させて電池内に収納したものに相当する。すなわち、図1の展開図を持つリードを用いる場合は、この図の環状部1を集電板に溶接したあと、短冊部2を蓋に溶接してから、短冊部2をつづら折り状に折りたたんで電池内部に収納する。図2の展開図を持つリードを倒立させて用いる場合は、展開図が帯状の環状部1を環状に丸めてから集電板に溶接すること以外は、図1の場合と同様である。図1または図2のリードを倒立させて用いた場合の電池の内部抵抗は、倒立でない場合と比べて、集電経路の数が同じであるので同レベルである。   As another example of the lead used in the present invention, it is composed of an annular portion and a plurality of strip portions, the annular portion is connected to a current collector plate, and one end of the strip portion is connected to the annular portion. And the other end is connected to a lid. This lead corresponds to, for example, the lead of FIG. 1 or 2 inverted and housed in a battery. That is, when using the lead having the developed view of FIG. 1, after welding the annular portion 1 of this figure to the current collector plate, the strip portion 2 is welded to the lid, and then the strip portion 2 is folded into a zigzag shape. Store inside the battery. When the lead having the development view of FIG. 2 is used upside down, the development view is the same as the case of FIG. 1 except that the belt-like annular portion 1 is rounded and welded to the current collector plate. The internal resistance of the battery when the lead of FIG. 1 or FIG. 2 is used upside down is at the same level because the number of current collecting paths is the same as that when the lead is not upside down.

本発明の電池で用いるリードとしては、図2のように櫛状の展開図を持つものが、図1のように放射状の展開図を持つものと比べて材料歩留まりが良い点で好ましい。櫛状の形状は、1枚の板から切り出す場合、図6(a)に示したように2枚のリードを互いの櫛歯が交互になるよう配置することができる。そのため、その形状を原料板から切り出す際の材料歩留まりは、図1のような放射状のものと比べて良く、工業的に極めて優れていることがわかる。   As a lead used in the battery of the present invention, a lead having a comb-like development as shown in FIG. 2 is preferable in view of a good material yield as compared with a lead having a radial development as shown in FIG. When the comb shape is cut out from one plate, as shown in FIG. 6A, two leads can be arranged so that the comb teeth are alternately arranged. Therefore, it can be seen that the material yield when cutting the shape from the raw material plate is superior to that of the radial shape as shown in FIG.

また、本発明では、リードの環状部または短冊部を蓋に直接接続しても良いが、補助リードを介して接続しても良い。「補助リード」とは、蓋とリードとを電気的に接続する機能を有するものである。補助リードについて図5を用いて説明する。補助リードは、厚さ0.4〜1.0mmのNiまたはFeNi(ニッケルメッキ鋼板)を打ち抜き又はワイヤカットで加工したものである。(図の例では、厚さ0.4mmのニッケル板を打ち抜き又はワイヤカットでした。)この図の例では補助リード本体11は八角形をなしており、それぞれの辺に対し接続タブ12を持つ。この図では1個所のみ展開、7個所は折り曲げ加工して作図した。この補助リード10の8個所の接続タブ12を直角に折り曲げることで、これら接続タブ12が、極群側へ突出することにより、リードの環状部1または短冊部と溶接できる。なお、蓋とリードとの接続に関しては、接続作業を容易にする目的で、補助リードをあらかじめ蓋の内面に取り付けても良い。   In the present invention, the annular portion or strip portion of the lead may be directly connected to the lid, but may be connected via an auxiliary lead. The “auxiliary lead” has a function of electrically connecting the lid and the lead. The auxiliary lead will be described with reference to FIG. The auxiliary lead is formed by punching or wire cutting Ni or FeNi (nickel plated steel plate) having a thickness of 0.4 to 1.0 mm. (In the example in the figure, a nickel plate having a thickness of 0.4 mm was punched or wire cut.) In the example in this figure, the auxiliary lead body 11 has an octagonal shape and has a connection tab 12 for each side. . In this figure, only one place was developed, and seven places were bent and drawn. By bending the connection tabs 12 at eight positions of the auxiliary lead 10 at right angles, the connection tabs 12 protrude toward the pole group side, and can be welded to the annular portion 1 or the strip portion of the lead. Regarding the connection between the lid and the lead, the auxiliary lead may be attached to the inner surface of the lid in advance for the purpose of facilitating the connection work.

本発明の電池を封口する前に蓋とリードを溶接するためには、極群を収納した電槽缶の開口部端面と蓋内面に溶接電極を挿入するすき間が必要となるが、リードを、つづら折り状に折りたたまれて収納される形状とすることにより、リードと蓋内面を溶接した後に電池の封口が可能となる。なかでも、蓋内面にリードを溶接するに際して、あらかじめ蓋内面に概略円周状の接続タブを持つ補助リードを取り付けておくことにより、リードと蓋との抵抗溶接による接続が容易になるため、望ましい。   In order to weld the lid and the lead before sealing the battery of the present invention, it is necessary to have a gap for inserting the welding electrode into the opening end surface of the battery case containing the electrode group and the inner surface of the lid. By adopting a shape that is folded and stored in a zigzag shape, the battery can be sealed after the lead and the inner surface of the lid are welded. In particular, when welding the lead to the inner surface of the lid, it is desirable to attach an auxiliary lead having a generally circumferential connection tab to the inner surface of the lid in advance, which facilitates the resistance welding between the lead and the lid. .

本発明の電池では、集電経路を短くする目的で、リードの短冊部2をできるだけ短くする場合は、蓋と正極集電板の溶接に際しては、まず、蓋に補助リードを溶接する第一の工程と、次いで正極集電板にリードを溶接する第二の工程、さらに補助リードの接続タブとリードとを溶接する第三の工程を、この溶接順序で行うことによって可能となる。
本発明の電池では、集電経路を4〜8本とし、短冊部を折り曲げ加工して1個所の山折り部と2個所の谷折り部とを設け、リードと蓋との接合部分もしくはリードと正極集電板との接合部分の溶接点数を接合部分1個所あたり複数点とすることによって、蓋と正極集電板間の集電経路の面積を大きく取り、かつ集電経路長さを短くしつつ、同時に溶接点数を集電経路の本数以上とすることができるため、電池の通電抵抗が低減され出力特性に優れた電池を得ることができる。
In the battery of the present invention, in order to shorten the current collecting path, when the lead strip portion 2 is made as short as possible, when welding the lid and the positive electrode current collector plate, first, the first auxiliary lead is welded to the lid. It is possible to perform the process and the second process of welding the lead to the positive electrode current collector plate and the third process of welding the connection tab of the auxiliary lead and the lead in this welding order.
In the battery of the present invention, the current collecting path is 4 to 8, the strip portion is bent to provide one mountain fold portion and two valley fold portions, and the joint portion of the lead and the lid or the lead By setting the number of welds at the joint with the positive current collector plate to multiple points per joint, the area of the current collection path between the lid and the positive current collector is increased, and the length of the current collection path is shortened. At the same time, the number of welding points can be made equal to or greater than the number of current collecting paths, so that a battery having excellent output characteristics can be obtained with reduced current resistance of the battery.

