WO2006011645A1 - Closed battery, its manufacturing method, battery pack composed of closed batteries, and its manufacturing method - Google Patents

Closed battery, its manufacturing method, battery pack composed of closed batteries, and its manufacturing method Download PDF

Info

Publication number
WO2006011645A1
WO2006011645A1 PCT/JP2005/014159 JP2005014159W WO2006011645A1 WO 2006011645 A1 WO2006011645 A1 WO 2006011645A1 JP 2005014159 W JP2005014159 W JP 2005014159W WO 2006011645 A1 WO2006011645 A1 WO 2006011645A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
battery
welding
current collector
lid
Prior art date
Application number
PCT/JP2005/014159
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Okabe
Takahiro Itagaki
Satoshi Yokota
Tomonori Kishimoto
Shuichi Izuchi
Masahiko Oshitani
Hiroaki Mori
Kouichi Sakamoto
Original Assignee
Gs Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Corporation filed Critical Gs Yuasa Corporation
Priority to CN2005800256036A priority Critical patent/CN101010818B/en
Publication of WO2006011645A1 publication Critical patent/WO2006011645A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0033Welding locally a thin plate to a large piece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Patent application title Sealed battery and method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
  • the present invention relates to a sealed battery, a manufacturing method thereof, an assembled battery including a plurality of sealed batteries, and a manufacturing method thereof, and in particular, a structure / method for connecting an upper current collector plate and a lid of a sealed battery, Structure for connecting sealed batteries to each other.
  • alkaline batteries such as nickel monohydride batteries and nickel cadmium batteries are configured such that a power generation element is accommodated in a battery case, and the electric case is used as one terminal.
  • a current collector As shown in FIG. 37, as a current collector, a current collector 1001 and a current collector lead plate 103, which are stretched with the same thickness and integrally molded, have been proposed.
  • a current collector 1001 and a current collector lead plate 103 which are stretched with the same thickness and integrally molded.
  • the separator 10 is interposed between the positive electrode plate 8 and the negative electrode plate 9, and the power generation element formed by winding them in a spiral shape is used as the outer container 6
  • the current collector lead plate 10 3 is welded to the sealing body at one location after being housed in a metal battery case, and then the sealing body 11 is attached to the opening of the battery case 6 with an insulating gasket interposed therebetween. It is hermetically sealed.
  • the current collector that connects between the power generation element and the sealing body is particularly included in the battery configuration. Electrical resistance greatly affects battery characteristics. In these applications, charging / discharging with a large current is often required, so it is necessary to reduce the internal resistance as much as possible.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2 0 4-6 3 2 7 2 ( Figure:! ⁇ 4, 1 0, 11, Step [0 0 2 2 :! ⁇ [0 0 3 8]) A case will be described in which the battery with reduced internal resistance described in Patent Document 1 is applied to a nickel-powered Dome battery.
  • Fig. 39 is a perspective view showing the main part of a nickel-powered Dome battery equipped with a current collector integrally formed by punching.
  • Figs. 40 (a) and (b) are plan views of the current collector 1. It is a figure and sectional drawing.
  • This current collector is made of a nickel-plated 0.3 mm thick steel plate, and is composed of a flat part 2 and a protrusion part 3 that is projected to a height of about 2.0 mm by punching. .
  • This current collector is formed so as to have a substantially disk shape, and includes a protrusion 3, and a thin region 4 in which the top surface of the protrusion is a welded region is formed.
  • FIG. 41 is a cross-sectional view showing a state where an electrode body is inserted into a battery case 6 as an outer container and welded to the sealing body via the current collector 1.
  • this nickel-cadmium battery has a nickel positive electrode plate 8 and a force dome negative electrode plate 9 separated into a battery case 6 having a bottomed cylindrical body made of nickel plated iron.
  • the above-described current collector 1 is placed thereon, and the sealing body 1 1 is welded and connected to the protrusion 3 of the current collector 1 by a direct welding method. It will be.
  • the sealing body 11 includes a lid body 12 having a circular downward projecting portion on the bottom surface, a positive electrode cap 13, and a spring 15 interposed between the lid body 12 and the positive electrode cap 13. And a valve body composed of a valve plate 14, and a gas removal hole 16 is formed at the center of the lid body.
  • a flash 5 B is formed between the nickel positive electrode plate and the current collector 1 so as to protrude toward the back surface at the periphery of the hole 5 formed in the flat portion 2.
  • the beam forms a welding point with the positive electrode plate 8.
  • a disc-shaped negative electrode current collector 7 is disposed at the bottom of the battery case 6 and is connected to the negative electrode plate 9 by welding.
  • the opening 17 of the battery case 6 is sealed by caulking.
  • the flat part 2 can serve as a current collector main body part connected to the electrode, and the protrusion 3 can serve as a current collector lead connected to the positive electrode side terminal that is a sealing body, and can be integrally formed. For this reason, it is possible to reduce the connection resistance.
  • the top surface 4 of the protrusion 3 is thin, so that the welding current can be concentrated, and it has elasticity and pressure is reliably applied to the welding region. Therefore, a more reliable connection is possible.
  • the lead length can be shortened, but since the lead must be welded to a thick lid, the heat during welding escapes to the lid, so the reliability of the welded spot is reduced and welding is not possible.
  • the problem of large variation and the current required for one point of welding must be increased for the same reason, so a large number of welding points cannot be formed, and the effect of reducing internal resistance is not sufficient. .
  • Patent Document 2 Japanese Patent Laid-Open No. 2 00 1-3 4 5 8 8 8 (FIG. 2, FIG. 4 2 in the attached drawings of the present application)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2 00 1— 1 5 5 7 10 (FIGS. 3 and 4, FIGS. 4 and 4 of the accompanying drawings of the present application)
  • the battery having a reduced internal resistance described in Patent Document 2 has a structure as shown in FIG. 42, and '' a separator plate 3 is interposed between the nickel positive electrode plate 1 and the hydrogen storage alloy negative electrode plate 2.
  • the positive electrode current collector 4 is welded to the electrode plate core body exposed at the upper end surface of the spiral electrode group, and the electrode core core exposed at the lower end surface.
  • a negative electrode current collector (not shown) was welded to the body, and then the positive electrode lead 5 that had been bent so that the central part was cylindrical was welded to the upper part of the positive electrode current collector 4.
  • the battery with reduced internal resistance described in Patent Document 3 has a battery case 16 having an opening that also serves as a terminal of one electrode, and the opening is sealed. Sealing body that also serves as the terminal of the other electrode 1 7 (lid body 1 7 a, positive electrode cap 1 7 b, spring 1 7 c, valve body 1 7 d), and positive electrode plate 1 1 accommodated in battery case 1 6
  • the negative electrode plate 12 has an electrode body 10 having a current collector 14 connected to at least one end thereof, and the sealing body 17 and the current collector 14 have a central portion in the length direction.
  • the lead portion composed of the recessed drum-shaped cylindrical body 20 is fixedly connected.
  • the upper and lower end portions of the drum-shaped cylinder 20 are provided with flange portions 2 2 and 2 3 in which wide portions 2 2 a and 2 3 a and narrow portions 2 2 b and 2 3 b are alternately formed.
  • the wide portion 2 2 a and the narrow portion 2 3 b are arranged so as to overlap each other with a space therebetween, and the narrow portion 2 2 b and the wide portion 23 3 a are arranged so as to overlap each other with a space therebetween.
  • the nickel-hydrogen storage battery having the lead portion composed of the drum-shaped cylinder 20 is manufactured by welding as follows.
  • one welding electrode W 1 is placed on the upper surface of the positive electrode cap (positive electrode external terminal) 1 7 a, and the bottom surface of the bottom surface of the battery case 16 (negative electrode external terminal)
  • the other welding electrode W 2 was disposed on the surface. Thereafter, these pair of welding electrodes W l, while applying a pressure of 2 X 1 0. 6 N / m 2 between W 2, these welding electrodes W l, the discharge direction of the battery between W 2 2 A voltage of 4 V was applied, and an energization process was performed in which a current of 3 KA was passed for about 15 msec.
  • the insulating gasket 19 is fitted around the periphery of the sealing body 17, and a pressure is applied to the sealing body 17 using a press machine, so that the lower end of the insulating gasket 19 is positioned at the recess 16a.
  • a pressure is applied to the sealing body 17 using a press machine, so that the lower end of the insulating gasket 19 is positioned at the recess 16a.
  • the opening edge of the battery case 16 was crimped inward to seal the battery, and a cylindrical nickel-hydrogen storage battery with a nominal capacity of 6.5 Ah was fabricated.
  • the main body portion 21 of the drum-shaped cylindrical body 20 was crushed around the recessed central portion by the applied pressure at the time of sealing.
  • a welding electrode (not shown) is arranged on the outer peripheral portion of the narrow portion 22b of the upper end flange portion 22; The wide portion 23 a of the lower end flange 23 and the current collector 14 were spot welded.
  • the electrode body 10 in which the drum-shaped cylindrical body 20 is welded to the positive electrode current collector 14 is housed in the bottomed cylindrical battery case 10 in which nickel plating is applied to iron (the outer surface of the bottom surface is the negative electrode external terminal). did. (Paragraph [002 9])
  • the insulating gasket 19 is fitted on the periphery of the sealing body 17, and a pressure is applied to the sealing body 17 using a press machine.
  • the sealing body 17 is inserted into the battery until the lower end of the insulating gasket 19 is positioned at the recess 16a. Pushed into case 16. Thereafter, the opening edge of the battery case 16 was caulked inward to seal the battery. It should be noted that due to the applied pressure at the time of sealing, the main body portion 21 of the hourglass-shaped cylinder 20 was crushed around the recessed central portion.
  • one welding electrode W1 was arranged on the upper surface of the positive electrode cap (positive electrode external terminal) 17a, and the other welding electrode W2 was arranged on the lower surface of the bottom surface (negative electrode external terminal) of the battery case 16.
  • the number of welding points between the positive electrode current collector (upper current collector plate) and the lid is the same, so if the current during welding is increased to weld the lead to the thick lid, The welding point of the positive electrode current collector (upper current collector plate) is damaged by a large current, resulting in a problem that the welding reliability decreases and the resistance variation of the lead part increases, and the lead is welded to a thick lid. If the current during welding is increased, the lead will soften due to heat, and it will be difficult to maintain the adhesion at the weld location, resulting in problems such as reduced welding reliability and large variations in welding. The weld point cannot be formed, and the effect of reducing internal resistance is not sufficient. Disclosure of the invention
  • the problem of the present invention is that when the upper current collector plate and the sealing body (lid) are connected via a lead, the lid and the lead can be reliably and low-resistance welded, and the lead and the upper current collector are connected. Enables reliable and low-resistance welding with a smaller current on the plate, provides a sealed battery with low resistance and excellent output characteristics, connects multiple sealed batteries, and also achieves output characteristics with low resistance piles The object is to provide an excellent assembled battery. Means for solving the problem
  • the present inventors have found that in a sealed battery and a manufacturing method thereof, That the above-mentioned problems can be solved and voltage loss can be minimized by adopting a specific welding method for the assembled battery and its manufacturing method. As a result, the present invention has been completed.
  • the present invention employs the following means.
  • the sealed battery in which the inner surface of the lid that closes the battery case of the sealed battery and the upper surface of the upper current collector plate are connected via a lead, one surface of the lead is melted on the inner surface of the lid. After being contacted, the sealed battery is characterized in that the other surface of the lead is welded to the upper surface of the upper current collector plate.
  • the length of the lead from the welding point of the lead on the inner surface of the lid to the welding point of the lead on the upper surface of the upper current collecting plate closest to the welding point is the lead on the inner surface of the lid.
  • the lid has a portion curved or bent downward from a flat portion on the inner surface thereof, and one surface of the lead is welded to the curved or bent portion of the lid, Alternatively, the length of the lead from the welding point of the lead in the bent part to the weld point of the lead on the upper surface of the upper current collector plate closest to the welding point, and the curved or bent part of the lid.
  • the total length of the bent or bent portion of the lid from the weld point of the lead to the flat portion of the lid is 1 to 2.1 times the distance between the flat portion of the lid and the upper current collector plate.
  • the sealed battery according to any one of 1 to 3 above.
  • the upper current collector plate has a portion bent or bent upward from a flat portion on the upper surface thereof, and the other surface of the lead is welded to the bent or bent portion of the upper current collector plate. From the welding point of the lead on the inner surface of the lid to the welding point most The length of the lead to the welding point of the lead at the curved or bent portion of the upper current collector plate, and the flat portion of the upper current collector plate from the welding point of the lead at the curved or bent portion of the upper current collector plate The total length of the curved or bent portions of the upper current collector plate reaching 1 to 2.1 times the distance between the lid and the flat portion of the upper current collector plate The sealed battery according to any one of the above.
  • the lid has a portion bent or bent downward from a flat portion on the inner surface thereof, and the upper current collector plate has a portion bent or bent upward from the flat portion on the upper surface thereof. And after the one surface of the lead is welded to the curved or bent portion of the lid, the other surface of the lead is welded to the curved or bent portion of the upper current collector plate.
  • the length of the lead from the welding point of the lead in the curved or bent part to the weld point of the lead in the curved or bent part of the upper current collector plate closest to the welding point, and in the curved or bent part of the lid The length of the curved or bent portion of the lid from the welding point of the lead to the flat portion of the lid, and the flat portion of the upper current collecting plate from the welding point of the lead in the curved or bent portion of the upper current collecting plate In
  • the total length of the curved or bent portions of the upper current collector plate is 1 to 2.1 times the distance between the flat portion of the lid and the flat portion of the upper current collector plate.
  • the sealed battery according to any one of Items 1 to 3.
  • the lead is a ring-shaped lead, and after one surface of the ring-shaped lead is welded to the inner surface of the lid, the other surface of the ring-shaped lead is welded to the upper surface of the upper current collector plate.
  • the sealed battery as described in any one of (1) to (7) above, wherein
  • the lead is composed of a ring-shaped main lead and an auxiliary lead, and after one surface of the main lead is welded to the inner surface of the lid, the main lead is placed on the upper surface of the upper current collector plate.
  • the lead includes a frame-shaped portion and a side wall portion having a double structure extending downward from an inner periphery and an outer periphery of the frame-shaped portion, and a frame of the lead is formed on an inner surface of the lid. Any one of the above (1) to (7), wherein the end of the side wall portion of the double structure of the lead is welded to the upper surface of the upper current collecting plate after the welded portion is welded Dense Closed battery. '
  • the lead having the side wall portion of the double structure has an inverted V-shaped cross section in which the frame-shaped portion is a V-shaped folded portion, or two folded portions and a bottom of the U-shaped frame-shaped portion.
  • the lead comprises a main lead portion having the frame-shaped portion and the side wall portion of the double structure and an auxiliary lead portion, and an end portion of the side wall portion of the double structure of the main lead portion A plurality of protrusion-like or continuous flat auxiliary lead portions are formed respectively, and after the frame-like portion of the main lead portion is welded to the inner surface of the lid, the upper current collecting plate The auxiliary lead 'part is welded to the upper surface of
  • the lead includes a frame-like portion and a side wall portion having a double structure extending upward from an inner periphery and an outer periphery of the frame-like portion, and an inner surface of the lid includes the lead (1) to (7) above, wherein the frame portion of the lead is welded to the upper surface of the upper current collector plate after the end of the side wall portion of the double structure is welded.
  • the sealed battery according to any one of the items.
  • the lead having the side wall portion of the double structure has a V-shaped cross-section with the frame-shaped portion as a V-shaped folded portion, or a cross-section with the frame-shaped portion as two U-shaped folded portions and a bottom side.
  • the lead includes a main lead portion and an auxiliary lead portion having the frame-shaped portion and the double-structure side wall portion, and each end portion of the double-structure side wall portion of the main lead portion includes a plurality of the lead portions. And a flat plate-shaped auxiliary lead portion is formed, and after the auxiliary lead portion is welded to the inner surface of the lid, the upper surface of the upper current collector plate is provided with the main lead portion. The frame-shaped part is welded.
  • the lead frame-like portion and the double-structure side wall portion are spaced apart in the circumferential direction.
  • the sealed battery according to any one of (10) to (17), wherein the sealed battery is divided into a plurality of parts.
  • the side wall portion of the double structure of the lead is slitted in the longitudinal direction from the lower end or the upper end at intervals in the circumferential direction, and is at least partially or entirely divided.
  • the sealed battery according to any one of 1 0) to (1 7).
  • the lead is composed of a ring-shaped main lead and an auxiliary lead, and after the first welding step of welding one surface of the main lead to the inner surface of the lid, the other of the main lead A second welding step is performed in which an auxiliary lead is welded to a surface, and the other surface of the main lead is welded to the upper surface of the upper current collector plate via the auxiliary lead.
  • the current value of the charge pulse and the discharge pulse is set to 0.4 to 0.8 kA / Ah per unit capacity of the battery.
  • the method for producing a sealed battery In the energization of the AC pulse, the current value of the charge pulse and the discharge pulse is set to 0.4 to 0.8 kA / Ah per unit capacity of the battery. (23) or (24) the method for producing a sealed battery.
  • the charge pulse and discharge pulse current values are 0.33 kA / l point to 0.65 kAZl point per contact point between the upper current collector plate and the lead welding contact.
  • the energization time of the charge pulse and the energization time of the discharge pulse are 3 to 7 ms ec,
  • the AC pulse energization is performed 2 to 6 times with one set of charging and discharging in the AC pulse communication.
  • the current value of the charge pulse and the discharge pulse is set to 0.4 to 0.8 kAZAh per unit capacity of the battery.
  • (31) A method for producing an assembled battery.
  • the current value of the charge pulse and the discharge pulse is determined between the terminals of the battery or at the contact point of the junction between the battery terminal and the connection part between the batteries. 0.33 8/1 point to 0.65 kAl point, The method for producing an assembled battery according to any one of the above (30) to (32).
  • the energization time of the charge pulse and the energization time of the discharge pulse are set to 3 to 7 ms ec.
  • a method for producing an assembled battery in which at least one sealed battery constituting the assembled battery and terminals of the battery adjacent to the battery are welded to each other through an inter-battery connection component.
  • One end of the inter-battery connection part is joined to one battery lid, the other end of the inter-battery connection part is brought into contact with a terminal of the battery adjacent to the battery, and the current is passed through at least one sealed battery.
  • the battery manufacturing method according to any one of (30) to (35), wherein a battery terminal adjacent to the other end of the inter-battery connection part is welded.
  • one side of the lead and “the other side of the lead” mean a part having a weldable width of the lead, but the part having a weldable width is provided via the auxiliary lead. It may be provided.
  • the “inner surface of the lid” and “upper surface of the upper current collector plate” are not limited to the flat surfaces of the lid and upper current collector plate, but the lid is bent or bent downward or upward from the flat portion on the inner surface of the lid. In the case of having a bent portion, when the upper current collector plate has a curved or bent portion upward or downward from the flat portion on the upper surface of the upper current collector plate, the surface of the curved or bent portion is also included.
  • the flat part on the inner surface of the lid and “the flat part on the upper surface of the upper current collector plate” means that the lid or the upper current collector plate is bent through a plurality of flat parts, for example, bent in a step shape. Means the flat part that is farthest from the current collector plate for the lid, and the flat part that is farthest from the lid for the upper current collector plate. Is part of.
  • the “ring-shaped main lead” is a ring-shaped lead having a function of electrically connecting the lid and the upper current collector through an auxiliary lead.
  • the “auxiliary lead” is formed in the shape of a plurality of protrusions or a continuous flat plate at the end of the ring-shaped lead, and absorbs the variation in the vertical position of the upper current collector plate. It has a spring function (spring function) and electrically connects the main lead to the upper current collector plate or lid, and is manufactured separately from the ring-shaped lead and welded to its end. Including one integrally formed with a ring-shaped lead.
  • the “ring-shaped lead” has a ring-shaped side wall portion, and has one surface or the other surface at the upper end or the lower end of the side wall portion.
  • the shape of the ring is not only circular, Other shapes such as ellipse and polygon are also included.
  • the “main lead portion” is a main lead of a double-structured lead formed so as to have a double-structure side wall portion from the inner periphery and outer periphery of the frame-shaped portion to the lower or upper side.
  • the main part has a function of electrically connecting the lid and the upper current collecting plate through the auxiliary lead part.
  • “Auxiliary lead part” means a plurality of protruding pieces or continuous flat plate formed at the end of the double side wall of the double structure lead. It has a panel function (spring function) that absorbs variations in the position of the direction, and electrically connects the main lead and the upper current collector plate or lid.
  • the “frame-shaped part” is a part having a weldable width surrounded by two contour lines that define the inner periphery and the outer periphery, and the second part extends downward or upward from the inner periphery and the outer periphery. This is the root portion where the side wall portion of the heavy structure extends.
  • the first welding step of welding one surface of the lead to the inner surface of the lid, and the second welding step of welding the other surface of the lead to the upper surface of the upper current collector plate, this welding By carrying out in order, reliable and low resistance welding can be realized, and an extremely high power density of 140 OW / kg or more, which could only be achieved with an expensive prismatic nickel metal hydride battery with a special structure, This can be achieved with a cylindrical battery.
  • the second welding process is carried out by applying an AC pulse from an external power source, so that a large current can be applied, and the upper current collector plate and the lead are welded at a low resistance with multiple points.
  • the high rate discharge characteristics of the battery can be improved.
  • FIG. 1 is a diagram showing an example of a sealed battery welded with a ring-shaped lead (Examples 12 to 19).
  • FIG. 2 is a diagram showing an example of a sealed battery (Example 1, Examples 9 to 11) in which a lead composed of a ring-shaped main lead and an auxiliary lead is welded.
  • FIG. 3 is a diagram showing an example (Example 2) of a sealed battery in which a main lead portion and an auxiliary lead portion having a double structure with an inverted U-shaped cross section are welded. .
  • FIG. 4 is a view showing an example of a closed battery (Comparative Example 2, Example 4) in which a main lead portion and an auxiliary lead portion having a U-shaped cross section are welded.
  • FIG. 5 is a diagram showing an example (Example 3) of a sealed battery in which a main lead portion and an auxiliary lead portion having a double structure with an inverted V-shaped cross section are welded.
  • FIG. 6 is a diagram showing an example of a sealed battery (Comparative Example 3) in which a main lead portion and an auxiliary lead portion of a 2S structure having a V-shaped cross section are welded.
  • FIG. 7 is a diagram showing examples of ring-shaped leads (main leads) used in the present invention (Examples 12 to 19).
  • FIG. 8 is a perspective view showing examples of ring-shaped leads used in the present invention (Examples 12 to 19).
  • FIG. 9 is a plan view and a side view showing examples (Example 1, Examples 9 to 11) of a lead comprising a ring-shaped main lead and auxiliary leads used in the present invention.
  • FIG. 10 ′ is a diagram showing a state in which a lead composed of a ring-shaped main lead and an auxiliary lead welded to the lid is welded to the current collector plate.
  • FIG. 11 is a perspective view (front side) showing an example (Example 2) of a main lead part and an auxiliary lead part having a double structure with an inverted U-shaped cross section used in the present invention.
  • FIG. 12 is a perspective view (back side) showing an example (Example 2) of a main lead part and an auxiliary lead part having a double structure with an inverted U-shaped cross section used in the present invention.
  • FIG. 13 is a perspective view (front side) showing an example (Example 3) of a main lead portion and an auxiliary lead portion having a double structure with an inverted V-shaped cross section used in the present invention.
  • FIG. 14 is a perspective view (back side) showing an example (Example 3) of a main lead portion and an auxiliary lead portion having a double structure with an inverted V-shaped cross section used in the present invention.
  • FIG. 15 is a diagram (front side) showing an example (Example 6) in which a double-structured lead having an inverted U-shaped cross section used in the present invention is divided into eight parts.
  • Figure 16 shows the split lead structure of the U-shaped cross section used in the present invention. It is a figure (back side) which shows the example (Example 6) made into the lead which consists of these parts.
  • Fig. 17 is a perspective view (front side) showing a state where the lead consisting of eight parts shown in Figs. 15 and 16 is welded to the lid.
  • FIG. 18 is a perspective view (back side) showing a state where the lead composed of eight parts shown in FIGS. 15 and 16 is welded to the lid.
  • Fig. 19 shows an example (Example 7) in which only the double-structure side wall portion of a double-structure lead having an inverted U-shaped cross section is divided into eight at intervals in the circumferential direction. It is a perspective view (front side) shown.
  • Fig. 20 shows an example (Example 7) in which only the double-structure side wall portion of the double-structure lead having an inverted U-shaped cross section is divided into eight at intervals in the circumferential direction. It is a perspective view (back side) shown.
  • FIG. 21 is a perspective view (back side) showing a state in which only the side wall portion of the double structure shown in FIGS. 19 and 20 is welded to the lid, which is divided into eight pieces at intervals in the circumferential direction.
  • Fig. 22 is a perspective view showing an example (Example 8) in which a slit is formed in the side wall portion of a double structure lead having a reverse U-shaped cross section at intervals in the circumferential direction. It is.
  • FIG. 23 is a perspective view showing an example in which a lead is formed by forming a slit in the circumferential direction only in the auxiliary lead portion of a double-structure lead having an inverted U-shaped cross section.
  • FIG. 24 is a perspective view (front side) showing an example (Example 5) in which a lead having a double structure with an inverted U-shaped cross section is subjected to a bellows-like process.
  • FIG. 25 is a perspective view (back side) showing an example (Example 5) in which a lead having a reverse structure with an inverted U-shaped cross section is subjected to bellows-like processing.
  • Figure 26 shows the displacement in the height direction when welding the lead consisting of the main lead part and auxiliary lead part of the double structure with an inverted U-shaped cross section welded to the lid to the upper collector plate
  • FIG. 6 is a diagram showing an example in which the height of the pole group is absorbed by the protrusion of the auxiliary lead portion
  • Figure 27 shows the displacement in the height direction when welding the lead consisting of the main lead and auxiliary lead with a double U-shaped cross section welded to the lid to the upper current collector plate
  • FIG. 6 is a diagram illustrating an example in which the height of the pole group is absorbed by the protrusion of the auxiliary lead portion.
  • Figure 28 shows the main lead part and auxiliary lid with a double structure with an inverted U-shaped cross section welded to the lid.
  • FIG. 6 is a diagram showing an example in which a position shift in the height direction (when the height of the pole group is high) is absorbed by a protrusion of an auxiliary lead portion when a lead consisting of a lead portion is welded to an upper current collector plate.
  • Fig. 29 shows the height when welding the lead consisting of the main lead part (in Fig. 19) and the auxiliary lead part with the inverted U-shaped cross section welded to the lid to the upper current collector plate.
  • FIG. 5 is a diagram showing an example in which a positional misalignment is absorbed by opening the main lead portion and bending the auxiliary lead portion.
  • FIG. 30 is an assembly diagram of a sealed battery in which a ring-shaped main lead is welded via an auxiliary lead.
  • Fig. 31 shows an example of a sealed battery (Example 2) in which a lead consisting of a main lead and an auxiliary lead having a reverse U-shaped cross section welded to the lid is welded to the upper current collector plate. It is a figure.
  • FIG. 32 is a diagram showing an example of the current collector plate used in the present invention (Example 1).
  • FIG. 33 shows an example (Example 1) of lead welding points (16 points) on the upper current collector (positive current collector).
  • FIG. 34 is a diagram showing an example of the auxiliary lead welding point (16 points) on the upper current collecting plate (positive current collecting plate) (Example 2).
  • Figure 35 shows the length of the lead between the weld points and the length of the curved or bent portion of the upper current collector plate, the lid and the upper portion when the upper current collector plate has a curved or bent portion upward from the flat portion. It is a figure which shows the relationship with the space
  • Fig. 36 shows the length of the lead between the welding points and the length of the curved or bent part of the lid, the flat part of the lid and the upper current collector when the lid has a curved or bent part downward from the flat part. It is a figure which shows the relationship with the space
  • FIG. 37 is a perspective view showing an example of a conventional current collecting structure in which a current collector and a current collecting lead are elongated to have the same thickness and are integrally formed.
  • FIG. 38 is a cross-sectional view showing a conventional sealed battery completed by welding the current collecting lead of FIG. 37 to a sealing body.
  • FIG. 39 is a perspective view showing a main part of a nickel-force Dome battery equipped with a current collector integrally formed by conventional punching.
  • FIG. 40 is a plan view showing a current collector integrally formed by conventional punching and It is sectional drawing. '
  • FIG. 41 is a cross-sectional view showing a state where the electrode body is inserted into the battery case and welded to the sealing body through the current collector of FIG.
  • FIG. 42 is a cross-sectional view showing a state when a conventional cylindrical lead is welded to the positive electrode current collector.
  • FIG. 43 is a plan view, a side view, and a cross-sectional view showing a lead portion composed of a conventional drum-shaped cylindrical body.
  • FIG. 44 is a cross-sectional view showing a state where the electrode body is housed in the battery case and welded to the sealing body via the lead portion of FIG.
  • FIG. 45 is a cross-sectional view showing a sealed battery in which a conventional lead-shaped lead plate is welded to a lid and an upper current collector plate.
  • FIG. 46 is a schematic diagram showing a conventional upper current collecting plate and a reponted lead plate.
  • Fig. 47 shows the discharge curve of the unit cell.
  • Fig. 48 is a diagram showing a method of joining the inter-battery connection parts (ring-shaped leads) to the outer surface of the lid of the sealed battery.
  • FIG. 49 is a diagram for explaining a method of manufacturing an assembled battery using the inter-battery connection component (ring-shaped lead) according to the present invention.
  • FIG. 50 is a schematic view of an assembled battery using the inter-battery connection component (a double-structure lead having a V-shaped cross section) according to the present invention.
  • Fig. 51 is a diagram showing a cell-to-cell connection structure using a hook-type connection lead of a conventional assembled battery.
  • FIG. 52 is a diagram showing a discharge curve of a battery pack having 6 cells connected in series.
  • Figure 53 shows the relationship between internal resistance and output density. Explanation of symbols
  • the present inventors have confirmed that the resistance of the lead occupies a large portion of the internal resistance of the sealed battery by analyzing the resistance component of the sealed battery. Therefore, the present inventors have studied to shorten the distance of the lead connecting the lid and the upper current collector plate in order to reduce the welding point resistance of the lead, and as a result, the structure as shown in FIGS.
  • a lead having a shorter welding point distance than the lead, and a first welding step of welding one surface of the lead to the inner surface of the lid; and the upper surface of the upper current collector plate It was found that the lid and the upper current collector can be connected with extremely low resistance by performing the second welding process of welding the other surface of the lead in the welding sequence of ⁇ .
  • the length of the lead (L 1) up to the weld point of the auxiliary lead (30), (44) or main lead (20), (40) on the upper surface of the upper current collector plate (2) is It is preferably 1 to 2.1 times the shortest distance (XI) from the welding point of the lead (20), (40), (44) to the upper surface of the upper current collector (2) on the inner surface of (50).
  • the 1 1 ratio can be increased to 1 to 2.1 times. .
  • the above 1 / X instead of 1 ratio, from the welding point of the lead (40) on the inner surface of the lid (50) to the welding point (2 -1) of the lead in the curved or bent part of the upper current collector plate (2) closest to the welding point Lead length (L 1) and the welding point (2-1) of the auxiliary lead (44) of the lead at the curved or bent part of the upper current collector (2) to the upper current collector (2)
  • the interval (X2) is preferably 1 to 2.1 times.
  • the lid (50) has a curved or bent portion from the flat portion on the inner surface of the lid (50), the lead (50) on the curved or bent portion of the lid (50) 40) to the welding point (2-1) of the lead auxiliary lead (44) on the upper surface of the upper current collector plate (2) closest to the welding point (L-1),
  • the total length of the curved or bent part (L3) of the lid (50) from the weld point of the lead (40) to the flat part of the lid (50) at the curved or bent part of the lid (50) (Fig. 36 It is preferable that the length of the broken line is 12.1 times the distance (X 3) between the flat part of the lid (50) and the upper current collector (2).
  • the upper current collector (2) has a portion curved or bent upward from a flat portion on the upper surface of the upper current collector (2), and the lid (50) is an inner surface of the lid (50). Even in the case of having a bent or bent portion from the flat portion to the lower portion, the internal resistance can be reduced and the output density can be increased by performing the same.
  • a ring-shaped lead (20) as shown in Figs. 1, 7 and 8 after welding one surface of the ring-shaped lead (20) to the inner surface of the lid (50), By welding the other surface of the ring-shaped lead (20) to the upper surface of 2), the distance between the weld point of the lead and the lid and the weld point of the lead and the upper current collector plate can be shortened. Not only can the resistance of the lead be reduced, but also the number of welds between the lead and the lid and the lead and the upper current collector can be increased to reduce the welding resistance between the lid and the upper current collector.
  • the battery The high rate discharge characteristics can be improved.
  • auxiliary lead (30) provided extremely stable connection reproducibility.
  • a ring-shaped main lead (20) and auxiliary lead (30) are used as the lead, and one side of the main lead (20) is welded to the inner surface of the lid (50).
  • the auxiliary lead (30) By welding the other surface of the main lead (20) to the upper surface of the current collector plate (2) via the auxiliary lead (30), the height variation between the lid and the upper current collector plate is absorbed by the auxiliary lead. Reliable welding can be realized.
  • the auxiliary lead (30) and the main lead (20) may be made by welding separately produced ones or may be constituted by integral molding. Further, as shown in FIGS. 11 to 14, as the lead, the frame-shaped portion (41) and the side wall of the double structure downward from the inner periphery (41-1) and outer periphery (41-2) of the frame-shaped portion
  • the lead (50) is provided on the inner surface of the lid (50). After welding the frame (41), weld the end of the double side wall (42) and (43) on the upper surface of the upper current collector (2) or the inner surface of the lid (50). After welding the ends of the double side walls (42) and (43) of the lead to the top, the lead frame (41) is welded to the upper surface of the upper current collector plate (2). Can be easily welded.
  • the double-structured lead has an inverted U-shaped cross section corresponding to the two folded portions and the bottom of the U-shaped frame (41), or FIG. 14 and 14, it is preferable that the cross section of the frame-like portion (41) corresponding to the V-shaped folded portion is an inverted V-shape.
  • the V-shaped or V-shaped lead having a reverse V-shaped cross-section has a weldable width at the V-shaped folded portion, which is the frame-shaped part (41).
  • the width of the frame-shaped part (41) is narrower than that of the double-structured lead having a reverse U-shaped or U-shaped cross section, and the double-structured side wall.
  • the parts (42) and (43) extend vertically downward or upward from the inner periphery (41-1) and outer periphery (41-2) of the frame-shaped part diagonally downward or upward.
  • the cross-section that extends toward the lead is different from the reverse U-shaped or U-shaped double structure lead.
  • a structure in which a plurality of projecting auxiliary lead portions (44) are formed at the end portions of the double-structure side wall portions (42) and (43) of the main lead portion is used as the lead.
  • the end of the double-structure side wall (42) and (43) of the main lead portion is welded to the upper surface of the upper current collector plate (2) via the auxiliary lead portion (44). It absorbs the variation in height of the electric plate and realizes reliable welding with low resistance.
  • a continuous flat plate-shaped (ring-shaped) auxiliary lead portion can also be used.
  • the shape of the lead frame (41) can be round, oval, or polygonal on the inner circumference (41-1) and outer circumference (41-12). From the standpoint of ease of installation, the inner circumference (41-1) and outer circumference (41-2) are preferably substantially circular as shown in FIGS.
  • a plurality of, for example, eight parts are provided with a frame structure (41) of the double-structured lead and side walls (42) and (43) of the double-structured, spaced in the circumferential direction.
  • dividing into (45) and forming the divided frame-shaped part (46) and the divided double-structure side wall parts (47), (48) the reactive current due to welding in the series can be reduced. Therefore, welding of the divided frame-like portion (46) can be made reliable and low resistance.
  • the number of parts to be divided is not limited, but it can be divided into 4 to 10 parts.
  • the double side wall (42), (43) (47), (48) may be obtained by dividing (eight in the example shown) by slitting in the vertical direction from the lower end with an interval in the direction.
  • the side walls (42) and (43) of the double structure of the lead (40) are spaced from each other in the circumferential direction with slits (42-1), (43-1) Or, as shown in Figs. 22 and 23, slits (44-1) are inserted into the continuous flat plate (ring-shaped) auxiliary leads (44) at intervals in the circumferential direction. Even if the height of the pole group varies and the height between the inner surface of the lid and the upper surface of the upper current collector plate varies, the variation in height can be absorbed as shown in Figs. 26 to 29. Can be.
  • slits (42-1) and (43-1) instead of completely separating the double side wall (42), (43) from the lower end to the upper end, slits (42— ;!), (43-1) are provided halfway. You may make it partly divide a part of side wall part (42) of a heavy structure (42).
  • the side wall portions (42) and (43) of the double structure of the main lead are formed into a bellows-like shape (the cross section is corrugated). It is possible to absorb the variation in thickness.
  • the projecting piece (44) bends and the part other than the protrusion (44 a) is the upper collector plate.
  • the side wall (42), (43) of the double lead structure is divided in the circumferential direction to prevent this (47), (4 8)
  • a plurality of protrusions (41 a) are formed on the frame-shaped portion (41), which is the welded surface of the lead, and a plurality of projecting piece-shaped auxiliary lead portions (44) and a divided frame-shaped portion (46)
  • the welding of the lead can be projection welding, and it must be reliable and have low resistance. Can do.
  • a ring-shaped lead (main lead) which is an example of the lead used in the present invention will be described with reference to FIG.
  • (a) is a ring-shaped lead (20), and Ni or FeN i (nickel-plated steel plate) (c) with a thickness of 0.4 to 1.0 mm is bent into a ring shape. It is a thing.
  • a nickel plate with a thickness of 0.7 mm is punched or wire-cut and then bent into a ring shape with a diameter of about 19 mm and a length of about 2.7 mm.
  • (b) is a side view
  • (d) is an enlarged view of the chain double-dashed line part of Fig. (c).
  • the ring is bent into a substantially circular ring shape, but the shape of the ring is not necessarily circular, and may be other shapes such as an ellipse or a polygon.
  • Fig. 7 there is a cut a-1 in the circular ring, but this cut is because the plate-shaped material was processed into a circle, and the cut does not necessarily exist. Also good.