本発明は、正極、セパレータおよび負極を渦巻き状に巻いた極群に溶接した集電板と蓋とをリードで接続した電池であれば、非水電解液式のものでも水溶液電解液のものでも適用できる。ニッケル水素電池を例に取れば、正極のニッケル電極には、水酸化ニッケルと水酸化亜鉛、水酸化コバルトを共沈した複合水酸化物が用いられるが、さらに、ニッケル電極中にY、Er、Yb等の希土類元素の単体またはその化合物を添加することによりニッケル電極の酸素過電圧を高めて急速充電を行ったときにニッケル電極で酸素が発生するのを抑制する構成とするのが好ましい。   The present invention is not limited to a non-aqueous electrolyte type or an aqueous electrolyte type as long as it is a battery in which a current collector plate and a lid welded to a pole group in which a positive electrode, a separator and a negative electrode are wound in a spiral shape are connected by leads. Applicable. Taking a nickel metal hydride battery as an example, a composite hydroxide in which nickel hydroxide, zinc hydroxide and cobalt hydroxide are co-precipitated is used for the nickel electrode of the positive electrode. Furthermore, in the nickel electrode, Y, Er, It is preferable to add a rare earth element such as Yb or a compound thereof to suppress the generation of oxygen at the nickel electrode when the oxygen overvoltage of the nickel electrode is increased and rapid charging is performed.

また、負極の水素吸蔵合金電極には、水素吸蔵が可能な、一般にAB系、またはAB系と呼ばれる合金を用いるが、特にその組成には制限はない。特に好ましくは、AB型のMmNi(Mmは希土類元素の混合物)のNiの一部をCo、Mn、Al、Cu等で置換した合金が、優れた充放電サイクル寿命特性と高い放電容量を持つので好ましい。本発明を適用してその抵抗削減効果をより高めるため、合金をあらかじめアルカリ系処理液で処理してその表面に触媒を付与して負極の反応抵抗をも低減する構成とするのがより好ましい。 In addition, for the hydrogen storage alloy electrode of the negative electrode, an alloy generally capable of storing hydrogen and called AB 2 or AB 5 is used, but the composition is not particularly limited. Particularly preferably, Co and part of Ni of AB 5 type MmNi 5 (Mm is a mixture of rare earth elements), Mn, Al, alloys obtained by substituting Cu or the like, excellent charge-discharge cycle life characteristics and high discharge capacity Since it has, it is preferable. In order to further improve the resistance reduction effect by applying the present invention, it is more preferable to treat the alloy with an alkaline treatment liquid in advance and apply a catalyst to the surface to reduce the reaction resistance of the negative electrode.

以下では、ニッケル水素蓄電池を実施例として本発明をさらに詳細に説明するが、本発明は以下の記載により限定されるものではない。   In the following, the present invention will be described in more detail using a nickel metal hydride storage battery as an example, but the present invention is not limited to the following description.

(正極板の作製)
硫酸ニッケルと硫酸亜鉛および硫酸コバルトを所定比で溶解した水溶液に硫酸アンモニウムと苛性ソーダ水溶液を添加してアンミン錯体を生成させた。反応系を激しく撹拌しながら更に苛性ソーダを滴下し、反応系のpHを10〜12に制御して芯層母材となる球状高密度水酸化ニッケル粒子を水酸化ニッケル:水酸化亜鉛:水酸化コバルト=93:5:2の重量比となるように合成した。 (表面層の形成)
前記芯層母材となる球状高密度水酸化ニッケル粒子を、苛性ソーダでpH10〜13に制御したアルカリ水溶液に投入した。該溶液を撹拌しながら、所定濃度の硫酸コバルト、アンモニアを含む水溶液を滴下した。この間、苛性ソーダ水溶液を適宜滴下して反応浴のpHを10〜13の範囲に維持した。約1時間pHを10〜13の範囲に保持し、前記水酸化ニッケル粒子表面にCoを含む混合水酸化物から成る表面層を形成させた。該混合水酸化物の表面層の比率は前記Coを含む芯層母粒子(以下単に芯層と記述する)100重量部に対してCoの金属量換算で4重量部であった。
(Preparation of positive electrode plate)
An ammonium complex and an aqueous sodium hydroxide solution were added to an aqueous solution in which nickel sulfate, zinc sulfate and cobalt sulfate were dissolved at a predetermined ratio to form an ammine complex. While vigorously stirring the reaction system, caustic soda is further added dropwise to control the pH of the reaction system to 10 to 12, and the spherical high-density nickel hydroxide particles serving as the core layer base material are converted into nickel hydroxide: zinc hydroxide: cobalt hydroxide. = 93: 5: 2 The weight ratio was synthesized. (Formation of surface layer)
Spherical high-density nickel hydroxide particles serving as the core layer base material were put into an alkaline aqueous solution controlled to pH 10 to 13 with caustic soda. While stirring the solution, an aqueous solution containing cobalt sulfate and ammonia at predetermined concentrations was added dropwise. During this time, an aqueous caustic soda solution was appropriately added dropwise to maintain the pH of the reaction bath in the range of 10-13. The pH was maintained in the range of 10 to 13 for about 1 hour, and a surface layer made of a mixed hydroxide containing Co was formed on the surface of the nickel hydroxide particles. The ratio of the surface layer of the mixed hydroxide was 4 parts by weight in terms of the amount of Co metal with respect to 100 parts by weight of core layer mother particles (hereinafter simply referred to as core layer) containing Co.

(表面層の酸化処理)
前記混合水酸化物から成る表面層を有する水酸化ニッケル粒子50gを、温度110℃の30wt%(10N)の苛性ソーダ水溶液に投入し、充分に攪拌した。続いて表面層に含まれるコバルトの水酸化物の当量に対して過剰のK228を添加し、粒子表面から酸素ガスが発生するのを確認した。活物質粒子をろ過し、水洗、乾燥した。
(Oxidation treatment of surface layer)
50 g of nickel hydroxide particles having a surface layer made of the mixed hydroxide was put into a 30 wt% (10N) aqueous caustic soda solution at a temperature of 110 ° C. and sufficiently stirred. Subsequently, excess K 2 S 2 O 8 was added to the equivalent of the cobalt hydroxide contained in the surface layer, and it was confirmed that oxygen gas was generated from the particle surface. The active material particles were filtered, washed with water and dried.

(正極板の作製)
前記コバルト被覆活物質粒子粉末100重量部に対して、カルボキシメチルセルローズ(CMC)水溶液を添加して前記活物質:CMC溶質=99.5:0.5のペースト状とし、該ペーストを450g/mのニッケル多孔体(住友電工(株)社製ニッケルセルメット#8)に充填した。その後80℃で乾燥した後、所定の厚みにプレスし、表面にポリテトラフロロエチレンコーティングを行い幅47.5mm(内、無塗工部1mm)長さ1150mmの容量6500mAh(6.5Ah)のニッケル極板とした。
(Preparation of positive electrode plate)
A carboxymethyl cellulose (CMC) aqueous solution is added to 100 parts by weight of the cobalt-coated active material particle powder to make a paste of the active material: CMC solute = 99.5: 0.5, and the paste is 450 g / m. No. 2 porous body (nickel cermet # 8 manufactured by Sumitomo Electric Co., Ltd.) was filled. Then, after drying at 80 ° C., pressing to a predetermined thickness, coating the surface with polytetrafluoroethylene, 47.5 mm wide (1 mm uncoated part), 1150 mm long, 6500 mAh (6.5 Ah) nickel An electrode plate was used.

(負極の作製)
粒径35μmのAB5型希土類系のMmNi3.6Co0.6Al0.3Mn0.35の組成を有する水素吸蔵合金をアルカリ性水溶液に浸漬処理を行った。即ち、水素吸蔵処理後の水素吸蔵合金粉末を20℃で46重量%のNaOH水溶液に浸漬し、100℃で2時間の処理を行った。
(Preparation of negative electrode)
A hydrogen storage alloy having a composition of AB 5 type rare earth MmNi 3.6 Co 0.6 Al 0.3 Mn 0.35 having a particle diameter of 35 μm was immersed in an alkaline aqueous solution. That is, the hydrogen storage alloy powder after the hydrogen storage treatment was immersed in a 46 wt% NaOH aqueous solution at 20 ° C. and treated at 100 ° C. for 2 hours.

その後、加圧濾過し、PH10以下に水洗した後、希薄な酸を加えて希土類不純物を溶解後、加圧濾過し、80℃温水で水素脱離を行った。さらにその後、加圧濾過して処理液と合金を分離した後、純水を合金重量と同重量添加して28kHzの超音波を10分間かけた。さらにその後、緩やかに攪拌しつつ純水を攪拌層下部より注入し、排水をフローさせて合金より遊離する希土類水酸化物を除去した。この後、合金を80℃温水に暴露して水素脱離を行った。温水を加圧濾過して、再度の水洗を行い合金を25℃に冷却し、攪拌下4%過酸化水素水を合金重量と同量加え、水素脱離を行って、電極用水素吸蔵合金を得た。   Thereafter, the mixture was filtered under pressure and washed with water at a pH of 10 or less. Then, diluted acid was added to dissolve rare earth impurities, followed by pressure filtration, and hydrogen desorption with 80 ° C. hot water. Then, after pressure filtration to separate the treatment liquid and the alloy, pure water was added in the same weight as the alloy weight, and 28 kHz ultrasonic waves were applied for 10 minutes. Further, after that, pure water was poured from the lower part of the stirring layer while gently stirring, and the rare earth hydroxide released from the alloy was removed by flowing the waste water. Then, hydrogen desorption was performed by exposing the alloy to 80 ° C. hot water. The hot water is filtered under pressure, washed again with water, the alloy is cooled to 25 ° C., 4% hydrogen peroxide water is added in the same amount as the alloy weight with stirring, hydrogen desorption is performed, and the hydrogen storage alloy for electrodes is obtained. Obtained.

得られた合金とスチレンブタジエン共重合体水溶液とを99.35:0.65の固形分重量比で混合し、水で分散してペースト状にし、ブレードコーターを用いて、鉄にニッケルメッキを施したパンチング鋼板に塗布した後、80℃で乾燥した後、所定の厚みにプレスして幅47.5mm長さ1750mmの容量11000mAh(11.0Ah)の水素吸蔵合金負極板とした。   The obtained alloy and a styrene-butadiene copolymer aqueous solution were mixed at a solid content weight ratio of 99.35: 0.65, dispersed in water to form a paste, and iron was nickel-plated using a blade coater. After being applied to the punched steel plate, dried at 80 ° C., and then pressed to a predetermined thickness to obtain a hydrogen storage alloy negative electrode plate having a width of 47.5 mm and a length of 1750 mm and a capacity of 11000 mAh (11.0 Ah).

(密閉形ニッケル水素電池の作製)
前記負極板とスルフォン化処理を施した厚み120μmのポリプロピレンの不織布状セパレータと前記正極板とを組み合わせてロール状に巻回した。該巻回極群の一方の捲回端面に突出させた正極基板の端面に、ニッケルメッキを施した鋼板からなる厚さ0.4mm、中央に円形の透孔を設けた半径14.5mmの円板状の正極集電板を抵抗溶接により接合した。捲回式極板群の他方の捲回端面に突出させた負極基板の端面にニッケルメッキを施した鋼板からなる厚さ0.4mmの円板状の負極集電板を抵抗溶接により接合した。ニッケルメッキを施した鋼板からなる有底円筒状の電槽缶を用意し、前記集電板を取り付けた極板群を、正極集電板が電槽缶の開放端側、負極集電板が電槽の底に当接するように電槽内に収容し、負極集電板の中央部を電槽の底壁部に抵抗溶接により接合した。次いで電槽缶の上部内周側に防振リングを挿入し、電槽缶の外周側に溝入れ加工を施して防振リングの上端部に環状溝を形成した。
(Production of sealed nickel-metal hydride batteries)
The negative electrode plate, a 120 μm-thick polypropylene non-woven separator having a sulfonation treatment, and the positive electrode plate were combined and wound into a roll. A circle having a thickness of 0.4 mm made of a nickel-plated steel plate on the end face of the positive electrode substrate projecting from one winding end face of the wound pole group and a radius of 14.5 mm provided with a circular through hole in the center. Plate-shaped positive electrode current collector plates were joined by resistance welding. A disc-shaped negative electrode current collector plate having a thickness of 0.4 mm made of a steel plate with nickel plating applied to the end face of the negative electrode substrate protruding from the other wound end face of the wound electrode group was joined by resistance welding. Prepare a bottomed cylindrical battery case made of nickel-plated steel plate, and attach the current collector plate to the electrode plate group, the positive current collector plate is the open end side of the battery case, and the negative current collector plate is It accommodated in the battery case so that it might contact | abut to the bottom of a battery case, and the center part of the negative electrode current collecting plate was joined to the bottom wall part of the battery case by resistance welding. Next, a vibration isolating ring was inserted into the upper inner peripheral side of the battery case can, and a groove was formed on the outer peripheral side of the battery case can to form an annular groove at the upper end portion of the vibration isolating ring.