  • FIG. 8 is a perspective view of the ring-shaped lead of FIG.
  • the ring-shaped lead shown in FIGS. 7 and 8 has a plurality of protrusions (2 0 a, 2 0 b) formed on the upper and lower parts, respectively.
  • the plurality of protrusions are formed in different shapes or the same shape in the upper and lower portions of the ring-shaped lead. (In the examples of Figs. 7 and 8, the long protrusion is about 2.0 mm and the short protrusion is about 0.5 mm)
  • the length of the upper protrusion is preferably 0.5 mm or more, and the length of the lower protrusion is preferably 1.5 mm to 2.5 mm.
  • the height difference is absorbed by the auxiliary lead portion described later, and therefore the lengths of the upper and lower protrusions are not necessarily different.
  • the number of protrusions formed on the ring-shaped leads in Figs. 7 and 8 is different at the top and bottom. (In the example shown in the figure, four protrusions are formed at the top and eight protrusions at the bottom.)
  • the number of upper protrusions is preferably 8 or more, and the number of lower protrusions is preferably smaller than the number of upper protrusions.
  • the number of protrusions formed on the ring-shaped leads in Figs. 7 and 8 is different between the upper and lower parts, but the number of protrusions on the upper and lower parts is the same, and the area of the protrusions is different. May be.
  • the reason why the number of protrusions (or total area of protrusions) formed on the ring-shaped lead is different between the upper part and the lower part is that when the ring-shaped lead is welded to the lid and the current collector plate In the present invention, first, the surface having a large number of protrusions of the ring-shaped lead is welded to the flange portion.
  • the ring-shaped lead can be firmly welded, and the other surface of the ring-shaped lead (the surface having a small number of protrusions) is connected to the current collector plate.
  • the other surface of the ring-shaped lead (the surface having a small number of protrusions) is connected to the current collector plate.
  • the breaking current of the previously welded part means that the current is passed through the previously welded parts under the conditions (time and current value) in which current is passed later, and the time is the same.
  • the current value when the resistance increases before and after the test energization of the welded part increases by 10% or more.
  • auxiliary lead that is a second element of the ring-shaped lead (main lead) used in the present invention will be described with reference to FIG.
  • FIG. 9 shows auxiliary leads used in the present invention, where (a) is a plan view and (b) is a side view.
  • the auxiliary lead (30) is made by punching out Ni or FeNi (nickel-mesh steel plate) with a thickness of 2 to 0.4 mm into a donut shape, and the inside of the auxiliary lead (30) is hollow.
  • Ni or FeNi nickel-mesh steel plate
  • a projecting piece (30-2) is formed in the lower part to provide elasticity (spring action).
  • a protrusion (30-1) is formed on the tip of each piece.
  • FIG. 10 shows an enlarged cross-sectional view of the part surrounded by the two-dot chain line in Fig. 9)
  • a cross section having a frame-shaped portion and a double-structured side wall portion extending downward from the inner periphery and outer periphery of the frame-shaped portion is inverted V-shaped or inverted.
  • the U-shaped double-structured ring-shaped lead is explained using Figs. 11 and 12—reverse U, and FIGS. 13 and 14—reverse V.
  • Fig. 1 1 and 12 In reverse U, Fig. 13 and 14 _ reverse V, (41), (42) and (43) are the main lead parts with a thickness of 2 to 0.4 mm Ni or Fe N i (nickel plated steel plate) is punched into a ring shape and pressed.
  • Ni or Fe N i nickel plated steel plate
  • a 0.3 mm thick nickel plate is punched or processed by wire cutting, leaving the ring-shaped frame (41) and the inner circumference (41-1) of the frame (41).
  • the outer wall (41-2) is drawn or pressed and bent downwards to form double side walls (42) and (43), with a center diameter of about 19mm and height Is about 2.7 mm.
  • the frame-shaped part (41) here means a V-shaped folded part surrounded by two main lead parts (42) and (43) with an inverted V-shaped section, or an inverted U-shaped section.
  • the two main lead parts (42) and (43) are the two folded parts and the bottom of the U-shape.
  • the inner circumference (41-1) and outer circumference (41-12) are pressed into a ring shape with a substantially circular double structure, but it is not always necessary to have a circular shape.
  • Other shapes such as a polygon may be used.
  • the side wall portions (42) and (43) of the ring-shaped double structure have no slits, but in order to reduce the reactive current of welding, (42) and (43) As shown in Fig. 4, slits (42-1) and (43-1) may be inserted to divide in the circumferential direction.
  • the auxiliary lead (44) is formed by pressing from Ni or Fe Ni (nickel plated steel plate) with a thickness of 0.2 to 0.4mm punched into a ring as described above.
  • press work is performed except for the ring-shaped frame-like part (41) and the part that becomes a plurality of protruding piece-like auxiliary lead parts (44). do it.
  • a plurality of protrusions (41a) are formed on the welding surface of the frame-like portion (41) of the main lead portion (double-structure ring-like lead) of FIGS.
  • the protrusion (41a) is preferably a 3 ⁇ 4 diameter of 0.5 to 1.0 mm and a height of 0.5 mm or more in order to improve projection welding. It is preferable because it becomes smaller.
  • the welding surface of the auxiliary lead portion (44) not only absorbs the height variation by the auxiliary lead portion described above, but also has a diameter of 0 as in the projection (41 a> of the frame-like portion (41).
  • Forming protrusions (44 a) with a height of 5 to 1.0 mm and a height of 0.5 mm or more is preferable for good projection welding, and the number is 8 points or more because the weld resistance becomes small. Is preferred.
  • the number of protrusions (41a) formed on the welded surface of the frame-like part (41) of the main lead part and the protrusions formed on the welded surface of the auxiliary lead part (44) ( The number of 4 4 a) is different (8 in the frame part and 16 in the auxiliary lead part).
  • the number of protrusions C4 1 a) of the frame-like part (4 1) of the main lead part is preferably 4 or more in order to ensure strength, and 8 or more in order to reduce the resistance of the welded part. More preferably, the protrusions (4 4) of the auxiliary lead portions (4 4) formed at the end portions of the side wall portions (4 2) and (4 3) of the double structure extending from the frame-like portion (4 1)
  • the number of a) is twice that.
  • the number of protrusions is different between the frame-shaped part (4 1) and the auxiliary lead part (4 4), but when the frame-shaped part (4 1) with a small number of points is attached in advance,
  • the welded part of the projection (4 1 a) of the frame-shaped part (4 1) has a larger welding area than the welded part of the projection (4 4 a) of the auxiliary lead part (4 4). It is more preferable to set the breaking current to be larger than the welding current of the protrusion of the auxiliary lead portion, since it is possible to prevent breakage of the welded portion of the frame-shaped portion when welding the protrusion of the auxiliary lead portion.
  • the reason why the total area of the welded portion of the protrusion is different between the frame-like portion of the main lead portion and the auxiliary lead portion is that when the lead is welded to the lid and the upper current collector plate, In this case, the frame-shaped portion can be firmly welded by welding the surface where the projections of the frame-shaped portion are large, and then the surface of the auxiliary lead portion is welded to the upper current collector plate. This is because when an electric current is applied, the welding current does not flow through the previously welded portion, so that no fracture occurs.
  • the breaking current of the previously welded part means that the current flows through the parts that were previously welded under the conditions (time and current value) in which current is passed later, and the current is assumed to be the same time.
  • the present invention uses the main lead portion and the auxiliary lead portion for welding the upper current collecting plate and the lid, and has a feature in the welding procedure and configuration.
  • the procedure and configuration described below are preferable because welding can be reliably performed and electric resistance can be reduced.
  • the upper current collector was joined so that the current collector was located on the open end side of the battery case.
  • a lid is placed on the electrode group so that the auxiliary lead part contacts the upper current collector, and the battery case is hermetically sealed.
  • the auxiliary lead of the lead that has been welded to the lid is welded to the upper surface of the upper current collector plate by passing a current for welding between the positive and negative terminals of the sealed battery. (Second welding process)
  • the lead consists of a ring-shaped main lead and an auxiliary lead
  • the auxiliary lead is attached to the other side of the main lead. It is preferable to perform a second welding step of welding the auxiliary lead welded to the main lead welded to the lid on the upper surface of the upper current collector plate.
  • FIG. 10 the portion where the current collector plate (2) and the lid (50) are welded via the ring-shaped main lead (20) and the auxiliary lead (30) is shown in an enlarged manner.
  • FIG. 10 show that when the height of the pole group is high (a), when the height of the pole group is standard (b), and the height of the pole group is low In case (c), the height of the current collector plate 2 is shifted.
  • the positional deviation in the height direction between the current collector plate (2) and the lid (50) is absorbed by the spring elasticity of the projecting piece (30-2) formed on the auxiliary lead (30). I can understand.
  • the current collector plate is thinner than the lid.
  • the welding heat does not easily escape to the surroundings and welding is easy. Since the flow rate can be reduced and the energization time can be shortened, when the auxiliary lead is welded to the current collector plate, the first welded portion is firmly welded, so that breakage can be prevented.
  • the main lead portion (40) and the auxiliary lead are mounted with a lid (50) on which the main lead portion (40) having a reverse U-shaped cross section is welded in advance.
  • a lid (50) on which the main lead portion (40) having a reverse U-shaped cross section is welded in advance.
  • Figures 26-28 show the case where the height of the pole group is high (Figure 28), the case where the height of the pole group is standard ( Figure 26), and the case where the height of the pole group is low (Figure 27). This shows that the height of the upper current collector (2) is shifted.
  • the spring elasticity of the protrusion (44) of the auxiliary lead part absorbs the deviation of the height of the pole group and ensures welding.
  • Fig. 29 using the inverted U-shaped main lead (40) with slits shown in Fig. 19, the height variation is due to the opening of the main lead (40) and the bending of the auxiliary lead (44). It shows the case of absorption.
  • the large displacement in the height direction between the upper current collector (2) and the lid (50) is absorbed by the slit of the main lead part (40) and the protruding piece (44) of the auxiliary lead part. I understand that. .
  • the lid and the lead are welded in advance, injected, sealed, and sealed.
  • the welding current flows through the battery only during the second welding, and it is possible to use the main lead portion and the auxiliary lead portion configured as shown in FIGS. 9 to 29. Therefore, it is preferable because a sealed battery having a current collecting structure with extremely low resistance can be realized.
  • each component contact in the current path is preferably metallic nickel.
  • the surface of the positive electrode current collector plate may be oxidized by the positive electrode potential, so welding is not stable. It is preferable to be after the injection and before the initial charge accompanied by the potential fluctuation of the positive electrode.
  • FIG. 30 shows an assembly diagram of a sealed battery in which a ring-shaped main lead is welded via an auxiliary lead according to an embodiment of the present invention.
  • FIG. 30 is a cross-sectional view showing an example of the structure of the lid (50), and a cap (80) is covered with a safety valve rubber (valve element) (90) on the center upper part of the element lid. It has been.
  • (b) shows a state in which the ring terminal (main lead) (20) is pre-welded to the lid (50).
  • (C) shows a state in which the auxiliary lead (30) is pre-welded to the ring terminal (20) to the lid portion (50) of (b).
  • (d) shows a state in which the ring terminal (20) welded to the lid (50) of (c) is welded to the upper current collector plate (2) through the auxiliary lead (30).
  • FIG. 31 shows an assembly diagram of a sealed battery in which a main lead portion having a double U-shaped cross section is welded via an auxiliary lead portion according to an embodiment of the present invention.
  • FIG. 31 (a) is the same as FIG.
  • (b) shows a state in which a lead (40) having an inverted U-shaped double structure is pre-welded to the lid (50).
  • (C) shows a state in which the auxiliary lead portion (4 4) of (b) has a spring angle because it absorbs the pole group height.
  • (d) is a reverse U-shaped double-structured lead (40) welded to the lid (50) of (c) and the upper current collector plate (44) via the auxiliary lead portion (44). 2) shows the welded state.
  • the welding point of the ring terminal (main lead) (2 0) and the inverted U-shaped double structure lead (4 0) on the inner surface of the lid (50) is the cap (80). It is preferable that it exists in the range outside the position (5 1) of the inner surface of the lid corresponding to the end portion of). Then, when the current extraction contact point to the outside of the battery is in the range outside the end of the cap on the upper surface of the lid, the current flow path is shortened, so that the internal resistance is lowered and the output density is also increased.
  • the current collector plate and the lead when the current collector plate and the lead are welded, it is preferable to apply a large current between the positive and negative electrodes, although it is an alternating current pulse for a very short time. Since the energized electricity is stored in the electric double layer of the positive electrode plate and the negative electrode plate, the electrolytic solution can be prevented from being decomposed by electrolysis. If the electric double layer capacity is large, the amount of electric current that can be passed and the amount of electricity can be increased without damaging the battery.
  • the electric double layer capacity of the positive and negative plates is considered to be closely related to the discharge capacity of the electrode plate, the magnitude of the current value to be applied and the amount of current that flows in one direction with a single current (the current value is If it is fixed, it can be replaced with the energization time). It is considered preferable to set an appropriate value in relation to the capacity of the electrode plate.
  • the current collector plate and the current collector are not damaged even when energized between the positive and negative electrodes. The lead is welded and bonded well.
  • the amount of energized electricity is 0.4 k AZA h or higher, excellent low-resistance welding is possible, but when the amount of energized electricity is greater than 0.8 k AZA h, the weld contact is repelled and reversed. Therefore, the amount of energized electricity is preferably 0.4 to 0.8 k AZA h.
  • the energization time of the charge pulse and the energization time of the discharge pulse are 3 msec or more, excellent low resistance welding is possible, but if the energization time becomes longer than 7 msec, the weld contact will pop off,
  • the contact time is preferably 3 to 7 msec because the contact is heated to form an oxide film or, on the contrary, the resistance increases.
  • the energization current and energization time of one pulse can be shortened by conducting energization of AC pulse multiple times with charging and discharging as one set and charging and discharging as one set. If the energization exceeds 6 times, the polarization in the battery will accumulate on the charge side and the discharge side, or gas generation will increase and the sealed state cannot be maintained. preferable.
  • connection leads are the same ring-shaped leads 1 1 0 as the leads connecting the lid and the upper current collector plate, and double-structured leads 1 1 0 'Can be used, but different connection leads may be used.
  • the amount of energization is preferably 0.4 to 0.8 kA / A h
  • the energization time is preferably 3 to 7 msec
  • one set of charging and discharging It is preferable to carry out the AC pulse energization 2 to 6 times.
  • the discharge capacities of the positive electrode and negative electrode of the battery are not necessarily equal, and alkaline discharge batteries such as nickel-metal hydride storage batteries and nickel-powered battery batteries have a smaller positive electrode discharge capacity than the negative electrode.
  • the magnitude of the energization current per unit discharge capacity is set based on the discharge capacity of the positive electrode having a small discharge capacity.
  • the magnitude of the energizing current is not always constant over time.
  • the magnitude of the energizing current here is the average value of the energizing current value with respect to the energizing time.
  • the electric double layer capacity of the negative electrode plate tends to be smaller than that of the positive electrode plate because the specific surface area of the hydrogen storage alloy powder constituting the negative electrode is small. For this reason, the hydrogen storage alloy powder is immersed in a weakly acidic aqueous solution, such as a high-temperature aqueous solution of NaOH or sodium acetate, before the battery is incorporated into the battery, thereby increasing the electric double layer capacity of the negative electrode plate. It is preferable.
  • the electric double layer capacity here refers to the electric capacity that can be charged within the range where the battery decomposes the electrolyte and generates gas, and the pressure inside the battery does not exceed the valve opening pressure of the battery.
  • double layer capacity of the negative electrode plate it includes the electric capacity associated with the charge / discharge reaction of the battery and the electric capacity due to the gas generation reaction.
  • the sealed storage battery according to the present invention has a low internal resistance, and can improve adaptability to rapid charging. Therefore, it is preferable to consider so that the positive electrode and the negative electrode also have a high charge acceptance property.
  • the nickel electrode of the positive electrode is a mixture of nickel hydroxide, zinc hydroxide, and cobalt hydroxide.
  • nickel hydroxide, zinc hydroxide, and cobalt hydroxide are co-precipitated.
  • the main component is nickel hydroxide obtained by The composite hydroxide is preferable.
  • Addition of a rare earth element such as Y, Er, Yb or a compound thereof to the nickel electrode increases the oxygen overvoltage of the nickel electrode for rapid charging. It is preferable to have a configuration that suppresses the generation of oxygen at the nickel dragon pole.
  • Ammonium complex was formed by adding ammonium sulfate and aqueous caustic soda to an aqueous solution in which nickel sulfate, zinc sulfate and cobalt sulfate were dissolved at a predetermined ratio.
  • Caustic soda is further added dropwise with vigorous stirring of the reaction system, and the pH of the reaction system is controlled to 11 to 12 to form spherical high-density nickel hydroxide particles that form the core layer base material.
  • Cobalt oxide was synthesized to have a ratio of 88.45: 5.12: 1.1.1.
  • the high-density nickel hydroxide particles were put into an alkaline aqueous solution controlled at pH HI 0-13 with caustic soda. While stirring the solution, an aqueous solution containing cobalt sulfate and ammonia having a predetermined concentration was dropped. During this time, an aqueous solution of caustic soda was appropriately added dropwise to maintain the reaction bath pH in the range of 11-12. The pH was maintained in the range of 11 to 12 for about 1 hour, and a surface layer made of mixed hydroxide containing Co was formed on the surface of the nickel hydroxide particles. The ratio of the surface layer of the mixed hydroxide to the core layer mother particles (hereinafter simply referred to as the core layer) was 0.0%.
  • CMC solute 99.5: 0.5 paste, 450 g / m 2 of paste
  • nickel porous body (Sumitomo Electric Co., Ltd. nickel cermet # 8). Then, after drying at 80 ° C, it is pressed to a predetermined thickness, and polytetrafluoroethylene coating is applied to the surface, width 47.5 mm (including uncoated part 1 mm), length 1 150 mm capacity A nickel positive electrode plate of 6500 mAh (6.5 Ah) was used.
  • the resulting alloy and styrene-butadiene copolymer were mixed at a solid weight ratio of 99.35: 0.65, dispersed with water to form a paste-like shape, and a nickel coat was applied to the iron using a blade coater. After being applied to the punched steel sheet, it was dried at 80 ° C, and then pressed to a predetermined thickness.
  • the negative electrode plate and a 120 im thick non-woven polypropylene fabric separator and the positive electrode plate were combined and wound into a roll to form an electrode plate group.
  • It is made of a steel plate having a nickel plating as shown in FIG. 32 on the end face of the positive electrode substrate projected from one winding end face of the electrode group
  • 0.4 mm with a circular through hole in the center
  • Current collector plate (2) was joined by resistance welding.
  • a 0.4 mm thick disc-shaped lower current collector plate (negative electrode current collector plate) made of a steel plate with nickel plating on the end surface of the negative electrode substrate projecting from the other end surface of the wound electrode plate group ) Were joined by resistance welding.
  • a bottomed cylindrical battery case made of nickel-plated steel plate is prepared, and the electrode plate group to which the current collector plate is attached, the positive electrode current collector plate is the open end side of the battery case can, and the negative electrode current collector plate is the current collector.
  • the battery was accommodated in the battery case so as to be in contact with the bottom of the tank, and the central portion of the negative electrode current collector plate was joined to the bottom wall surface of the battery case by resistance welding.
  • a predetermined amount of an electrolytic solution composed of an aqueous solution containing 6.8N KOH and 0.8N LiOH was injected.
  • this is a nickel plate with a thickness of 0.6 mm, and has 10 protrusions with a width of 2.5 mm, a length of 66 mm, and a height of 0.5 mm on one of the long sides. 7 and 8, there are 8 protrusions 20b, but this is 10).)
  • a plate with 4 protrusions with a height of 2mm on the other long side is formed into a ring shape with an inner diameter of 20mm.
  • a rounded main lead (20) was prepared.
  • auxiliary lead (30) having 16 protrusions (30-1) as shown in Fig. 9 which becomes the welding point (2-1) with the positive current collector (2) as shown in Fig. 33 It was attached to a ring-shaped main lead and welded as shown in Fig. 30 (c).
  • a valve disc (90) rubber valve
  • a cap (80) positive terminal
  • a ring-shaped gasket was attached to the lid so as to squeeze the periphery of the lid.
  • the open end of (60) was crimped and hermetically sealed, and then compressed to adjust the total height of the battery. Note that the height between the cover and the positive terminal after adjusting the total height of the battery The angle of the projecting piece was adjusted so that a pressing force of 200 gf per contact surface between the projection and the positive electrode current collector plate was applied.
  • the lid radius is 14.5 mm
  • the cap radius is 6.5 mm
  • the gasket caulking radius is 12.5 mm
  • the inner radius of the inner surface of the main lead is 10 mm
  • the positive lead current collector plate of the auxiliary lead Welding points (protrusions) 1 The distance from 6 points to the inner surface of the main lead is set to 1 mm.
  • the welding output terminal of the resistance welding machine is brought into contact with the bottom surface (negative electrode terminal) of the cap (80) (positive terminal) and battery case (60), and the same current value is applied in the charging direction and discharging direction.
  • the energization conditions were set so as to be time. Specifically, the current value is the capacity of the positive electrode plate.
  • the sealed battery is left for 12 hours at an ambient temperature of 25 ° C, then charged with 120 mA at 1 30 mA (0.02 I t A), and then 6 5 OmA (0. II t A). ) For 10 hours, then 1 3 0 0 mA (0.2 It A) and the cut voltage 1 V Discharged until. Furthermore, after charging for 16 hours at 650 mA (0 '. 1 I t ⁇ ), it is discharged to 130 mV (0.2 It A) at a cut voltage of 1. OV. Went. After the end of the fourth cycle discharge, the internal resistance was measured using a 1 kHz alternating current.
  • the measurement method for the output density is 10 seconds when a battery is used for 12 hours at 60 A after charging at 65 OmA (0.1 I t A) for 5 hours in a 25 ° C atmosphere using a single battery.
  • the voltage is the 10th voltage at 6 OA discharge, the electric capacity of the discharge is charged at 6 A, and then the 10th voltage when flowing at 9 OA for 12 seconds is the 10th voltage at 9 OA discharge,
  • the voltage at 10 seconds when flowing at 120 A for 12 seconds is set to the voltage at 10 seconds when discharging at 12 OA, and the electrical capacity for discharge is charged at 6 A
  • the 10th second voltage when flowing at 15 OA for 12 seconds is the 10th second voltage when discharging at 150 A, and the electric capacity of the discharge is charged at 6 A and then 10 seconds when flowing at 180 A for 12 seconds
  • the voltage was set to the voltage at 10 seconds during 18 OA discharge.
  • the current value and the voltage value were linearly approximated by the method of least squares.
  • the voltage value at the current value OA was E0 and the slope was RDC. afterwards,
  • Output density (W / kg) (E 0-0.8) + RDCX 0.8 ⁇ Battery weight (kg) was applied to the output density of 25 batteries at 0.8 V cut.
  • the second welding process, which is welded via, is replaced with a positive current collector plate by resistance welding.
  • Example 2 Instead of the ring-shaped lead of Example 1, from the inner periphery (41-1) and outer periphery (41_2) of the frame-shaped part (41) and the frame-shaped part (41) as shown in Figs. In the same manner as in Example 1 except that a double-structured lead (40) having a reverse U-shaped cross section having a double-structured side wall (42) and (43) extending downward is used. A sealed battery as shown in Fig. 3 was obtained. The thickness of the thinnest part, excluding the protrusion (41a), which is the weld point formed by pressing, is 0.25 mm, the average thickness is 0.3 mm, and the thickest part is 0.35 mm.
  • the welding point of the lid (50) and the frame part (41) of the welded main lead part is 8 points (8 protrusions (41a) as the welding point as shown in Fig. 11), upper part
  • the welding point (2_1) between the current collector plate (positive current collector plate) (2) and the auxiliary lead part (44) is 16 points (the projection (44a) as the welding point is Fig. 12). 16) as shown in the figure.
  • the center diameter of the frame (41) was 19 mm, and the width of the frame (41) was 1.8 mm.
  • Example 2 the cross section of the U-shaped double-structured lead is inverted, and the inner periphery (41-1) and the frame-shaped portion (41) and the frame-shaped portion (41) Using a double-structured lead having a U-shaped cross section having a double-structured side wall (42) and (43) extending upward from the outer periphery (41-2), the frame-shaped part of the U-shaped lead (41) welding point (4 la) is welded to the upper current collector plate (positive electrode current collector plate) (2) by resistance welding, and the protrusion of the protruding piece (44) that becomes the auxiliary lead part (44) of the U-shaped lead 44 a)
  • the electrode group in which the positive electrode current collector plate (2) to which the U-shaped lead is attached is accommodated in the battery case so that is located on the open end side of the battery case (60).
  • a sealed battery as shown in FIG. 4 was obtained in the same manner as in Example 1 except that the second welding process was performed.
  • the thickness of the thinnest part, excluding the protrusion (41a), which is the weld formed by pressing, is 0.25 mm, the average thickness is 0.3 mm, and the thickest part is 0.35 mm.
  • the welding point of the positive electrode current collector plate (2) and the frame-like part (41) of the main lead part welded was 8 points (the number of protrusions (41a) serving as the welding point was 8 as shown in Fig. 11).
  • the frame-shaped part (41) and the frame-shaped part (41) as shown in Figs. 13 and 14 are moved downward from the inner periphery (41-1) and outer periphery (41-2).
  • a double-structured lead (40) having a reverse V-shaped cross section having a double-structured side wall (42) and (43) extending toward the A sealed battery as shown in Fig. 5 was obtained.
  • the thickness of the thinnest part, excluding the protrusion (41a), which becomes the weld formed by pressing, is 0.25mm, the average thickness is 0.3mm, and the thickest part is 0.35mm.
  • the welding point of the lid (50) and the frame-like part (41) of the main lead part welded is 8 points (8 protrusions (41a) as welding points as shown in FIG. 13), upper part
  • the welding point (2-1) between the current collector plate (positive current collector plate) (2) and the auxiliary lead part (44) is 16 points (the projection (44 a ') serving as the welding point is 16 as shown in Fig. 14) I got it.
  • the center diameter of the frame-shaped part (41) was 19 mm, and the width of the frame-shaped part (41) was lmm.
  • Example 3 The cross section of Example 3 (Figs. 13 and 14) is inverted, and the double V-shaped lead is inverted, so that the inner circumference (41-1) and outer circumference of the frame (41) and frame (41) (41-2)
  • a double-structured lead having a V-shaped cross section having a double-structured side wall portion (42) and (43) extending upward from the frame the frame-shaped portion of the V-shaped lead
  • the first welding process for welding the welding point (41a) of (41) is welded to the upper current collector plate (positive electrode current collector plate) (2) by resistance welding, and the auxiliary lead part of the V-shaped lead (44 )
  • the positive current collector plate (2) to which the V-shaped lead (40) was attached was joined so that the projecting piece and the projection (4 4 a) located on the open end side of the battery case (60) Place the electrode group in the battery case (60), inject the electrolyte, and cover the projection so that the protrusion (44a) on the auxiliary lead (44) contacts the inner surface of
  • the battery case (60) is sealed, and then the sealed battery Other than performing the second welding process of welding the auxiliary lead part (44) of the V-shaped 'lead to the inner surface of the lid (50) by passing a current for welding between both positive and negative terminals of Was similar to Example 1 to obtain a sealed battery as shown in FIG.
  • the thickness of the thinnest part, excluding the protrusion (41a), which is the weld formed by pressing, is 0.25mm, the average thickness is 0.3mm, and the thickest part is 0.35mm.
  • there were 8 welding points on the positive electrode current collector plate (2) and the welded frame (41) of the main lead part (8 protrusions (41 a) as welding points as shown in Fig. 13).
  • the number of welding points between the lid (50) and the auxiliary lead part (44) was 16 (16 protrusions (44a) as welding points as shown in Fig. 14).
  • Example 2 (Figs. 11 and 12) is a U-shaped double-structured lead with the cross-section reversed, and the inner circumference (41-1) and outer circumference of the frame-shaped part (41) and frame-shaped part (41) (41 one 2)
  • a double-structured lead having a U-shaped cross section having double-structured side wall portions (42) and (43) extending upward from the A process of attaching the protrusion (44a) of the groove portion (44) by spot welding to the inner surface of the lid (50) and mounting the lid (50) on the lid (50) is performed as a second step.
  • the open end of the positive electrode current collector plate (2) was caulked and hermetically sealed, and then the frame portion (41) was welded to the upper surface of the positive electrode current collector plate (2).
  • a sealed battery as shown in Fig. 4 was obtained
  • the welding point of the auxiliary lead part (44) welded to the lid (50) was 16 points (16 protrusions (44a) as the weld contact as shown in Fig. 12), positive current collector plate (2 ) And the frame-like part (41) of the main lead part were 8 points (8 protrusions (41a) as welding points as shown in Fig. 11).
  • the sealed batteries obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were formed under the same conditions as in Example 1 described above, and the internal resistance and output density were measured. The measurement results of internal resistance and output density are shown in Table 1 together with the measurement results of Example 1. table 1
  • the upper current collector plate is placed so that the first welding process of welding one surface of the lead to the inner surface of the lid and the upper current collector plate are located on the open end side of the battery case.
  • the joined electrode group is accommodated in the battery case, an electrolytic solution is injected, the lid is placed so that the other surface of the lead contacts the upper surface of the upper current collector plate, and the battery case is mounted.
  • the sealed batteries that were used in the welding sequence were found to have a high output with an internal resistance as low as ⁇ or less and a power density of 1440 OW / kg or more.
  • the main lead portion may have either a single ring structure or a multiple ring structure, and if it is a single ring structure, 0.4 to 0.8 mm Is preferable.
  • the same resistance can be obtained with a thickness of one half of the multiple ring structure compared to a single ring structure. If the thickness is 4 mm and the thickness is 0.3 mm or less, the lead of the multiple ring structure can be formed by press molding, which is more preferable because it is inexpensive.
  • the thickness of the auxiliary lead is greater than 0.4 mm, welding heat is insufficient and welding defects are likely to occur. However, if the thickness is 0.4 mm or less, reliable welding is possible, so 0.4 mm or less is preferable. .
  • the thickness of the main lead and the auxiliary lead can be made the same.
  • the main lead and auxiliary lead can be formed from a single plate by press molding. It is cheaper and more preferable.
  • Example 4 When the inverted U-shaped lead is mounted reversely as in Example 4, the same low resistance as that of the inverted U-shaped lead can be obtained, but the auxiliary lead is formed by the diffusion of heat to the thick lid. As a result, welding of the protrusions of the terminal portions was not reliable, and 30% of the products with high resistance below 140 OWZKg were generated.
  • the end of the side wall portion of the double structure of the inverted U-shaped lead is the upper current collector plate. It is preferable that the upper U-shaped lead is welded to the upper surface and the frame portion of the inverted U-shaped lead is welded to the inner surface of the lid.
  • the welding conditions of the second process of Example 1 are as follows: the current value in the discharge direction is 0.6 kAZAh (3.9 kA) per 1 Ah capacity (6.5 Ah) lAh, and the energization time is 4.5 ms ec. It was set so that it could be energized for 4 cycles, and a DC pulse consisting of a rectangular wave was energized.
  • the welding process of the second process is performed by supplying an AC pulse with an external power source. (Example 6)
  • this lead was divided as shown in FIGS. 15 to 18 and used as a lead (45) consisting of 8 parts.
  • a sealed battery was obtained in the same manner as in Example 1.
  • Example 2 The lead that welds the inner surface of the lid (50) and the upper surface of the positive electrode current collector plate (2) in Example 2 is slit into an inverted U-shaped lead (40) as shown in Figs.
  • a sealed battery was obtained in the same manner as in Example 1 except that it was divided into eight in the circumferential direction to form double-walled side walls (47), (48).
  • the lead that welds the inner surface of the lid (50) of Example 2 and the upper surface of the positive electrode current collector plate (2) is a double-structure side wall (42) of an inverted U-shaped lead (40) as shown in FIG.
  • a sealed battery was obtained in the same manner as in Example 1 except that slits (42-1) and (43-1) having a width of 0.25 mm were formed in (43) and divided into eight.
  • the sealed batteries obtained in Examples 6 to 8 were formed under the same conditions as in Example 1 described above, and the internal resistance and output density were measured. Table 2 shows the measurement results of internal resistance and output density.
  • the main lead parts as described above are preferable because there is little loss during press working, and cheaper parts can be made, resulting in lower costs.
  • the ring-shaped main lead is connected to the positive current collector plate (2) through the auxiliary lead (30) with four protrusions (3 0-1) as shown in Fig. 9 to be welded points (2-1).
  • a sealed battery as shown in FIG. 2 was obtained in the same manner as in Example 1 except that welding was performed.
  • the radius of the inner surface of the main lead is 1 Omm, and the distance from the welding point (protrusion) with the upper current collector of the auxiliary lead to the inner surface of the main lead is set to lmm.
  • the inner diameter surrounded by the four protrusions is a radius of 9. mm
  • a sealed battery as shown in FIG. 2 was obtained in the same manner as in Example 1 except that was welded.
  • the radius of the inner surface of the main lead is 1 Omm, and the distance from the weld (protrusion) of the auxiliary lead to the upper current collector and the inner surface of the main lead is set to 2 mm.
  • the inner diameter surrounded by the four protrusions is 8 mm in radius
  • the ring-shaped main lead is connected to the positive current collector plate (2) through the auxiliary lead (30) with four protrusions (30-1) as shown in Fig. 9 to be welded points (2-1).
  • a sealed battery as shown in FIG. 2 was obtained in the same manner as in Example 1 except that welding was performed.
  • the radius of the inner surface of the main lead is 1 Omm, and the distance between the weld (protrusion) of the auxiliary lead and the upper collector plate and the inner surface of the main lead is set to 3 mm.
  • the ring-shaped main lead is connected via the auxiliary lead (30) with four protrusions (30-1) as shown in Fig. 9 to be welded points (2-1) to the positive current collector plate (2).
  • a sealed battery was obtained in the same manner as in Example 1 except that welding was performed.
  • the radius of the inner surface of the main lead is 1 Omm, and the distance between the weld (protrusion) of the auxiliary lead and the upper collector plate and the inner surface of the main lead is set to 4 mm.
  • the sealed batteries of Examples 9 to 11 whose L 1ZX 1 ratio satisfies the scope of the present invention have a low internal resistance of ⁇ or less and a high output density of 140 OWZkg or more. It turns out that.
  • the output density is 140 OWZkg or less even when the variation in battery characteristics caused by errors in battery manufacturing is taken into account. You can clear _h. As in Comparative Example 4, when the L1ZX1 ratio exceeds 2.1, the internal resistance is slightly increased and the output density is also less than 140 OWZkg, which is not preferable.
  • a protrusion with a height of 0.5 mm was placed on one of the long sides.
  • the lid (50) A sealed battery as shown in FIG. 1 was obtained in the same manner as in Example 1 except that the ring-shaped lead (20) was welded to the positive electrode current collector plate (2).
  • Ten protrusions with a height of 0.5 mm of the ring-shaped lead (20) are brought into contact with the inner surface of the lid (50), and the ring-shaped lead (20) is brought into contact with the inner surface of the lid (50) by resistance welding. Combined.
  • a disc (90) and a cap (80) were attached to the outer surface of the lid (50).
  • a ring-shaped gasket was attached to the lid so as to squeeze the periphery of the lid. Place the lid (50) on the pole group (70) so that the 8 mm 2 mm high projections of the ring-shaped lead (20) attached to the lid (50) abut the positive current collector plate (2).
  • the battery case (60) was caulked and hermetically sealed, and then compressed to adjust the total height of the battery. Provided on the lead so that the height between the lid and the positive terminal after adjusting the total height of the battery is such that a pressing force of 200 gf is applied to each contact surface between the protrusion and the positive current collector. The protrusion angle to the outside of the 2 mm high protrusion was adjusted.
  • the welding output terminal of the resistance welding machine is brought into contact with the bottom face (negative electrode terminal) of the cap (80) (positive electrode terminal) and battery case (60), and the same current value is obtained at the same current value in the charging direction and discharging direction.
  • the energization conditions were set as follows. Specifically, the current value is 0.6 kA / Ah (3.9 kA) per lAh of the positive electrode capacity (6.5 Ah), the energization time is 4.5 ms ec in the charge direction, and 4.5 in the discharge direction.
  • the sealed battery was allowed to stand for 12 hours at an ambient temperature of 25 T: 120 OmAh at 130 mA (0.02 It A), and then charged at 65 OmA (0.1 It A) for 10 hours. Discharged to a cut voltage of 1 V at 130 OmA (0.2 0.2 It A). Furthermore, after charging for 16 hours at 650 mA (0.1 It A), it is discharged at 1300 mA (0.2 It A) to a cut voltage of 1.0 V. The battery was charged and discharged for 4 cycles. After the fourth cycle, the internal resistance was measured using lk Hz alternating current.
  • a sealed battery with a structure using the lead-like lead plate (1 2) shown in Fig. 46 was produced.
  • the positive electrode current collector plate and the lead-shaped lead plate connecting the positive electrode current collector plate and the lid are integrated, and the positive electrode current collector plate and the lead plate have a thickness of 0.4 mm. It was made of plate, the width of the lead plate was 7 mm, the length was 25 mm, and the lid and the lead plate were welded at two points by resistance welding.
  • a sealed battery as shown in Fig. 45 having the same configuration as in Example 12 except for the configuration of the positive electrode current collector plate and the lead plate was used. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
  • a punched lead plate as shown in FIG. 40 As a positive electrode current collector / lead plate having a protrusion described in Patent Document 1, a punched lead plate as shown in FIG. 40 was applied.
  • the protrusion and the lead plate were made of a nickel plate having a thickness of 0.4 mm, and the positive electrode current collector plate was punched to form a lead plate having a width of 10 mm and a protrusion height of 3 mm. Otherwise, a sealed battery as shown in FIG. 39 having the same configuration as in Example 12 was used. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
  • Comparative Example 6 Current collector punched lead plate 1. 35 As shown in Table 4, the battery of Example 12 has a lower internal resistance than the battery of Comparative Example 5 and Comparative Example 6. In the case of Comparative Example 5, the positive electrode current collector plate and the lid are connected with a small lead (7 mm) and long (20 mm) ribbon-like lead plate. In the case of Comparative Example 6, compared to Comparative Example 5. The lead plate has a small length (3 mm) but a small width (10 mm). For this reason, Comparative Example 5 and Comparative Example 6 have a drawback in that the electrical resistance of the lead plate connecting the positive electrode current collector plate and the lid is large.