ニッケルメッキを施した鋼板からなり中央に直径0.8mmの円形の透孔を設けた円板状の蓋を用意し、蓋の外面には、弁体(ゴム弁)およびキャップ(正極端子)を取り付けた。蓋の周縁をつつみ込むように蓋にリング状のガスケットを装着した。   Prepare a disc-shaped lid made of nickel-plated steel plate with a circular through hole with a diameter of 0.8 mm in the center. A valve body (rubber valve) and a cap (positive electrode terminal) are placed on the outer surface of the lid. Attached. A ring-shaped gasket was attached to the lid so as to squeeze the periphery of the lid.

次いで、厚さ0.2mmのニッケル板を加工して図2に示すような展開図のリードを製作して、このリードの環状部を環状に丸めてから、8本の短冊部に折り目を付けたのちに図4(b)のごとく正極集電板の上面に配置して溶接した。溶接点数は、短冊部1本あたり2点とした。
このとき、環状部によって形成される環の直径は、ガスケットとの干渉を防ぐために25.9mm以下とするのが好ましく、接続タブを蓋うら面の平坦部で溶接できるようにするために22.6mm以上17mm以下とするのが好ましい。短冊部の幅は、図6(a)のようにして効率よく原料板から切り出せることから、隣接する2本の短冊部間の距離以下とするのが好ましい。たとえば、図2の短冊部の幅は、環状部の長さが59.7mmの場合、3.98mm以下とするのが好ましい。また、ニッケル板としては、0.2mm以上0.3mm以下のものが利用できる。0.2mm未満の場合は、加工時に破断しやすく、0.3mmを越える場合は折り曲げ加工が困難となって、集電板に接続される部分の長さを必要以上に長くする必要が生じる。
Next, a 0.2 mm thick nickel plate is processed to produce a development lead as shown in FIG. 2, and the annular portion of the lead is rounded, and then the eight strips are creased. After that, as shown in FIG. 4B, it was placed on the upper surface of the positive electrode current collector plate and welded. The number of welding points was 2 per strip.
At this time, the diameter of the ring formed by the annular portion is preferably 25.9 mm or less in order to prevent interference with the gasket, and in order to allow the connection tab to be welded at the flat portion on the back surface of the lid. It is preferably 6 mm or more and 17 mm or less. The width of the strip portion is preferably set to be equal to or less than the distance between two adjacent strip portions because the strip portion can be efficiently cut out from the raw material plate as shown in FIG. For example, the width of the strip portion in FIG. 2 is preferably 3.98 mm or less when the length of the annular portion is 59.7 mm. Moreover, as a nickel plate, the thing of 0.2 mm or more and 0.3 mm or less can be utilized. If it is less than 0.2 mm, it is easy to break during processing, and if it exceeds 0.3 mm, it becomes difficult to bend, and the length of the portion connected to the current collector plate needs to be made longer than necessary.

その後、6.8 mol/dmのKOHと0.6 mol/dmのLiOHを含む水溶液からなる電解液を所定量注液した後、リードの接続タブ3を円周の外側向きに倒した。 Then, after pouring a predetermined amount of an electrolytic solution composed of an aqueous solution containing 6.8 mol / dm 3 of KOH and 0.6 mol / dm 3 of LiOH, the lead connection tab 3 was tilted outwardly of the circumference. .

次いで蓋を、リードの接続タブの上に載置し、リードの接続タブと蓋を図4(c)に示すようにして溶接した。   Next, the lid was placed on the connection tab of the lead, and the connection tab of the lead and the lid were welded as shown in FIG.

その後、リードの短冊部を図4(d)に示すように、つづら折り状に折りたたんで蓋を電槽缶に押し込み、電槽缶の開放端をかしめて気密に密閉して、D形の密閉型ニッケル水素電池を作製した。   Thereafter, as shown in FIG. 4 (d), the lead strips are folded in a zigzag shape, the lid is pushed into the battery case, the open end of the battery case is crimped and hermetically sealed, and the D-shaped sealed type A nickel metal hydride battery was produced.

リードの短冊部を図7に示すように4本にしたこと以外は実施例1と同様にして、密閉形ニッケル水素蓄電池を作製した。なお、第1の溶接工程における正極集電板とリードとの溶接点数は短冊部ごとに2点とした。
A sealed nickel-metal hydride storage battery was produced in the same manner as in Example 1 except that the number of lead strips was four as shown in FIG. In addition, the number of welding points between the positive electrode current collector plate and the lead in the first welding process was set to 2 for each strip portion.

図8に示すように接続タブ3がないリードを用いたことと補助リードを用いたことと以外は、実施例1と全く同様にして、電池を試作した。すなわち、厚さ0.4mmのニッケル板であって、図5に示すような形状の補助リード10を用意した。ニッケルメッキを施した鋼板からなり中央に直径0.8mmの円形の透孔を設けた円板状の蓋を用意し、蓋の内面側に補助リード10を当接させ、図9(b)のように、蓋18の内面に補助リード10を溶接する第1の溶接工程を実施した。   As shown in FIG. 8, a battery was manufactured in the same manner as in Example 1 except that a lead without the connection tab 3 was used and an auxiliary lead was used. That is, an auxiliary lead 10 having a nickel plate having a thickness of 0.4 mm and having a shape as shown in FIG. 5 was prepared. A disc-shaped lid made of a nickel-plated steel plate and provided with a circular through hole with a diameter of 0.8 mm in the center is prepared, and the auxiliary lead 10 is brought into contact with the inner surface side of the lid, as shown in FIG. Thus, the 1st welding process of welding auxiliary lead 10 to the inner surface of lid 18 was carried out.