  • the lead has a large width (66 mm) and a small length (2.5 mm), so the electrical resistance of the lead is small.
  • the difference in battery internal resistance between Example 12 and Comparative Example 5 and Comparative Example 6 was caused by the difference in electrical resistance between the positive electrode current collector plate and the lead connecting the lid.
  • Example 12 was too short in width and could not be welded because the contact did not contact in the released state (prior to height adjustment by compression) in the prior art.
  • the battery of Example 12 had a higher discharge voltage and a larger discharge capacity than the battery of Comparative Example 5.
  • the reason why the battery of Example 12 ′ exhibits excellent high rate discharge characteristics is that, as shown in Table 4, the internal resistance of the battery of Example 12 is small.
  • a sealed battery was obtained in the same manner as in Example 12 except that the current value of AC pulse energization was set to 0.4 kAZAh (2.6 kA) and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
  • a sealed battery was obtained in the same manner as in Example 12 except that the current value of AC pulse energization was set to 0.2 kAZAh (1.3 kA) and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
  • Comparative Example 7 and Comparative Example 8 showed higher values of the internal resistance of the battery than the Example.
  • the battery of Comparative Example 7 was disassembled and investigated, the current value of pulse energization was too small. There was a bonding failure.
  • Comparative Example 8 it is confirmed that the current value of the pulse energization is too large, or the weld point is repelled as described above, and the positive electrode current collector plate and the ring-shaped lead are poorly connected. It was done. Although details are omitted, the batteries of Example 13 and Example 14 showed high rate discharge characteristics equivalent to the battery of Example 12, but the batteries of Comparative Example 7 and Comparative Example 8 with large internal resistance were It was confirmed that the high rate discharge characteristics were inferior to those of the examples.
  • a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 3 ms ec and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
  • a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 6 ms ec and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
  • a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 7 ms ec and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
  • Example 12 In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 8 msec and energization was performed.
  • Comparative Example 10 when AC pulse energization was performed, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the cap.
  • Table 6 shows the internal resistance measurement results of the batteries of Examples 15 to 17, Comparative Example 9, and Comparative Example 10 together with Example 12.
  • the batteries of Example 15 to Example 17 exhibited the same internal resistance as the battery of Example 12.
  • Comparative Example 9 and Comparative Example 10 showed a higher value of the internal resistance of the battery than the Example.
  • Comparative Example 9 When the battery of Comparative Example 9 was disassembled, it was found that poor welding was observed at the welded part of the positive electrode current collector plate and the ring-shaped lead, probably because the amount of pulsed electricity was insufficient.
  • Comparative Example 10 it is conceivable that the internal resistance was increased because the amount of electricity supplied by the pulse was excessive or the electrolyte solution was blown out as described above. Although details are omitted, the batteries of Example 15 to Example 17 showed the same high rate discharge characteristics as the battery of Example 12.
  • Comparative Example 9 and Comparative Example 10 having a large internal resistance were used. It was confirmed that this battery was inferior in the high rate discharge characteristics as compared with the example. In addition, in Comparative Example 10 where the electrolyte was blown out during conduction, only the high rate discharge characteristics were compared to the Example. It was also confirmed that the charge / discharge cycle characteristics were inferior to those of the examples.
  • the batteries of Example 18 and Example 19 had the same internal resistance as the battery of Example 12.
  • Comparative Example 1 1 and Comparative Example 1 2 showed a higher value of the internal resistance of the battery than the Example.
  • Comparative Example 1 or 2 it is considered that the internal resistance is increased because the amount of electricity supplied by the pulse is excessive or the electrolyte is blown out as described above.
  • the batteries of Example 18 and Example 19 exhibited high rate discharge characteristics equivalent to the battery of Example 12.
  • Comparative Example 11 with a large internal resistance
  • Comparative Example 12 was inferior not only in the high rate discharge characteristics but also in the charge / discharge cycle characteristics as compared with the Examples.
  • Example 1 Use two sealed batteries of 2 and use the ring-shaped lead (1 1 0) (connection lead) used in Example 1 2 as the connection part between batteries. After temporarily securing the lid of the battery with resistance welding, as shown in Fig. 48, laser welding is performed. Main welding was performed. '
  • connection leads (1 10) so that the 8 protrusions with a height of 2 mm of the connection leads attached to the lid are in contact with the second battery case bottom, Applying a pressing force of 200 gf per contact surface, connect an external power supply to the negative terminal of the first battery and the second negative terminal as shown in Figure 49.
  • the current value of AC pulse energization similar to the welding current of the connection contacts inside the 12 batteries is 0.6 kA / Ah (3.9 kA), the energization time is 4.5 ms ec in the charging direction, and 4. in the discharging direction.
  • the current value of the alternating pulse energization was set to 0.4 kAZAh (2.6 kA), and the assembled battery was Obtained. At this time, it was confirmed that no gas was generated from any of the batteries exceeding the valve opening pressure.
  • the current value of the AC pulse energization was set to 0.8 kAZAh (5.2 kA) and the assembly was performed in the same manner as in Example 20 except that the energization was started. A battery was obtained. At this time, it was confirmed that no gas was generated from any of the batteries exceeding the valve opening pressure.
  • Example 14 Same as Example 20 except that the AC pulse energization was set to 0.2 kA / Ah (1.3 kA) for energization of the AC pulse for welding the battery pack contact point. As a result, an assembled battery was obtained. At this time, it was confirmed that no gas was generated from any of the batteries exceeding the valve opening pressure. (Comparative Example 14) ''
  • the current value of the AC pulse energization is set to 1.
  • O kAZAh (6.5 kA) and the assembly is performed in the same manner as in Example 20 except that the current is applied.
  • a battery was obtained.
  • Comparative Example 14 when AC pulse energization was carried out, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the battery cap. Also, when the battery was disassembled, it was confirmed that the welding points (protrusions) with the positive electrode current collector provided on the ring-shaped lead plate had popped off.
  • Table 8 shows the internal resistance measurement results of the assembled batteries of Example 21, Example 22, Comparative Example 13, and Comparative Example 14 in combination with Example 20.
  • the internal resistance of the assembled battery the resistance between the positive electrode end and the negative electrode end of the assembled battery was measured using an alternating current of 1 kHz.
  • Example 21 and Example 22 showed the same internal resistance of the assembled battery as Example 20.
  • Comparative Example 13 and Comparative Example 14 showed a higher value of the internal resistance of the assembled battery than the Example.
  • the battery of Comparative Example 13 was disassembled, it was found that there was a poor connection at the welded location between the battery case and the ring-shaped lead, probably because the current value of the pulse current was too small.
  • Comparative Example 14 it was confirmed that the current value of the pulse energization was excessive, or that the welding point repelled and the battery case and the ring-shaped lead were poorly bonded as described above. It was.
  • Example 21 and Example 22 showed high rate discharge characteristics equivalent to the assembled battery of Example 20, but Comparative Example 13 with a large internal resistance of the assembled battery was compared. In Example 14, it was confirmed that the high rate discharge characteristics were inferior to those of the Examples. ' From the results shown in Table 8, the magnitude of the current value of pulse energization when welding the battery case and the lead is 0.4 to 0.8 (kA / Ah) per 1 Ah capacity of the positive electrode plate, That is, it was found that a contact point of 0.33 k AZ 1 point to 0.65 k AZ 1 point is good.
  • an assembled battery was obtained in the same manner as in Example 20 except that the energization time of the AC pulse energization was set to 3 ms ec and the energization was performed. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
  • an assembled battery was obtained in the same manner as in Example 20, except that the energization time of the AC pulse energization was set to 6 ms ec. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
  • an assembled battery was obtained in the same manner as in Example 20 except that the energization time of the AC pulse energization was set to 7 ms ec and the energization was performed. At this time, it was confirmed that no gas was generated from any of the ponds over the valve opening pressure.
  • an assembled battery was obtained in the same manner as in Example 20 except that the energization time of the AC pulse energization was set to 2 ms ec and the energization was performed. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
  • Example 16 In the energization of the AC pulse for welding the weld contact of the assembled battery, an assembled battery was obtained in the same manner as in Example 20 except that the energization time of the AC pulse energization was set to 8 msec and the energization was performed. In this comparative example 13, when AC pulse energization was performed, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the cap. Table 9 shows the results of measuring the internal resistance of the assembled batteries of Example 2 3 to Example 25, Comparative Example 15 and Comparative Example 16 together with Example 20.
  • Example 2 3 to Example 25 showed the same internal resistance of the assembled battery as Example 20.
  • Comparative Example 15 and Comparative Example 16 showed a higher value of the internal resistance of the assembled battery than the Example.
  • Comparative Example 15 When the battery of Comparative Example 15 was disassembled and investigated, it was found that there was a lack of pulsed electricity, and it was found that there was poor bonding at the welded place between the battery case and the ring-shaped lead.
  • Comparative Example 16 it is considered that the internal resistance of the assembled battery was increased because the amount of electricity supplied with the pulse was excessive or the electrolyte solution was blown out as described above.
  • the assembled batteries of Example 2 3 to Example 25 exhibited the same high-rate discharge characteristics as the assembled battery of Example 20.
  • Comparative Example 1 having a large internal resistance of the assembled battery 1 5. It was confirmed that Comparative Example 16 was inferior in the high rate discharge characteristics as compared with the Example. Further, in Comparative Example 16 where the electrolyte was blown out during energization, it was confirmed that not only the high-rate discharge characteristics but also the charge / discharge cycle characteristics were inferior to the assembled battery of Example 20. From the results shown in Table 9, it was found that the length of the energization time of pulse energization when welding the battery case and Lee was 3-7 msec.
  • the assembled battery was obtained in the same manner as in Example 20 except that the AC pulse energization was set so that four cycles could be energized. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
  • Example 20 In the energization of the AC pulse for welding the weld contacts of the assembled battery, an assembled battery was obtained in the same manner as in Example 20 except that the AC pulse energization was set so that one cycle energization was possible. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
  • Example 20 In the energization of the AC pulse for welding the weld contacts of the assembled battery, the assembled battery was obtained in the same manner as in Example 20 except that the AC pulse energization was set so that 8-cycle energization was possible.
  • Comparative Example 17 when AC pulse energization was carried out, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the cap.
  • Example 2 Example 2 6, Example 2 7, Comparative Example 1 7, Comparative Example 1 8
  • the results of measuring the internal resistance of the assembled battery are not shown in Table 10.
  • Example 26 and Example 27 showed the same internal resistance of the assembled battery as Example 20.
  • Comparative Example 17 and Comparative Example 18 showed a higher value of the internal resistance of the assembled battery than the Example.
  • Comparative Example 17 and Comparative Example 18 showed a higher value of the internal resistance of the assembled battery than the Example.
  • Comparative Example 18 it is considered that the internal resistance of the assembled battery was increased because the amount of electricity supplied by the pulse was excessive or the electrolyte solution was blown out as described above.
  • the assembled batteries of Example 26 and Example 27 showed high rate discharge characteristics equivalent to the assembled battery of Example 20.
  • Comparative Example 18 were confirmed to be inferior in the high rate discharge characteristics as compared to the Example. Further, in the case of Comparative Example 18 it was confirmed that not only the high rate discharge characteristics but also the charge / discharge cycle characteristics were inferior to the Examples as compared to the Examples.
  • Example 12 In the same manner as in Example 20, the six batteries of Example 12 were connected in series and charged with 6 5 O mA (0.1 I t A) for 16 hours, and then 2 0 0 A (3 0 .8 It was discharged to a force voltage of 4.0 V. 'This voltage change is shown in Fig. 52.
  • a connection method using a hook-type connection lead (1 2 0) was used, and six batteries of Comparative Example 5 were connected in series, and 20 O A discharge was performed. This voltage change is shown in Fig. 52. Using some of the batteries of Examples 1 to 19 and Comparative Examples 5 to 12, the power density at 25 ° C. was measured.
  • Figure 53 shows the results of plotting output density on the vertical axis and internal resistance on the horizontal axis.
  • the sealed battery of the present invention and the assembled battery composed of a plurality of the sealed batteries have low resistance and high output, they are useful as batteries for electric vehicles, power tools, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

A closed battery in which the inner face of a lid (50) closing a jar (60) is connected to the upper face of an upper current collecting plate (2) through leads (40, 44). The closed battery is characterized in that after one face of the lead (40) is welded to the inner face of the lid (50), the other face of the lead (44) is welded to the upper face of the upper current collecting plate (2). Its manufacturing method is characterized in that after one face of a lead (40) is welded to the inner face of a lid (50), a jar (60) is closed, and the other face of the lead (44) is welded to the upper face of an upper current collecting plate (2). By meeting the above specific matter, reliable low-resistance welding between a lid and a lead is made possible, reliable low-resistance welding is made possible through a current smaller than that for welding between a lead and an upper current collecting plate, thereby a closed battery low in resistance and excellent in output characteristic is provided , and further a closed battery low in resistance and excellent in output characteristic is provided even if used for a battery pack.

Description

明細書 密閉形電池及びその製造方法並びに密閉形電池の複数個で構成した組電池及び その製造方法 技術分野  Patent application title: Sealed battery and method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
本発明は、 密閉形電池及びその製造方法並びに密閉形電池の複数個で構成し た組電池及びその製造方法に関し、 特に、 密閉形電池の上部集電板と蓋とを接続 する構造 ·方法、 密閉形電池同士を接続する構造 '·方法の改善に関する。 背景技術  TECHNICAL FIELD The present invention relates to a sealed battery, a manufacturing method thereof, an assembled battery including a plurality of sealed batteries, and a manufacturing method thereof, and in particular, a structure / method for connecting an upper current collector plate and a lid of a sealed battery, Structure for connecting sealed batteries to each other. Background art
一般に、 ニッケル一水素化物電池、 ニッケル一カドミウム電池などのアルカリ 電池は、 発電要素を電池ケース内に収容し、 電 mケースを一方極の端子として構 成される。 例えば図 3 7に一例を示すように、 集電体として、 集電体 1 0 1と集 電リード板 1 0 3を同一厚みで伸長させ、 一体成形したものが提案されている。 このような電池では、 図 3 8に示すように、 正極板 8および負極板 9の間にセ パレー夕 1 0を介在させ、 これらを渦巻状に巻回して形成された発電要素を外装 容器 6としての金属製電池ケースに収納して集電リード板 1 0 3を封口体に 1箇 所溶接した後、 封口体 1 1を電池ケース 6の開口部に絶縁ガスケットを介在させ て装着することにより密閉して構成されている。  In general, alkaline batteries such as nickel monohydride batteries and nickel cadmium batteries are configured such that a power generation element is accommodated in a battery case, and the electric case is used as one terminal. For example, as shown in FIG. 37, as a current collector, a current collector 1001 and a current collector lead plate 103, which are stretched with the same thickness and integrally molded, have been proposed. In such a battery, as shown in FIG. 38, the separator 10 is interposed between the positive electrode plate 8 and the negative electrode plate 9, and the power generation element formed by winding them in a spiral shape is used as the outer container 6 The current collector lead plate 10 3 is welded to the sealing body at one location after being housed in a metal battery case, and then the sealing body 11 is attached to the opening of the battery case 6 with an insulating gasket interposed therebetween. It is hermetically sealed.
特に、 このようなアルカリ電池が、 電動工具や電気自動車などの高率で充放電 を行う用途に使用される場合、 電池構成の中でも特に、 発電要素と封口体の間を 接続する集電体の電気抵抗が電池特性に大きな影響を与える。 これらの用途では しばしば大電流での充放電が要^ Rされるので、 極力内部抵抗を低減する必要があ る。  In particular, when such an alkaline battery is used for an application that charges and discharges at a high rate such as an electric tool or an electric vehicle, the current collector that connects between the power generation element and the sealing body is particularly included in the battery configuration. Electrical resistance greatly affects battery characteristics. In these applications, charging / discharging with a large current is often required, so it is necessary to reduce the internal resistance as much as possible.
上述の内部抵抗を低減させた電池としては以下のものが知られている。 (例え ば、 特許文献 1参照) ·  The following are known as batteries with reduced internal resistance. (For example, see Patent Document 1) ·
特許文献 1 :特開 2 0 0 4— 6 3 2 7 2号公報 (図:!〜 4、 1 0、 1 1、 段 落 [ 0 0 2 2:! 〜 [ 0 0 3 8 ] ) 特許文献 1に記載の内部抵抗を低減させた電池をニッケル一力ドミゥム電池に 適用した場合について説明する。 Patent Document 1: Japanese Laid-Open Patent Publication No. 2 0 4-6 3 2 7 2 (Figure:! ~ 4, 1 0, 11, Step [0 0 2 2 :! ~ [0 0 3 8]) A case will be described in which the battery with reduced internal resistance described in Patent Document 1 is applied to a nickel-powered Dome battery.
図 3 9は、 打ち抜き加工により一体形成された集電体を装着したニッケル一力 ドミゥム電池の要部を示す斜視図、 図 4 0 ( a ) および (b ) は、 この集電体 1 の平面図および断面図である。この集電体は、ニッケルめっきのなされた厚み 0 . 3 mmの鉄板からなり、 平坦部 2と、 打ち抜き加工により高さ 2 . 0 mm程度に 突出せしめられた突起部 3とで構成されている。  Fig. 39 is a perspective view showing the main part of a nickel-powered Dome battery equipped with a current collector integrally formed by punching. Figs. 40 (a) and (b) are plan views of the current collector 1. It is a figure and sectional drawing. This current collector is made of a nickel-plated 0.3 mm thick steel plate, and is composed of a flat part 2 and a protrusion part 3 that is projected to a height of about 2.0 mm by punching. .
この集電体は、 ほぼ円板状をなすように形成され、 突起部 3を具備し、 前記突 起部の頂面が溶接領域となり る肉薄領域 4を構成したことを特徴とする。  This current collector is formed so as to have a substantially disk shape, and includes a protrusion 3, and a thin region 4 in which the top surface of the protrusion is a welded region is formed.
また、 この平坦部には孔 5が形成されている。 そしてこの孔の周縁に裏面側に 突出するようにばり 5 Bが形成され、 このばりが正極板との溶接点を形成してい る。 図 4 1は電極体を外装容器としての電池ケース 6に挿入して前記集電体 1を 介して封口体と溶接するときの状態を示す断面図である。  Further, a hole 5 is formed in the flat portion. A flash 5 B is formed at the periphery of the hole so as to protrude to the back side, and this flash forms a welding point with the positive electrode plate. FIG. 41 is a cross-sectional view showing a state where an electrode body is inserted into a battery case 6 as an outer container and welded to the sealing body via the current collector 1.
このニッケル一カドミウム電池は、 図 4 1に示すように、 鉄にニッケルめっき を施した有底筒状体の電池ケース 6内に、 ニッケル正極板 8と力ドミゥム負極板 9がセパレー夕 1 0を介して巻回された電池要素が収容され、 この上に上述の集 電体 1が載置され、 封口体 1 1がこの集電体 1の突起部 3と直接溶接法によって 溶接接続せしめられてなるものである。  As shown in Fig. 41, this nickel-cadmium battery has a nickel positive electrode plate 8 and a force dome negative electrode plate 9 separated into a battery case 6 having a bottomed cylindrical body made of nickel plated iron. The above-described current collector 1 is placed thereon, and the sealing body 1 1 is welded and connected to the protrusion 3 of the current collector 1 by a direct welding method. It will be.
この封口体 1 1は底面に円形の下方突出部を形成した蓋体 1 2と、 正極キヤッ プ 1 3と、 これら蓋体 1 2と正極キャップ 1 3との間に介在せしめられるスプリ ング 1 5と弁板 1 4とからなる弁体とで構成されており、 この蓋体の中央にはガ ス抜き孔 1 6が形成されている。  The sealing body 11 includes a lid body 12 having a circular downward projecting portion on the bottom surface, a positive electrode cap 13, and a spring 15 interposed between the lid body 12 and the positive electrode cap 13. And a valve body composed of a valve plate 14, and a gas removal hole 16 is formed at the center of the lid body.
ここでニッケル正極板と集電体 1との間は、 封口体との溶接に先立ち、 平坦部 2に形成された孔 5の周縁に裏面側に突出するようにばり 5 Bが形成され、 この ばりが正極板 8との溶接点を形成している。 一方電池ケース 6の底部には円板状 の負極集電体 7が配設され、 負極板 9と溶接接続されている。 またこの電池ケー ス 6の開口部 1 7はかしめ加工によつて封止がなされている。  Here, prior to welding with the sealing body, a flash 5 B is formed between the nickel positive electrode plate and the current collector 1 so as to protrude toward the back surface at the periphery of the hole 5 formed in the flat portion 2. The beam forms a welding point with the positive electrode plate 8. On the other hand, a disc-shaped negative electrode current collector 7 is disposed at the bottom of the battery case 6 and is connected to the negative electrode plate 9 by welding. The opening 17 of the battery case 6 is sealed by caulking.
かかる構成によれば、 1枚の円形金属板を打ち抜き加工により形成するのみで、 容易に確実な溶接領域を形成することが可能となり、 確実で信頼性の高い接続が 可能となる。 ' According to such a configuration, it is possible to easily form a reliable welding area by simply forming a single circular metal plate by punching, and a reliable and reliable connection can be achieved. It becomes possible. '
また、 平坦部 2が電極と接続される集電体本体部、 突起部 3が封口体である正 極側端子と接続される集電リードの役割を果たすことができ、 一体形成が可能で あるため、 接続抵抗の低減を図ることが可能となる。  Also, the flat part 2 can serve as a current collector main body part connected to the electrode, and the protrusion 3 can serve as a current collector lead connected to the positive electrode side terminal that is a sealing body, and can be integrally formed. For this reason, it is possible to reduce the connection resistance.
また、図 4 0 ( b ) に示すように、突起部 3の頂面 4が肉薄となっているため、 溶接電流を集中させることができ、 さらに弾性をもち溶接領域に圧力が確実にか かるため、 より確実な接続が可能となる。  In addition, as shown in FIG. 40 (b), the top surface 4 of the protrusion 3 is thin, so that the welding current can be concentrated, and it has elasticity and pressure is reliably applied to the welding region. Therefore, a more reliable connection is possible.
この電池は、 リードの長さを短くすることができるが、 リードを厚肉な蓋に溶 接する必要があるため溶接時の熱が蓋に逃げるために、 溶接箇所の確実性が低下 し溶接のばらつきが大きいと言う問題や、 同じ理由から 1点の溶接に必要な電流 を大きくする必要があるため、 多数の溶接点を形成することが出来ず、 内部抵抗 低減の効果は十分とはいえない。  In this battery, the lead length can be shortened, but since the lead must be welded to a thick lid, the heat during welding escapes to the lid, so the reliability of the welded spot is reduced and welding is not possible. The problem of large variation and the current required for one point of welding must be increased for the same reason, so a large number of welding points cannot be formed, and the effect of reducing internal resistance is not sufficient. .
また、その他、内部抵抗を低減させた電池としては以下のものが知られている。 (例えば、 特許文献 2、 3参照)  In addition, the following are known as batteries with reduced internal resistance. (For example, see Patent Documents 2 and 3)
特許文献 2 :特開 2 0 0 1— 3 4 5 0 8 8号公報 (図 2、 本願添付図面の図 4 2 )  Patent Document 2: Japanese Patent Laid-Open No. 2 00 1-3 4 5 8 8 8 (FIG. 2, FIG. 4 2 in the attached drawings of the present application)
特許文献 3 :特開 2 0 0 1— 1 5 5 7 1 0号公報 (図 3、 4、 本願添付図面 の図 4 3、 図 4 4 )  Patent Document 3: Japanese Patent Application Laid-Open No. 2 00 1— 1 5 5 7 10 (FIGS. 3 and 4, FIGS. 4 and 4 of the accompanying drawings of the present application)
特許文献 2に記載の内部抵抗を低減させた電池は、 図 4 2に示すような構造を 有し、' 「ニッケル正極板 1と水素吸蔵合金負極板 2との間にセパレー夕 3を介在 させて渦巻状に巻回して渦巻状電極群を作製した後、 この渦巻状電極群の上端面 に露出する極板芯体に正極集電体 4を溶接するとともに、 下端面に露出する極板 芯体に負極集電体 (図示せず) を溶接した。 ついで、 正極集電体 4の上部に中央 部が円筒状になるように折り曲.げ加工された正極用リード 5を溶接した後、 これ らを鉄にニッケルメツキを施した有底筒状の外装缶 (底面の外面は負極外部端子 となる) 6内に収納し、 水素吸蔵合金負極板 2に溶接された負極集電体を外装缶 6の内底面に溶接する。」 (段落 [ 0 0 2 6 ] ) という溶接方法が採用されている。 この電池は、 リードを厚肉な蓋に溶接する必要があるため溶接時の電流を大き くすると、 熱によってリードが軟化し、 溶接箇所の密着性を維持しにくく、 溶接 の確実性が低下し溶接のばらつきが大きいと言う問題があるため、 多数の溶接点 を形成することが出来ず、 内部抵抗低減の効果は十分とはいえない。 The battery having a reduced internal resistance described in Patent Document 2 has a structure as shown in FIG. 42, and '' a separator plate 3 is interposed between the nickel positive electrode plate 1 and the hydrogen storage alloy negative electrode plate 2. After the spiral electrode group is manufactured by winding in a spiral shape, the positive electrode current collector 4 is welded to the electrode plate core body exposed at the upper end surface of the spiral electrode group, and the electrode core core exposed at the lower end surface Then, a negative electrode current collector (not shown) was welded to the body, and then the positive electrode lead 5 that had been bent so that the central part was cylindrical was welded to the upper part of the positive electrode current collector 4. These are housed in a bottomed cylindrical outer can made of nickel-coated iron (the outer surface of the bottom surface becomes the negative electrode external terminal) 6 and the negative electrode current collector welded to the hydrogen storage alloy negative electrode plate 2 is packaged It is welded to the inner bottom surface of the can 6 ”(paragraph [0 0 2 6]). In this battery, it is necessary to weld the lead to a thick lid, so if the current during welding is increased, the lead will be softened by heat, making it difficult to maintain the adhesion of the welded part. As a result, there is a problem that the reliability of welding is reduced and welding variation is large, so that a large number of welding points cannot be formed, and the effect of reducing internal resistance is not sufficient.
特許文献 3に記載の内部抵抗を低減させた電池は、 図 4 3、 図 4 4に示すよう に、 一方極の端子を兼ねる開口部を備えた電池ケース 1 6と、 この開口部を密封 する他方極の端子を兼ねる封口体 1 7 (蓋体 1 7 a、 正極キャップ 1 7 b、 スプ リング 1 7 c、 弁体 1 7 d ) と、 電池ケース 1 6内に収容される正極板 1 1、 負 極板 1 2の少なくとも一方の端部に集電体 1 4が接続された電極体 1 0とを備 え、 封口体 1 7と集電体 1 4とは長さ方向の中央部が凹んだ鼓状筒体 2 0から構 成されるリード部により固着接続されている。 鼓状筒体 2 0の上下端部に幅広部 2 2 a , 2 3 aと幅狭部 2 2 b , 2 3 bとが交互に形成された鍔部 2 2 , 2 3を 備えている。 幅広部 2 2 aと幅狭部 2 3 bは空間を隔てて互に重なり合い、 幅狭 部 2 2 bと幅広部 2 3 aは空間を隔てて互に重なり合うように配置されている。 上記の鼓状筒体 2 0から構成されるリ一ド部を有するニッケルー水素蓄電池 は、 以下のように溶接されて作製される。  As shown in FIGS. 4 3 and 44, the battery with reduced internal resistance described in Patent Document 3 has a battery case 16 having an opening that also serves as a terminal of one electrode, and the opening is sealed. Sealing body that also serves as the terminal of the other electrode 1 7 (lid body 1 7 a, positive electrode cap 1 7 b, spring 1 7 c, valve body 1 7 d), and positive electrode plate 1 1 accommodated in battery case 1 6 The negative electrode plate 12 has an electrode body 10 having a current collector 14 connected to at least one end thereof, and the sealing body 17 and the current collector 14 have a central portion in the length direction. The lead portion composed of the recessed drum-shaped cylindrical body 20 is fixedly connected. The upper and lower end portions of the drum-shaped cylinder 20 are provided with flange portions 2 2 and 2 3 in which wide portions 2 2 a and 2 3 a and narrow portions 2 2 b and 2 3 b are alternately formed. The wide portion 2 2 a and the narrow portion 2 3 b are arranged so as to overlap each other with a space therebetween, and the narrow portion 2 2 b and the wide portion 23 3 a are arranged so as to overlap each other with a space therebetween. The nickel-hydrogen storage battery having the lead portion composed of the drum-shaped cylinder 20 is manufactured by welding as follows.
ニッケル一水素蓄電池を組み立てるに際しては、 まず、 上述した鼓状筒体 2 0 を正極集電体 1 4の上に載置した後、 上端鍔部の幅狭部 2 2 bの外周部に溶接電 極 (図示 ず) を配置して、 下端鍔部の幅広部 2 3 aと集電体 1 4とをスポット 溶接した。 この後、 鼓状筒体 2 0を正極集電体 1 4に溶接した電極体 1 0を鉄に ニッケルメツキを施した有底筒状の電池ケース (底面の外面は負極外部端子とな る) 1 6内に収納した。 (段落 [ 0 0 2 5 ] )  When assembling the nickel-hydrogen storage battery, first, the drum-shaped cylinder 20 described above is placed on the positive electrode current collector 14, and then welded to the outer periphery of the narrow portion 2 2 b of the upper end collar. A pole (not shown) was placed, and the wide portion 2 3 a of the lower end collar and the current collector 14 were spot welded. After this, a battery case with a bottomed cylindrical shape in which the electrode body 10 in which the drum-shaped cylinder 20 is welded to the positive electrode current collector 14 and nickel plating is applied to the iron (the outer surface of the bottom surface becomes the negative electrode external terminal) 1 Housed in 6. (Paragraph [0 0 2 5])
上述のように封口体 1 7を配置した後、 正極キャップ (正極外部端子) 1 7 a の上面に一方の溶接電極 W 1を配置するとともに、 電池ケース 1 6の底面 (負極 外部端子) の下面に他方の溶接電極 W 2を配置した。 この後、 これらの一対の溶 接電極 W l, W 2間に 2 X 1 0.6N/m2の圧力を加えながら、 これらの溶接電極 W l , W 2間に電池の放電方向に 2 4 Vの電圧を印加し、 3 KAの電流を約 1 5 m s e cの時間流す通電処理を施した。 この通電処理により、 封口体 1 7の底面 と鼓状筒体 2 0の上端鍔部 2 2の幅広部 2 2 aに形成された小突起 2 2 cとの接 触部に電流が集中して、 この小突起 2 2 cと封口体 1 7の底面とが溶接されて、 溶接部が形成された。 これと同時に負極集電体 1 5の下面と電池ケース 1 6の底 面 (負極外部端子) の上面との接触部が溶接されて溶接部が形成された。 (段落After placing the sealing body 1 7 as described above, one welding electrode W 1 is placed on the upper surface of the positive electrode cap (positive electrode external terminal) 1 7 a, and the bottom surface of the bottom surface of the battery case 16 (negative electrode external terminal) The other welding electrode W 2 was disposed on the surface. Thereafter, these pair of welding electrodes W l, while applying a pressure of 2 X 1 0. 6 N / m 2 between W 2, these welding electrodes W l, the discharge direction of the battery between W 2 2 A voltage of 4 V was applied, and an energization process was performed in which a current of 3 KA was passed for about 15 msec. By this energization process, current is concentrated on the contact portion between the bottom surface of the sealing body 17 and the small protrusion 2 2 c formed on the wide end portion 2 2 a of the upper end flange 2 2 of the drum-shaped cylinder 20. The small protrusion 2 2 c and the bottom surface of the sealing body 17 were welded to form a welded portion. At the same time, the bottom surface of the negative electrode current collector 15 and the bottom of the battery case 16 The contact portion with the upper surface of the surface (negative electrode external terminal) was welded to form a welded portion. (Paragraph
[0027]) [0027])
ついで、 封口体 17の周縁に絶縁ガスケッ卜 1 9を嵌着させ、 プレス機を用い て封口体 17に加圧力を加えて、 絶縁ガスケット 19の下端が凹部 16 aの位置 になるまで封口体 17を電池ケース 16内に押し込んだ。 この後、 電池ケース 1 6の開口端縁を内方にかしめて電池を封口して、 公称容量 6. 5 Ahの円筒形二 ッケルー水素蓄電池を作製した。 なお、 この封口時の加圧力により、 鼓状筒体 2 0の本体部 21は凹んだ中央部を中心にして押しつぶされた。(段落 [0028]) また、 封口前と封口後に溶 して、 公称容量 6. 5 Ahの円筒形ニッケル—水 素蓄電池を作製する方法として、 以下の方法が示されている。  Next, the insulating gasket 19 is fitted around the periphery of the sealing body 17, and a pressure is applied to the sealing body 17 using a press machine, so that the lower end of the insulating gasket 19 is positioned at the recess 16a. Was pushed into the battery case 16. Thereafter, the opening edge of the battery case 16 was crimped inward to seal the battery, and a cylindrical nickel-hydrogen storage battery with a nominal capacity of 6.5 Ah was fabricated. It should be noted that the main body portion 21 of the drum-shaped cylindrical body 20 was crushed around the recessed central portion by the applied pressure at the time of sealing. (Paragraph [0028]) Further, the following method is shown as a method for producing a cylindrical nickel-hydrogen storage battery having a nominal capacity of 6.5 Ah by melting before and after sealing.
まず、 上述した鼓状筒体 20を正極集電体 14の上に載置した後、 上端鍔部 2 2の幅狭部 22 bの外周部に溶接電極 (図示せず) を配置して、 下端鍔部 23の 幅広部 23 aと集電体 14とをスポット溶接した。 この後、 鼓状筒体 20を正極 集電体 14に溶接した電極体 10を鉄にニッケルメツキを施した有底筒状の電池 ケース (底面の外面は負極外部端子となる) 16内に収納した。 (段落 [002 9])  First, after placing the above-mentioned drum-shaped cylindrical body 20 on the positive electrode current collector 14, a welding electrode (not shown) is arranged on the outer peripheral portion of the narrow portion 22b of the upper end flange portion 22; The wide portion 23 a of the lower end flange 23 and the current collector 14 were spot welded. After this, the electrode body 10 in which the drum-shaped cylindrical body 20 is welded to the positive electrode current collector 14 is housed in the bottomed cylindrical battery case 10 in which nickel plating is applied to iron (the outer surface of the bottom surface is the negative electrode external terminal). did. (Paragraph [002 9])
ついで、 封口体 17の周縁に絶縁ガスケット 19を嵌着させ、 プレス機を用い て封口体 17に加圧力を加えて、 絶縁ガスケット 19の下端が凹部 16 aの位置 になるまで封口体 17を電池ケース 16内に押し込んだ。 この後、 電池ケース 1 6の開口端縁を内方にかしめて電池を封口した。 なお、 この封口時の加圧力によ り、 鼓状筒体 20の本体部 21は凹んだ中央部を中心にして押しつぶされた。 つ いで、 正極キャップ (正極外部端子) 17 aの上面に一方の溶接電極 W1を配置 するとともに、 電池ケース 16の底面 (負極外部端子) の下面に他方の溶接電極 W 2を配置した。 (段落 [00.31])  Next, the insulating gasket 19 is fitted on the periphery of the sealing body 17, and a pressure is applied to the sealing body 17 using a press machine. The sealing body 17 is inserted into the battery until the lower end of the insulating gasket 19 is positioned at the recess 16a. Pushed into case 16. Thereafter, the opening edge of the battery case 16 was caulked inward to seal the battery. It should be noted that due to the applied pressure at the time of sealing, the main body portion 21 of the hourglass-shaped cylinder 20 was crushed around the recessed central portion. Subsequently, one welding electrode W1 was arranged on the upper surface of the positive electrode cap (positive electrode external terminal) 17a, and the other welding electrode W2 was arranged on the lower surface of the bottom surface (negative electrode external terminal) of the battery case 16. (Paragraph [00.31])
この後、 これらの一対の溶接電極 W1, W2間に 2 X 106NZm2の圧力を加 えながら、 これらの溶接電極 Wl, W2間に電池の放電方向に 24 Vの電圧を印 加し、 3 KAの電流を約 15ms e cの時間流す通電処理を施した。 この通電処 理により、 封口体 17の底面と鼓状筒体 20の上端鍔部 22の幅広部 22 aに形 成された小突起 22 cとの接触部に電流が集中して、 この小突起 22 cと封口体 1 7の底面とが溶接されて、 溶接部が形成された。 これと同時に負極集電体 1 5 の下面と電池ケース 1 6の底面 (負極外部端子) の上面との接触部が溶接されて 溶接部が形成された。 (段落 [ 0 0 3 2 ] ) Then, while applying a pressure of 2 X 10 6 NZm 2 between the pair of welding electrodes W1 and W2, a voltage of 24 V was applied between the welding electrodes Wl and W2 in the battery discharge direction. 3 The energization process was performed to pass the KA current for about 15 ms ec. By this energization process, current concentrates on the contact portion between the bottom surface of the sealing body 17 and the small protrusion 22 c formed on the wide end portion 22 a of the upper end flange portion 22 of the drum-shaped cylindrical body 20. 22 c and sealing body The bottom of 1 7 was welded to form a weld. At the same time, the contact portion between the lower surface of the negative electrode current collector 15 and the upper surface of the bottom surface of the battery case 16 (negative electrode external terminal) was welded to form a welded portion. (Paragraph [0 0 3 2])
この電池は、 正極集電体 (上部集電板) の溶接点と蓋との溶接点の点数が同数 であるため、 リードを厚肉な蓋に溶接するために溶接時の電流を大きくすると、 正極集電体 (上部集電板) の溶接点が大電流により破損し、 溶接の確実性が低下 しリード部の抵抗ばらつきが大きくなると言う問題や、 リ一ドを厚肉な蓋に溶接 する必要があるため溶接時の電流を大きくすると、 熱によってリードが軟化し、 溶接箇所の密着性を維持しにくく、 溶接の確実性が低下し溶接のばらつきが大き いと言う問題があるため、 多数の溶接点を形成することが出来ず、 内部抵抗低減 の効果は十分とはいえない。 発明の開示  In this battery, the number of welding points between the positive electrode current collector (upper current collector plate) and the lid is the same, so if the current during welding is increased to weld the lead to the thick lid, The welding point of the positive electrode current collector (upper current collector plate) is damaged by a large current, resulting in a problem that the welding reliability decreases and the resistance variation of the lead part increases, and the lead is welded to a thick lid. If the current during welding is increased, the lead will soften due to heat, and it will be difficult to maintain the adhesion at the weld location, resulting in problems such as reduced welding reliability and large variations in welding. The weld point cannot be formed, and the effect of reducing internal resistance is not sufficient. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
上記のように、 上部集電板の上面と封口体 (蓋) の内面をリードを介して溶接 した電池においては、 溶接後に蓋を閉めるために、 リードの長さを長くしておく 必要があり、 抵抗が大きくなるという問題があつた。  As described above, in a battery in which the upper surface of the upper current collector plate and the inner surface of the sealing body (lid) are welded via leads, it is necessary to increase the lead length in order to close the lid after welding. There was a problem of increased resistance.