次いで、図8に示すように厚さ0.2mmのニッケル板を加工した、短冊部が8本のリードを、その部分を正極集電板の上面に溶接する第2の溶接工程を実施した。溶接点数は、短冊部1本あたり2点とした。   Next, as shown in FIG. 8, a second welding process was performed in which a nickel plate having a thickness of 0.2 mm was processed and a lead having eight strip portions was welded to the upper surface of the positive electrode current collector plate. The number of welding points was 2 per strip.

蓋18の外面には、弁体90(ゴム弁)およびキャップ80(正極端子)を取り付けた。蓋の周縁をつつみ込むように蓋にリング状のガスケットを装着した。   A valve body 90 (rubber valve) and a cap 80 (positive electrode terminal) were attached to the outer surface of the lid 18. A ring-shaped gasket was attached to the lid so as to squeeze the periphery of the lid.

そのあと6.8 mol/dmのKOHと0.6 mol/dmのLiOHを含む水溶液からなる電解液を所定量注液した。 Thereafter, a predetermined amount of an electrolytic solution composed of an aqueous solution containing 6.8 mol / dm 3 of KOH and 0.6 mol / dm 3 of LiOH was injected.

蓋に取り付けた補助リードの接続タブ12側面の沿ってリードが取り囲むように載置し、リードの環状部と補助リードとを図9(c)に示すようにして溶接した。   The lead was attached so as to surround the side of the connection tab 12 of the auxiliary lead attached to the lid, and the annular portion of the lead and the auxiliary lead were welded as shown in FIG.

その後、リードの短冊部を図9(d)に示すように、つづら折り状に折りたたんで蓋を電槽缶に押し込み、電槽缶の開放端をかしめて気密に密閉して、D形の密閉型ニッケル水素電池を作製した。   After that, as shown in FIG. 9 (d), the lead strip is folded into a zigzag shape, the lid is pushed into the battery case, the open end of the battery case is crimped and hermetically sealed, and the D-shaped sealed type A nickel metal hydride battery was produced.

なお、負極集電板については、実施例1と同様の方法で中央部を電槽の底壁部に抵抗溶接により接合した。   In addition, about the negative electrode current collecting plate, the center part was joined to the bottom wall part of the battery case by resistance welding in the same manner as in Example 1.

実施例1において、第1の溶接工程における正極集電板とリードとの溶接点数を、短冊部1本あたり1点とした以外は、実施例1と全く同様にして、密閉型ニッケル水素蓄電池を作製した。   In Example 1, a sealed nickel-metal hydride storage battery was manufactured in the same manner as in Example 1 except that the number of welding points between the positive electrode current collector plate and the lead in the first welding step was one per strip. Produced.

実施例2において、図7に示すようなリードの短冊部4本のうち1本を切断して3本としたリードを用いた以外は実施例2と同様にして、密閉型ニッケル水素蓄電池を作製した。なお、正極集電板とリードとの溶接点数は、短冊部1本当たりごとに2点とした。   In Example 2, a sealed nickel-metal hydride storage battery was produced in the same manner as in Example 2 except that one of the four strips of the lead as shown in FIG. did. In addition, the number of welding points between the positive electrode current collector plate and the lead was set to 2 for each strip portion.

(参考例6)
厚さ0.4mmのニッケル板をワイヤカットで加工して切り出すことによって、図1 に示すような放射形状のリードを用意した。リード中央部は8mmの透孔7を持つ直径18.5mmの円形をしており、短冊部2を8本備えており、この部分は環状部から放射状に延びている。
(Reference Example 6)
A lead having a radial shape as shown in FIG. 1 was prepared by cutting a nickel plate having a thickness of 0.4 mm by wire cutting. The central portion of the lead has a circular shape with a diameter of 18.5 mm and a through hole 7 of 8 mm, and has eight strip portions 2, which extend radially from the annular portion.

まず、ほかの実施例と同様に、放射状リードの短冊部を正極集電板の上面に溶接電極を垂直に立てることにより溶接した。前記集電板を取り付けた極板群を、正極集電板が電槽缶の開放端側、負極集電板が電槽の底に当接するようにニッケルメッキを施した鋼板からなる有底円筒状の電槽缶内に収容した。   First, similarly to the other examples, the strips of the radial leads were welded by vertically setting the welding electrode on the upper surface of the positive electrode current collector plate. The electrode plate group to which the current collector plate is attached is a bottomed cylinder made of a steel plate nickel-plated so that the positive electrode current collector plate contacts the open end side of the battery case and the negative electrode current collector plate contacts the bottom of the battery case. In a battery case.

6.8 mol/dmのKOHと0.6 mol/dmのLiOHを含む水溶液からなる電解液を所定量注液した後、リードの環状部と蓋とを溶接した。 A predetermined amount of an electrolytic solution composed of an aqueous solution containing 6.8 mol / dm 3 of KOH and 0.6 mol / dm 3 of LiOH was injected, and then the annular portion of the lead and the lid were welded.

その後、短冊部を折りたたんで蓋を電槽缶に押し込み、電槽缶の開放端をかしめて気密に密閉して、D形の密閉型ニッケル水素電池を作製した。なお、負極集電板については、実施例1と同様の方法で中央部を電槽の底壁部に抵抗溶接により接合した。   Thereafter, the strip portion was folded and the lid was pushed into the battery case can, and the open end of the battery case was crimped and hermetically sealed to produce a D-shaped sealed nickel-metal hydride battery. In addition, about the negative electrode current collecting plate, the center part was joined to the bottom wall part of the battery case by resistance welding in the same manner as in Example 1.

(比較例1)
特許文献1に記載されている正極集電板一体型リードとして、図12に示されるような打ち抜き加工形リード板を適用した。該リード板は厚さ0.4mmのニッケル板製とし、この集電板一体型リードを用いること以外は、実施例3と全く同様にして、補助リードを取り付けた蓋を用いて電池を作成した。
(Comparative Example 1)
As the positive electrode current collector integrated lead described in Patent Document 1, a punched lead plate as shown in FIG. 12 was applied. The lead plate was made of a nickel plate having a thickness of 0.4 mm, and a battery was prepared using a lid provided with auxiliary leads in exactly the same manner as in Example 3 except that this current collector integrated lead was used. .

また、リード片と補助リード接続タブ側面との溶接点数は、リード片1本あたり2点とした。   In addition, the number of welding points between the lead piece and the side surface of the auxiliary lead connection tab was two points per lead piece.