また、 リードの長さの短い電池もあったが、 あらかじめ上部集電板の上面とリ ードを先に溶接して一体とするか、集電板打ち抜き加工により一体とし、その後、 封口体 (蓋) の内面とリードを溶接する電池であるため、 集電抵抗が大きくなる という問題があった。  There were also batteries with short lead lengths, but the upper surface of the upper current collector and the lead were welded together in advance or integrated by punching the current collector, and then the sealing body ( Because the battery welds the inner surface of the lid) and the lead, there was a problem of increased current collection resistance.
本発明の課題は、 上部集電板と封口体 (蓋) とをリードを介して接続するに際 して、 蓋とリードの確実で低抵抗な溶接を可能とするとともに、 リードと上部集 電板のより小さな電流による確実で低抵抗な溶接を可能とし、 低抵抗で出力特性 に優れた密閉形電池を提供すること、 密閉形電池を複数個接続して、 同じく低抵 杭で出力特性に優れた組電池を提供することにある。 課題を解決するための手段  The problem of the present invention is that when the upper current collector plate and the sealing body (lid) are connected via a lead, the lid and the lead can be reliably and low-resistance welded, and the lead and the upper current collector are connected. Enables reliable and low-resistance welding with a smaller current on the plate, provides a sealed battery with low resistance and excellent output characteristics, connects multiple sealed batteries, and also achieves output characteristics with low resistance piles The object is to provide an excellent assembled battery. Means for solving the problem
本発明者らは鋭意検討の結果、 密閉形電池及びその製造方法において、 リード の溶接順序を特定の順序とすること、 組電池及びその製造方法において、 特定の 溶接方法を採用することにより、 上記の課題が解決でき、 電圧損失を最小限にと どめることができることを見いだし、 本発明を完成した。 As a result of intensive studies, the present inventors have found that in a sealed battery and a manufacturing method thereof, That the above-mentioned problems can be solved and voltage loss can be minimized by adopting a specific welding method for the assembled battery and its manufacturing method. As a result, the present invention has been completed.
本発明は、 上記の課題を解決するために、 以下の手段を採用するものである。 In order to solve the above problems, the present invention employs the following means.
( 1 ) 密閉形電池の電槽を閉鎖する蓋の内面と上部集電板の上面とがリードを介 して接続された密閉形電池において、 前記蓋の内面に前記リードの一方の面が溶 接された後、 前記上部集電板の上面に前記リードの他方の面が溶接されたもので あることを特徴とする密閉形電池。 (1) In a sealed battery in which the inner surface of the lid that closes the battery case of the sealed battery and the upper surface of the upper current collector plate are connected via a lead, one surface of the lead is melted on the inner surface of the lid. After being contacted, the sealed battery is characterized in that the other surface of the lead is welded to the upper surface of the upper current collector plate.
( 2 ) 前記上部集電板の上面 前記リードの他方の面との溶接が、 前記電槽を密 閉した後で行われたものであることを特徴とする前記 (1 ) の密閉形電池。 (2) The upper surface of the upper current collector plate The sealed battery according to (1), wherein the welding with the other surface of the lead is performed after the battery case is sealed.
( 3 ) 前記上部集電板の上面と前記リードの他方の面との溶接が、 外部電源によ り交流パルスを通電して行われたものであることを特徴とする前記 (2 ) の密閉 形電池。 (3) The sealing of (2) above, wherein the welding of the upper surface of the upper current collecting plate and the other surface of the lead is performed by applying an AC pulse from an external power source. Battery.
( 4 ) 前記蓋の内面における前記リードの溶接点から該溶接点に最も近い前記上 部集電板の上面における前記リードの溶接点までの前記リードの長さが、 前記蓋 の内面における前記リードの溶接点から前記上部集電板の上面に至る最短距離の 1〜2 . '1倍であることを特徴とする前記 (1 ) 〜 (3 ) のいずれか一項の密閉 形電池。  (4) The length of the lead from the welding point of the lead on the inner surface of the lid to the welding point of the lead on the upper surface of the upper current collecting plate closest to the welding point is the lead on the inner surface of the lid. The sealed battery according to any one of (1) to (3) above, which is 1 to 2.'1 times the shortest distance from the welding point to the upper surface of the upper current collector plate.
( 5 )前記蓋がその内面における平坦部から下方に湾曲又は屈曲した部分を有し、 前記蓋の湾曲又は屈曲部分に前記リードの一方の面が溶接されたものであり、 前 記蓋の湾曲又は屈曲部分における前記リードの溶接点から該溶接点に最も近い前 記上部集電板の上面における前記リ一ドの溶接点までの前記リードの長さと、 前 記蓋の湾曲又は屈曲部分における前記リードの溶接点から前記蓋の平坦部に至る 前記蓋の湾曲又は屈曲部分の さの合計が、 前記蓋の平坦部と前記上部集電板の 間隔の 1〜2 . 1倍であることを特徴とする前記 1〜 3のいずれか一項の密閉形 電池。  (5) The lid has a portion curved or bent downward from a flat portion on the inner surface thereof, and one surface of the lead is welded to the curved or bent portion of the lid, Alternatively, the length of the lead from the welding point of the lead in the bent part to the weld point of the lead on the upper surface of the upper current collector plate closest to the welding point, and the curved or bent part of the lid The total length of the bent or bent portion of the lid from the weld point of the lead to the flat portion of the lid is 1 to 2.1 times the distance between the flat portion of the lid and the upper current collector plate. The sealed battery according to any one of 1 to 3 above.
( 6 ) 前記上部集電板がその上面における平坦部から上方に湾曲又は屈曲した部 分を有し、 前記上部集電板の湾曲又は屈曲部分に前記リードの他方の面が溶接さ れたものであり、 前記蓋の内面における前記リ一ドの溶接点から該溶接点に最も 近い前記上部集電板の湾曲又は屈曲部分における前記リードの溶接点までの前記 リードの長さと、 前記上部集電板の湾曲又は屈曲部分における前記リードの溶接 点から前記上部集電板の平坦部に至る前記上部集電板の湾曲又は屈曲部分の長さ の合計が、 前記蓋と前記上部集電板の平坦部の間隔の 1〜2 . 1倍であることを 特徴とする前記 1 ~ 3のいずれか一項の密閉形電池。 (6) The upper current collector plate has a portion bent or bent upward from a flat portion on the upper surface thereof, and the other surface of the lead is welded to the bent or bent portion of the upper current collector plate. From the welding point of the lead on the inner surface of the lid to the welding point most The length of the lead to the welding point of the lead at the curved or bent portion of the upper current collector plate, and the flat portion of the upper current collector plate from the welding point of the lead at the curved or bent portion of the upper current collector plate The total length of the curved or bent portions of the upper current collector plate reaching 1 to 2.1 times the distance between the lid and the flat portion of the upper current collector plate The sealed battery according to any one of the above.
( 7 )前記蓋がその内面における平坦部から下方に湾曲又は屈曲した部分を有し、 かつ、 前記上部集電板がその上面における平坦部から上方に湾曲又は屈曲した部 分を有したものであり、 前記蓋の湾曲又は屈曲部分に前記リードの一方の面が溶 接された後、 前記上部集電板の湾曲又は屈曲部分に前記リードの他方の面が溶接 されたものであり、 前記蓋の湾曲又は屈曲部分における前記リードの溶接点から 該溶接点に最も近い前記上部集電板の湾曲又は屈曲部分における前記リードの溶 接点までの前記リードの長さと、 前記蓋の湾曲又は屈曲部分における前記リード の溶接点から前記蓋の平坦部に至る前記蓋の湾曲又は屈曲部分の長さと、 前記上 部集電板の湾曲又は屈曲部分における前記リードの溶接点から前記上部集電板の 平坦部に至る前記上部集電板の湾曲又は屈曲部分の長さの合計が、 前記蓋の平坦 部と前記上部集電板の平坦部との間隔の 1〜 2 . 1倍であることを特徴とする前 記 1〜 3のいずれか一項の密閉形電池。  (7) The lid has a portion bent or bent downward from a flat portion on the inner surface thereof, and the upper current collector plate has a portion bent or bent upward from the flat portion on the upper surface thereof. And after the one surface of the lead is welded to the curved or bent portion of the lid, the other surface of the lead is welded to the curved or bent portion of the upper current collector plate. The length of the lead from the welding point of the lead in the curved or bent part to the weld point of the lead in the curved or bent part of the upper current collector plate closest to the welding point, and in the curved or bent part of the lid The length of the curved or bent portion of the lid from the welding point of the lead to the flat portion of the lid, and the flat portion of the upper current collecting plate from the welding point of the lead in the curved or bent portion of the upper current collecting plate In The total length of the curved or bent portions of the upper current collector plate is 1 to 2.1 times the distance between the flat portion of the lid and the flat portion of the upper current collector plate. The sealed battery according to any one of Items 1 to 3.
( 8 ) 前記リードがリング状リードであり、 前記蓋の内面に前記リング状リード の一方の面が溶接された後、 前記上部集電板の上面に前記リング状リードの他方 の面が溶接されたものであることを特徴とする前記 (1 ) 〜 (7 ) のいずれか一 項の密閉形電池。  (8) The lead is a ring-shaped lead, and after one surface of the ring-shaped lead is welded to the inner surface of the lid, the other surface of the ring-shaped lead is welded to the upper surface of the upper current collector plate. The sealed battery as described in any one of (1) to (7) above, wherein
( 9 ) 前記リードがリング状の主リード及び補助リードからなるものであり、 前 記蓋の内面に前記主リードの一方の面が溶接された後、 前記上部集電板の上面に 前記主リ一ドの他方の面が前 補助リードを介して溶接されたものであることを 特徴とする前記 (8 ) の密閉形電池。  (9) The lead is composed of a ring-shaped main lead and an auxiliary lead, and after one surface of the main lead is welded to the inner surface of the lid, the main lead is placed on the upper surface of the upper current collector plate. (8) The sealed battery according to (8), wherein the other surface of the door is welded via a front auxiliary lead.
( 1 0 ) 前記リードが枠状部と前記枠状部の内周及び外周から下方に向けて延び た二重構造の側壁部を有するものであり、 前記蓋の内面に前記リ一ドの枠状部が 溶接された後、 前記上部集電板の上面に前記リードの二重構造の側壁部の端部が 溶接されたものであることを特徴とする前記 (1 ) 〜 (7 ) のいずれか一項の密 閉形電池。 ' (10) The lead includes a frame-shaped portion and a side wall portion having a double structure extending downward from an inner periphery and an outer periphery of the frame-shaped portion, and a frame of the lead is formed on an inner surface of the lid. Any one of the above (1) to (7), wherein the end of the side wall portion of the double structure of the lead is welded to the upper surface of the upper current collecting plate after the welded portion is welded Dense Closed battery. '
(1 1) 前記二重構造の側壁部を有するリードが、 前記枠状部を V字の折り部分 とする断面が逆 V字状又は前記枠状部を U字の 2つの折り部分及び底辺とする断 面が逆 U字状のものであることを特徴とする前記 (10) の密閉形電池。  (1 1) The lead having the side wall portion of the double structure has an inverted V-shaped cross section in which the frame-shaped portion is a V-shaped folded portion, or two folded portions and a bottom of the U-shaped frame-shaped portion. (10) The sealed battery according to (10) above, wherein the cut surface is an inverted U-shape.
(12) 前記リードが前記枠状部及び前記二重構造の側壁部を有する主リード部 並びに補助リ一ド部からなり、 前記主リ一ド部の二重構造の側壁部の端部には、 それぞれ、 複数の突片状又は連続した平板状の補助リード部が形成されているも のであり、 前記蓋の内面に前記主リード部の枠状部が溶接された後、 前記上部集 電板の上面に前記補助リード'部が溶接されたものであることを特徴とする前記 (12) The lead comprises a main lead portion having the frame-shaped portion and the side wall portion of the double structure and an auxiliary lead portion, and an end portion of the side wall portion of the double structure of the main lead portion A plurality of protrusion-like or continuous flat auxiliary lead portions are formed respectively, and after the frame-like portion of the main lead portion is welded to the inner surface of the lid, the upper current collecting plate The auxiliary lead 'part is welded to the upper surface of
(10) 又は (1 1) の密閉形電池。 (10) or (1 1) sealed battery.
(13) 前記リ一ドが枠状部と前記枠状部の内周及び外周から上方に向けて延び た二重構造の側壁部を有するものであり、 前記蓋の内面に前記リ一ドの二重構造 の側壁部の端部が溶接された後、 前記上部集電板の上面に前記リードの枠状部が 溶接されたものであることを特徴とする前記 (1) 〜 (7) のいずれか一項の密 閉形電池。  (13) The lead includes a frame-like portion and a side wall portion having a double structure extending upward from an inner periphery and an outer periphery of the frame-like portion, and an inner surface of the lid includes the lead (1) to (7) above, wherein the frame portion of the lead is welded to the upper surface of the upper current collector plate after the end of the side wall portion of the double structure is welded. The sealed battery according to any one of the items.
(14) 前記二重構造の側壁部を有するリードが、 前記枠状部を V字の折り部分 とする断面が V字状又は前記枠状部を U字の 2つの折り部分及び底辺とする断面 が U字状のものであることを特徴とする前記 (13) の密閉形電池。  (14) The lead having the side wall portion of the double structure has a V-shaped cross-section with the frame-shaped portion as a V-shaped folded portion, or a cross-section with the frame-shaped portion as two U-shaped folded portions and a bottom side. (13) The sealed battery according to (13) above, wherein the battery is U-shaped.
(15) 前記リードが前記枠状部及び前記二重構造の側壁部を有する主リード部 並びに補助リード部からなり、 前記主リード部の二重構造の側壁部の端部には、 それぞれ、 複数の突片状又は連続した平板状の補助リード部が形成されているも のであり、 前記蓋の内面に前記補助リード部が溶接された後、 前記上部集電板の 上面に前記主リード部の枠状部が溶接されたものであることを特徴とする前記 (15) The lead includes a main lead portion and an auxiliary lead portion having the frame-shaped portion and the double-structure side wall portion, and each end portion of the double-structure side wall portion of the main lead portion includes a plurality of the lead portions. And a flat plate-shaped auxiliary lead portion is formed, and after the auxiliary lead portion is welded to the inner surface of the lid, the upper surface of the upper current collector plate is provided with the main lead portion. The frame-shaped part is welded.
(13) 又は (14) の密閉形.電池。 (13) or (14) sealed battery.
(16) 前記リードの枠状部の内周及び外周が円形であることを特徴とする前記 (10) 〜 (15) のいずれか一項の密閉形電池。  (16) The sealed battery according to any one of (10) to (15), wherein an inner periphery and an outer periphery of the frame portion of the lead are circular.
(17) 前記リードの二重構造の側壁部が蛇腹様に加工されていることを特徴と する前記 (10) 〜 (16) のいずれか一項の密閉形電池。  (17) The sealed battery according to any one of (10) to (16), wherein a side wall portion of the double structure of the lead is processed in a bellows shape.
(18) 前記リードの枠状部及び二重構造の側壁部が、 周方向に間隔をおいて分 割され複数のパーツとされていることを特徴とする前記 (1 0) 〜 (1 7) のい ずれか一項の密閉形電池。 (18) The lead frame-like portion and the double-structure side wall portion are spaced apart in the circumferential direction. The sealed battery according to any one of (10) to (17), wherein the sealed battery is divided into a plurality of parts.
(1 9) 前記リードの二重構造の側壁部が、 周方向に間隔をおいて下端又は上端 から縦方向にスリッ卜加工され少なくとも一部又は全部が分断されていることを 特徴とする前記 (1 0) 〜 (1 7) のいずれか一項の密閉形電池。  (19) The side wall portion of the double structure of the lead is slitted in the longitudinal direction from the lower end or the upper end at intervals in the circumferential direction, and is at least partially or entirely divided. The sealed battery according to any one of 1 0) to (1 7).
(20) 密閉形電池の電槽を閉鎖する蓋の内面と上部集電板の上面とをリードを 介して接続する密閉形電池の製造方法において、 前記蓋の内面に前記リードの一 方の面を溶接する第 1の溶接工程と、 前記上部集電板が前記電槽の開放端側に位 置するように、 前記上部集電 feを接合した極群を前記電槽内に収容し、 電解液を 注液し、 前記リードの他方の面が前記上部集電板の上面に当接するように前記蓋 を載置し、 前記電槽を密閉した後、 密閉形電池の正負極両端子間に溶接のための 電流を電池を介して通電することにより前記上部集電板の上面に前記リードの他 方の面を溶接する第 2の溶接工程とを、 この溶接順序で行うことを特徴とする密 閉形電池の製造方法。  (20) In the method for manufacturing a sealed battery in which the inner surface of the lid for closing the battery case of the sealed battery and the upper surface of the upper current collector plate are connected via a lead, one surface of the lead is connected to the inner surface of the lid. A first welding step of welding the electrode, and a pole group joined to the upper current collector fe in the battery case so that the upper current collector plate is positioned on an open end side of the battery case. After pouring the liquid, placing the lid so that the other surface of the lead is in contact with the upper surface of the upper current collector plate, sealing the battery case, between the positive and negative terminals of the sealed battery A second welding step of welding the other surface of the lead to the upper surface of the upper current collecting plate by applying a current for welding through a battery in this welding sequence. A manufacturing method of a sealed battery.
(2 1) 前記リードがリング状の主リード及び補助リードからなるものであり、 前記蓋の内面に前記主リードの一方の面を溶接する第 1の溶接工程の後、 前記主 リードの他方の面に補助リ一ドを溶接し、 前記上部集電板の上面に前記主リ一ド の他方の面を前記補助リ一ドを介して溶接する第 2の溶接工程を行うことを特徴 とする前記 (20) の密閉形電池の製造方法。  (2 1) The lead is composed of a ring-shaped main lead and an auxiliary lead, and after the first welding step of welding one surface of the main lead to the inner surface of the lid, the other of the main lead A second welding step is performed in which an auxiliary lead is welded to a surface, and the other surface of the main lead is welded to the upper surface of the upper current collector plate via the auxiliary lead. (20) The method for producing a sealed battery according to (20).
(22) 前記リードの溶接面には、 それぞれ突起が形成されていることを特徴と する前記 (20) 又は (2 1) の密閉形電池の製造方法。 (なお、 前記の第 1の 溶接工程に際しては、 溶接箇所に設けた突起に押圧が加わるために、 溶接後にお いて突起は殆ど消失する。)  (22) The method for manufacturing a sealed battery according to (20) or (21), wherein a protrusion is formed on each weld surface of the lead. (Note that, during the first welding step, since the pressing is applied to the protrusion provided at the welding location, the protrusion almost disappears after welding.)
(23) 前記第 2の溶接工程を、 外部電源により交流パルスを通電して行うこと を特徴とする前記 (20) 〜 (22) のいずれか一項の密閉形電池の製造方法。 (23) The method for manufacturing a sealed battery according to any one of (20) to (22), wherein the second welding step is performed by applying an AC pulse with an external power source.
(24) 前記交流パルスを通電したときに、 前記密閉形電池内部の圧力が該電池 の開弁圧を超えないことを特徴とする前記 (23) の密閉形電池の製造方法。(24) The method for producing a sealed battery according to (23), wherein the pressure inside the sealed battery does not exceed the valve opening pressure of the battery when the AC pulse is applied.
(25) 前記交流パルスの通電において、 充電パルス及び放電パルスの電流値を 電池の単位容量当たり、 0. 4〜0. 8 kA/Ahとすることを特徴とする前記 (23) 又は (24) の密閉形電池の製造方法。 (25) In the energization of the AC pulse, the current value of the charge pulse and the discharge pulse is set to 0.4 to 0.8 kA / Ah per unit capacity of the battery. (23) or (24) the method for producing a sealed battery.
(26) 前記交流パルスの通電において、 充電パルス及び放電パルスの電流値を 前記上部集電板と前記リードの溶接接点の接点 1点あたり、 0. 33 kA/l点 〜0. 65 kAZl点とすることを特徴とする前記 (23) 〜 (25) のいずれ か一項の密閉形電池の製造方法。  (26) In the energization of the AC pulse, the charge pulse and discharge pulse current values are 0.33 kA / l point to 0.65 kAZl point per contact point between the upper current collector plate and the lead welding contact. The method for producing a sealed battery according to any one of (23) to (25), wherein:
(27) 前記交流パルスの通電において、 充電パルスの通電時間及び放電パルス の通電時間を 3〜 7ms e cとすることを特徴とする前記 (23) 〜 (26) の いずれか一項の密閉形電池の製造方法。  (27) In the energization of the AC pulse, the energization time of the charge pulse and the energization time of the discharge pulse are 3 to 7 ms ec, The sealed battery according to any one of the above (23) to (26) Manufacturing method.
(28) 前記交流パルスの通 ¾において、 充電と放電を 1セットとした交流パル スの通電を 2回〜 6回実施することを特徴とする前記 (23) 〜 (27) のいず れか一項の密閉形電池の製造方法。  (28) In any of the above (23) to (27), the AC pulse energization is performed 2 to 6 times with one set of charging and discharging in the AC pulse communication. A method for producing a sealed battery according to one item.
(29) 前記 (1) 〜 (1 9) のいずれか一項の密閉形電池の複数個で構成した ことを特徴とする組電池。  (29) An assembled battery comprising a plurality of the sealed batteries according to any one of (1) to (19).
(30) 前記組電池を構成する少なくとも 1つの密閉形電池内に、 外部電源によ り交流パルスを通電して、 該電池と該電池と隣り合う電池の端子同士を直にまた は電池間接続部品を介して溶接することを特徴とする前記 (29) の組電池の製 造方法。 '  (30) An AC pulse is applied by an external power source in at least one sealed battery constituting the assembled battery, and the terminals of the battery and the battery adjacent to the battery are connected directly or between the batteries. (29) The method for producing an assembled battery according to (29), wherein welding is performed through parts. '
(3 1) 前記交流パルスを通電したときに、 前記密閉形電池内部の圧力が該電池 の開弁圧を超えないことを特徴とする前記 (30) の組電池の製造方法。  (31) The method for producing an assembled battery according to (30), wherein when the AC pulse is applied, the pressure inside the sealed battery does not exceed the valve opening pressure of the battery.
(32) 前記組電池を溶接する前記交流パルスの通電において、 充電パルス及び 放電パルスの電流値を電池の単位容量当たり、 0. 4〜0. 8 kAZAhとする ことを特徴とする前記 (30) 又は (31) の組電池の製造方法。  (32) In the energization of the AC pulse for welding the assembled battery, the current value of the charge pulse and the discharge pulse is set to 0.4 to 0.8 kAZAh per unit capacity of the battery. Or (31) A method for producing an assembled battery.
(33) 前記組電池を溶接する前記交流パルスの通電において、 充電パルス及び 放電パルスの電流値を前記電池.の端子同士または前記電池の端子と電池間接続部 品の接合箇所の接点 1点あたり、 0. 33 八/1点〜0. 65 kA l点とす ることを特徴とする前記(30)〜(32)のいずれか一項の組電池の製造方法。 (33) In the energization of the AC pulse for welding the assembled battery, the current value of the charge pulse and the discharge pulse is determined between the terminals of the battery or at the contact point of the junction between the battery terminal and the connection part between the batteries. 0.33 8/1 point to 0.65 kAl point, The method for producing an assembled battery according to any one of the above (30) to (32).
(34) 前記組電池を溶接する前記交流パルスの通電において、 充電パルスの通 電時間及び放電パルスの通電時間を 3〜 7ms e cとすることを特徴とする前記(34) In the energization of the AC pulse for welding the assembled battery, the energization time of the charge pulse and the energization time of the discharge pulse are set to 3 to 7 ms ec.
(30) 〜 (33) のいずれか一項の組電池の製造方法。 ( 3 5 ) 前記組電池の溶接接点を溶接する前記交流パルスの通電において、 充電 と放電を 1セットとした交流パルスの通電を 2回〜 6回実施することを特徴とす る前記 (3 0 ) 〜 (3 4 ) のいずれか一項の組電池の製造方法。 (30) The manufacturing method of the assembled battery according to any one of (33). (35) In the energization of the AC pulse for welding the welding contact of the assembled battery, the AC pulse energization with charging and discharging as one set is performed 2 to 6 times. The manufacturing method of the assembled battery as described in any one of (3-4).
( 3 6 ) 前記組電池を構成する少なくとも 1つの密閉形電池と該電池と隣合う電 池の端子同士を電池間接続部品を介して溶接する組電池の製造方法であって、 前 記少なくとも 1つの電池の蓋に電池間接続部品の一端を接合し、 前記電池間接続 部品の他端を該電池と隣り合う電池の端子に当接させ、 少なくとも 1つの密閉形 電池内に通電することにより前記電池間接続部品の他端と隣り合う電池の端子を 溶接することを特徴とする前記 (3 0 ) 〜 (3 5 ) のいずれか一項の組電池の製 造方法。  (36) A method for producing an assembled battery in which at least one sealed battery constituting the assembled battery and terminals of the battery adjacent to the battery are welded to each other through an inter-battery connection component. One end of the inter-battery connection part is joined to one battery lid, the other end of the inter-battery connection part is brought into contact with a terminal of the battery adjacent to the battery, and the current is passed through at least one sealed battery. The battery manufacturing method according to any one of (30) to (35), wherein a battery terminal adjacent to the other end of the inter-battery connection part is welded.
ここで、 「リードの一方の面」、 「リードの他方の面」 とは、 リードの溶接可能 な幅を有する部分を意味するが、 補助リードを介して、 溶接可能な幅を有する部 分が設けられていてもよい。  Here, “one side of the lead” and “the other side of the lead” mean a part having a weldable width of the lead, but the part having a weldable width is provided via the auxiliary lead. It may be provided.
また、 「蓋の内面」、 「上部集電板の上面」 には、 蓋及び上部集電板の平坦面の みではなく、 蓋が、 蓋の内面における平坦部から下方若しくは上方に湾曲又は屈 曲した部分を有する場合、 上部集電板が、 上部集電板の上面における平坦部から 上方若しくは下方に湾曲又は屈曲した部分を有する場合、 その湾曲又は屈曲した 部分の面も含まれる。  In addition, the “inner surface of the lid” and “upper surface of the upper current collector plate” are not limited to the flat surfaces of the lid and upper current collector plate, but the lid is bent or bent downward or upward from the flat portion on the inner surface of the lid. In the case of having a bent portion, when the upper current collector plate has a curved or bent portion upward or downward from the flat portion on the upper surface of the upper current collector plate, the surface of the curved or bent portion is also included.
「蓋の内面における平坦部」、 「上部集電板の上面における平坦部」 とは、 蓋 又は上部集電板が、 複数の平坦部を経て屈曲、 例えば、 階段状に屈曲している場 合には、 蓋については集電板から最も離れた位置にある平坦部、 上部集電板につ いては蓋から最も離れた位置にある平坦部を意味し、 それ以外の平坦部は、 屈曲 部分の一部である。  “The flat part on the inner surface of the lid” and “the flat part on the upper surface of the upper current collector plate” means that the lid or the upper current collector plate is bent through a plurality of flat parts, for example, bent in a step shape. Means the flat part that is farthest from the current collector plate for the lid, and the flat part that is farthest from the lid for the upper current collector plate. Is part of.
なお、 「リング状の主リード」 とは、 リング状リードであって、 蓋と上部集電 板とを補助リードを介して電気的に接続する機能を有するものである。 「補助リ ード」 とは、 リング状リードの端部に複数の突片状又は連続した平板状に形成さ れたものであって、 上部集電板の上下方向の位置のバラツキを吸収するバネ機能 (スプリング機能) を有し、 主リードと上部集電板又は蓋とを電気的に接続する ものであり、 リング状リードと別に作製したものをその端部に溶接したもの、 リ ング状リードと一体成形したものを含む。 The “ring-shaped main lead” is a ring-shaped lead having a function of electrically connecting the lid and the upper current collector through an auxiliary lead. The “auxiliary lead” is formed in the shape of a plurality of protrusions or a continuous flat plate at the end of the ring-shaped lead, and absorbs the variation in the vertical position of the upper current collector plate. It has a spring function (spring function) and electrically connects the main lead to the upper current collector plate or lid, and is manufactured separately from the ring-shaped lead and welded to its end. Including one integrally formed with a ring-shaped lead.
ここで、 「リング状リード」 とは、 リング状の側壁部を有し、 側壁部の上端又 は下端に一方の面又は他方の面を有するものであり、 リングの形状は円形だけで なく、 楕円形、 多角形などの他の形状も含む。  Here, the “ring-shaped lead” has a ring-shaped side wall portion, and has one surface or the other surface at the upper end or the lower end of the side wall portion. The shape of the ring is not only circular, Other shapes such as ellipse and polygon are also included.
また、 「主リード部」 とは、 枠状部と前記枠状部の内周及び外周から下方又は 上方に向けて二重構造の側壁部を有するように形成された二重構造のリードの主 要部であって、 蓋と上部集電板とを補助リード部を介して電気的に接続する機能 を有するものである。 「補助リード部」 とは、 二重構造のリードの二重構造の側 壁部の端部に複数の突片状又は連続した平板状に 成されたものであって、 上部 集電板の上下方向の位置のバラツキを吸収するパネ機能 (スプリング機能) を有 し、 主リード部と上部集電板又は蓋とを電気的に接続するものである。  In addition, the “main lead portion” is a main lead of a double-structured lead formed so as to have a double-structure side wall portion from the inner periphery and outer periphery of the frame-shaped portion to the lower or upper side. The main part has a function of electrically connecting the lid and the upper current collecting plate through the auxiliary lead part. “Auxiliary lead part” means a plurality of protruding pieces or continuous flat plate formed at the end of the double side wall of the double structure lead. It has a panel function (spring function) that absorbs variations in the position of the direction, and electrically connects the main lead and the upper current collector plate or lid.
ここで、 「枠状部」 とは、 内周及び外周を画する 2本の輪郭線によって囲まれ た溶接可能な幅を有する部分であり、 その内周及び外周から下方又は上方に向け て二重構造の側壁部が延びるところの根元の部分である。 発明の効果  Here, the “frame-shaped part” is a part having a weldable width surrounded by two contour lines that define the inner periphery and the outer periphery, and the second part extends downward or upward from the inner periphery and the outer periphery. This is the root portion where the side wall portion of the heavy structure extends. The invention's effect
本発明においては、蓋の内面にリードの一方の面を溶接する第 1の溶接工程と、 上部集電板の上面に前記リードの他方の面を溶接する第 2の溶接工程とを、 この 溶接順序で行うことにより確実で低抵抗な溶接が実現でき、 従来、 特殊な構造で 高価な角形のニッケル水素電池でしか達成し得なかった 1 4 0 O W/ k g以上の 極めて優れた出力密度を、 円筒形電池で達成できる。  In the present invention, the first welding step of welding one surface of the lead to the inner surface of the lid, and the second welding step of welding the other surface of the lead to the upper surface of the upper current collector plate, this welding By carrying out in order, reliable and low resistance welding can be realized, and an extremely high power density of 140 OW / kg or more, which could only be achieved with an expensive prismatic nickel metal hydride battery with a special structure, This can be achieved with a cylindrical battery.
さらに、 前記第 2の溶接工程を、 外部電源により交流パルスを通電して行うこ とによって、 大電流を通電することができ、 上部集電板とリードの溶接接点を多 点で低抵抗な溶接とすることができ、 電池の高率放電特性を向上させることがで きる。 図面の簡単な説明  Furthermore, the second welding process is carried out by applying an AC pulse from an external power source, so that a large current can be applied, and the upper current collector plate and the lead are welded at a low resistance with multiple points. The high rate discharge characteristics of the battery can be improved. Brief Description of Drawings
図 1は、 リング状リードを溶接した密閉形電池の例 (実施例 1 2〜1 9 ) を示 す図である。 図 2は、 リング状の主リ一ド及び補助リードからなるリードを溶接した密閉形 電池の例 (実施例 1、 実施例 9〜1 1 ) を示す図である。 FIG. 1 is a diagram showing an example of a sealed battery welded with a ring-shaped lead (Examples 12 to 19). FIG. 2 is a diagram showing an example of a sealed battery (Example 1, Examples 9 to 11) in which a lead composed of a ring-shaped main lead and an auxiliary lead is welded.
図 3は、 断面が逆 U字状の二重構造の主リ一ド部及び補助リ一ド部を溶接した 密閉形電池の例 (実施例 2 ) を示す図である。 .  FIG. 3 is a diagram showing an example (Example 2) of a sealed battery in which a main lead portion and an auxiliary lead portion having a double structure with an inverted U-shaped cross section are welded. .
図 4は、 断面が U字状の二重構造の主リ一ド部及び補助リ一ド部を溶接した密 閉形電池の例 (比較例 2、 実施例 4 ) を示す図である。  FIG. 4 is a view showing an example of a closed battery (Comparative Example 2, Example 4) in which a main lead portion and an auxiliary lead portion having a U-shaped cross section are welded.
図 5は、 断面が逆 V字状の二重構造の主リ一ド部及び補助リ一ド部を溶接した 密閉形電池の例 (実施例 3 ) を示す図である。  FIG. 5 is a diagram showing an example (Example 3) of a sealed battery in which a main lead portion and an auxiliary lead portion having a double structure with an inverted V-shaped cross section are welded.
図 6は、 断面が V字状の二 S構造の主リ―ド部及び補助リ一ド部を溶接した密 閉形電池の例 (比較例 3 ) を示す図である。  FIG. 6 is a diagram showing an example of a sealed battery (Comparative Example 3) in which a main lead portion and an auxiliary lead portion of a 2S structure having a V-shaped cross section are welded.
図 7は、本発明で用いるリング状リ一ド (主リード)の例(実施例 1 2〜 1 9 ) を示す図である。  FIG. 7 is a diagram showing examples of ring-shaped leads (main leads) used in the present invention (Examples 12 to 19).
図 8は、 本発明で用いるリング状リードの例 (実施例 1 2〜1 9 ) を示す斜視 図である。  FIG. 8 is a perspective view showing examples of ring-shaped leads used in the present invention (Examples 12 to 19).
図 9は、 本発明で用いるリング状の主リ一ド及び補助リードからなるリードの 例 (実施例 1、 実施例 9〜1 1 ) を示す平面図及び側面図である。  FIG. 9 is a plan view and a side view showing examples (Example 1, Examples 9 to 11) of a lead comprising a ring-shaped main lead and auxiliary leads used in the present invention.
図 1 0'は、 蓋に溶接されたリング状の主リード及び補助リードからなるリード を集電板に溶接する状態を示す図である。  FIG. 10 ′ is a diagram showing a state in which a lead composed of a ring-shaped main lead and an auxiliary lead welded to the lid is welded to the current collector plate.
図 1 1は、 本発明で用いる断面が逆 U字状の二重構造の主リード部及び補助リ ード部の一例 (実施例 2 ) を示す斜視図 (表側) である。  FIG. 11 is a perspective view (front side) showing an example (Example 2) of a main lead part and an auxiliary lead part having a double structure with an inverted U-shaped cross section used in the present invention.
図 1 2は、 本発明で用いる断面が逆 U字状の二重構造の主リード部及び補助リ ード部の一例 (実施例 2 ) を示す斜視図 (裏側) である。  FIG. 12 is a perspective view (back side) showing an example (Example 2) of a main lead part and an auxiliary lead part having a double structure with an inverted U-shaped cross section used in the present invention.
図 1 3は、 本発明で用いる断面が逆 V字状の二重構造の主リード部及び補助リ —ド部の一例 (実施例 3 ) を す斜視図 (表側) である。  FIG. 13 is a perspective view (front side) showing an example (Example 3) of a main lead portion and an auxiliary lead portion having a double structure with an inverted V-shaped cross section used in the present invention.
図 1 4は、 本発明で用いる断面が逆 V字状の二重構造の主リード部及び補助リ —ド部の一例 (実施例 3 ) を示す斜視図 (裏側) である。  FIG. 14 is a perspective view (back side) showing an example (Example 3) of a main lead portion and an auxiliary lead portion having a double structure with an inverted V-shaped cross section used in the present invention.
図 1 5は、 本発明で用いる断面が逆 U字状の二重構造のリードを分割して 8個 のパーツからなるリードとした例 (実施例 6 ) を示す図 (表側) である。  FIG. 15 is a diagram (front side) showing an example (Example 6) in which a double-structured lead having an inverted U-shaped cross section used in the present invention is divided into eight parts.
図 1 6は、 本発明で用いる断面が逆 U字状の二重構造のリードを分割して 8個 のパーツからなるリードとした例 (実施例 6 ) を示す図 (裏側) である。 Figure 16 shows the split lead structure of the U-shaped cross section used in the present invention. It is a figure (back side) which shows the example (Example 6) made into the lead which consists of these parts.
図 1 7は、 図 1 5及び 1 6に示す 8個のパーツからなるリードを蓋に溶接した 状態を示す斜視図 (表側) である。  Fig. 17 is a perspective view (front side) showing a state where the lead consisting of eight parts shown in Figs. 15 and 16 is welded to the lid.
図 1 8は、 図 1 5及び 1 6に示す 8個のパーツからなるリードを蓋に溶接した 状態を示す斜視図 (裏側) である。  FIG. 18 is a perspective view (back side) showing a state where the lead composed of eight parts shown in FIGS. 15 and 16 is welded to the lid.
図 1 9は、 断面が逆 U字状の二重構造のリードの二重構造の側壁部のみを周方 向に間隔をおいて 8個に分断してリードとした例 (実施例 7 ) を示す斜視図 (表 側) である。  Fig. 19 shows an example (Example 7) in which only the double-structure side wall portion of a double-structure lead having an inverted U-shaped cross section is divided into eight at intervals in the circumferential direction. It is a perspective view (front side) shown.
図 2 0は、 断面が逆 U字状の二重構造のリードの二重構造の側壁部のみを周方 向に間隔をおいて 8個に分断してリードとした例 (実施例 7 ) を示す斜視図 (裏 側) である。  Fig. 20 shows an example (Example 7) in which only the double-structure side wall portion of the double-structure lead having an inverted U-shaped cross section is divided into eight at intervals in the circumferential direction. It is a perspective view (back side) shown.
図 2 1は、 図 1 9及び 2 0に示す二重構造の側壁部のみを周方向に間隔をおい て 8個に分断したリードを蓋に溶接した状態を示す斜視図 (裏側) である。 図 2 2は、 断面が逆 U字状の二重構造のリードの二重構造の側壁部に周方向に 間隔をおいてスリットを形成してリードとした例 (実施例 8 ) を示す斜視図であ る。  FIG. 21 is a perspective view (back side) showing a state in which only the side wall portion of the double structure shown in FIGS. 19 and 20 is welded to the lid, which is divided into eight pieces at intervals in the circumferential direction. Fig. 22 is a perspective view showing an example (Example 8) in which a slit is formed in the side wall portion of a double structure lead having a reverse U-shaped cross section at intervals in the circumferential direction. It is.
図 2 3は、 断面が逆 U字状の二重構造のリードの補助リード部のみに周方向に 間隔をおいてスリットを形成してリードとした例を示す斜視図である。  FIG. 23 is a perspective view showing an example in which a lead is formed by forming a slit in the circumferential direction only in the auxiliary lead portion of a double-structure lead having an inverted U-shaped cross section.
図 2 4は、 断面が逆 U字状の二重構造のリ―ドに蛇腹様加工を施してリードと した例 (実施例 5 ) を示す斜視図 (表側) である。  FIG. 24 is a perspective view (front side) showing an example (Example 5) in which a lead having a double structure with an inverted U-shaped cross section is subjected to a bellows-like process.
図 2 5は、 断面が逆 U字状の二重構造のリ一ドに蛇腹様加工を施してリードと した例 (実施例 5 ) を示す斜視図 (裏側) である。  FIG. 25 is a perspective view (back side) showing an example (Example 5) in which a lead having a reverse structure with an inverted U-shaped cross section is subjected to bellows-like processing.
図 2 6は、 蓋に溶接された断面が逆 U字状の二重構造の主リード部及び補助リ —ド部からなるリードを上部集霉板に溶接するに際して、高さ方向の位置ずれ (極 群の高さが標準的な場合) を補助リード部の突片で吸収する例を示す図である。 図 2 7は、 蓋に溶接された断面が逆 U字状の二重構造の主リード部及び補助リ ード部からなるリードを上部集電板に溶接するに際して、高さ方向の位置ずれ (極 群の高さが低い場合) を補助リード部の突片で吸収する例を示す図である。 図 2 8は、 蓋に溶接された断面が逆 U字状の二重構造の主リード部及び補助リ ード部からなるリードを上部集電板に溶接するに際して、高さ方向の位置ずれ (極 群の高さが高い場合) を補助リード部の突片で吸収する例を示す図である。 図 2 9は、 蓋に溶接された断面が逆 U字状の二重構造の主リード部 (図 1 9の もの) 及び補助リード部からなるリードを上部集電板に溶接するに際して、 高さ 方向の位置ずれを主リード部の開きと補助リード部の湾曲で吸収する例を示す図 である。 Figure 26 shows the displacement in the height direction when welding the lead consisting of the main lead part and auxiliary lead part of the double structure with an inverted U-shaped cross section welded to the lid to the upper collector plate ( FIG. 6 is a diagram showing an example in which the height of the pole group is absorbed by the protrusion of the auxiliary lead portion. Figure 27 shows the displacement in the height direction when welding the lead consisting of the main lead and auxiliary lead with a double U-shaped cross section welded to the lid to the upper current collector plate ( FIG. 6 is a diagram illustrating an example in which the height of the pole group is absorbed by the protrusion of the auxiliary lead portion. Figure 28 shows the main lead part and auxiliary lid with a double structure with an inverted U-shaped cross section welded to the lid. FIG. 6 is a diagram showing an example in which a position shift in the height direction (when the height of the pole group is high) is absorbed by a protrusion of an auxiliary lead portion when a lead consisting of a lead portion is welded to an upper current collector plate. Fig. 29 shows the height when welding the lead consisting of the main lead part (in Fig. 19) and the auxiliary lead part with the inverted U-shaped cross section welded to the lid to the upper current collector plate. FIG. 5 is a diagram showing an example in which a positional misalignment is absorbed by opening the main lead portion and bending the auxiliary lead portion.
図 3 0は、 補助リードを介してリング状の主リードを溶接した密閉形電池の組 立て図である。  FIG. 30 is an assembly diagram of a sealed battery in which a ring-shaped main lead is welded via an auxiliary lead.
図 3 1は、 蓋に溶接された断面が逆 U字状の二重構造の主リード及び補助リー ドからなるリードを上部集電板に溶接した密閉形電池の例 (実施例 2 ) を示す図 である。  Fig. 31 shows an example of a sealed battery (Example 2) in which a lead consisting of a main lead and an auxiliary lead having a reverse U-shaped cross section welded to the lid is welded to the upper current collector plate. It is a figure.
図 3 2は、 本発明で用いる集電板の例 (実施例 1等) を示す図である。  FIG. 32 is a diagram showing an example of the current collector plate used in the present invention (Example 1).
図 3 3は、 上部集電板 (正極集電板) におけるリードの溶接点 (1 6点) の例 (実施例 1 ) を示す図である。  FIG. 33 shows an example (Example 1) of lead welding points (16 points) on the upper current collector (positive current collector).
図 3 4は、 上部集電板 (正極集電板) における補助リードの溶接点 (1 6点) の例 (実施例 2等) を示す図である。  FIG. 34 is a diagram showing an example of the auxiliary lead welding point (16 points) on the upper current collecting plate (positive current collecting plate) (Example 2).
図 3 5は、 上部集電板が平坦部から上方に湾曲又は屈曲した部分を有する場合 の、 溶接点間のリードの長さ及び上部集電板の湾曲又は屈曲部分の長さと、 蓋と 上部集電板の平坦部の間隔との関係を示す図である。  Figure 35 shows the length of the lead between the weld points and the length of the curved or bent portion of the upper current collector plate, the lid and the upper portion when the upper current collector plate has a curved or bent portion upward from the flat portion. It is a figure which shows the relationship with the space | interval of the flat part of a current collecting plate.
図 3 6は、 蓋が平坦部から下方に湾曲又は屈曲した部分を有する場合の、 溶接 点間のリードの長さ及び蓋の湾曲又は屈曲部分の長さと、 蓋の平坦部と上部集電 板の間隔との関係を示す図である。  Fig. 36 shows the length of the lead between the welding points and the length of the curved or bent part of the lid, the flat part of the lid and the upper current collector when the lid has a curved or bent part downward from the flat part. It is a figure which shows the relationship with the space | interval.
図 3 7は、 集電体と集電リードを同一厚みで伸長させ一体成形した従来の集電 構造の一例を示す斜視図である。  FIG. 37 is a perspective view showing an example of a conventional current collecting structure in which a current collector and a current collecting lead are elongated to have the same thickness and are integrally formed.
図 3 8は、 図 3 7の集電リードが封口体に溶接されて完成した従来の密閉形電 池を示す断面図である。  FIG. 38 is a cross-sectional view showing a conventional sealed battery completed by welding the current collecting lead of FIG. 37 to a sealing body.
図 3 9は、 従来の打ち抜き加工により一体形成された集電体を装着したニッケ ルー力ドミゥム電池の要部を示す斜視図である。  FIG. 39 is a perspective view showing a main part of a nickel-force Dome battery equipped with a current collector integrally formed by conventional punching.
図 4 0は、 従来の打ち抜き加工により一体形成された集電体を示す平面図及び 断面図である。 ' FIG. 40 is a plan view showing a current collector integrally formed by conventional punching and It is sectional drawing. '
図 4 1は、 電極体を電池ケースに挿入して図 4 0の集電体を介して封口体と溶 接するときの状態を示す断面図である。  FIG. 41 is a cross-sectional view showing a state where the electrode body is inserted into the battery case and welded to the sealing body through the current collector of FIG.
図 4 2は、 従来の円筒状のリードを正極集電体に溶接したときの状態を示す断 面図である。  FIG. 42 is a cross-sectional view showing a state when a conventional cylindrical lead is welded to the positive electrode current collector.
図 4 3は、 従来の鼓状筒体から構成されるリード部を示す平面図、 側面図及び 断面図である。  FIG. 43 is a plan view, a side view, and a cross-sectional view showing a lead portion composed of a conventional drum-shaped cylindrical body.
図 4 4は、 電極体を電池ケースに収納して図 4 3のリード部を介して封口体と 溶接するときの状態を示す断面図である。  FIG. 44 is a cross-sectional view showing a state where the electrode body is housed in the battery case and welded to the sealing body via the lead portion of FIG.
図 4 5は、 従来のリポン状リード板を蓋及び上部集電板に溶接した密閉形電池 を示す断面図である。  FIG. 45 is a cross-sectional view showing a sealed battery in which a conventional lead-shaped lead plate is welded to a lid and an upper current collector plate.
図 4 6は、 従来の上部集電板及びリポン状リード板を示す概略図である。 図 4 7は、 単電池の放電曲線を示す図である。  FIG. 46 is a schematic diagram showing a conventional upper current collecting plate and a reponted lead plate. Fig. 47 shows the discharge curve of the unit cell.
図 4 8は、 密閉形電池の蓋の外面に電池間接続部品 (リング状リード) を接合 する方法を示す図である。  Fig. 48 is a diagram showing a method of joining the inter-battery connection parts (ring-shaped leads) to the outer surface of the lid of the sealed battery.
図 4 9は、 本発明に係る電池間接続部品 (リング状リード) を用いた組電池の 製造方法を説明する図である。  FIG. 49 is a diagram for explaining a method of manufacturing an assembled battery using the inter-battery connection component (ring-shaped lead) according to the present invention.
図 5 0は、 本発明に係る電池間接続部品 (断面が V字状の二重構造のリード) を用いた組電池の概略図である。  FIG. 50 is a schematic view of an assembled battery using the inter-battery connection component (a double-structure lead having a V-shaped cross section) according to the present invention.
図 5 1は、 従来の組電池のはかま式接続リードによるセル間接続構造を示す図 である。  Fig. 51 is a diagram showing a cell-to-cell connection structure using a hook-type connection lead of a conventional assembled battery.
図 5 2は、 6セル直列接続の組電池の放電曲線を示す図である。  FIG. 52 is a diagram showing a discharge curve of a battery pack having 6 cells connected in series.
図 5 3は、 内部抵抗と出力密度の関係を示す図である。 符号の説明  Figure 53 shows the relationship between internal resistance and output density. Explanation of symbols
2 上部集電板 (正極集電板) 2 Upper current collector (positive current collector)
2一 1 上部集電板におけるリ一ドの溶接点  2 1 1 Lead weld point on upper current collector
2 - 2 上部集電板におけるスリッ卜 2-2 Slip on the upper current collector
2 - 3 上部集電板における下駄 (電極へのかみ込み部) 12 リポン状リード板 2-3 Clogs in the upper current collector plate 12 Ripon-shaped lead plate
13 リポン状リード板と蓋との溶接接点  13 Welding contacts between the lead plate and lid
20 リング状リード (主リ一ド) 20 Ring-shaped lead (main lead)
20 a, 20 b リング状リードにおける突起  20 a, 20 b Projection on ring lead
30 リング状リード 20の補助リード 30 Ring lead 20 Auxiliary lead
30- 1 リング状リード 20の補助リードにおける突起  30- 1 Ring lead 20 Protrusion on auxiliary lead 20
30— 2 リング状リード 20の補助リードにおける突片  30— 2 Ring-shaped lead 20 Projection piece on auxiliary lead
40 断面が逆 V字状 (V字状) 又は逆 U字状 (U字状) の二重構造のリード 41 二重構造のリード 40の枠状部  40 Double-structured lead with a reverse V-shaped (V-shaped) or reverse U-shaped (U-shaped) 41 Double-structured lead 40 frame
41 - 1 二重構造のリードの枠状部 41の内周  41-1 Inner circumference of double-structured lead frame 41
41-2 二重構造のリ一ドの枠状部 41の外周  41-2 Outer circumference of double-structured lead frame 41
41 a 二重構造のリード枠状部 41における突起  41 a Projection in the lead frame 41 with a double structure
42, 43 二重構造のリード 40の二重構造の側壁部  42, 43 Double structure lead 40 Double structure side wall
42- 1, 43- 1 二重構造のリ一ド 40の二重構造の側壁部に形成されたス リッ卜  42- 1, 43- 1 Double-structured lead Slot formed on 40 double-structure side walls
44 二重構造のリード 40の補助リ一ド部  44 Double lead lead 40 auxiliary lead section
44 a ' 二重構造のリ一ドの補助リード部 44における突起  44 a 'Projection in the auxiliary lead 44 of the lead with double structure
45 断面が逆 U字状の二重構造のリ一ドを分割した 8個のパーツ 45 Eight parts divided from a U-shaped double-structured lead
46 二重構造のリ一ドを分割した 8個のパーツ 45の枠状部 46 Eight parts divided into double structure leads 45 Frames
46 a 二重構造のリードを分割した 8個のパーツの枠状部 46における突起 46 a Protrusion in the frame-shaped part 46 of 8 parts divided from the double lead
47, 48 二重構造のリ一ドを分割した 8個のパーツ 45の二重構造の側壁部47, 48 Eight parts divided double structure lead 45 side wall part of double structure
50 蓋 50 lids
51 キヤップ端部に対応する蓋の内面の位置  51 Position of the inner surface of the lid corresponding to the end of the cap
60 電槽  60 battery case
70 極群  70 pole group
80 キャップ  80 cap
90 弁体  90 Disc
100 下部集電板 (負極集電板)  100 Lower collector plate (Negative electrode collector plate)
110 電池間接続部品 (リング状リードと同じもの) 1 1 1 電池間接続部品と 1個目の電池の蓋の外面との溶接接点 110 Battery connection parts (same as ring lead) 1 1 1 Welding contacts between battery connection parts and outer surface of the first battery lid
1 1 2 電池間接続部品と 2個目の電池の電槽底との溶接接点  1 1 2 Welding contact between battery connection parts and battery case bottom of second battery
1 1 0 ' 電池間接続部品 (断面が V字状の二重構造のリードと同じもの) 1 20 電池間接続部品 (はかま式接続リード) 発明を実施するための最良の形態  1 1 0 'Battery connection parts (same as double-structured lead with V-shaped cross section) 1 20 Battery connection parts (Hamabama type connection leads) BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 密閉形電池の抵抗成分解析を行うことによって、 密閉形電池内 部の抵抗の大きな部分をリードの抵抗が占めることを確認した。 そこで、 本発明 者らは、 リードの溶接点抵抗を低減させるために、 蓋と上部集電板とを接続する リードの距離を短縮すべく検討した結果、 図 42、 43に示すような構造のリー ドと比較して、 リードの溶接点距離が短いリードを用い、 前記蓋の内面に前記リ ードの一方の面を溶接する第 1の溶接工程と、 前記上部集電板の上面に前記リー ドの他方の面を溶接する第 2の溶接工程とを、 ζの溶接順序で行うことによって、 極めて低い抵抗で蓋と上部集電板との接続が可能となることを見いだした。  The present inventors have confirmed that the resistance of the lead occupies a large portion of the internal resistance of the sealed battery by analyzing the resistance component of the sealed battery. Therefore, the present inventors have studied to shorten the distance of the lead connecting the lid and the upper current collector plate in order to reduce the welding point resistance of the lead, and as a result, the structure as shown in FIGS. A lead having a shorter welding point distance than the lead, and a first welding step of welding one surface of the lead to the inner surface of the lid; and the upper surface of the upper current collector plate It was found that the lid and the upper current collector can be connected with extremely low resistance by performing the second welding process of welding the other surface of the lead in the welding sequence of ζ.
図 1〜図 6に示すように、 蓋(50) の内面におけるリード (主リード部) (2 0)、 (40) 又は補助リ一ド部 (44) の溶接点から、 該溶接点に最も近い上 部集電板'(2) の上面における補助リード部 (30)、 (44) 又は主リード部 (20)、 (40) の溶接点までのリードの長さ (L 1) が、 蓋 (50) の内面 におけるリード (20)、 (40) (44) の溶接点から上部集電板 (2) の上面 に至る最短距離 (X I) の 1〜2. 1倍であることが好ましい。 この L 1/X 1 比を小さくすることによって、 内部抵抗を小さく、 出力密度を大きくすることが できる。 1ノ 1比が1. 7以下であることがより好ましい。  As shown in Fig. 1 to Fig. 6, from the welding point of the lead (main lead) (20), (40) or auxiliary lead (44) on the inner surface of the lid (50), The length of the lead (L 1) up to the weld point of the auxiliary lead (30), (44) or main lead (20), (40) on the upper surface of the upper current collector plate (2) is It is preferably 1 to 2.1 times the shortest distance (XI) from the welding point of the lead (20), (40), (44) to the upper surface of the upper current collector (2) on the inner surface of (50). By reducing this L 1 / X 1 ratio, the internal resistance can be reduced and the output density can be increased. The 1-to-1 ratio is more preferably 1.7 or less.
図 7〜 1 0に示すようなリング状リード (20)、 図 1 1〜 29に示すような 枠状部と前記枠状部の内周及び外周から下方若しくは上方に向けて延びた二重構 造の側壁部を有する二重構造のリード (40)、 それを分割した二重構造のリー ド (45) を用いることによって、 し 1 1比を 1〜2. 1倍とすることがで さる。  A ring-shaped lead (20) as shown in FIGS. 7 to 10 and a frame-like portion as shown in FIGS. 11 to 29 and a double structure extending downward or upward from the inner periphery and outer periphery of the frame-like portion. By using a double-structured lead (40) with a built-in side wall and a double-structured lead (45) divided from it, the 1 1 ratio can be increased to 1 to 2.1 times. .
また、 図 35に示すように、 上部集電板 (2) が、 上部集電板 (2) の上面に おける平坦部から上方に湾曲又は屈曲した部分を有する場合には、 上記 1/X 1比の代わりに、 蓋 (50) の内面におけるリード (40) の溶接点から該溶接 点に最も近い上部集電板 (2) の湾曲又は屈曲部分におけるリードの溶接点 (2 -1) までのリードの長さ (L 1) と、 上部集電板 (2) の湾曲又は屈曲部分に おけるリードの補助リード部 (44) の溶接点 (2— 1) から上部集電板 (2) の平坦部に至る上部集電板 (2) の湾曲又は屈曲部分の長さ (L 2) の合計 (図 35の破線の長さ) 力 蓋 (50) と上部集電板 (2) の平坦部の間隔 (X2) の 1〜2. 1倍であるようにすることが好ましい。 この (L 1 +L 2) /X2比 を小さくすることによって、 内部抵抗を小さく、 出力密度を大きくすることがで きる。 ' In addition, as shown in FIG. 35, when the upper current collector (2) has a curved or bent portion upward from a flat portion on the upper surface of the upper current collector (2), the above 1 / X Instead of 1 ratio, from the welding point of the lead (40) on the inner surface of the lid (50) to the welding point (2 -1) of the lead in the curved or bent part of the upper current collector plate (2) closest to the welding point Lead length (L 1) and the welding point (2-1) of the auxiliary lead (44) of the lead at the curved or bent part of the upper current collector (2) to the upper current collector (2) The sum of the length (L 2) of the curved or bent part of the upper current collector plate (2) that reaches the flat part (length of the broken line in Fig. 35) Force Flat part of the lid (50) and upper current collector plate (2) The interval (X2) is preferably 1 to 2.1 times. By reducing this (L 1 + L 2) / X2 ratio, the internal resistance can be reduced and the output density can be increased. '
図 36に示すように、 蓋 (50) が、 蓋 (50) の内面における平坦部から下 方に湾曲又は屈曲した部分を有する場合には、 蓋 (50) の湾曲又は屈曲部分に おけるリード (40) の溶接点から該溶接点に最も近い上部集電板 (2) の上面 におけるリードの補助リード部 (44) の溶接点 (2— 1) までのリードの長さ (L 1) と、 蓋 (50) の湾曲又は屈曲部分におけるリード (40) の溶接点か ら蓋 (50) の平坦部に至る蓋 (50) の湾曲又は屈曲部分の長さ (L 3) の合 計 (図 36の破線の長さ) が、 蓋(50) の平坦部と上部集電板(2) の間隔 (X 3) の 1 2. 1倍であるようにすることが好ましい。 この (L 1+L 3) /X 3比を小さくすることによって、 内部抵抗を小さく、 出力密度を大きくすること ができる。  As shown in FIG. 36, when the lid (50) has a curved or bent portion from the flat portion on the inner surface of the lid (50), the lead (50) on the curved or bent portion of the lid (50) 40) to the welding point (2-1) of the lead auxiliary lead (44) on the upper surface of the upper current collector plate (2) closest to the welding point (L-1), The total length of the curved or bent part (L3) of the lid (50) from the weld point of the lead (40) to the flat part of the lid (50) at the curved or bent part of the lid (50) (Fig. 36 It is preferable that the length of the broken line is 12.1 times the distance (X 3) between the flat part of the lid (50) and the upper current collector (2). By reducing the (L 1 + L 3) / X 3 ratio, the internal resistance can be reduced and the output density can be increased.
さらに、 上部集電板 (2) が、 上部集電板 (2) の上面における平坦部から上 方に湾曲又は屈曲した部分を有し、 かつ、 蓋 (50) が、 蓋 (50) の内面にお ける平坦部から下方に湾曲又は屈曲した部分を有する場合にも、 同様にすること によって、 内部抵抗を小さく、 出力密度を大きくすることができる。  Further, the upper current collector (2) has a portion curved or bent upward from a flat portion on the upper surface of the upper current collector (2), and the lid (50) is an inner surface of the lid (50). Even in the case of having a bent or bent portion from the flat portion to the lower portion, the internal resistance can be reduced and the output density can be increased by performing the same.
図 1、 7及び 8に示すような.リング状のリード (20) を用い、 蓋 (50) の 内面に前記リング状のリード (20)の一方の面を溶接した後、上部集電板(2) の上面にリング状のリード (20) の他方の面を溶接することによって、 リード と蓋の溶接点及びリ一ドと上部集電板の溶接点間の距離を短くすることができ、 リ一ドを低抵抗化できるばかりでなく、 リードと蓋及びリ一ドと上部集電板の溶 接点数を多点にすることができ、 蓋と上部集電板との溶接抵抗を低減でき、 電池 の高率放電特性を向上させることができる。 Using a ring-shaped lead (20) as shown in Figs. 1, 7 and 8, after welding one surface of the ring-shaped lead (20) to the inner surface of the lid (50), By welding the other surface of the ring-shaped lead (20) to the upper surface of 2), the distance between the weld point of the lead and the lid and the weld point of the lead and the upper current collector plate can be shortened. Not only can the resistance of the lead be reduced, but also the number of welds between the lead and the lid and the lead and the upper current collector can be increased to reduce the welding resistance between the lid and the upper current collector. The battery The high rate discharge characteristics can be improved.
また、 図 2、 9及び 10に示すように、 補助リード (30) を用いることによ つて、 極めて安定した接続の再現性が得られることを見いだした。 このため、 前 記リードとしてリング状の主リード (20) 及び補助リード (30) からなるも のを用い、 蓋 (50) の内面に主リード (20) の一方の面を溶接した後、 上部 集電板 (2) の上面に主リード (20) の他方の面を補助リード (30) を介し て溶接することによって、 蓋と上部集電板との高さばらつきを補助リードで吸収 して確実な溶接を実現できる。  In addition, as shown in Figs. 2, 9, and 10, we found that the use of the auxiliary lead (30) provided extremely stable connection reproducibility. For this reason, a ring-shaped main lead (20) and auxiliary lead (30) are used as the lead, and one side of the main lead (20) is welded to the inner surface of the lid (50). By welding the other surface of the main lead (20) to the upper surface of the current collector plate (2) via the auxiliary lead (30), the height variation between the lid and the upper current collector plate is absorbed by the auxiliary lead. Reliable welding can be realized.
補助リード (30) と主リード (20) は、 別々に作製したものを溶接して一 体としたものであっても、 一体成形により構成されたものであってもよい。 さらに、 図 1 1〜14に示すように、 前記リードとして枠状部 (41) と枠状 部の内周 (41— 1) 及び外周 (41— 2) から下方に向けて二重構造の側壁部 (42)及び(43) を有する二重構造のリード (40) を用いることによって、 1枚の板からの成形で安価なリードを得ることができ、 蓋 (50) の内面にリー ドの枠状部 (41) を溶接した後、 上部集電板 (2) の上面にリードの二重構造 の側壁部 (42) 及び (43) の端部を溶接するか、 蓋 (50) の内面にリード の二重構造の側壁部(42) 及び(43) の端部を溶接した後、 上部集電板(2) の上面にリードの枠状部 (41) を溶接することによって、 低抵抗な溶接をする ことができる。  The auxiliary lead (30) and the main lead (20) may be made by welding separately produced ones or may be constituted by integral molding. Further, as shown in FIGS. 11 to 14, as the lead, the frame-shaped portion (41) and the side wall of the double structure downward from the inner periphery (41-1) and outer periphery (41-2) of the frame-shaped portion By using the double-structured lead (40) having the parts (42) and (43), an inexpensive lead can be obtained by molding from a single plate, and the lead (50) is provided on the inner surface of the lid (50). After welding the frame (41), weld the end of the double side wall (42) and (43) on the upper surface of the upper current collector (2) or the inner surface of the lid (50). After welding the ends of the double side walls (42) and (43) of the lead to the top, the lead frame (41) is welded to the upper surface of the upper current collector plate (2). Can be easily welded.
二重構造のリードは、 図 1 1及び 12に示すように、 枠状部 (41) が U字の 2つの折り部分及び底辺に対応する断面が逆 U字状であるか、 又は、 図 13及び 14に示すように、 枠状部 (41) が V字の折り部分に対応する断面が逆 V字状 であることが好ましい。なお、断面が逆 V字状又は V字状の二重構造のリードも、 枠状部 (41) である V字の折り部分は溶接可能な幅を有するものであるが、 図 13及び 14と図 11及び 12とを比較すると明らかなように、 断面が逆 U字状 又は U字状の二重構造のリードと比べて枠状部 (41) の幅が狭く、 また、 二重 構造の側壁部 (42) 及び (43) が、 枠状部の内周 (41— 1) 及び外周 (4 1 - 2) から斜めに下方又は上方に向けて延びている点で、 垂直に下方又は上方 に向けて延びている断面が逆 U字状又は U字状の二重構造のリードと異なる。 また、 前記リードとして主リード部の二重構造の側壁部 (42) 及び (43) の端部には、 それぞれ、 複数の突片状の補助リード部 (44) が形成されている ものを用い、 上部集電板 (2) の上面に主リード部の二重構造の側壁部 (42) 及び (43) の端部を補助リード部 (44) を介して溶接することによって、 蓋 と上部集電板の高さばらつきを吸収し、 低抵抗で確実な溶接を実現できる。 複数 の突片状の補助リード部 (44) の代わりに、 連続した平板状 (リング状) の補 助リード部を用いることもできる。 As shown in FIGS. 11 and 12, the double-structured lead has an inverted U-shaped cross section corresponding to the two folded portions and the bottom of the U-shaped frame (41), or FIG. 14 and 14, it is preferable that the cross section of the frame-like portion (41) corresponding to the V-shaped folded portion is an inverted V-shape. Note that the V-shaped or V-shaped lead having a reverse V-shaped cross-section has a weldable width at the V-shaped folded portion, which is the frame-shaped part (41). As is clear from comparison with FIGS. 11 and 12, the width of the frame-shaped part (41) is narrower than that of the double-structured lead having a reverse U-shaped or U-shaped cross section, and the double-structured side wall. The parts (42) and (43) extend vertically downward or upward from the inner periphery (41-1) and outer periphery (41-2) of the frame-shaped part diagonally downward or upward. The cross-section that extends toward the lead is different from the reverse U-shaped or U-shaped double structure lead. In addition, as the lead, a structure in which a plurality of projecting auxiliary lead portions (44) are formed at the end portions of the double-structure side wall portions (42) and (43) of the main lead portion is used. The end of the double-structure side wall (42) and (43) of the main lead portion is welded to the upper surface of the upper current collector plate (2) via the auxiliary lead portion (44). It absorbs the variation in height of the electric plate and realizes reliable welding with low resistance. Instead of a plurality of protruding piece-shaped auxiliary lead portions (44), a continuous flat plate-shaped (ring-shaped) auxiliary lead portion can also be used.
リードの枠状部 (41) の形状は、 内周 (41— 1) 及び外周 (41一 2) を 円形、 楕円形、 多角形とすることができるが、 成形の容易さ、 溶接点を多数設置 することの容易さ等の面からみて、 内周 (41— 1) 及び外周 (41— 2) は図 11〜14に示すようなほぼ円形が好ましい。  The shape of the lead frame (41) can be round, oval, or polygonal on the inner circumference (41-1) and outer circumference (41-12). From the standpoint of ease of installation, the inner circumference (41-1) and outer circumference (41-2) are preferably substantially circular as shown in FIGS.
図 15〜18に示すように、 二重構造のリードの枠状部 (41) 及び二重構造 の側壁部 (42)、 (43) を周方向に間隔をおいて複数、 例えば 8個のパーツ (45) に分割して、 分割された枠状部 (46) 及び分割された二重構造の側壁 部 (47)、 (48) とすることにより、 シリーズでの溶接による無効電流を低 減でき、 分割された枠状部 (46) の溶接を確実で低抵抗なものとすることがで きる。 分割していくつのパーツにするかは、 限定されるものではないが、 4〜1 0に分割することができる。  As shown in FIGS. 15 to 18, a plurality of, for example, eight parts, are provided with a frame structure (41) of the double-structured lead and side walls (42) and (43) of the double-structured, spaced in the circumferential direction. By dividing into (45) and forming the divided frame-shaped part (46) and the divided double-structure side wall parts (47), (48), the reactive current due to welding in the series can be reduced. Therefore, welding of the divided frame-like portion (46) can be made reliable and low resistance. The number of parts to be divided is not limited, but it can be divided into 4 to 10 parts.
図 19〜21に示すように、 リードの抵抗をより小さくするために、 リードの 枠状部 (41) を分割せずに、 二重構造の側壁部 (42)、 (43) のみを、 周 方向に間隔をおいて下端から縦方向にスリット加工を施すことにより分断 (図示 の例では 8個) して (47)、 (48) としてもよい。  As shown in Figs. 19-21, in order to reduce the resistance of the lead, without dividing the lead frame (41), only the double side wall (42), (43) (47), (48) may be obtained by dividing (eight in the example shown) by slitting in the vertical direction from the lower end with an interval in the direction.
図 22のように、 リード (40) の二重構造の側壁部 (42)、 (43) に、 周方向に間隔をおいて下端から縦方向にスリット (42— 1)、 (43- 1) を 入れておくか、又は、 図 22及び 23に示すように、連続した平板状(リング状) の補助リード部 (44) に、 周方向に間隔をおいてスリット (44—1) を入れ ておくと、 極群高さがばらついて蓋内面と上部集電板上面との高さがばらついた 場合でも、 図 26〜 29のように高さのばらつきを吸収することができ、 溶接を 確実なものとすることができる。 なお、 スリット (42— 1)、 (43- 1) を 下端から上端まで設けて、 二重構造の側壁部 (42)、 (43) の全部を完全に 分断する代わりに、 スリット (42—;!)、 (43 - 1) を中途まで設けて、 二 重構造の側壁部 (42)、 (43) の一部を分断するようにしてもよい。 As shown in Fig. 22, the side walls (42) and (43) of the double structure of the lead (40) are spaced from each other in the circumferential direction with slits (42-1), (43-1) Or, as shown in Figs. 22 and 23, slits (44-1) are inserted into the continuous flat plate (ring-shaped) auxiliary leads (44) at intervals in the circumferential direction. Even if the height of the pole group varies and the height between the inner surface of the lid and the upper surface of the upper current collector plate varies, the variation in height can be absorbed as shown in Figs. 26 to 29. Can be. Note that the slits (42-1) and (43-1) Instead of completely separating the double side wall (42), (43) from the lower end to the upper end, slits (42— ;!), (43-1) are provided halfway. You may make it partly divide a part of side wall part (42) of a heavy structure (42).
また、 高さのばらつきを吸収する方法として、 図 24及び 25のように、 主リ ード部の二重構造の側壁部 (42)、 (43) を蛇腹様形状 (断面が波形) とし 高さのばらつきを吸収することが可能である。  In addition, as a method of absorbing the height variation, as shown in Figs. 24 and 25, the side wall portions (42) and (43) of the double structure of the main lead are formed into a bellows-like shape (the cross section is corrugated). It is possible to absorb the variation in thickness.
これらの場合、補助リード部(44)の強度が主リード部(蛇腹様形状を含む) の強度を下回ると突片 (44) が湾曲して突起 (44 a) 以外の部分が上部集電 板 (2) と接触してしまうので、 これを防ぐため、 図 19〜21に示すように、 リードの二重構造の側壁部 (42)、 (43) を周方向に分断して (47)、 (4 8) とするか、 図 22に示すように、 リードの二重構造の側壁部 (42)、 (4 3) にスリット (42— 1)、 (43- 1) を入れることが好ましい。  In these cases, when the strength of the auxiliary lead part (44) falls below the strength of the main lead part (including the bellows-like shape), the projecting piece (44) bends and the part other than the protrusion (44 a) is the upper collector plate. In order to prevent this, as shown in Figs. 19-21, the side wall (42), (43) of the double lead structure is divided in the circumferential direction to prevent this (47), (4 8) Or, as shown in FIG. 22, it is preferable to insert slits (42-1) and (43-1) in the side wall portions (42) and (4 3) of the double structure of the lead.
リードの溶接面である枠状部 (41) には、 複数の突起 (41 a) を形成し、 また、複数の突片状の補助リード部(44)及び分割された枠状部(46) には、 それぞれ 1つ若しくは複数の突起 (44 a) 及び (46 a) を形成することによ り、 リードの溶接をプロジェクシヨン溶接とすることができ、 確実で低抵抗なも のとすることができる。  A plurality of protrusions (41 a) are formed on the frame-shaped portion (41), which is the welded surface of the lead, and a plurality of projecting piece-shaped auxiliary lead portions (44) and a divided frame-shaped portion (46) In this case, by forming one or more protrusions (44a) and (46a) respectively, the welding of the lead can be projection welding, and it must be reliable and have low resistance. Can do.
本発明で使用するリードの一例であるリング状リード (主リード) について図 7を用いて説明する。  A ring-shaped lead (main lead) which is an example of the lead used in the present invention will be described with reference to FIG.
図 7において、 (a) は、 リング状リード (20) であって、 厚さ 0. 4〜1. 0mmの N iまたは F eN i (ニッケルメツキ鋼板) (c) をリング状に曲げ加 ェしたものである。 (図の例では、 厚さ 0. 7mmのニッケル板を打ち抜き又は ワイヤカットで加工後に、 リング状に曲げ加工されており、 その直径は約 19m m、 髙さは約 2. 7 mmである.)  In FIG. 7, (a) is a ring-shaped lead (20), and Ni or FeN i (nickel-plated steel plate) (c) with a thickness of 0.4 to 1.0 mm is bent into a ring shape. It is a thing. (In the example in the figure, a nickel plate with a thickness of 0.7 mm is punched or wire-cut and then bent into a ring shape with a diameter of about 19 mm and a length of about 2.7 mm. )
(b) は、 側面図であり、 (d) は図 (c) の 2点鎖線部分の拡大図である。 (a) では、 ほぼ円形のリング状に曲げ加工されているが、 リングの形状は必ず しも円形である必要はなく、 例えば、 楕円形、 多角形など他の形状でも良い。 また、 図 7では、 円形のリングに切れ目 a— 1が存在しているが、 この切れ目 は、 板状の素材を円形に加工したためであって、 切れ目は必ずしも存在しなくて も良い。 (b) is a side view, and (d) is an enlarged view of the chain double-dashed line part of Fig. (c). In (a), the ring is bent into a substantially circular ring shape, but the shape of the ring is not necessarily circular, and may be other shapes such as an ellipse or a polygon. In Fig. 7, there is a cut a-1 in the circular ring, but this cut is because the plate-shaped material was processed into a circle, and the cut does not necessarily exist. Also good.
図 8は、 図 7のリング状リードの斜視図である。  FIG. 8 is a perspective view of the ring-shaped lead of FIG.
また、 図 7及び 8に記載のリング状リードには、 上部及び下部にそれぞれ複数 の突起(2 0 a , 2 0 b )が形成されている。  Also, the ring-shaped lead shown in FIGS. 7 and 8 has a plurality of protrusions (2 0 a, 2 0 b) formed on the upper and lower parts, respectively.
また、 複数の突起はリング状リ一ドの上部と下部とでは異なった形状又は同じ 形状に形成されている。 (図 7 , 8の例では、 長い突起は約 2 . 0 mm、 短い突 起は約 0 . 5 mm)  The plurality of protrusions are formed in different shapes or the same shape in the upper and lower portions of the ring-shaped lead. (In the examples of Figs. 7 and 8, the long protrusion is about 2.0 mm and the short protrusion is about 0.5 mm)
上部の突起の長さは、 0 . 5 mm以上が好ましく、 下部の突起の長さは 1 . 5 mm〜2 . 5 mmが好ましい。  The length of the upper protrusion is preferably 0.5 mm or more, and the length of the lower protrusion is preferably 1.5 mm to 2.5 mm.