(化成)
前記密閉型蓄電池を周囲温度40℃において12時間の放置後、130mA(0.02CA)にて1200mAh充電し、引き続き650mA(0.1CA)で10時間充電した後、1300mA(0.2CA)で1Vまで放電した。さらに、650mA(0.1CA)で16時間充電した後、1300mA(0.2CA)で1Vまで放電し、該充放電を1サイクルとして4サイクル充放電を行った。4サイクル目の放電終了後、1kHzの交流を用いて内部抵抗を測定した。
(Chemical formation)
The sealed storage battery is left at ambient temperature of 40 ° C. for 12 hours, charged at 130 mA (0.02 CA) at 1200 mAh, then charged at 650 mA (0.1 CA) for 10 hours, and then 1V at 1300 mA (0.2 CA). Discharged until. Further, after charging at 650 mA (0.1 CA) for 16 hours, the battery was discharged to 1 V at 1300 mA (0.2 CA), and charging / discharging was performed as 4 cycles for 1 cycle. After the completion of the fourth cycle discharge, the internal resistance was measured using 1 kHz alternating current.

(出力密度の測定)
出力密度の測定方法は、25℃雰囲気下において、放電末より650mA(0.1CA)で5時間充電後、60Aで12秒間放電した時の10秒目電圧を60A放電時10秒目電圧とし、放電分の電気容量を6Aで充電した後、90Aで12秒放電した時の10秒目電圧を90A放電時10秒目電圧とし、放電分の電気容量を6Aで充電した後、120Aで12秒流した時の10秒目電圧を120A放電時10秒目電圧とし、放電分の電気容量を6Aで充電した後、150Aで12秒流した時の10秒目電圧を150A放電時10秒目電圧とし、放電分の電気容量を6Aで充電した後、180Aで12秒流した時の10秒目電圧を180A放電時10秒目電圧とした。この各10秒目電圧を電流値と電圧値を最小自乗法で直線近似し、電流値0Aの時の電圧値をE0とし、傾きをRDCとした。その後、出力密度(W/kg)=(E0−0.8)÷RDC×0.8÷電池重量(kg)の計算式に当てはめ、0.8Vカット時の25℃電池における出力密度とした。
(Measurement of output density)
The measurement method of the output density is the 10th second voltage at the time of 60A discharge when the 10th second voltage is discharged at 60A for 12 seconds after charging at 650mA (0.1CA) for 5 hours from the end of discharge in a 25 ° C atmosphere. After charging the electrical capacity for discharge at 6 A, the voltage at 10 seconds when discharging at 90 A for 12 seconds is the voltage at 10 seconds when discharging at 90 A, and after charging the electrical capacity for discharge at 6 A, 12 seconds at 120 A The 10th voltage at the time of discharging is set to the 10th voltage at the time of 120A discharge, the electric capacity of the discharge is charged at 6A, and then the 10th voltage at the time of flowing at 150A for 12 seconds is the 10th voltage at the time of 150A discharge. Then, after charging the electrical capacity for discharge at 6A, the voltage at the 10th second when flowing at 180A for 12 seconds was the voltage at the 10th second at 180A discharge. Each 10-second voltage was linearly approximated with a current value and a voltage value by the method of least squares. The voltage value at a current value of 0A was E0, and the slope was RDC. After that, the output density (W / kg) = (E0−0.8) ÷ RDC × 0.8 ÷ battery weight (kg) was applied to obtain the output density in the 25 ° C. battery at 0.8V cut.

実施例1〜5、参考例6、比較例1で得た電池を、上述の条件で化成し、内部抵抗および出力密度の測定を行った。結果を表1 に示す。 The batteries obtained in Examples 1 to 5, Reference Example 6 and Comparative Example 1 were formed under the above-described conditions, and the internal resistance and output density were measured. The results are shown in Table 1.

また、表1には、各電池で使用したリードを原料板から切り出す際の歩留まりを評価するための数値として、リードを2枚作るのに要した面積を併記した。切り出しに際しては、図6に示すごとく配置した。 Table 1 also shows the area required to make two leads as numerical values for evaluating the yield when cutting the leads used in each battery from the raw material plate. When cutting out, they were arranged as shown in FIG.

表1の実施例1、実施例2、実施例3および参考例6の電池の結果からわかるように、リードの短冊部の本数が4本以上8本以下、すなわち集電経路4経路以上8経路以下の場合に、かつ1枚の板から構成されてなるリードを用い、リードと蓋もしくはリードと正極集電板とのそれぞれの溶接点数を経路1 本あたり複数とした電池は、内部抵抗が1.1mΩ 以下と低く、出力密度も1300W /kg以上の高出力のものであることがわかった。これらの実施例の内部抵抗の値は、比較例の値を大幅に越えるものであった。 As can be seen from the results of the batteries of Example 1, Example 2, Example 3 and Reference Example 6 in Table 1, the number of strips of the leads is 4 or more and 8 or less, that is, the current collection path is 4 paths or more and 8 paths. In the following cases, a battery that uses a lead composed of a single plate and has a plurality of welding points between the lead and the lid or the lead and the positive electrode current collector plate per path has an internal resistance of 1 It was found that the output density was as low as 1 mΩ or less, and the output density was as high as 1300 W / kg or more. The values of the internal resistances of these examples greatly exceeded the values of the comparative examples.

さらに、8本の経路を持ち、正極集電板とリードの溶接点数が16ヶ所の実施例1、実施例3および参考例6の電池においては、出力が1400W/kgを超えていることがわかる。1400W/kg以上の出力を保持することは、ハイブリッド電気自動車(HEV)でのアシスト時に200A(30CAのレートに相当)の放電を行っても、常温において1V セルを切ることがない性能を保持することを意味している。このため、1400W/kg以上の出力密度を有するニッケル水素電池は、過放電防止のための電圧制御の下限値として1V/セルを設定でき、このため放電レートの上限を30CAとしたときの、いかなる放電パターンにおいても過放電を防止することができるので好ましい。 Furthermore, in the batteries of Example 1, Example 3 and Reference Example 6 which have 8 paths and the number of welding points between the positive electrode current collector plate and the lead is 16, it can be seen that the output exceeds 1400 W / kg. . Maintaining an output of 1400 W / kg or more retains the performance of not cutting a 1 V cell at room temperature even when discharging at 200 A (equivalent to a rate of 30 CA) when assisting in a hybrid electric vehicle (HEV). It means that. For this reason, a nickel metal hydride battery having a power density of 1400 W / kg or more can set 1 V / cell as the lower limit value of voltage control for preventing overdischarge. The discharge pattern is also preferable because overdischarge can be prevented.

これは、集電経路の断面積や長さのみならず、経路ごとの溶接点数が電池内部抵抗低減に重要であることを示している。   This indicates that not only the cross-sectional area and length of the current collecting path but also the number of welding points for each path is important for reducing the battery internal resistance.

これに対して、比較例1の電池は、出力密度が1400 W/kgに達しなかった。これは、リードの位置が集電板の最外周に位置していることに加えて、集電板の周縁部がリードとともに折り曲げられたことによって、電流分布の不均一化が生じたためと考えられる。   On the other hand, the power density of the battery of Comparative Example 1 did not reach 1400 W / kg. This is thought to be due to the fact that the current distribution is non-uniform due to the fact that the peripheral portion of the current collector plate is bent together with the lead in addition to the lead being located at the outermost periphery of the current collector plate. .

実施例3のように、あらかじめ蓋の内面に補助リードを取り付けておくことにより、図9(c)に示すようにリードと蓋の接続が補助リードを介して側方から溶接できるので、目視により溶接ヶ所を確認しつつ容易に溶接作業を行うことができる。   By attaching the auxiliary lead to the inner surface of the lid in advance as in Example 3, the connection between the lead and the lid can be welded from the side via the auxiliary lead as shown in FIG. Welding work can be easily performed while checking the welding location.

また、本発明の電池の構成では、短冊部の折りたたむ個所が1個所または2個所の場合は、3個所の場合と比べて、リードを折りたたむ際に溶接点がはずれて不良となるものの発生確率が高かった。   Further, in the battery configuration of the present invention, when the strip part is folded at one place or two places, the probability of occurrence of a defect in which the welding point is removed when the lead is folded is compared with the case of three places. it was high.

実施例4の電池の内部抵抗が他と比べて高かった原因としては、短冊部1本あたりの溶接点数が1点しかなかったことにより、溶接不良が生じたことが考えられる。   The reason why the internal resistance of the battery of Example 4 was higher than others could be that defective welding occurred because there was only one welding point per strip.

また、比較例1の一体型リードの場合、上述と同様に正極溶端面に溶接後、リード片部を折り曲げて起こすとき、およびリード片と蓋を補助リードを介して溶接により接続した後、蓋を電槽缶内へ押し込むときに、リードと正極間の溶接点がはずれて不良となるものが多量に発生した。   Further, in the case of the integrated lead of Comparative Example 1, as described above, after welding to the positive electrode melting end surface, when the lead piece is bent and raised, and after the lead piece and the lid are connected by welding via the auxiliary lead, the lid When the battery was pushed into the battery case, a large amount of defects occurred due to the weld point between the lead and the positive electrode coming off.

参考例6のように展開図が放射状のリードの場合、リードを原料板から切り出す際の歩留まり性能を除いて、実施例1と同様にかつ集電経路長さを短くしつつ、同時に溶接点数を集電経路の本数以上とすることができるため、電池の通電抵抗が低減され出力特性に優れた電池を得ることができる。 When the development is a radial lead as in Reference Example 6, except for the yield performance when the lead is cut out from the raw material plate, the number of welding points is simultaneously reduced while shortening the current collection path length as in Example 1. Since the number of current collecting paths can be made equal to or greater than the number of current collecting paths, it is possible to obtain a battery having reduced output current resistance and excellent output characteristics.

リードを原料板から切り出す際の歩留まりについては、表1の結果から明らかである。
すなわち、実施例1で用いたように、展開図が櫛状のリードは、図6のように2枚のリードを互いの櫛歯が交互になるよう配置することができるので、参考例6の放射状のものと比べて、歩留まりが良いことがわかる。この点から、展開図が櫛状リードは、放射状の展開図を持つものと比べて材料歩留まりに優れており、工業的に極めて優れていることがわかる。
The yield when cutting the lead from the raw material plate is clear from the results in Table 1.
That is, as used in Example 1, developed view comb-shaped lead, can be arranged so that the two leads each other comb alternating as shown in Figure 6, the reference example 6 It can be seen that the yield is better than the radial one. From this point, it can be seen that the comb-shaped lead having a developed view is superior in material yield and industrially extremely superior to those having a radial developed view.

さらに、上述した実施の形態においては、蓋の内面にあらかじめ図5に示すような、補助リードを取り付け、その側面にリードを溶接して電池を作製した例について説明したが、蓋の内面にリード溶接のための接続する面を設けられれば、図5の形状でなくても同じ効果が得られる。   Further, in the above-described embodiment, the example in which the auxiliary lead as shown in FIG. 5 is attached to the inner surface of the lid in advance and the lead is welded to the side surface to produce the battery has been described. If a connecting surface for welding is provided, the same effect can be obtained even if the shape is not the one shown in FIG.

参考例に係わるリードの展開図を示す図である。It is a figure which shows the expanded view of the lead concerning a reference example. 本発明の一実施例に係わるリードの展開図を示す図である。It is a figure which shows the expanded view of the lead concerning one Example of this invention. 本発明の一実施例に係わるリードの構造を示す図である。It is a figure which shows the structure of the lead concerning one Example of this invention. 本発明の一実施例に係わる円筒形電池の製造工程を示すモデル図である。It is a model figure which shows the manufacturing process of the cylindrical battery concerning one Example of this invention. 本発明で使用する補助リードの構造を示す図である。It is a figure which shows the structure of the auxiliary lead used by this invention. 本発明の一実施例に係わるリードの展開図を示す図である。It is a figure which shows the expanded view of the lead concerning one Example of this invention. 本発明の一実施例に係わるリードの展開図を示す図である。It is a figure which shows the expanded view of the lead concerning one Example of this invention. 本発明の一実施例に係わるリードの展開図および構造を示す図である。It is a figure which shows the expansion | deployment figure and structure of a lead concerning one Example of this invention. 本発明の一実施例に係わる円筒形密閉形の製造工程を示すモデル図である。It is a model figure which shows the manufacturing process of the cylindrical sealed type concerning one Example of this invention. 従来の円筒形電池の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional cylindrical battery. 従来の円筒形電池のリードの構造を示す図である。It is a figure which shows the structure of the lead | read | reed of the conventional cylindrical battery. 比較例に係わるリードと集電板とを一体化した部材の展開図を示す図である。It is a figure which shows the expanded view of the member which integrated the lead concerning the comparative example, and the current collecting plate.