しかし、 補助リード部を用いる場合では、 後述の補助リード部で高さのバラッ キを吸収するので、 上部と下部の突起の長さを必ずしも異ならせる必要はない。 また、 図 7, 8のリング状リードに形成されている突起の数は、 上部と下部で 異なった数になっている。 (図の例では、 上部に 4個、 下部に 8個の突起が形成 されている。)  However, when the auxiliary lead portion is used, the height difference is absorbed by the auxiliary lead portion described later, and therefore the lengths of the upper and lower protrusions are not necessarily different. Also, the number of protrusions formed on the ring-shaped leads in Figs. 7 and 8 is different at the top and bottom. (In the example shown in the figure, four protrusions are formed at the top and eight protrusions at the bottom.)
上部の突起の数は、 8個以上が好ましく、 下部の突起の数は上部の突起の数よ り少なくする方が好ましい。  The number of upper protrusions is preferably 8 or more, and the number of lower protrusions is preferably smaller than the number of upper protrusions.
なお、 図 7 , 8のリング状リードに形成されている突起の数は、 上部と下部で 異なった数になっているが、 上部と下部の突起数を同数として、 突起面の面積を 異ならせても良い。  The number of protrusions formed on the ring-shaped leads in Figs. 7 and 8 is different between the upper and lower parts, but the number of protrusions on the upper and lower parts is the same, and the area of the protrusions is different. May be.
リング状リードに形成されている突起の数 (または突起の総面積) は、 上部と 下部で異なった数にする理由は、 リング状リードを蓋部と集電板とに溶接するに 際して、 本発明では先ず盖部にリング状リードの突起の数の多い面を溶接するた めである。  The reason why the number of protrusions (or total area of protrusions) formed on the ring-shaped lead is different between the upper part and the lower part is that when the ring-shaped lead is welded to the lid and the current collector plate In the present invention, first, the surface having a large number of protrusions of the ring-shaped lead is welded to the flange portion.
このように、 リング状リード.の突起の数の多い面を溶接することによって、 リ ング状リードが強固に溶接でき、 リング状リードの他方の面 (突起の数の少ない 面) を集電板に溶接するために電流を流した際に、 先に溶接された部分に溶接電 流が流れることによつて破断することがなくなる。  In this way, by welding the surface of the ring-shaped lead with a large number of protrusions, the ring-shaped lead can be firmly welded, and the other surface of the ring-shaped lead (the surface having a small number of protrusions) is connected to the current collector plate. When an electric current is applied for welding to the metal, no breakage occurs due to the welding current flowing in the previously welded portion.
なお、 先に溶接した部分の破断電流とは、 先に溶接された部品同士を介して、 後で電流を通電する条件 (時間と電流値) にて電流を流し、 時間は同じとして電 流値を上げていき、 溶接された部分の試験通電前後の抵抗が 10%以上増加する 場合の電流値を指す。 Note that the breaking current of the previously welded part means that the current is passed through the previously welded parts under the conditions (time and current value) in which current is passed later, and the time is the same. The current value when the resistance increases before and after the test energization of the welded part increases by 10% or more.
次に、 本発明で使用するリング状リード (主リード) の第 2の要素である補助 リードについて図 9を用いて説明する。  Next, an auxiliary lead that is a second element of the ring-shaped lead (main lead) used in the present invention will be described with reference to FIG.
図 9は、 本発明で使用する補助リードであって、 (a) は平面図、 (b) は側 面図である。  FIG. 9 shows auxiliary leads used in the present invention, where (a) is a plan view and (b) is a side view.
補助リード (30) は、 厚さ 2〜0. 4mmの N iまたは F eN i (ニッ ケルメツキ鋼板) をドーナツ状に打ち抜き加工したもので突片となる部分以外の 内部は中空である。 (図 9の^!では、 厚さ 0. 3mmのニッケル板で、 外径は約 21mm, 内径は約 18 mm) 主リード (20) の一方の面が接続可能な幅を 有する平板のリング形状で、 主リード (20) の内周より内部 (図 9で破線で囲 われた部分) では下部に突片 (30— 2) が形成されて弾力性 (バネ作用) を有 すると共に、 該突片の先端面にはそれぞれ突起 (30— 1) が形成されている。  The auxiliary lead (30) is made by punching out Ni or FeNi (nickel-mesh steel plate) with a thickness of 2 to 0.4 mm into a donut shape, and the inside of the auxiliary lead (30) is hollow. (In Fig. 9 ^ !, a nickel plate with a thickness of 0.3 mm, outer diameter is about 21 mm, inner diameter is about 18 mm.) A flat ring shape with a width that allows connection of one side of the main lead (20) On the inner side of the main lead (20) (the part surrounded by the broken line in Fig. 9), a projecting piece (30-2) is formed in the lower part to provide elasticity (spring action). A protrusion (30-1) is formed on the tip of each piece.
(図 9の 2点鎖線で囲まれた部分の断面拡大図を図 10に示す)  (Fig. 10 shows an enlarged cross-sectional view of the part surrounded by the two-dot chain line in Fig. 9)
本発明で使用するリ一ドの別の例として、 枠状部と前記枠状部の内周及び外周 から下方に向けて延びた二重構造の側壁部を有する断面が逆 V字状又は逆 U字状 の二重構造のリング状リードについて図 1 1及び 12—逆 U、 図 13及び 14— 逆 Vを用いて説.明する。  As another example of the lead used in the present invention, a cross section having a frame-shaped portion and a double-structured side wall portion extending downward from the inner periphery and outer periphery of the frame-shaped portion is inverted V-shaped or inverted. The U-shaped double-structured ring-shaped lead is explained using Figs. 11 and 12—reverse U, and FIGS. 13 and 14—reverse V.
図 1 1及び 12—逆 U、 図 13及び 14 _逆 Vにおいて、 (41)、 (42) 及 び (43) は、 主リード部であって、 厚さ 2〜0. 4mmの N iまたは Fe N i (ニッケルメツキ鋼板)をリング状に打ち抜き、プレス加工したものである。 (図の例では、 厚さ 0. 3mmのニッケル板を打ち抜き又はワイヤカットで加工 後に、 リング状の枠状部 (41) を残して枠状部 (41) の内周 (41— 1) 及 び外周 (41— 2) から下方に.向けて絞り加工又はプレス曲げ加工し、 二重構造 の側壁部(42)及び(43)が形成されており、 その中心の直径は約 19mm、 高さは約 2. 7 mmである。)  Fig. 1 1 and 12—In reverse U, Fig. 13 and 14 _ reverse V, (41), (42) and (43) are the main lead parts with a thickness of 2 to 0.4 mm Ni or Fe N i (nickel plated steel plate) is punched into a ring shape and pressed. (In the example shown in the figure, a 0.3 mm thick nickel plate is punched or processed by wire cutting, leaving the ring-shaped frame (41) and the inner circumference (41-1) of the frame (41). The outer wall (41-2) is drawn or pressed and bent downwards to form double side walls (42) and (43), with a center diameter of about 19mm and height Is about 2.7 mm.)
ここでいう枠状部 (41) とは、 断面が逆 V字状の 2本の主リード部 (42) 及び (43) に囲まれた V字の折り部分、 又は、 断面が逆 U字状の 2本の主リー ド部 (42) 及び (43) に囲まれた U字の 2つの折り部分及び底辺のことであ る。 ' The frame-shaped part (41) here means a V-shaped folded part surrounded by two main lead parts (42) and (43) with an inverted V-shaped section, or an inverted U-shaped section. The two main lead parts (42) and (43) are the two folded parts and the bottom of the U-shape. The '
図では、 内周 (41ー1) 及び外周 (41一 2) が、 ほぼ円形の二重構造のリ ング状にプレス加工されているが、 必ずしも円形である必要はなく、 例えば、 楕 円形、 多角形など他の形状でも良い。  In the figure, the inner circumference (41-1) and outer circumference (41-12) are pressed into a ring shape with a substantially circular double structure, but it is not always necessary to have a circular shape. Other shapes such as a polygon may be used.
また、 図 11~14では、 リング状の二重構造の側壁部 (42) 及び (43) にスリットはないが、 溶接の無効電流を低減するため、 (42) 及び(43) に、 図 22に示すようにスリット (42— 1)、 (43— 1) をいれて、 周方向に分 断しても良い。  In FIGS. 11 to 14, the side wall portions (42) and (43) of the ring-shaped double structure have no slits, but in order to reduce the reactive current of welding, (42) and (43) As shown in Fig. 4, slits (42-1) and (43-1) may be inserted to divide in the circumferential direction.
次に、 本発明で使用する断面が逆 V字状又は逆 U字状の二重構造のリング状リ ードの補助リード部について図 1 1〜14を用いて説明する。  Next, the auxiliary lead portion of the ring-shaped lead having a double structure with an inverted V-shaped or inverted U-shaped cross section used in the present invention will be described with reference to FIGS.
補助リード部 (44) を形成するには、 上記のように、 リング状に打ち抜いた 厚さ 0. 2〜0. 4mmの N iまたは F e N i (ニッケルメツキ鋼板) からプレ ス加工により主リード部 (41)、 (42) 及び (43) を形成する際に、 リン グ状の枠状部 (41) とともに複数の突片状の補助リード部 (44) となる部分 を除いてプレス加工すればよい。  The auxiliary lead (44) is formed by pressing from Ni or Fe Ni (nickel plated steel plate) with a thickness of 0.2 to 0.4mm punched into a ring as described above. When forming the lead parts (41), (42), and (43), press work is performed except for the ring-shaped frame-like part (41) and the part that becomes a plurality of protruding piece-like auxiliary lead parts (44). do it.
図 1 1〜14の主リード部 (二重構造のリング状リード) の枠状部 (41) の 溶接面には、 複数の突起(41 a)が形成されている。  A plurality of protrusions (41a) are formed on the welding surface of the frame-like portion (41) of the main lead portion (double-structure ring-like lead) of FIGS.
突起(41 a)は、 ¾径0. 5〜: 1. 0mm、 高さが 0. 5mm以上であると、 プロジェクション溶接が良好となるために好ましく、 その数は 8点以上が溶接部 抵抗が小さくなるため好ましい。  The protrusion (41a) is preferably a ¾ diameter of 0.5 to 1.0 mm and a height of 0.5 mm or more in order to improve projection welding. It is preferable because it becomes smaller.
また、 補助リード部 (44) の溶接面には、 前述の補助リード部で高さのバラ ツキを吸収するのみならず、 枠状部 (41) の突起(41 a>と同様に、 直径 0. 5〜1. 0mm、 高さが 0. 5 mm以上の突起 (44 a) を形成すると、 プロジ ェクション溶接が良好となるために好ましく、 その数は 8点以上が溶接部抵抗が 小さくなるため好ましい。  In addition, the welding surface of the auxiliary lead portion (44) not only absorbs the height variation by the auxiliary lead portion described above, but also has a diameter of 0 as in the projection (41 a> of the frame-like portion (41). Forming protrusions (44 a) with a height of 5 to 1.0 mm and a height of 0.5 mm or more is preferable for good projection welding, and the number is 8 points or more because the weld resistance becomes small. Is preferred.
図 1 1〜14においては、 主リード部の枠状部 (41) の溶接面に形成されて いる突起(41 a)の数と補助リード部(44)の溶接面に形成されている突起(4 4 a) の数は、 異なった数 (枠状部に 8個、 補助リード部に 16個) になってい る。 主リード部の枠状部 (4 1 ) の突起 C4 1 a )の数は、 4個以上が強度を確実な ものとするために好ましく、 溶接部の抵抗を低減するためには 8個以上がより好 ましく、 枠状部 (4 1 ) から延びた二重構造の側壁部 (4 2 )、 (4 3 ) の端部 に形成されている補助リード部 (4 4 ) の突起 (4 4 a ) の数は、 その 2倍とな る。 In Figs. 1 to 14, the number of protrusions (41a) formed on the welded surface of the frame-like part (41) of the main lead part and the protrusions formed on the welded surface of the auxiliary lead part (44) ( The number of 4 4 a) is different (8 in the frame part and 16 in the auxiliary lead part). The number of protrusions C4 1 a) of the frame-like part (4 1) of the main lead part is preferably 4 or more in order to ensure strength, and 8 or more in order to reduce the resistance of the welded part. More preferably, the protrusions (4 4) of the auxiliary lead portions (4 4) formed at the end portions of the side wall portions (4 2) and (4 3) of the double structure extending from the frame-like portion (4 1) The number of a) is twice that.
なお、 このように突起の数は、 枠状部 (4 1 ) と補助リード部 (4 4 ) で異な つた数になっているが、 点数の少ない枠状部 (4 1 ) を先付けする場合には、 枠 状部(4 1 ) の突起(4 1 a)の溶接部は、 補助リード部(4 4 ) の突起(4 4 a ) の溶接部より溶接面積を大きくして、 枠状部の破断電流を補助リード部の突起の 溶接電流より大きくしておくと、 補助リード部の突起の溶接時に枠状部の溶接部 の破新を防ぐことができるためより好ましい。  In this way, the number of protrusions is different between the frame-shaped part (4 1) and the auxiliary lead part (4 4), but when the frame-shaped part (4 1) with a small number of points is attached in advance, The welded part of the projection (4 1 a) of the frame-shaped part (4 1) has a larger welding area than the welded part of the projection (4 4 a) of the auxiliary lead part (4 4). It is more preferable to set the breaking current to be larger than the welding current of the protrusion of the auxiliary lead portion, since it is possible to prevent breakage of the welded portion of the frame-shaped portion when welding the protrusion of the auxiliary lead portion.
突起の溶接部の総面積を、 主リード部の枠状部と補助リード部で異なった数に する理由は、 リードを蓋と上部集電板とに溶接するに際して、 本発明では先ず枠 状部を溶接することが好ましく、 この場合、 枠状部の突起の溶接面が大きい面を 溶接することによって、 枠状部が強固に溶接でき、 次に補助リード部の面を上部 集電板に溶接するために電流を流した際に、 先に溶接された部分に溶接電流が流 れること'によって破断することがなくなるからである。  The reason why the total area of the welded portion of the protrusion is different between the frame-like portion of the main lead portion and the auxiliary lead portion is that when the lead is welded to the lid and the upper current collector plate, In this case, the frame-shaped portion can be firmly welded by welding the surface where the projections of the frame-shaped portion are large, and then the surface of the auxiliary lead portion is welded to the upper current collector plate. This is because when an electric current is applied, the welding current does not flow through the previously welded portion, so that no fracture occurs.
なお、 先に溶接した部分の破断電流とは、 先に溶接された部品同士を介して、 後で電流を通電する条件 (時間と電流値) にて電流を流し、 時間は同じとして電 流値を上げていき、 溶接された部分の試験通電前後の抵抗が 1 0 %以上増加する 場合の電流値を指す。  Note that the breaking current of the previously welded part means that the current flows through the parts that were previously welded under the conditions (time and current value) in which current is passed later, and the current is assumed to be the same time. The current value when the resistance of the welded part before and after the test energization increases by 10% or more.
本発明における主リード部及び補助リード部を用いた上部集電板と蓋との溶接 の手順を以下に詳細に説明する。  The procedure for welding the upper current collector plate and the lid using the main lead portion and the auxiliary lead portion in the present invention will be described in detail below.
本発明は、 上部集電板と蓋との溶接に主リード部及び補助リード部を使用する と共に、 その溶接の手順と構成に特徴を有している。 以下に記載の手順と構成に よれば、 確実に溶接ができ、 且つ、 電気抵抗を低減できるので好ましい。  The present invention uses the main lead portion and the auxiliary lead portion for welding the upper current collecting plate and the lid, and has a feature in the welding procedure and configuration. The procedure and configuration described below are preferable because welding can be reliably performed and electric resistance can be reduced.
(0 密閉形電池の電槽を閉鎖する蓋の内面側に主リード部の一方の面 (主リー ド部の枠状部) を予め溶接する。 (第 1の溶接工程)  (0 Weld in advance one side of the main lead part (frame part of the main lead part) to the inner side of the lid that closes the battery case of the sealed battery (first welding process)
0 次に、 集電板が電槽の開放端側に位置するように、 上部集電板を接合した 極群を電槽内に収容し、 電解液を注液後、 該極群上に、 補助リード部が上部集電 板に当接するように蓋を載置し、 電槽を気密に密閉した後、 密閉形電池の正負極 両端子間に溶接のための電流を通電することにより、 上部集電板の上面に、 蓋に 溶接済みのリ一ドの補助リ一ド部を溶接する。 (第 2の溶接工程) 0 Next, the upper current collector was joined so that the current collector was located on the open end side of the battery case. After storing the electrode group in the battery case and injecting the electrolyte, a lid is placed on the electrode group so that the auxiliary lead part contacts the upper current collector, and the battery case is hermetically sealed. The auxiliary lead of the lead that has been welded to the lid is welded to the upper surface of the upper current collector plate by passing a current for welding between the positive and negative terminals of the sealed battery. (Second welding process)
第 2の溶接工程では、 密閉化された後、 密閉形電池の正負極両端子間に溶接の ための電流を通電することによって、 溶接が実行されるが、 極群の高さ寸法にば らつきがあっても、 補助リード部に形成されている突片の可撓性によるバネ作用 で、 弾力性が高められ、 高さ方向の位置ずれも吸収し得ることになり、 集電板と 主リード部及び補助リ一ド部との溶接が容易で確実なものとなる。  In the second welding process, after sealing, welding is performed by passing a current for welding between the positive and negative terminals of the sealed battery, but the height of the pole group varies. Even if there is a contact, the spring action due to the flexibility of the protruding piece formed on the auxiliary lead part increases the elasticity and can absorb the displacement in the height direction. Welding with the lead part and the auxiliary lead part is easy and reliable.
また、リードがリング状の主リード及び補助リードからなるものである場合は、 蓋の内面に主リードの一方の面を溶接する第 1の溶接工程の後、 主リードの他方 の面に補助リードを溶接し、 上部集電板の上面に、 蓋に溶接された主リードに溶 接済みの補助リ一ドを溶接する第 2の溶接工程.を行うことが好ましい。  If the lead consists of a ring-shaped main lead and an auxiliary lead, after the first welding process in which one side of the main lead is welded to the inner surface of the lid, the auxiliary lead is attached to the other side of the main lead. It is preferable to perform a second welding step of welding the auxiliary lead welded to the main lead welded to the lid on the upper surface of the upper current collector plate.
なお、 従来の解放状態 (圧縮による高さ調整前) での溶接では、 圧縮の余裕を 有する長さや幅のリードが必要となることから、 好ましくない。  Note that welding in the conventional released state (before adjusting the height by compression) is not preferable because a lead having a length or width having a margin for compression is required.
次に、 主リードが予め溶接された蓋を載せて、 主リードと補助リードを集電体 に溶接するに際して、 高さ方向の位置ずれを吸収する実例を図 10を用いて説明 する。  Next, an example of absorbing the displacement in the height direction when the main lead and the auxiliary lead are welded to the current collector with the lid on which the main lead has been welded in advance will be described with reference to FIG.
図 10では、 集電板 (2) と蓋 (50) とをリング状の主リード (20) 及び 補助リード (30) を介して溶接した部分を拡大して示している。  In FIG. 10, the portion where the current collector plate (2) and the lid (50) are welded via the ring-shaped main lead (20) and the auxiliary lead (30) is shown in an enlarged manner.
図 1 0における (a), (b), (c) は、 極群の高さが高い場合 (a)、 極群の 高さが標準的な場合 (b)、 極群の高さが低い場合 (c) であり、 集電板 2の高 さがずれていることを示している。  (A), (b), and (c) in Fig. 10 show that when the height of the pole group is high (a), when the height of the pole group is standard (b), and the height of the pole group is low In case (c), the height of the current collector plate 2 is shifted.
図示の如く、 集電板 (2) と蓋部 (50) との高さ方向の位置ずれは、 補助リ —ド (30) に形成された突片 (30— 2) のバネ弾力により、 吸収されている ことが理解できる。  As shown in the figure, the positional deviation in the height direction between the current collector plate (2) and the lid (50) is absorbed by the spring elasticity of the projecting piece (30-2) formed on the auxiliary lead (30). I can understand.
なお、 主リード (20) 及び補助リード (30) を蓋部(50) と集電板(2) とに溶接するに際して先ず蓋部 (50) に主リード (20) の突起の数を多くし て溶接することが好ましい。 これは密閉形電池構成上蓋は密閉形電池密閉を維持するために厚い部品を使う ことが一般的であるので、 リードとの溶接時には発熱量を大きくしないと溶接熱 が周囲に逃げて溶接しにくい為大きな電流が必要であり、 溶接後の破断強度が小 さくなりやすいためである。 When welding the main lead (20) and auxiliary lead (30) to the lid (50) and the current collector plate (2), first increase the number of protrusions of the main lead (20) on the lid (50). It is preferable to weld. This is because it is common to use thick parts for the top lid of a sealed battery configuration to maintain hermetic sealing of the sealed battery. Therefore, if the amount of heat generated is not increased when welding with the lead, the welding heat escapes to the surroundings and is difficult to weld. Therefore, a large current is required, and the fracture strength after welding tends to be small.
集電板は蓋よりも薄い部品を使うことが一般的であり、 主リード部との溶接時 には発熱量が小さくても溶接熱が周囲に逃げにくく、 溶接が容易であるため、 通 電電流量を小さく、 通電時間を短くできるため、 補助リードを集電板へ溶接をす る際に第 1回目の溶接部分は強固に溶接されているので、 破断を防止することが できる。 '  In general, the current collector plate is thinner than the lid. When welding to the main lead, even if the amount of heat generated is small, the welding heat does not easily escape to the surroundings and welding is easy. Since the flow rate can be reduced and the energization time can be shortened, when the auxiliary lead is welded to the current collector plate, the first welded portion is firmly welded, so that breakage can be prevented. '
さらに、 図 26〜28を用いて、 断面が逆 U字状の二重構造の主リード部 (4 0) が予め溶接された蓋 (50) を載せて、 主リード部 (40) と補助リード部 (44) を上部集電板 (2) に溶接するに際して、 高さ方向の位置ずれを吸収す る実例を説明する。  Furthermore, referring to FIGS. 26 to 28, the main lead portion (40) and the auxiliary lead are mounted with a lid (50) on which the main lead portion (40) having a reverse U-shaped cross section is welded in advance. An example will be described in which the displacement in the height direction is absorbed when the part (44) is welded to the upper current collector plate (2).
図 26〜28は、 極群の高さが高い場合 (図 28)、 極群の高さが標準的な場 合 (図 26)、 極群の高さが低い場合 (図 27) であり、 上部集電板 (2) の高 さがずれていることを示している。  Figures 26-28 show the case where the height of the pole group is high (Figure 28), the case where the height of the pole group is standard (Figure 26), and the case where the height of the pole group is low (Figure 27). This shows that the height of the upper current collector (2) is shifted.
この図から、 補助リード部の突片 (44) のバネ弾力により、 極群の高さのず れを吸収し、 溶接を確実なものとすることができるのが分かる。 なお、 第 1の溶 接工程において、 二重構造の主リード部 (40) の枠状部 (41) を蓋 (50) の内面に溶接する工程で、 枠状部 (41) に設けた突起 (41 a) に押圧が加わ り、 突起が消失するので、 図には、 枠状部 (41) の突起が記載されていない。 図 29では、 図 19のスリットが形成された逆 U字状の主リード部 (40) を 用いて、 高さのばらつきが主リード部 (40) の開きと補助リード部 (44) の 湾曲で吸収した場合を示してい.る。  From this figure, it can be seen that the spring elasticity of the protrusion (44) of the auxiliary lead part absorbs the deviation of the height of the pole group and ensures welding. In the first welding step, the protrusions provided on the frame-like portion (41) in the step of welding the frame-like portion (41) of the double-structure main lead portion (40) to the inner surface of the lid (50). Since the pressure is applied to (41a) and the protrusion disappears, the protrusion of the frame-like part (41) is not shown in the figure. In Fig. 29, using the inverted U-shaped main lead (40) with slits shown in Fig. 19, the height variation is due to the opening of the main lead (40) and the bending of the auxiliary lead (44). It shows the case of absorption.
図示の如く、上部集電板(2) と蓋(50) との高さ方向の大きな位置ずれは、 主リード部 (40) のスリットと補助リード部の突片 (44) で吸収されている ことが理解できる。 .  As shown in the figure, the large displacement in the height direction between the upper current collector (2) and the lid (50) is absorbed by the slit of the main lead part (40) and the protruding piece (44) of the auxiliary lead part. I understand that. .
また、 前記の本発明の一実施形態によれば、 2回の溶接工程を要するが、 第 1 回目の溶接では蓋とリードを予め溶接しておき、 注液して密閉化した後、 密閉形 電池を介して溶接電流を流すのは第 2回目の溶接時のみであると共に、 図 9〜 2 9に示す如き構成の主リ一ド部及び補助リ一ド部を使用することが可能になるの で、 極めて低い抵抗の集電構造を備えた密閉形電池を実現することができるので 好ましい。 In addition, according to the embodiment of the present invention described above, two welding steps are required. In the first welding, the lid and the lead are welded in advance, injected, sealed, and sealed. The welding current flows through the battery only during the second welding, and it is possible to use the main lead portion and the auxiliary lead portion configured as shown in FIGS. 9 to 29. Therefore, it is preferable because a sealed battery having a current collecting structure with extremely low resistance can be realized.
なお、 密閉形電池内部の集電板と主リード部との溶接接点は、 酸化被膜などに 覆われると溶接しにくくなるため、 酸化しにくい金属そのものやこれらの金属の メッキなどによる被膜を形成することが好ましい。 ニッケルはアル力リ電解液中 で腐食しにくく、 優れた溶接性を有しているため、 電流経路の各部品接点は金属 ニッケルであることが好ましい。  The weld contacts between the current collector plate inside the sealed battery and the main lead are difficult to weld when covered with an oxide film, etc., so a metal film that is difficult to oxidize or a film of such metal plating is formed. It is preferable. Since nickel is not easily corroded in an alkaline electrolyte and has excellent weldability, each component contact in the current path is preferably metallic nickel.
また、 注液後の充電や放電を行うと、 その充放電の条件によっては、 正極電位 によつて正極集電板ゃリ一ドの表面が酸化される場合があり溶接が安定しないた め、 注液後でかつ正極の電位変動を伴う初充電前であることが好ましい。  Also, when charging or discharging after injection, depending on the charging and discharging conditions, the surface of the positive electrode current collector plate may be oxidized by the positive electrode potential, so welding is not stable. It is preferable to be after the injection and before the initial charge accompanied by the potential fluctuation of the positive electrode.
図 30に本発明の 1実施例である補助リードを介してリング状の主リードを溶 接した密閉形電池の組立て図を示す。  FIG. 30 shows an assembly diagram of a sealed battery in which a ring-shaped main lead is welded via an auxiliary lead according to an embodiment of the present invention.
図 30において、 (a) は蓋 (50) の構造の 1例を示す断面図であって、 素 蓋の中央上部には安全弁ゴム (弁体) (90) を介してキャップ (80) が被せ られている。  In FIG. 30, (a) is a cross-sectional view showing an example of the structure of the lid (50), and a cap (80) is covered with a safety valve rubber (valve element) (90) on the center upper part of the element lid. It has been.
(b) は、 蓋部 (50) にリング端子 (主リード) (20) が予め溶接された 状態を示している。  (b) shows a state in which the ring terminal (main lead) (20) is pre-welded to the lid (50).
また、 (c) は、 (b) の蓋部 (50) にリング端子 (20) に補助リード (3 0) が予め溶接された状態を示している。  (C) shows a state in which the auxiliary lead (30) is pre-welded to the ring terminal (20) to the lid portion (50) of (b).
さらに、 (d) は、 (c) の蓋部 (50) に溶接済みのリング端子 (20) を 補助リード (30) を介して上部集電板 (2) に溶接した状態を示している。  Further, (d) shows a state in which the ring terminal (20) welded to the lid (50) of (c) is welded to the upper current collector plate (2) through the auxiliary lead (30).
【0045】  [0045]
次に、 図.31に本発明の 1実施例である補助リード部を介して断面が逆 U字状 の二重構造の主リード部を溶接した密閉形電池の組立て図を示す。  Next, FIG. 31 shows an assembly diagram of a sealed battery in which a main lead portion having a double U-shaped cross section is welded via an auxiliary lead portion according to an embodiment of the present invention.
図 31において、 (a) は、 図 30と同じである。  In FIG. 31, (a) is the same as FIG.
(b) は、 蓋 (50) に逆 U字状二重構造のリード (40) が予め溶接された 状態を示している。 また、 (c ) は、 (b ) の補助リード部 (4 4 ) が極群高さを吸収するため、 バネ角度を有している状態を示している。 (b) shows a state in which a lead (40) having an inverted U-shaped double structure is pre-welded to the lid (50). (C) shows a state in which the auxiliary lead portion (4 4) of (b) has a spring angle because it absorbs the pole group height.
さらに、 (d ) は、 (c ) の蓋 (5 0 ) に溶接済みの逆 U字状二重構造のリー ド (4 0 ) を補助リード部 (4 4 ) を介して上部集電板 (2 ) に溶接した状態を 示している。  Further, (d) is a reverse U-shaped double-structured lead (40) welded to the lid (50) of (c) and the upper current collector plate (44) via the auxiliary lead portion (44). 2) shows the welded state.
このとき、 本発明においては、 蓋 (5 0 ) の内面におけるリング端子 (主リー ド) (2 0 )、 逆 U字状二重構造のリード (4 0 ) の溶接点が、 キャップ (8 0 ) の端部に対応する蓋の内面の位置(5 1 )より外側の範囲にあることが好ましい。 そうすると、 電池外部への電流取り出し接点が、 蓋の上面におけるキャップの端 部より外側の範囲にある場合に、 電流の流通経路が短くなるため、 内部抵抗が低 くなり、 出力密度も大きくなる。  At this time, in the present invention, the welding point of the ring terminal (main lead) (2 0) and the inverted U-shaped double structure lead (4 0) on the inner surface of the lid (50) is the cap (80). It is preferable that it exists in the range outside the position (5 1) of the inner surface of the lid corresponding to the end portion of). Then, when the current extraction contact point to the outside of the battery is in the range outside the end of the cap on the upper surface of the lid, the current flow path is shortened, so that the internal resistance is lowered and the output density is also increased.
本発明においては、 集電板とリードを溶接する際に、 正負極間に極短時間では あるが交流パルスであって、 大きな電流を通電することが好ましい。 該通電され た電気は正極板および負極板の電気二重層に貯えられるために電解液が電気分解 によって分解されるのを防止することができる。 電気二重層容量の大きさが大き いと、 電池に損傷を与えることなく通電可能な電流の大きさおよび電気量が大き くできる。 正極板と負極板の電気二重層容量は、 極板の放電容量と密接な関係が あると考えられるので、 通電する電流値の大きさや 1回の通電で一方向に流す通 電量 (電流値が一定とすると通電時間に置き換えることができる) は極板の容量 との関係で適切な値に設定することが好ましいと考えられる。 本発明では、 単位 放電容量当たりに対して通電する電流の範囲を定め、 その上で通電時間の範囲を 定めることによって、 正負極間で通電しても電池を損傷させることなく、 集電板 とリードを溶接して良好に接合するものである。  In the present invention, when the current collector plate and the lead are welded, it is preferable to apply a large current between the positive and negative electrodes, although it is an alternating current pulse for a very short time. Since the energized electricity is stored in the electric double layer of the positive electrode plate and the negative electrode plate, the electrolytic solution can be prevented from being decomposed by electrolysis. If the electric double layer capacity is large, the amount of electric current that can be passed and the amount of electricity can be increased without damaging the battery. Since the electric double layer capacity of the positive and negative plates is considered to be closely related to the discharge capacity of the electrode plate, the magnitude of the current value to be applied and the amount of current that flows in one direction with a single current (the current value is If it is fixed, it can be replaced with the energization time). It is considered preferable to set an appropriate value in relation to the capacity of the electrode plate. In the present invention, by defining the range of current to be energized per unit discharge capacity and then determining the range of energization time, the current collector plate and the current collector are not damaged even when energized between the positive and negative electrodes. The lead is welded and bonded well.
従来提案されていた充電側又は放電側への一方向へのパルス充電又は放電によ る溶接方法では、 通電時に電池内からのガスが発生し電解液を含んだガスが安全 弁を開弁させ、 安全弁を電解液が腐食させてしまうため、 安全弁の開弁圧安定性 が低下してしまう問題が発生する。 このため、 このような溶接方法を実施するた めには、 蓋を密閉させずに開放状態で通電し溶接するか、 ガス発生を抑制するた め通電電流を出来るだけ小さく設定する必要があった。 蓋を密閉化させずに開放状態とするど、 リードの接続距離はどうしても長くな つてしまう欠点を有しており、 短いリードを用いると溶接接点が正極集電板と接 触できず溶接できないという問題を有していた。 また、 電池内のガス発生を抑制 するため、 通電電気量を小さくするか、 通電時間を短くするため、 溶接点の強度 が低くなり、 抵抗も増大してしまう。 In the conventional welding method by pulse charging or discharging in one direction to the charging side or discharging side, gas from inside the battery is generated when energized, and the gas containing electrolyte opens the safety valve. Since the electrolyte corrodes the safety valve, there is a problem that the valve opening pressure stability of the safety valve decreases. Therefore, in order to carry out such a welding method, it was necessary to energize and weld in an open state without sealing the lid, or to set the energization current as small as possible to suppress gas generation. . If the lid is opened without being sealed, the lead connection distance will inevitably become long.If a short lead is used, the welding contact cannot contact the positive current collector plate and welding cannot be performed. Had a problem. In addition, in order to suppress the gas generation in the battery, the amount of electricity to be energized is reduced or the energization time is shortened, so that the strength of the welding point is lowered and the resistance is also increased.
このため、 電池からのガス発生を抑制すべく、 通電のパルス電流について検討 したが、 その通電パルス電流を特定のものとすることによって、 驚くべきガス発 生抑制効果が得られることが判った。 即ち、 通電電流を充電と放電を 1セットと した交流パルスとせしめることによって、 大きな電流や長い通電時間でもガス発 生を抑制でき、 密閉化状態で電池内接点溶接を可能にするに至つた。  For this reason, in order to suppress the gas generation from the battery, we examined the energization pulse current. However, it was found that a surprising gas generation suppression effect can be obtained by making the energization pulse current specific. In other words, by making the energization current an AC pulse with charging and discharging as one set, gas generation can be suppressed even with a large current and a long energization time, and it has become possible to weld contacts in the battery in a sealed state.
具体的には、 通電電気量が 0 . 4 k AZA h以上の場合、 優れた低抵抗溶接が 可能となるものの、 0 . 8 k AZA hより通電電気量が大きくなると、 溶接接点 がはじけ飛び逆に抵抗が増大するため、 通電電気量は 0 . 4〜0 . 8 k AZA h が好ましい。  Specifically, when the amount of energized electricity is 0.4 k AZA h or higher, excellent low-resistance welding is possible, but when the amount of energized electricity is greater than 0.8 k AZA h, the weld contact is repelled and reversed. Therefore, the amount of energized electricity is preferably 0.4 to 0.8 k AZA h.
また、 充電パルスの通電時間及び放電パルスの通電時間は 3 m s e c以上の場 合、 優れた低抵抗溶接が可能となるものの、 7 m s e cより通電時間が大きくな ると、 溶接接点がはじけ飛んだり、 接点が加熱されて酸化被膜が形成されるため か、 逆に抵抗が増大するため、 通電時間は 3〜7 m s e cが好ましい。  In addition, if the energization time of the charge pulse and the energization time of the discharge pulse are 3 msec or more, excellent low resistance welding is possible, but if the energization time becomes longer than 7 msec, the weld contact will pop off, The contact time is preferably 3 to 7 msec because the contact is heated to form an oxide film or, on the contrary, the resistance increases.
単発のパルスで長い時間の通電を行い接触点の抵抗を低減するには、 できるだ け大きな電流と長い時間を必要とするが、 前記問題を有しており好ましくない。 通電電流のパルスを、 充放電を 1回のパルスとして、 充電と放電を 1セットと した交流パルスの通電を複数回で行うことによって、 1 つのパルスの通電電流と 通電時間を短く出来るため好ましく、 6回の通電を超えると、 電池内での分極が 充電側、 放電側に蓄積されてしまうためか、 ガス発生が大きくなり密閉状態を維 持できなくなるため、 2回〜 6回実施することが好ましい。  In order to reduce the resistance at the contact point by energizing for a long time with a single pulse, as much current and a long time as possible are required. It is preferable because the energization current and energization time of one pulse can be shortened by conducting energization of AC pulse multiple times with charging and discharging as one set and charging and discharging as one set. If the energization exceeds 6 times, the polarization in the battery will accumulate on the charge side and the discharge side, or gas generation will increase and the sealed state cannot be maintained. preferable.
また、 密閉形電池の複数個で組電池とする場合にも、 組電池を構成する少なく とも 1つの密閉形電池内に、 外部電源により交流パルスを通電して、 該電池と該 電池と隣り合う電池の端子同士を直にまたは電池間接続部品を介して溶接するこ とができる。 電池間接続部品 (接続リード) としては、 図 4 9及び図 5 0に示すように、 蓋 と上部集電板を接続するリードと同じリング状リード 1 1 0、 二重構造のリード 1 1 0 ' を用いることができるが、 異なる接続リードであってもよい。 In addition, even when a plurality of sealed batteries are used as an assembled battery, an alternating current pulse is applied by an external power source in at least one sealed battery constituting the assembled battery, and the battery and the battery are adjacent to each other. Battery terminals can be welded directly or via inter-battery connection parts. As shown in Fig. 4 9 and Fig. 50, the inter-battery connection parts (connection leads) are the same ring-shaped leads 1 1 0 as the leads connecting the lid and the upper current collector plate, and double-structured leads 1 1 0 'Can be used, but different connection leads may be used.
組電池を製造する場合の交流パルスの通電においても、 通電電気量は 0 . 4〜 0 . 8 k A/A hが好ましく、 通電時間は 3〜 7 m s e cが好ましく、 充電と放 電を 1セットとした交流パルスの通電を 2回〜 6回実施することが好ましい。 なお、 電池の正極と負極の放電容量は、 必ずしも等しくなく、 ニッケル水素蓄 電池やニッケル力ドミゥム電池等のアルカリ蓄電池においては、 負極に比べて正 極の放電容量が小さい。 このような場合には、 放電容量の小さい正極の放電容量 を基準にして単位放電容量当たりの通電電流の大きさを設定する。 また、 通電電 流の大きさは時間に対して一定であるとは限らない。 ここでいう、 通電電流の大 きさは、 通電電流値の通電時間に対する平均値をいう。  Also in the energization of an AC pulse when manufacturing an assembled battery, the amount of energization is preferably 0.4 to 0.8 kA / A h, the energization time is preferably 3 to 7 msec, and one set of charging and discharging It is preferable to carry out the AC pulse energization 2 to 6 times. Note that the discharge capacities of the positive electrode and negative electrode of the battery are not necessarily equal, and alkaline discharge batteries such as nickel-metal hydride storage batteries and nickel-powered battery batteries have a smaller positive electrode discharge capacity than the negative electrode. In such a case, the magnitude of the energization current per unit discharge capacity is set based on the discharge capacity of the positive electrode having a small discharge capacity. Also, the magnitude of the energizing current is not always constant over time. The magnitude of the energizing current here is the average value of the energizing current value with respect to the energizing time.
前記のように、 本発明においては電気二重層の容量が大きければ、 正負極間に 大きな電流を通電しても電気分解が生ぜず良好な溶接が可能となる。 ニッケル水 素蓄電池を例に採ると、 負極を構成する水素吸蔵合金粉末の比表面積が小さいた めか、 正極板に比べて負極板の電気二重層容量が小さい傾向がある。 このような 点から、 電池に組み込む前に水素吸蔵合金粉末を高温の N a O H水溶液や酢酸一 酢酸ナトリゥム水溶液などの弱酸性の水溶液に浸漬処理を施して負極板の電気二 重層容量を大きくすることが好ましい。  As described above, in the present invention, if the capacity of the electric double layer is large, even if a large current is passed between the positive and negative electrodes, electrolysis does not occur and good welding is possible. Taking a nickel hydrogen storage battery as an example, the electric double layer capacity of the negative electrode plate tends to be smaller than that of the positive electrode plate because the specific surface area of the hydrogen storage alloy powder constituting the negative electrode is small. For this reason, the hydrogen storage alloy powder is immersed in a weakly acidic aqueous solution, such as a high-temperature aqueous solution of NaOH or sodium acetate, before the battery is incorporated into the battery, thereby increasing the electric double layer capacity of the negative electrode plate. It is preferable.
ここでいう電気二重層容量とは、 電池が電解液を分解しガスを発生させ、 電池 内部の圧力が電池の開弁圧を超えない範囲で充電可能な電気容量を指し、 厳密に は正極板および負極板のいわゆる二重層容量以外に電池の充放電反応に伴う電気 容量とガス発生反応による電気容量を含んでいる。  The electric double layer capacity here refers to the electric capacity that can be charged within the range where the battery decomposes the electrolyte and generates gas, and the pressure inside the battery does not exceed the valve opening pressure of the battery. In addition to the so-called double layer capacity of the negative electrode plate, it includes the electric capacity associated with the charge / discharge reaction of the battery and the electric capacity due to the gas generation reaction.
また、 本発明に係る密閉形蓄電池は電池内部の抵抗が小さく、 急速充電に対す る適応性も高めることができるものである。 従って、 正極および負極も充電受け 入れ特性が高い構成となるように配慮することが好ましい。  In addition, the sealed storage battery according to the present invention has a low internal resistance, and can improve adaptability to rapid charging. Therefore, it is preferable to consider so that the positive electrode and the negative electrode also have a high charge acceptance property.
ニッケル水素蓄電池を例に採れば、 正極のニッケル電極には、 水酸化ニッケル に水酸化亜鉛、 水酸化コバルトを混合したものが用いられるが、 水酸化ニッケル と水酸化亜鉛、 水酸化コバルトを共沈させて得られる水酸化ニッケルを主成分と する複合水酸化物が好ましく、 さらに、 ニッケル電極中に Y、 E r、 Yb等の希 土類元素の単体またはその化合物を添加することによりニッケル電極の酸素過電 圧を高めて急速充電を行ったときにニッケル竜極で酸素が発生するのを抑制する 構成とするのが好ましい。 Taking a nickel metal hydride storage battery as an example, the nickel electrode of the positive electrode is a mixture of nickel hydroxide, zinc hydroxide, and cobalt hydroxide. However, nickel hydroxide, zinc hydroxide, and cobalt hydroxide are co-precipitated. The main component is nickel hydroxide obtained by The composite hydroxide is preferable.Addition of a rare earth element such as Y, Er, Yb or a compound thereof to the nickel electrode increases the oxygen overvoltage of the nickel electrode for rapid charging. It is preferable to have a configuration that suppresses the generation of oxygen at the nickel dragon pole.
以下に、 円筒形ニッケル水素電池を例の採り挙げて本発明の実施の形態を詳細 に説明するが、 本発明の実施の形態は、 以下に例示する実施例に限定されるもの ではない。  In the following, embodiments of the present invention will be described in detail by taking a cylindrical nickel-metal hydride battery as an example, but the embodiments of the present invention are not limited to the examples illustrated below.
(実施例 1 ) ' (Example 1) '
(正極板の作製)  (Preparation of positive electrode plate)
硫酸ニッケルと硫酸亜鉛および硫酸コバルトを所定比で溶解した水溶液に硫酸 アンモニゥムと苛性ソーダ水溶液を添加してアンミン錯体を生成させた。 反応系 を激しく撹拌しながら更に苛性ソーダを滴下し、 反応系の pHを 1 1〜12に制 御して芯層母材となる球状高密度水酸化ニッケル粒子を水酸化ニッケル:水酸化 亜鉛:水酸化コバルト = 88. 45 : 5. 12 : 1. 1の比となるように合成し た。  Ammonium complex was formed by adding ammonium sulfate and aqueous caustic soda to an aqueous solution in which nickel sulfate, zinc sulfate and cobalt sulfate were dissolved at a predetermined ratio. Caustic soda is further added dropwise with vigorous stirring of the reaction system, and the pH of the reaction system is controlled to 11 to 12 to form spherical high-density nickel hydroxide particles that form the core layer base material. Nickel hydroxide: zinc hydroxide: water Cobalt oxide was synthesized to have a ratio of 88.45: 5.12: 1.1.1.
前記高密度水酸化ニッケル粒子を、 苛性ソーダで p HI 0〜13に制御したァ ルカリ水溶液に投入した。 該溶液を ¾拌しながら、 所定濃度の硫酸コバルト、 ァ ンモニァを含む水溶液を滴下した。 この間、 苛性ソーダ水溶液を適宜滴下して反 応浴の pHを 11〜12の範囲に維持した。 約 1時間 pHを 1 1〜12の範囲に 保持し、 水酸化ニッケル粒子表面に C oを含む混合水酸化物から成る表面層を形 成させた。 該混合水酸化物の表面層の比率は芯層母粒子 (以下単に芯層と記述す る) に対して、 . 0\^セ%であった。  The high-density nickel hydroxide particles were put into an alkaline aqueous solution controlled at pH HI 0-13 with caustic soda. While stirring the solution, an aqueous solution containing cobalt sulfate and ammonia having a predetermined concentration was dropped. During this time, an aqueous solution of caustic soda was appropriately added dropwise to maintain the reaction bath pH in the range of 11-12. The pH was maintained in the range of 11 to 12 for about 1 hour, and a surface layer made of mixed hydroxide containing Co was formed on the surface of the nickel hydroxide particles. The ratio of the surface layer of the mixed hydroxide to the core layer mother particles (hereinafter simply referred to as the core layer) was 0.0%.
前記混合水酸化物から成る表面層を有する水酸化ニッケル粒子 50 gを、 温度 1 10°Cの 3 Owt % (1 ON)の苛性ソーダ水溶液に投入し、充分に攪拌した。 続いて表面層に含まれるコバルトの水酸化物の当量に対して過剰の K2 S 2〇8を 添加し、 粒子表面から酸素ガスが発生するのを確認した。 活物質粒子をろ過し、 水洗、 乾燥した。 50 g of nickel hydroxide particles having a surface layer made of the mixed hydroxide was put into a 3 Owt% (1 ON) aqueous caustic soda solution at a temperature of 110 ° C. and sufficiently stirred. Subsequently, an excess of K 2 S 20.8 was added to the equivalent of the cobalt hydroxide contained in the surface layer, and it was confirmed that oxygen gas was generated from the particle surface. The active material particles were filtered, washed with water and dried.
前記活物質粒子にカルボキシメチルセルローズ (CMC) 水溶液を添加して前 記活物質粒子: CMC溶質 =99. 5 : 0. 5のペースト状とし、 該ペーストを 450 g/m2Before adding the carboxymethyl cellulose (CMC) aqueous solution to the active material particles, Active material particles: CMC solute = 99.5: 0.5 paste, 450 g / m 2 of paste
ニッケル多孔体 (住友電工 (株) 社製ニッケルセルメット # 8) に充填した。 そ の後 80°Cで乾燥した後、 所定の厚みにプレスし、 表面にポリテトラフロロェチ レンコーティングを行い幅 47. 5mm (内、 無塗工部 1 mm) 長さ 1 150m mの容量 6500mAh (6. 5 Ah) のニッケル正極板とした。 It filled in the nickel porous body (Sumitomo Electric Co., Ltd. nickel cermet # 8). Then, after drying at 80 ° C, it is pressed to a predetermined thickness, and polytetrafluoroethylene coating is applied to the surface, width 47.5 mm (including uncoated part 1 mm), length 1 150 mm capacity A nickel positive electrode plate of 6500 mAh (6.5 Ah) was used.
(負極板の作製)  (Preparation of negative electrode plate)
粒径 30 mの AB5型希土類系の MmN i 3.6C o o. 6A 1 o. 3Mn0.35の組成 を有する水素吸蔵合金を水素吸蔵処理後の水素吸蔵合金粉末を 20°Cの比重で 4 8重量%の N a OH水溶液に浸漬し、 100°Cの水溶液に浸漬し 4時間の処理を 行った。 Particle size 30 m of AB 5 type rare earth MMN i 3 of. 6 C o o. 6 A 1 o. 3 Mn 0. 20 ° a hydrogen-absorbing alloy powder after the hydrogen occlusion treatment and the hydrogen storage alloy having a composition of 35 It was immersed in an aqueous solution of 48% by weight of NaOH with a specific gravity of C and immersed in an aqueous solution at 100 ° C for 4 hours.
その後、 加圧濾過して処理液と合金を分離した後、 純水を合金重量と同重量添 加して 28 KHzの超音波を 10分間かけた。 その後、 緩やかに攪拌しつつ純水 を攪拌層下部より注入し、 排水をフローさせて合金より遊離する希土類水酸化物 を除去した。 その後、 PH10以下になるまで水洗した後、 加圧濾過した。 この 後、 80°C温水に暴露して水素脱離を行った。 温水を加圧濾過して、 再度の水洗 を行い合金を 25°Cに冷却し、 攪拌下 4%過酸化水素を合金重量と同量加え、 水 素脱離を行って、 電極用水素吸蔵合金を得た。  Then, after pressure filtration to separate the treatment liquid and the alloy, pure water was added in the same weight as the alloy weight, and 28 KHz ultrasonic waves were applied for 10 minutes. After that, pure water was poured from the bottom of the stirring layer while gently stirring, and the waste water was allowed to flow to remove the rare earth hydroxide released from the alloy. Thereafter, it was washed with water until the pH became 10 or less, and then filtered under pressure. Thereafter, hydrogen desorption was performed by exposure to warm water at 80 ° C. Hot water was filtered under pressure, washed again with water, the alloy was cooled to 25 ° C, 4% hydrogen peroxide was added under stirring with the same amount as the weight of the alloy, hydrogen was desorbed, and hydrogen storage alloy for electrodes Got.
得られた合金とスチレンブタジエン共重合体とを 99. 35 : 0. 65の固形 分重量比で混合し、 水で分散してペース卜状にし、 ブレードコーターを用いて、 鉄にニッケルメツキを施したパンチング鋼板に塗布した後、 80°Cで乾燥した後、 所定の厚みにプレスして  The resulting alloy and styrene-butadiene copolymer were mixed at a solid weight ratio of 99.35: 0.65, dispersed with water to form a paste-like shape, and a nickel coat was applied to the iron using a blade coater. After being applied to the punched steel sheet, it was dried at 80 ° C, and then pressed to a predetermined thickness.
幅 47. 5 mm長さ 1175 mmの容量 1 100 OmAh (11. 0 Ah) の水 素吸蔵合金負極板とした。 A hydrogen storage alloy negative electrode plate having a width of 47.5 mm and a length of 1175 mm and a capacity of 1 100 OmAh (11.0 Ah) was used.
(密閉形ニッケル水素蓄電 ¾ ^の作製)  (Production of sealed nickel-metal hydride storage ¾ ^)
前記負極板とスルフォン化処理を施した厚み 120 imのポリプロピレンの不 織布状セパレー夕と前記正極板とを組み合わせてロール状に巻回して極板群とし た。 該極板群の一方の捲回端面に突出させた正極基板の端面に、 図 32に示すよ うなニッケルメツキを施した鋼板からなる)?さ 0. 4mm、 中央に円形の透孔と 16力所 (8スリット (2— 2)) の 0. 5 mmの下駄 (2— 3) (電極へのか み込み部) を設けた半径 14. 5mmの円板状の上部集電板 (正極集電板) (2) を抵抗溶接により接合した。 捲回式極板群の他方の捲回端面に突出させた負極基 板の端面にニッケルメツキを施した鋼板からなる厚さ 0. 4 mmの円板状の下部 集電板 (負極集電板) を抵抗溶接により接合した。 ニッケルメツキを施した鋼板 からなる有底円筒状の電槽を用意し、 前記集電板を取り付けた極板群を、 正極集 電板が電槽缶の開放端側、 負極集電板が電槽の底に当接するように電槽内に収容 し、負極集電板の中央部分を電槽の底壁面に抵抗溶接により接合した。次いで 6. 8Nの KOHと 0. 8Nの L i〇Hを含む水溶液からなる電解液を所定量注液し た。 The negative electrode plate and a 120 im thick non-woven polypropylene fabric separator and the positive electrode plate were combined and wound into a roll to form an electrode plate group. (It is made of a steel plate having a nickel plating as shown in FIG. 32 on the end face of the positive electrode substrate projected from one winding end face of the electrode group)? 0.4 mm, with a circular through hole in the center A disk-shaped upper current collector plate with a radius of 14.5 mm with a 0.5 mm clog (2-3) (inset into the electrode) of 16 power stations (8 slits (2-2)) (positive electrode) Current collector plate (2) was joined by resistance welding. A 0.4 mm thick disc-shaped lower current collector plate (negative electrode current collector plate) made of a steel plate with nickel plating on the end surface of the negative electrode substrate projecting from the other end surface of the wound electrode plate group ) Were joined by resistance welding. A bottomed cylindrical battery case made of nickel-plated steel plate is prepared, and the electrode plate group to which the current collector plate is attached, the positive electrode current collector plate is the open end side of the battery case can, and the negative electrode current collector plate is the current collector. The battery was accommodated in the battery case so as to be in contact with the bottom of the tank, and the central portion of the negative electrode current collector plate was joined to the bottom wall surface of the battery case by resistance welding. Next, a predetermined amount of an electrolytic solution composed of an aqueous solution containing 6.8N KOH and 0.8N LiOH was injected.
図 7及び 8に示すように、 厚さ 0. 6mmのニッケル板であって、 幅 2. 5 m m、 長さ 66mm、 長辺の一方に高さ 0. 5 mmの突起を 10個 (但し、 図 7及 び 8では、 突起 20 bは 8個であるが、 これを 10個とした。) 備え、 他方の長 辺に高さ 2 mmの突起を 4個備える板を内径 20mmのリング状に丸めた主リー ド (20) を用意した。 ニッケルメツキを施した鋼板からなり中央に直径 0. 8 mmの円形の透孔を設けた円板状の蓋 (50) を用意し、 蓋 (50) の内面側に 主リード' (20) の高さ 0. 5 mmの 10個の突起を当接させ、 図 30 (b) の ように、 蓋 (50) の内面に主リード (20) の一方の面を溶接する第 1の溶接 工程を実施した。  As shown in Figs. 7 and 8, this is a nickel plate with a thickness of 0.6 mm, and has 10 protrusions with a width of 2.5 mm, a length of 66 mm, and a height of 0.5 mm on one of the long sides. 7 and 8, there are 8 protrusions 20b, but this is 10).) A plate with 4 protrusions with a height of 2mm on the other long side is formed into a ring shape with an inner diameter of 20mm. A rounded main lead (20) was prepared. Prepare a disc-shaped lid (50) made of a nickel-plated steel plate with a circular through hole with a diameter of 0.8 mm in the center, and the main lead '(20) on the inner surface of the lid (50). 10 projections with a height of 0.5 mm are brought into contact with each other, and as shown in Fig. 30 (b), the first welding process is performed in which one side of the main lead (20) is welded to the inner surface of the lid (50). Carried out.
この後、 図 33に示すような正極集電板 (2) との溶接点 (2— 1) となる図 9に示されるような突起 (30— 1) 16点を有する補助リード (30) をリン グ状の主リードに取り付け、 図 30 (c) 示すように溶接した。  After this, the auxiliary lead (30) having 16 protrusions (30-1) as shown in Fig. 9 which becomes the welding point (2-1) with the positive current collector (2) as shown in Fig. 33 It was attached to a ring-shaped main lead and welded as shown in Fig. 30 (c).
蓋 (50) の外面には、 弁体 (90) (ゴム弁) およびキャップ (80) (正 極端子) を取り付けた。 蓋の周縁をつつみ込むように蓋にリング状のガスケット を装着した。  A valve disc (90) (rubber valve) and a cap (80) (positive terminal) were attached to the outer surface of the lid (50). A ring-shaped gasket was attached to the lid so as to squeeze the periphery of the lid.
蓋 (50) を、 蓋 (50) に取り付けた補助リード (30) の突片の突起 (3 0- 1) が正極集電板 '(2) に当接するように極群 (70) の上に載置し、 電槽 Place the lid (50) on the pole group (70) so that the protrusion (30-1) of the protrusion of the auxiliary lead (30) attached to the lid (50) is in contact with the positive current collector plate (2). Placed in the battery case
(60) の開放端をかしめて気密に密閉した後、 圧縮して電池の総高さを調整し た。 なお、 電池の総高さ調整後の蓋と正極端子間の高さが、 補助リードの突片の 突起と正極集電板の当接面 1個当たり 2 0 0 g f の押圧力が加わる高さになるよ うに、 突片の角度を調整した。 The open end of (60) was crimped and hermetically sealed, and then compressed to adjust the total height of the battery. Note that the height between the cover and the positive terminal after adjusting the total height of the battery The angle of the projecting piece was adjusted so that a pressing force of 200 gf per contact surface between the projection and the positive electrode current collector plate was applied.
なお、 蓋の半径は 1 4. 5mm キャップの半径は 6. 5mm ガスケットの カシメ半径は 1 2. 5mmであり、 主リード内面の半径は 1 0 mmであり、 補助 リ一ドの正極集電板との溶接点 (突起) 1 6点と主リードの内面までの距離を 1 mmに設定してある。  The lid radius is 14.5 mm The cap radius is 6.5 mm The gasket caulking radius is 12.5 mm, the inner radius of the inner surface of the main lead is 10 mm, and the positive lead current collector plate of the auxiliary lead Welding points (protrusions) 1 The distance from 6 points to the inner surface of the main lead is set to 1 mm.
(即ち、 突起 1 6点に囲われた内径は半径で 9 mm)  (I.e., the inner diameter surrounded by 6 protrusions is 9 mm in radius)
蓋 (50) の内面における主リード (2 0) の溶接点から、 該溶接点に最も近 い正極集電板 (2) の上面における補助リード (3 0) の溶接点 (2— 1) まで のリードの長さ (L 1 = 3. 8mm)力 蓋(5 0) の内面における主リード (2 0) の溶接点から正極集電板 (2) の上面に至る最短距離 (X I = 2. 8mm) の 1. 4倍 (L 1 /X 1 = 1. 4) であった。  From the welding point of the main lead (2 0) on the inner surface of the lid (50) to the welding point (2-1) of the auxiliary lead (3 0) on the upper surface of the positive electrode current collector plate (2) closest to the welding point Lead length (L 1 = 3.8 mm) force The shortest distance from the weld point of the main lead (2 0) on the inner surface of the lid (5 0) to the upper surface of the positive current collector plate (2) (XI = 2. 8 times (1.4 mm) (L 1 / X 1 = 1.4).
キャップ (8 0) (正極端子)、 電槽 (6 0).の底面 (負極端子) に抵抗溶接 機の溶接用出力端子を当接させ、 充電方向および放電方向に同じ電流値で同じ通 電時間となるように通電条件を設定した。 具体的には、 電流値を正極板の容量 The welding output terminal of the resistance welding machine is brought into contact with the bottom surface (negative electrode terminal) of the cap (80) (positive terminal) and battery case (60), and the same current value is applied in the charging direction and discharging direction. The energization conditions were set so as to be time. Specifically, the current value is the capacity of the positive electrode plate.
(6. 5 Ah) l Ah当たり 0. 6 k A/Ah (3. 9 kA)、 通電時間を充電 方向に 4.' 5ms e c, 放電方向に 4. 5ms e cに設定し、 該交流パルス通電 を 1サイクルとして 2サイクル通電ができるようにセットし、 矩形波からなる交 流パルスを通電し、 正極集電板 (2) の上面に主リード (2 0) の他方の面を補 助リード (3 0) を介して溶接する第 2の溶接工程を実施した。 このとき開弁圧 を超えてガス発生していないことを確認した。 このようにして蓋 (5 0) と正極 集電板 (2) がリング状の主リード (2 0) と補助リード (3 0) で接続された 図 2及び図 3 0 (d) に示されるような密閉形ニッケル水素蓄電池を作製した。 なお、 この発明の実施例および比較例に用いた電池の重量はすべて 1 7 6 で あった。 (6.5 Ah) l Set to 0.6 kA / Ah (3.9 kA) per Ah, energizing time set to 4. '5ms ec in the charging direction, and 4.5ms ec in the discharging direction. Is set so that it can be energized for 2 cycles, energized with a rectangular wave, and the other side of the main lead (20) is attached to the upper surface of the positive current collector plate (2) as an auxiliary lead ( A second welding process was carried out through welding via 30). At this time, it was confirmed that no gas was generated exceeding the valve opening pressure. The lid (5 0) and the positive electrode current collector plate (2) are thus connected by the ring-shaped main lead (2 0) and auxiliary lead (3 0) as shown in FIGS. 2 and 30 (d). Such a sealed nickel-metal hydride storage battery was produced. The weights of the batteries used in the examples and comparative examples of this invention were all 1 76.
(化成、 内部抵抗および出力密度の測定)  (Measurement of chemical conversion, internal resistance and power density)
前記密閉形蓄電池を周囲温度 2 5°Cにおいて 1 2時間の放置後、 1 3 0mA (0. 0 2 I t A) にて 1 2 0 OmAh充電し、 引き続き 6 5 OmA (0. I I t A) で 1 0時間充電した後、 1 3 0 0 mA ( 0. 2 I t A) でカツト電圧 1 V まで放電した。 さらに、 650mA (0'. 1 I t Α) で 16時間充電後、 130 OmA (0. 2 I t A) でカット電圧 1. OVまで放電し、 該充放電を 1サイク ルとして 4サイクル充放電を行った。 4サイクル目の放電終了後、 1 kHzの交 流を用いて内部抵抗を測定した。 The sealed battery is left for 12 hours at an ambient temperature of 25 ° C, then charged with 120 mA at 1 30 mA (0.02 I t A), and then 6 5 OmA (0. II t A). ) For 10 hours, then 1 3 0 0 mA (0.2 It A) and the cut voltage 1 V Discharged until. Furthermore, after charging for 16 hours at 650 mA (0 '. 1 I t Α), it is discharged to 130 mV (0.2 It A) at a cut voltage of 1. OV. Went. After the end of the fourth cycle discharge, the internal resistance was measured using a 1 kHz alternating current.
出力密度の測定方法は、 電池 1個用いて 25°C雰囲気下において、 放電末より 65 OmA (0. 1 I t A) で 5時間充電後、 60 Aで 12秒間流した時の 10 秒目電圧.を 6 OA放電時 10秒目電圧とし、 放電分の電気容量を 6 Aで充電した 後、 9 OAで 12秒流した時の 10秒目電圧を 9 OA放電時 10秒目電圧とし、 放電分の電気容量を 6 Aで充電した後、 120 Aで 12秒流した時の 10秒目電 圧を 12 OA放電時 10秒目電圧とし、 放電分の電気容量を 6 Aで充電した後、 15 OAで 12秒流した時の 10秒目電圧を 150 A放電時 10秒目電圧とし、 放電分の電気容量を 6 Aで充電した後、 180 Aで 12秒流した時の 10秒目電 圧を 18 OA放電時 10秒目電圧とした。  The measurement method for the output density is 10 seconds when a battery is used for 12 hours at 60 A after charging at 65 OmA (0.1 I t A) for 5 hours in a 25 ° C atmosphere using a single battery. The voltage is the 10th voltage at 6 OA discharge, the electric capacity of the discharge is charged at 6 A, and then the 10th voltage when flowing at 9 OA for 12 seconds is the 10th voltage at 9 OA discharge, After charging the electrical capacity for discharge at 6 A, the voltage at 10 seconds when flowing at 120 A for 12 seconds is set to the voltage at 10 seconds when discharging at 12 OA, and the electrical capacity for discharge is charged at 6 A The 10th second voltage when flowing at 15 OA for 12 seconds is the 10th second voltage when discharging at 150 A, and the electric capacity of the discharge is charged at 6 A and then 10 seconds when flowing at 180 A for 12 seconds The voltage was set to the voltage at 10 seconds during 18 OA discharge.
この各 10秒目電圧を電流値と電圧値を最小自乗法で直線近似し、 電流値 OA の時の電圧値を E0とし、 傾きを RDCとした。 その後、  For each 10-second voltage, the current value and the voltage value were linearly approximated by the method of least squares. The voltage value at the current value OA was E0 and the slope was RDC. afterwards,
出力密度 (W/kg) = (E 0 - 0. 8) +RDCX 0. 8 ÷電池重量 (kg) の計算式ヒ当てはめ、 0. 8 Vカット時の 25 電池における出力密度とした。 Output density (W / kg) = (E 0-0.8) + RDCX 0.8 ÷ Battery weight (kg) was applied to the output density of 25 batteries at 0.8 V cut.
(比較例 1 ) (Comparative Example 1)
実施例 1の蓋 (50) の内面に主リード (20) の一方の面を溶接する第 1の 溶接工程と正極集電板(2)の上面にリード (20)の他方の面を補助リード (3 0) を介して溶接する第 2の溶接工程とを入れ替え、 抵抗溶接により正極集電板 The first welding process of welding one surface of the main lead (20) to the inner surface of the lid (50) of Example 1 and the other surface of the lead (20) to the upper surface of the positive current collector (2) (3 0) The second welding process, which is welded via, is replaced with a positive current collector plate by resistance welding.
(2) に主リード (20) の一方の面を溶接する第 1の溶接工程、 主リード (2 0) に溶接した補助リード (30)が電槽(60) の開放端側に位置するように、 主リード (20) と補助リード (30) が取り付けられた正極集電板 (2) を接 合した極群を電槽 (60) 内に収容し、 電解液を注液し、 補助リード (30) の 突片の突起 (30— 1)'が蓋 (50) の内面に当接するように蓋 (50) を載置 し、 電槽 (60) を密閉した後、 密閉電池の正負極両端子間に溶接のための電流 を通電することにより蓋 (50) の内面に主リード (20) の他方の面を補助リ ード (30) を介して溶接する第 2の溶接工程としたこと以外は実施例 1と同様 にして密閉形電池を得た。 (2) The first welding process in which one side of the main lead (20) is welded so that the auxiliary lead (30) welded to the main lead (20) is located on the open end side of the battery case (60) The electrode group (2), to which the main lead (20) and auxiliary lead (30) are attached, is accommodated in the battery case (60), the electrolyte is injected, and the auxiliary lead is (30) Place the lid (50) so that the protrusion (30-1) 'of the projecting piece abuts the inner surface of the lid (50), seal the battery case (60), and then the positive and negative electrodes of the sealed battery By supplying a current for welding between both terminals, the other surface of the main lead (20) is attached to the inner surface of the lid (50). A sealed battery was obtained in the same manner as in Example 1 except that the second welding step was performed through welding with the lead (30).
(実施例 2 ) (Example 2)
実施例 1のリング状リ一ドに代えて、 図 11及び 12に示すような枠状部 ( 4 1) と枠状部 (41) の内周 (41— 1) 及び外周 (41 _2) から下方に向け て延びた二重構造の側壁部 (42) 及び (43) を有する断面が逆 U字状の二重 構造のリード (40) を用いたこと以外は実施例 1と同様にして、 図 3に示すよ うな密閉形電池を得た。プレス加工により形成された溶接点となる突起(41 a) を除いた最も薄肉な部分の厚みは 0. 25 mm、 平均厚みは 0. 3mm、 最も厚 い部分は 0. 35 mmである。  Instead of the ring-shaped lead of Example 1, from the inner periphery (41-1) and outer periphery (41_2) of the frame-shaped part (41) and the frame-shaped part (41) as shown in Figs. In the same manner as in Example 1 except that a double-structured lead (40) having a reverse U-shaped cross section having a double-structured side wall (42) and (43) extending downward is used. A sealed battery as shown in Fig. 3 was obtained. The thickness of the thinnest part, excluding the protrusion (41a), which is the weld point formed by pressing, is 0.25 mm, the average thickness is 0.3 mm, and the thickest part is 0.35 mm.
このとき、 蓋 (50) と溶接された主リード部の枠状部 (41) の溶接点は 8 点 (溶接点となる突起 (41 a) は図 1 1に示すように 8個)、 上部集電板 (正 極集電板) (2) と補助リード部 (44) との溶接点 (2_ 1) は図 34に示す ように 16点 (溶接点となる突起 (44 a) は図 12に示すように 16個) であ つた。  At this time, the welding point of the lid (50) and the frame part (41) of the welded main lead part is 8 points (8 protrusions (41a) as the welding point as shown in Fig. 11), upper part As shown in Fig. 34, the welding point (2_1) between the current collector plate (positive current collector plate) (2) and the auxiliary lead part (44) is 16 points (the projection (44a) as the welding point is Fig. 12). 16) as shown in the figure.
蓋 (5Ό) の内面における主リード部の枠状部 (41) の溶接点 (41 a) か ら、 該溶接点に最も近い正極集電板 (2) の上面における補助リード部 (44) の溶接点 (2— 1) までのリードの長さ (L l = 3. 8mm) が、 蓋 (50) の 内面における主リード部の枠状部 (41) の溶接点から正極集電板 (2) の上面 に至る最短距離 (XI =2. 8mm) の 1. 4倍 (L 1/X1 = 1. 4) であつ た。 枠状部 (41) の中心径は 19mm、 枠状部 (41) の幅は 1. 8 mmであ つた。  From the welding point (41a) of the frame-like part (41) of the main lead part on the inner surface of the lid (5mm), the auxiliary lead part (44) on the upper surface of the positive electrode current collector plate (2) closest to the welding point The lead length (L l = 3.8 mm) up to the weld point (2-1) is from the weld point of the frame-like part (41) of the main lead part on the inner surface of the lid (50) (2 ) 1.4 times the shortest distance (XI = 2.8 mm) to the top surface (L 1 / X1 = 1.4). The center diameter of the frame (41) was 19 mm, and the width of the frame (41) was 1.8 mm.
(比較例 2) (Comparative Example 2)
実施例 2 (図 1 1及び 12) の断面が逆 U字状の二重構造のリードを逆さにし て、 枠状部 (41) と枠状部 (41) の内周 (41— 1) 及び外周 (41— 2) から上方に向けて延びた二重構造の側壁部 (42) 及び (43) を有する断面が U字状の二重構造のリードを用い、 U字状リードの枠状部 (41) の溶接点 (4 l a) を溶接する第 1の溶接工程を、 抵抗溶接により上部集電板 (正極集電板) (2) に溶接し、 U字状リードの補助リード部 (44) となる突片の突起 (44 a) とが電槽 (60) の開放端側に位置するように、 前記 U字状リードが取り付 けられた正極集電板 (2) を接合した極群を前記電槽内に収容し、 電解液を注液 し、 補助リード部 (44) の突片の突起 (44 a) が蓋 (50) の内面に当接す るように蓋 (50) を載置し、 電槽 (60) を密閉した後、 密閉形電池の正負極 両端子間に溶接のための電流を通電することにより蓋 (50) の内面に U字状リ ードの補助リード部 (44) を溶接する第 2の溶接工程を実施したこと以外は実 施例 1と同様にして、 図 4に示すような密閉形電池を得た。 プレス加工により形 成された溶接部となる突起 (41 a) を除いた最も薄肉な部分の厚みは 0. 25 mm、 平均厚みは 0. 3mm、 最も厚い部分は 0. 35mmである。 In Example 2 (Figs. 11 and 12), the cross section of the U-shaped double-structured lead is inverted, and the inner periphery (41-1) and the frame-shaped portion (41) and the frame-shaped portion (41) Using a double-structured lead having a U-shaped cross section having a double-structured side wall (42) and (43) extending upward from the outer periphery (41-2), the frame-shaped part of the U-shaped lead (41) welding point (4 la) is welded to the upper current collector plate (positive electrode current collector plate) (2) by resistance welding, and the protrusion of the protruding piece (44) that becomes the auxiliary lead part (44) of the U-shaped lead 44 a) The electrode group in which the positive electrode current collector plate (2) to which the U-shaped lead is attached is accommodated in the battery case so that is located on the open end side of the battery case (60). Then, inject the electrolyte and place the lid (50) so that the protrusion (44a) of the protrusion of the auxiliary lead (44) contacts the inner surface of the lid (50). After sealing 60), the auxiliary lead (44) of the U-shaped lead is welded to the inner surface of the lid (50) by passing a current for welding between the positive and negative terminals of the sealed battery. A sealed battery as shown in FIG. 4 was obtained in the same manner as in Example 1 except that the second welding process was performed. The thickness of the thinnest part, excluding the protrusion (41a), which is the weld formed by pressing, is 0.25 mm, the average thickness is 0.3 mm, and the thickest part is 0.35 mm.
このとき、 正極集電板 (2) と溶接された主リード部の枠状部 (41) の溶接 点は 8点 (溶接点となる突起 (41 a) は図 11に示すように 8個)、 蓋(50) と補助リード部 (44) との溶接点は 16点 (溶接点となる突起 (44 a) は図 12に示すように 16個) であった。  At this time, the welding point of the positive electrode current collector plate (2) and the frame-like part (41) of the main lead part welded was 8 points (the number of protrusions (41a) serving as the welding point was 8 as shown in Fig. 11). There were 16 welding points between the lid (50) and the auxiliary lead part (44) (16 protrusions (44a) as welding points as shown in Fig. 12).
実施例 2と同様に L 1ZX 1 = 1. 4であった。  As in Example 2, L 1ZX 1 = 1.4.
(実施例 3) (Example 3)
実施例 1のリング状リードに代えて、 図 13及び 14に示すような枠状部 (4 1) と枠状部 (41) の内周 (41ー 1) 及び外周 (41— 2) から下方に向け て延びた二重構造の側壁部 (42) 及び (43) を有する断面が逆 V字状の二重 構造のリード (40) を用いたこと以外は実施例 1と同様にして、 図 5に示すよ うな密閉形電池を得た。プレス加工により形成された溶接部となる突起(41 a) を除いた最も薄肉な部分の厚みは 0. 25mm、 平均厚みは 0. 3mm、 最も厚 い部分は 0. 35 mmである。  Instead of the ring-shaped lead of Example 1, the frame-shaped part (41) and the frame-shaped part (41) as shown in Figs. 13 and 14 are moved downward from the inner periphery (41-1) and outer periphery (41-2). In the same manner as in Example 1 except that a double-structured lead (40) having a reverse V-shaped cross section having a double-structured side wall (42) and (43) extending toward the A sealed battery as shown in Fig. 5 was obtained. The thickness of the thinnest part, excluding the protrusion (41a), which becomes the weld formed by pressing, is 0.25mm, the average thickness is 0.3mm, and the thickest part is 0.35mm.
このとき、 蓋 (50) と溶接された主リード部の枠状部 (41) の溶接点は 8 点 (溶接点となる突起 '(41 a) は図 13に示すように 8個)、 上部集電板 (正 極集電板) (2) と補助リード部 (44) との溶接点 (2— 1) は図 34に示す ように 16点 (溶接点となる突起 (44 a') は図 14に示すように 16個) であ つた。 枠状部 (41) の中心径は 1 9mm、 枠状部 (41) の幅は lmmであつ た。 At this time, the welding point of the lid (50) and the frame-like part (41) of the main lead part welded is 8 points (8 protrusions (41a) as welding points as shown in FIG. 13), upper part As shown in Fig. 34, the welding point (2-1) between the current collector plate (positive current collector plate) (2) and the auxiliary lead part (44) is 16 points (the projection (44 a ') serving as the welding point is 16 as shown in Fig. 14) I got it. The center diameter of the frame-shaped part (41) was 19 mm, and the width of the frame-shaped part (41) was lmm.
L 1/X 1 = 1. 3であった。  L 1 / X 1 = 1.3.