符号の説明Explanation of symbols

1 リードにおける環状部
2 リードにおける短冊部
3 リードにおける接続タブ
4 山折り部分
5 谷折り部分
6 短冊部に設けられた切り欠き部分
7 透孔
8 環状部に設けられた切り欠き部分
9 突起
10 補助リード
11 補助リード本体
12 補助リードにおける接続タブ
21 従来の電池におけるリード
22 正極板
23 負極板
24 セパレータ
25 極群
26 外装缶
27 蓋
28 正極板における活物質の未充填部
29 負極板における活物質の未充填部
30 正極集電板
31 ガスケット
35 溶接電極
80 キャップ
90 弁体
DESCRIPTION OF SYMBOLS 1 Ring part 2 in a lead 2 Strip part 3 in a lead 4 Connection tab 4 in a lead 4 Mountain fold part 5 Valley fold part 6 Notch part 7 provided in the strip part Through hole 8 Notch part 9 provided in the annular part Projection 10 Auxiliary Lead 11 Auxiliary lead body 12 Connection tab 21 in auxiliary lead 22 Lead in conventional battery 22 Positive electrode plate 23 Negative electrode plate 24 Separator 25 Electrode group 26 Outer can 27 Lid 28 Active material unfilled portion 29 in positive electrode plate Active material in negative electrode plate Unfilled portion 30 Positive electrode current collector 31 Gasket 35 Welding electrode 80 Cap 90 Valve body

Claims (3)

正極、セパレータおよび負極を渦巻き状に巻いた極群に溶接した集電板と蓋とをリードで接続した電池において、前記リードは、環状部と複数の短冊部とで構成され、前記環状部は、蓋に接続されており、前記短冊部は、一端が前記環状部につながっているとともに他端が集電板に接続されており、
前記リードは、展開図が櫛状であることを特徴とする電池。
In a battery in which a current collector plate and a lid welded to a pole group in which a positive electrode, a separator and a negative electrode are wound in a spiral shape are connected by leads, the lead is composed of an annular portion and a plurality of strip portions, and the annular portion is , Connected to the lid, the strip portion, one end is connected to the annular portion and the other end is connected to the current collector plate ,
The battery is characterized in that the development of the lead is comb-shaped .
正極、セパレータおよび負極を渦巻き状に巻いた極群に溶接した集電板と蓋とをリードで接続した電池において、前記リードは、環状部と複数の短冊部とで構成され、前記環状部は、集電板に接続されており、前記短冊部は、一端が前記環状部につながっているとともに他端が蓋に接続されており、
前記リードは、展開図が櫛状であることを特徴とする電池。
In a battery in which a current collector plate and a lid welded to a pole group in which a positive electrode, a separator and a negative electrode are wound in a spiral shape are connected by leads, the lead is composed of an annular portion and a plurality of strip portions, and the annular portion is The strip is connected to the current collector plate, one end of which is connected to the annular portion and the other end is connected to the lid ,
The battery is characterized in that the development of the lead is comb-shaped .
前記リードの短冊部は、少なくとも3個所で折り曲げられていることを特徴とする請求項1〜2に記載の電池。 The battery according to claim 1, wherein the strip portion of the lead is bent at at least three locations.
JP2006057052A 2006-03-03 2006-03-03 battery Active JP5016236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057052A JP5016236B2 (en) 2006-03-03 2006-03-03 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057052A JP5016236B2 (en) 2006-03-03 2006-03-03 battery

Publications (2)

Publication Number Publication Date
JP2007234486A JP2007234486A (en) 2007-09-13
JP5016236B2 true JP5016236B2 (en) 2012-09-05

Family

ID=38554852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057052A Active JP5016236B2 (en) 2006-03-03 2006-03-03 battery

Country Status (1)

Country Link
JP (1) JP5016236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748711B (en) 2019-11-07 2021-12-01 日商東京製綱股份有限公司 Cable anchoring parts, wedge assembly and disassembly jigs, and pull-out jigs

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054099A (en) * 2010-09-01 2012-03-15 Fdk Twicell Co Ltd Battery
CN111584774B (en) * 2020-06-15 2022-09-02 韩旭峰 Safe naked-flame-free lithium iron phosphate battery
CN114400361A (en) * 2021-12-13 2022-04-26 邱称祥 Based on new energy automobile battery processing packaging hardware
WO2024071238A1 (en) * 2022-09-30 2024-04-04 パナソニックIpマネジメント株式会社 Power storage device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112741A (en) * 1974-02-15 1975-09-04
JPH0636756A (en) * 1992-07-16 1994-02-10 Shin Kobe Electric Mach Co Ltd Cylindrical battery
JP2004259624A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Battery
JP5051410B2 (en) * 2005-05-30 2012-10-17 株式会社Gsユアサ Sealed battery lead, sealed battery using the lead, and method of manufacturing the battery
WO2007091717A1 (en) * 2006-02-07 2007-08-16 Gs Yuasa Corporation Method for manufacturing battery, battery manufactured by that method, and method for inspecting battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748711B (en) 2019-11-07 2021-12-01 日商東京製綱股份有限公司 Cable anchoring parts, wedge assembly and disassembly jigs, and pull-out jigs

Also Published As

Publication number Publication date
JP2007234486A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
JP5051410B2 (en) Sealed battery lead, sealed battery using the lead, and method of manufacturing the battery
WO2012066637A1 (en) Cylindrical secondary battery
WO2006059733A1 (en) Sealed cell, manufacturing method thereof, and battery formed by a plurality of sealed cells
JP5016236B2 (en) battery
JP2018045994A (en) Cylindrical alkaline secondary battery
WO2006011645A1 (en) Closed battery, its manufacturing method, battery pack composed of closed batteries, and its manufacturing method
JP5157049B2 (en) Sealed battery, method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP4242953B2 (en) Manufacturing method of battery pack
JP3649909B2 (en) battery
JP2000251871A (en) Alkaline secondary battery
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP3869540B2 (en) Cylindrical battery with spiral electrode body and method for manufacturing the same
JP5317507B2 (en) Cylindrical alkaline storage battery
JP2000306597A (en) Nickel-hydrogen secondary battery
JP2014120441A (en) Electrode plate, laminated electrode group, battery and cylindrical battery
JP2000251867A (en) Cylindrical storage battery
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same
JP2001283895A (en) Manufacturing method of electrochemical cell and electrochemical cell electrode
JP2004235087A (en) Electrode and battery using it
JP2011008930A (en) Cylindrical type alkaline storage battery
JP2000260416A (en) Manufacture of battery
CN109891639A (en) Electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5016236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250