(比較例 3 ) (Comparative Example 3)
実施例 3 (図 13及び 14) の断面が逆 V字状の二重構造のリードを逆さにし て、 枠状部 (41) と枠状部 (41) の内周 (41— 1) 及び外周 (41— 2) から上方に向けて延びた二重構造の側壁部 (42) 及び (43) を有する断面が V字状の二重構造のリードを用い、 前記 V字状リードの枠状部 (41) の溶接点 (41 a) を溶接する第 1の溶接工程を、 抵抗溶接により上部集電板 (正極集電 板) (2) に溶接し、 V字状リードの補助リード部 (44) となる突片と突起 (4 4 a) とが電槽 (60) の開放端側に位置するように、 V字状リード (40) が 取り付けられた正極集電板 (2) を接合した極群を電槽 (60) 内に収容し、 電 解液を注液し、 補助リード部 (44) の突片の突起 (44 a) が蓋 (50) の内 面に当接するように蓋 (50) を載置し、 電槽 (60) を密閉した後、 密閉形電 池の正負極両端子間に溶接のための電流を通電することにより蓋 (50) の内面 に V字状'リードの補助リード部 (44) を溶接する第 2の溶接工程を実施したこ と以外は実施例 1と同様にして、 図 6に示すような密閉形電池を得た。 プレス加 ェにより形成された溶接部となる突起 (41 a) を除いた最も薄肉な部分の厚み は 0. 25mm、 平均厚みは 0. 3 mm、 最も厚い部分は 0. 35mmである。 このとき、 正極集電板 (2) と溶接された主リード部の枠状部 (41) の溶接 点は 8点 (溶接点となる突起 (41 a) は図 13に示すように 8個)、 蓋 (50) と補助リード部 (44) との溶接点は 16点 (溶接点となる突起 (44 a) は図 14に示すように 16個) であった。  The cross section of Example 3 (Figs. 13 and 14) is inverted, and the double V-shaped lead is inverted, so that the inner circumference (41-1) and outer circumference of the frame (41) and frame (41) (41-2) Using a double-structured lead having a V-shaped cross section having a double-structured side wall portion (42) and (43) extending upward from the frame, the frame-shaped portion of the V-shaped lead The first welding process for welding the welding point (41a) of (41) is welded to the upper current collector plate (positive electrode current collector plate) (2) by resistance welding, and the auxiliary lead part of the V-shaped lead (44 ) The positive current collector plate (2) to which the V-shaped lead (40) was attached was joined so that the projecting piece and the projection (4 4 a) located on the open end side of the battery case (60) Place the electrode group in the battery case (60), inject the electrolyte, and cover the projection so that the protrusion (44a) on the auxiliary lead (44) contacts the inner surface of the cover (50). (50) is placed, the battery case (60) is sealed, and then the sealed battery Other than performing the second welding process of welding the auxiliary lead part (44) of the V-shaped 'lead to the inner surface of the lid (50) by passing a current for welding between both positive and negative terminals of Was similar to Example 1 to obtain a sealed battery as shown in FIG. The thickness of the thinnest part, excluding the protrusion (41a), which is the weld formed by pressing, is 0.25mm, the average thickness is 0.3mm, and the thickest part is 0.35mm. At this time, there were 8 welding points on the positive electrode current collector plate (2) and the welded frame (41) of the main lead part (8 protrusions (41 a) as welding points as shown in Fig. 13). The number of welding points between the lid (50) and the auxiliary lead part (44) was 16 (16 protrusions (44a) as welding points as shown in Fig. 14).
L 1/X 1 = 1. 4であった。  L 1 / X 1 = 1.4.
(実施例 4) (Example 4)
実施例 2 (図 11及び 12) の断面が逆 U字状の二重構造のリードを逆さにし て、 枠状部 (41) と枠状部 (41) の内周 (41ー 1) 及び外周 (41一 2) から上方に向けて延びた二重構造の側壁部 (42) 及び (43) を有する断面が U字状の二重構造のリードを用い、 第 1の工程として、 U字状リードの補助リ一 ド部 (44) の突起 (44 a) を当接して蓋 (50) の内面にスポット溶接して 取り付ける工程を実施し、 第 2の工程として、 蓋 (50) を、 蓋 (50) に取り 付けた U字状リード (主リード部) の枠状部 (41) の突起 (41 a) が正極集 電板 (2) に当接するように極板群の上に載置し、 電槽 (60) の開放端をかし めて気密に密閉した後、 正極集電板 (2) の上面に枠状部 (41) を溶接するェ 程を実施したこと以外は実施例 1と同様にして図 4に示されるような密閉形電池 を得た。 Example 2 (Figs. 11 and 12) is a U-shaped double-structured lead with the cross-section reversed, and the inner circumference (41-1) and outer circumference of the frame-shaped part (41) and frame-shaped part (41) (41 one 2) A double-structured lead having a U-shaped cross section having double-structured side wall portions (42) and (43) extending upward from the A process of attaching the protrusion (44a) of the groove portion (44) by spot welding to the inner surface of the lid (50) and mounting the lid (50) on the lid (50) is performed as a second step. Place the U-shaped lead (main lead part) on the electrode plate group so that the projection (41 a) of the frame-like part (41) abuts the positive electrode current collector plate (2). 60) The open end of the positive electrode current collector plate (2) was caulked and hermetically sealed, and then the frame portion (41) was welded to the upper surface of the positive electrode current collector plate (2). A sealed battery as shown in Fig. 4 was obtained.
このとき、蓋(50) と溶接された補助リード部(44) の溶接点は 16点(溶 接点となる突起 (44 a) は図 12に示すように 16個)、 正極集電板 (2) と 主リード部の枠状部 (41) との溶接点は 8点 (溶接点となる突起 (41 a) は 図 1 1に示すように 8個) であった。  At this time, the welding point of the auxiliary lead part (44) welded to the lid (50) was 16 points (16 protrusions (44a) as the weld contact as shown in Fig. 12), positive current collector plate (2 ) And the frame-like part (41) of the main lead part were 8 points (8 protrusions (41a) as welding points as shown in Fig. 11).
実施例 2と同様に L 1ZX1 = 1. 4であった。  Similarly to Example 2, L 1ZX1 = 1.4.
(実施例 5) (Example 5)
実施例' 2の蓋 (50) の内面と正極集電板 (2) の上面を溶接するリードを、 図 24及び 25のように逆 U字状リ一ドに蛇腹様加工を施したこと以外は実施例 1と同様にして密閉形電池を得た。  The lead that welds the inner surface of the lid (50) and the upper surface of the positive electrode current collector plate (2) of Example 2 except that the inverted U-shaped lead was subjected to bellows-like processing as shown in Figs. A sealed battery was obtained in the same manner as in Example 1.
実施例 2よりも溶接点間距離は長く、 L 1 X1 = 2. 1であった。 実施例 1〜5、 比較例 1〜3で得た密閉形電池を、 上述した実施例 1と同じ条 件で化成し、 内部抵抗および出力密度の測定を行った。 内部抵抗、 出力密度の測 定結果を、 実施例 1の測定結果.とともに表 1に示す。 表 1 The distance between the welding points was longer than that in Example 2, and L 1 X1 = 2.1. The sealed batteries obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were formed under the same conditions as in Example 1 described above, and the internal resistance and output density were measured. The measurement results of internal resistance and output density are shown in Table 1 together with the measurement results of Example 1. table 1
Figure imgf000045_0001
表 1に示されるように、 蓋の内面にリードの一方の面を溶接する第 1の溶接工 程と上部集電板が電槽の開放端側に位置するように、 前記上部集電板を接合した 極群を前記電槽内に収容し、 電解液を注液し、 前記リードの他方の面が前記上部 集電板の上面に当接するように前記蓋を載置し、 前記電槽を密閉した後、 密閉電 池の正負極両端子間に溶接のための電流を通電することにより前記上部集電板の 上面に前記リードの他方の面を溶接する第 2の溶接工程とを、 この溶接順序で行 うことを行った密閉形電池は、 内部抵抗が Ι πιΩ以下と低く、 出力密度も 1 4 0 O W/ k g以上の高出力のものであることが分かった。
Figure imgf000045_0001
As shown in Table 1, the upper current collector plate is placed so that the first welding process of welding one surface of the lead to the inner surface of the lid and the upper current collector plate are located on the open end side of the battery case. The joined electrode group is accommodated in the battery case, an electrolytic solution is injected, the lid is placed so that the other surface of the lead contacts the upper surface of the upper current collector plate, and the battery case is mounted. After the sealing, a second welding step of welding the other surface of the lead to the upper surface of the upper current collector plate by passing a current for welding between the positive and negative terminals of the sealed battery. The sealed batteries that were used in the welding sequence were found to have a high output with an internal resistance as low as ΙπιΩ or less and a power density of 1440 OW / kg or more.
1 4 0 O W/ k g以上の出力を保持することは、ハイプリッド形電気自動車(H E V) でのアシスト時に 2 0 O A ( 3 0 1 t Aのレートに相当) の放電を行って も、 常温において 1 セルを切ることがない性能を保持することを意味してい る。 このため、 1 4 0 O W/ k g以上の出力密度を有するニッケル水素電池は、 過放電防止のための電圧制御の下限値として 1 VZセルを設定でき、 このため放 電レ一卜の上限を 3 0 I t Aとしたときの、 いかなる放電パターンにおいても過 放電を防止することができるので好ましい。  Maintaining an output of 1 4 0 OW / kg or more is 1 at room temperature even if discharging 20 0 OA (equivalent to a rate of 3 0 1 t A) when assisting with a hybrid electric vehicle (HEV). This means maintaining the performance without cutting the cell. For this reason, nickel-metal hydride batteries with a power density of 140 OW / kg or more can be set with a 1 VZ cell as the lower limit for voltage control to prevent overdischarge. It is preferable because overdischarge can be prevented in any discharge pattern when 0 It A is set.
これに対して、 第 1の溶接工程と第 2の溶接工程とを逆にして、 蓋を後で溶接 した場合には、 内部抵抗が高く.、 出力密度が低くなつた。  On the other hand, when the first welding process and the second welding process were reversed and the lid was later welded, the internal resistance was high and the output density was low.
これは、 蓋は電池の機密を保持するために、 上部集電板より厚い板材を使用す る必要があり、 溶接時の電流による熱が厚い板材に逃げるために、 溶接の溶け込 みが小さくなり、 不具合が発生して、 高抵抗な溶接となったためと考えられる。 実施例 1と実施例 2及び実施例 3とを比較して、 主リード部は単リング構造、 多重リング構造のいずれでもよく、 単リング構造であれば、 0 . 4〜 0 . 8 mm の厚みが好ましい。 This is because the lid needs to use a thicker plate than the upper current collector plate in order to keep the battery secret, and the heat generated by the welding current escapes to the thicker plate, so the welding penetration is small. This is thought to be due to the occurrence of defects and high resistance welding. Comparing Example 1 with Example 2 and Example 3, the main lead portion may have either a single ring structure or a multiple ring structure, and if it is a single ring structure, 0.4 to 0.8 mm Is preferable.
多重リング構造の場合は、 単リング構造に比較して、 構成する複数個分の 1の 厚みで、 同じ抵抗が得られるため、 2重リング構造では 2分の 1の厚みの 0. 2 〜0. 4 mmで良く、 厚みが 0. 3 mm以下の場合、 プレス成形で多重リング構 造のリ一ドを成形することができるため、 安価となりより好ましい。  In the case of a multiple ring structure, the same resistance can be obtained with a thickness of one half of the multiple ring structure compared to a single ring structure. If the thickness is 4 mm and the thickness is 0.3 mm or less, the lead of the multiple ring structure can be formed by press molding, which is more preferable because it is inexpensive.
また、 補助リード部の厚みは、 0. 4mmより大きい場合、 溶接熱が不足し溶 接不良を発生しやすいが、 0. 4mm以下では確実な溶接が可能となるため 0. 4 mm以下が好ましい。  Also, if the thickness of the auxiliary lead is greater than 0.4 mm, welding heat is insufficient and welding defects are likely to occur. However, if the thickness is 0.4 mm or less, reliable welding is possible, so 0.4 mm or less is preferable. .
0. 2 mm以下になった場合、 バネ部としての強度が低下し、 確実で均一な溶 接ができなくなる。 このため、 0. 2mm以上 0. 4mm以下が好ましい。 多重リング構造とすることで、 主リード部の厚みと補助リード部の厚みが同一 と出来るため、 多重リング構造の場合、 1枚の板から主リード部と補助リード部 がプレス成形で形成できるために安価となりより好ましい。  If the thickness is less than 0.2 mm, the strength of the spring will decrease, and reliable and uniform welding will not be possible. For this reason, 0.2 mm or more and 0.4 mm or less are preferable. With the multiple ring structure, the thickness of the main lead and the auxiliary lead can be made the same. In the case of the multiple ring structure, the main lead and auxiliary lead can be formed from a single plate by press molding. It is cheaper and more preferable.
実施例 4のように、 逆 U字状リードを逆にとり付け、 U字状とした場合、 逆 U 字状リードと同様な低抵抗が得られるものの、 厚い蓋への熱の拡散により補助リ ード部の突起部の溶接が確実なものとならず、 140 OWZKgを下回る抵抗の 高いものが 30 %発生した。  When the inverted U-shaped lead is mounted reversely as in Example 4, the same low resistance as that of the inverted U-shaped lead can be obtained, but the auxiliary lead is formed by the diffusion of heat to the thick lid. As a result, welding of the protrusions of the terminal portions was not reliable, and 30% of the products with high resistance below 140 OWZKg were generated.
より大きな電流の通電などにより不良率は改善できるものの、 溶接機が高価と なるため、 実施例 2のように、 逆 U字状リードの二重構造の側壁部の端部が上部 集電板の上面に溶接され、 逆 U字状リードの枠状部が蓋の内面に溶接されている ことが好ましい。  Although the defect rate can be improved by energizing a larger current, etc., the welding machine becomes expensive. Therefore, as in Example 2, the end of the side wall portion of the double structure of the inverted U-shaped lead is the upper current collector plate. It is preferable that the upper U-shaped lead is welded to the upper surface and the frame portion of the inverted U-shaped lead is welded to the inner surface of the lid.
実施例 1の第 2工程の溶接条件を、 放電方向に電流値を正極板の容量 (6. 5 Ah) lAh当たり 0. 6 kAZAh (3. 9 kA)、 通電時間を 4. 5 ms e cで 4サイクル通電ができるよ.うにセットし、 矩形波からなる直流パルスを通電 した。  The welding conditions of the second process of Example 1 are as follows: the current value in the discharge direction is 0.6 kAZAh (3.9 kA) per 1 Ah capacity (6.5 Ah) lAh, and the energization time is 4.5 ms ec. It was set so that it could be energized for 4 cycles, and a DC pulse consisting of a rectangular wave was energized.
この結果、 電解液が電池の耐圧を超えたためか、 安全弁から気密が漏れ、 電解 液の漏液を確認した。 '  As a result, it was confirmed that the electrolyte exceeded the pressure resistance of the battery. '
したがって、 第 2工程の溶接工程は、 外部電源により交流パルスを通電して行 うことが好ましい。 (実施例 6) Therefore, it is preferable that the welding process of the second process is performed by supplying an AC pulse with an external power source. (Example 6)
実施例 2の逆 U字状リング構造のリードに代えて、 このリードを図 15〜18 に示すように分割して 8個のパーツからなるリード (45) としたものを用いた こと以外は実施例 1と同様にして密閉形電池を得た。  Instead of the lead of the inverted U-shaped ring structure of Example 2, this lead was divided as shown in FIGS. 15 to 18 and used as a lead (45) consisting of 8 parts. A sealed battery was obtained in the same manner as in Example 1.
(実施例 7 ) (Example 7)
実施例 2の蓋 (50) の内面と正極集電板 (2) の上面を溶接するリードを、 図 19〜21のように逆 U字状リード (40) に幅 lmmのスリット加工を施し てを周方向に 8個に分断して二重構造の側壁部 (47)、 (48) としたこと以 外は実施例 1と同様にして密閉形電池を得た。  The lead that welds the inner surface of the lid (50) and the upper surface of the positive electrode current collector plate (2) in Example 2 is slit into an inverted U-shaped lead (40) as shown in Figs. A sealed battery was obtained in the same manner as in Example 1 except that it was divided into eight in the circumferential direction to form double-walled side walls (47), (48).
実施例 2と同様に L 1ZX1 = 1. 4であった。  Similarly to Example 2, L 1ZX1 = 1.4.
(実施例 8) (Example 8)
実施例 2の蓋 (50) の内面と正極集電板 (2) の上面を溶接するリードを、 図 22のように逆 U字状リード (40) の二重構造の側壁部 (42)、 (43) に幅 0. 25 mmのスリット (42— 1)、 (43-1) を形成して 8個に分断 したこと以外は実施例 1と同様にして密閉形電池を得た。  The lead that welds the inner surface of the lid (50) of Example 2 and the upper surface of the positive electrode current collector plate (2) is a double-structure side wall (42) of an inverted U-shaped lead (40) as shown in FIG. A sealed battery was obtained in the same manner as in Example 1 except that slits (42-1) and (43-1) having a width of 0.25 mm were formed in (43) and divided into eight.
実施例 2と同様に L 1ZX 1 = 1. 4であった。 実施例 6〜 8で得た密閉形電池を、 上述しだ実施例 1と同じ条件で化成し、 内 部抵抗および出力密度の測定を行った。 内部抵抗、 出力密度の測定結果を表 2に 示す。  As in Example 2, L 1ZX 1 = 1.4. The sealed batteries obtained in Examples 6 to 8 were formed under the same conditions as in Example 1 described above, and the internal resistance and output density were measured. Table 2 shows the measurement results of internal resistance and output density.
表 2
Figure imgf000047_0001
この結果、 分割したパーツからなるリード、 周方向に間隔をおいてスリット加 ェを施して分断したリードを用いても出力が下がりにくかった。
Table 2
Figure imgf000047_0001
As a result, it was difficult to reduce the output even when using a lead consisting of divided parts and a lead that was divided by slitting at intervals in the circumferential direction.
分割したパーツからなるリードの場合、 ' 8個のパーツを合わせた主リード部と しての全体抵抗は悪くなるものの、 蓋へ主リード部を溶接するときの無効溶接電 流が低下し、 より強固な溶接が可能となり、 全体としての抵抗が実施例 2とあま り変わらなかったためと考えられる。 In the case of a lead consisting of divided parts, the main lead part that combines eight parts and However, the overall resistance was not much different from that of Example 2, although the ineffective welding current when welding the main lead to the lid was reduced, and a stronger welding was possible. it is conceivable that.
上記のような主リード部の部品は、 プレス加工時のロスが少なく、 安い部品が 作ることが可能であり、 より安価になるため好ましい。  The main lead parts as described above are preferable because there is little loss during press working, and cheaper parts can be made, resulting in lower costs.
(実施例 9 ) (Example 9)
正極集電板 (2) との溶接点 (2— 1) となる図 9に示されるような突起 (3 0- 1) 4点を有する補助リード (30) を介してリング状の主リードを溶接し たこと以外は実施例 1と同様にして図 2に示されるような密閉形電池を得た。 なお、 主リード内面の半径は 1 Ommであり、 補助リードの上部集電板との溶 接点 (突起) と主リードの内面までの距離を lmmに設定してある。  The ring-shaped main lead is connected to the positive current collector plate (2) through the auxiliary lead (30) with four protrusions (3 0-1) as shown in Fig. 9 to be welded points (2-1). A sealed battery as shown in FIG. 2 was obtained in the same manner as in Example 1 except that welding was performed. The radius of the inner surface of the main lead is 1 Omm, and the distance from the welding point (protrusion) with the upper current collector of the auxiliary lead to the inner surface of the main lead is set to lmm.
(即ち、 突起部 4点に囲われた内径は半径で 9. mm)  (In other words, the inner diameter surrounded by the four protrusions is a radius of 9. mm)
(実施例 10) (Example 10)
正極集電板 (2) との溶接点 (2— 1) となる図 9に示されるような突起 (3 0- 1) '4点を有する補助リード (30) を介してリング状の主リードを溶接し たこと以外は実施例 1と同様にして図 2に示されるような密閉形電池を得た。 なお、 主リード内面の半径は 1 Ommであり、 補助リードの上部集電板との溶 接点 (突起) と主リードの内面までの距離を 2mmに設定してある。  Ring-shaped main lead through auxiliary lead (30) with protrusion (3 0-1) '4 point as shown in Fig. 9 to be welded point (2-1) to positive current collector plate (2) A sealed battery as shown in FIG. 2 was obtained in the same manner as in Example 1 except that was welded. The radius of the inner surface of the main lead is 1 Omm, and the distance from the weld (protrusion) of the auxiliary lead to the upper current collector and the inner surface of the main lead is set to 2 mm.
(即ち、 突起部 4点に囲われた内径は半径で 8 mm)  (In other words, the inner diameter surrounded by the four protrusions is 8 mm in radius)
(実施例 1 1) (Example 1 1)
正極集電板 (2) との溶接点 (2— 1) となる図 9に示されるような突起 (3 0-1) 4点を有する補助リード (30) を介してリング状の主リードを溶接し たこと以外は実施例 1と同様にして図 2に示されるような密閉形電池を得た。 なお、 主リード内面の半径は 1 Ommであり、 補助リードの上部集電板との溶 接点 (突起) と主リードの内面までの距離を 3mmに設定してある。  The ring-shaped main lead is connected to the positive current collector plate (2) through the auxiliary lead (30) with four protrusions (30-1) as shown in Fig. 9 to be welded points (2-1). A sealed battery as shown in FIG. 2 was obtained in the same manner as in Example 1 except that welding was performed. The radius of the inner surface of the main lead is 1 Omm, and the distance between the weld (protrusion) of the auxiliary lead and the upper collector plate and the inner surface of the main lead is set to 3 mm.
(即ち、 突起部 4点に囲われた内径は半瘙で 7mm) (比較例 4) (In other words, the inner diameter surrounded by the four protrusions is 7mm in half) (Comparative Example 4)
正極集電板 (2) との溶接点 (2— 1) となる図 9に示されるような突起 (3 0-1) 4点を有する補助リード (30) を介してリング状の主リードを溶接し たこと以外は実施例 1と同様にして密閉形電池を得た。  The ring-shaped main lead is connected via the auxiliary lead (30) with four protrusions (30-1) as shown in Fig. 9 to be welded points (2-1) to the positive current collector plate (2). A sealed battery was obtained in the same manner as in Example 1 except that welding was performed.
なお、 主リード内面の半径は 1 Ommであり、 補助リードの上部集電板との溶 接点 (突起) と主リードの内面までの距離を 4mmに設定してある。  The radius of the inner surface of the main lead is 1 Omm, and the distance between the weld (protrusion) of the auxiliary lead and the upper collector plate and the inner surface of the main lead is set to 4 mm.
(即ち、 突起部 4点に囲われた内径は半径で 6mm) 実施例 9〜11、 比較例 4で得た密閉形電池を、 上述した実施例 1と同じ条件 で化成し、 内部抵抗および出力密度の測定を行った。 内部抵抗、 出力密度の測定 結果を表 3に示す。  (In other words, the inner diameter surrounded by the four protrusions is 6 mm in radius.) The sealed batteries obtained in Examples 9 to 11 and Comparative Example 4 were formed under the same conditions as in Example 1 above, and the internal resistance and output were Density measurements were taken. Table 3 shows the measurement results of internal resistance and output density.
表 3  Table 3
Figure imgf000049_0001
表 3に示されるように、 L 1ZX 1比が本発明の範囲を満たす実施例 9〜11 の密閉形電池は、 内部抵抗が ΙπιΩ以下と低く、 出力密度も 140 OWZkg以 上の高出力のものであることが分かった。
Figure imgf000049_0001
As shown in Table 3, the sealed batteries of Examples 9 to 11 whose L 1ZX 1 ratio satisfies the scope of the present invention have a low internal resistance of ΙπιΩ or less and a high output density of 140 OWZkg or more. It turns out that.
特に、 1^ 1 1比が1〜2. 1の範囲で小さくなるにしたがって、 内部抵抗 が低く、 出力密度が高くなる傾向が見られた。 .  In particular, as the 1 ^ 1 1 ratio decreased in the range of 1 to 2.1, the internal resistance decreased and the output density tended to increase. .
L 1/X 1比を好ましくは 1〜1. 7、 更に好ましくは 1〜1. 4とすること によって、 電池製造上の誤差によって生じる電池特性のバラツキを加味しても、 出力密度 140 OWZkg以 _h.を余裕をもってクリア一することができる。 比較例 4のように、 L1ZX1比が 2. 1を超えると、 内部抵抗がやや大きく なり、 出力密度も 140 OWZk g未満となるので、 好ましくない。  By setting the L 1 / X 1 ratio to preferably 1 to 1.7, and more preferably 1 to 1.4, the output density is 140 OWZkg or less even when the variation in battery characteristics caused by errors in battery manufacturing is taken into account. You can clear _h. As in Comparative Example 4, when the L1ZX1 ratio exceeds 2.1, the internal resistance is slightly increased and the output density is also less than 140 OWZkg, which is not preferable.
(実施例 12 ) (Example 12)
実施例 1の補助リードを用いないで、 長辺の一方に高さ 0. 5mmの突起を 1 0個備え、 他方の長辺に高さ 2 mmの突起を 8個備える板をリング状に丸めた図 7及び 8のようなリング状リード (20) を用い、 以下のように蓋 (50) と正 極集電板 (2) にリング状リード (20) を溶接したこと以外は実施例 1と同様 にして図 1に示されるような密閉形電池を得た。 Without using the auxiliary lead of Example 1, a protrusion with a height of 0.5 mm was placed on one of the long sides. Use a ring-shaped lead (20) as shown in Fig. 7 and 8 with a plate with 0 pieces and a plate with 8 protrusions of 2 mm height on the other long side. The lid (50) A sealed battery as shown in FIG. 1 was obtained in the same manner as in Example 1 except that the ring-shaped lead (20) was welded to the positive electrode current collector plate (2).
蓋 (50) の内面側にリング状リード (20) の高さ 0. 5 mmの 10個の突 起を当接させ、 抵抗溶接によりリング状リード (20) を蓋 (50) の内面に接 合した。 蓋 (50) の外面には、 弁体 (90) およびキャップ (80) を取り付 けた。 蓋の周縁をつつみ込むように蓋にリング状のガスケットを装着した。 蓋 (50) を、 蓋 (50) に取り付けたリング状リード (20) の高さ 2mm の 8個の突起が正極集電板 (2) に当接するように極群 (70) の上に載置し、 電槽 (60) の開放端をかしめて気密に密閉した後、 圧縮して電池の総高さを調 整した。 なお、 電池の総高さ調整後の蓋と正極端子間の高さが、 突起と正極集電 板の当接面 1個当たり 200 g f の押圧力が加わる高さになるように、 リードに 設けた高さ 2 mmの突起の外側への張り出し角度を調整した。  Ten protrusions with a height of 0.5 mm of the ring-shaped lead (20) are brought into contact with the inner surface of the lid (50), and the ring-shaped lead (20) is brought into contact with the inner surface of the lid (50) by resistance welding. Combined. A disc (90) and a cap (80) were attached to the outer surface of the lid (50). A ring-shaped gasket was attached to the lid so as to squeeze the periphery of the lid. Place the lid (50) on the pole group (70) so that the 8 mm 2 mm high projections of the ring-shaped lead (20) attached to the lid (50) abut the positive current collector plate (2). The battery case (60) was caulked and hermetically sealed, and then compressed to adjust the total height of the battery. Provided on the lead so that the height between the lid and the positive terminal after adjusting the total height of the battery is such that a pressing force of 200 gf is applied to each contact surface between the protrusion and the positive current collector. The protrusion angle to the outside of the 2 mm high protrusion was adjusted.
キャップ (80) (正極端子)、 電槽 (60) の底面 (負極端子) に抵抗溶接 機の溶接用出力端子を当接させ、 充電方向および放電方向に同じ電流値で同じ通 電時間となるように通電条件を設定した。 具体的には、 電流値を正極板の容量 (6. 5 Ah) lAh当たり 0. 6 kA/Ah (3. 9 kA)、 通電時間を充電 方向に 4. 5ms e c、 放電方向に 4. 5 m s e cに設定し、 該交流パルス通電 を 1サイクルとして 2サイクル通電ができるようにセットし、 矩形波からなる交 流パルスを通電し、 正極集電板 (2) の上面にリング状リード (20) を溶接す る第 2の溶接工程を実施した。 このとき開弁圧を超えてガス発生していないこと を確認した。  The welding output terminal of the resistance welding machine is brought into contact with the bottom face (negative electrode terminal) of the cap (80) (positive electrode terminal) and battery case (60), and the same current value is obtained at the same current value in the charging direction and discharging direction. The energization conditions were set as follows. Specifically, the current value is 0.6 kA / Ah (3.9 kA) per lAh of the positive electrode capacity (6.5 Ah), the energization time is 4.5 ms ec in the charge direction, and 4.5 in the discharge direction. Set to msec, set the AC pulse energization as one cycle, and set so that it can be energized for 2 cycles, energize the AC pulse consisting of a rectangular wave, and ring lead (20) on the upper surface of the positive current collector (2) A second welding process was carried out. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(化成、 内部抵抗測定および高率放電試験)  (Chemical conversion, internal resistance measurement and high rate discharge test)
前記密閉形電池を周囲温度 25T:において 12時間の放置後、 130mA (0. 02 I t A) にて 120 OmAh充電し、 引き続き 65 OmA (0. 1 I t A) で 10時間充電した後、 130 OmA (0. 2 I t A) でカット電圧 1 Vまで放 電した。 さらに、 650mA (0. 1 I t A) で 16時間充電後、 1300mA (0. 2 I t A) でカット電圧 1. 0Vまで放電し、 該充放電を 1サイクルとし て 4サイクル充放電を行った。 4サイクル目の放電終了後、 l k Hzの交流を用 いて内部抵抗を測定した。 The sealed battery was allowed to stand for 12 hours at an ambient temperature of 25 T: 120 OmAh at 130 mA (0.02 It A), and then charged at 65 OmA (0.1 It A) for 10 hours. Discharged to a cut voltage of 1 V at 130 OmA (0.2 0.2 It A). Furthermore, after charging for 16 hours at 650 mA (0.1 It A), it is discharged at 1300 mA (0.2 It A) to a cut voltage of 1.0 V. The battery was charged and discharged for 4 cycles. After the fourth cycle, the internal resistance was measured using lk Hz alternating current.
次いで 6 5 0 mA ( 0 . 1 I t A) で 1 6時間充電後、 2 0 0 A ( 3 0 . 8 1 t A相当) で、 カット電圧 0 . 6 Vまで放電した。  Next, after charging for 16 hours at 6 50 mA (0.1 I t A), it was discharged to a cut voltage of 0.6 V at 2 00 A (equivalent to 3 0.8 1 t A).
(比較例 5 ) (Comparative Example 5)
図 4 6に示すリポン状リード板 (1 2 ) を適用した構造の密閉形電池を作成し た。 なお、 図 4 5に示すように正極集電板および正極集電板と蓋を接続するリポ ン状リード板を一体形とし、 正極集電板およびリード板を厚さ 0 . 4 mmのニッ ケル板製とし、 リード板の幅を 7 mm、 長さを 2 5 mmとし、 蓋とリード板を抵 抗溶接にて 2点溶接した。 正極集電板およびリ一ド板の構成以外は実施例 1 2と 同じ構成の図 4 5に示されるような密閉形電池とした。 このとき開弁圧を超えて ガス発生していないことを確認した。  A sealed battery with a structure using the lead-like lead plate (1 2) shown in Fig. 46 was produced. As shown in FIG. 45, the positive electrode current collector plate and the lead-shaped lead plate connecting the positive electrode current collector plate and the lid are integrated, and the positive electrode current collector plate and the lead plate have a thickness of 0.4 mm. It was made of plate, the width of the lead plate was 7 mm, the length was 25 mm, and the lid and the lead plate were welded at two points by resistance welding. A sealed battery as shown in Fig. 45 having the same configuration as in Example 12 except for the configuration of the positive electrode current collector plate and the lead plate was used. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(比較例 6 ) (Comparative Example 6)
特許文献 1に記載されている突起部を有する正極集電板兼リード板として、 図 4 0に示されるような打ち抜き加工形リード板を適用した。 突起部および該リー ド板は厚さ 0 . 4 mmのニッケル板製とし、 正極集電板に打ち抜き加工を施して 幅 1 0 mm突出高さ 3 mmのリード板を形成した。 それ以外は実施例 1 2と同じ 構成の図 3 9に示されるような密閉形電池とした。 このとき開弁圧を超えてガス 発生していないことを確認した。  As a positive electrode current collector / lead plate having a protrusion described in Patent Document 1, a punched lead plate as shown in FIG. 40 was applied. The protrusion and the lead plate were made of a nickel plate having a thickness of 0.4 mm, and the positive electrode current collector plate was punched to form a lead plate having a width of 10 mm and a protrusion height of 3 mm. Otherwise, a sealed battery as shown in FIG. 39 having the same configuration as in Example 12 was used. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
実施例 1 2、 比較例 5、 比較例 6の電池の抵抗を表 4に、 高率放電試験結果を 図 4 7に示す。  The resistances of the batteries of Example 1 2, Comparative Example 5, and Comparative Example 6 are shown in Table 4, and the results of the high rate discharge test are shown in FIG.
表 4  Table 4
リード板形状 内部抵抗  Lead plate shape Internal resistance
区分 Division
Figure imgf000051_0001
Figure imgf000051_0001
実施例 1 2 リング状リード 0. 95  Example 1 2 Ring-shaped lead 0.95
比較例 5 リポン状リード板 1 . 6  Comparative Example 5 Ripon-shaped lead plate 1.6
比較例 6 集電板打ち抜き加工形リード板 1 . 35 表 4に示したように、 実施例 12の電池は比較例 5、 さらには比較例 6の電池 に比べて内部抵抗が低い。 比較例 5の場合は正極集電板と蓋を幅が小さく (7m m)、 長さが長い (20mm) リポン状リード板で接続しており、 比較例 6の場 合は比較例 5に比べてリード板の長さが小さい (3 mm) が幅が小さい (10m m)。 このため、 比較例 5および比較例 6の場合は正極集電板と蓋を接続するリ ード板の電気抵抗が大きい欠点があった。 これに対して実施例 12のリング状リ —ドの場合は、 リードの幅が大きく (66mm)、 長さが小さい (2. 5mm) ためにリ一ドの電気抵抗が小さい。 実施例 12と比較例 5、 比較例 6との電池の 内部抵抗の相違は、 正極集電板と蓋を接続するリードの電気抵抗の差によって生 じたものである。 Comparative Example 6 Current collector punched lead plate 1. 35 As shown in Table 4, the battery of Example 12 has a lower internal resistance than the battery of Comparative Example 5 and Comparative Example 6. In the case of Comparative Example 5, the positive electrode current collector plate and the lid are connected with a small lead (7 mm) and long (20 mm) ribbon-like lead plate. In the case of Comparative Example 6, compared to Comparative Example 5. The lead plate has a small length (3 mm) but a small width (10 mm). For this reason, Comparative Example 5 and Comparative Example 6 have a drawback in that the electrical resistance of the lead plate connecting the positive electrode current collector plate and the lid is large. On the other hand, in the case of the ring-shaped lead of Example 12, the lead has a large width (66 mm) and a small length (2.5 mm), so the electrical resistance of the lead is small. The difference in battery internal resistance between Example 12 and Comparative Example 5 and Comparative Example 6 was caused by the difference in electrical resistance between the positive electrode current collector plate and the lead connecting the lid.
また、 実施例 12のリング状リードは幅が短すぎ、 従来技術での解放状態 (圧 縮による高さ調整前) では接点が接触しないため溶接できなかった。  Further, the ring-shaped lead of Example 12 was too short in width and could not be welded because the contact did not contact in the released state (prior to height adjustment by compression) in the prior art.
従来の解放状態 (圧縮による高さ調整前) での溶接では、 圧縮の余裕を有する 長さや幅のリードが必要となることから、 好ましくない。  Welding in the conventional released state (before height adjustment by compression) is not preferable because a lead having a length or width that has a margin for compression is required.
図 47に示したように、 高率放電を行ったときに、 実施例 12の電池は比較例 5の電池に比べて、 放電電圧が高く、 且つ、 放電容量が大きい。 このように、 実 施例 12'の電池が優れた高率放電特性を示すのは、 前記表 4に示したように、 実 施例 12の電池の内部抵抗が小さいためである。  As shown in FIG. 47, when high rate discharge was performed, the battery of Example 12 had a higher discharge voltage and a larger discharge capacity than the battery of Comparative Example 5. Thus, the reason why the battery of Example 12 ′ exhibits excellent high rate discharge characteristics is that, as shown in Table 4, the internal resistance of the battery of Example 12 is small.
(実施例 13 ) (Example 13)
第 2の溶接工程において、 交流パルス通電の電流値を 0. 4kAZAh (2. 6 kA) に設定し、 通電したこと以外は実施例 12と同様にして密閉形電池を得 た。 このとき開弁圧を超えてガス発生していないことを確認した。  In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the current value of AC pulse energization was set to 0.4 kAZAh (2.6 kA) and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(実施例 14) (Example 14)
第 2の溶接工程において、 交流パルス通電の電流値を 0. 8kAZAh (5. 2 kA) に設定し、 通電したこと以外は実施例 12と同様にして密閉形電池を得 た。 このとき開弁圧を超えてガス発生していないことを確認した。 (比較例 7 ) In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the current value of AC pulse energization was set to 0.8 kAZAh (5.2 kA) and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure. (Comparative Example 7)
第 2の溶接工程において、 交流パルス通電の電流値を 0. 2kAZAh (1. 3 kA) に設定し、 通電したこと以外は実施例 12と同様にして密閉形電池を得 た。 このとき開弁圧を超えてガス発生していないことを確認した。  In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the current value of AC pulse energization was set to 0.2 kAZAh (1.3 kA) and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(比較例 8 ) (Comparative Example 8)
第 2の溶接工程において、 交流パルス通電の電流値を 1. Ok A/Ah (6. 5 kA) に設定し、 通電したこと以外は実施例 12と同様にして密閉形電池を得 た。 この比較例 8においては交流パルス通電を実施したときに、 開弁圧を超えて ガス発生しキャップに設けた排気孔から少量ではあるが電解液の吹き出しが観察 された。 また、 電池を解体したところリング状リードに設けた正極集電板との溶 接点 (突起) がはじけ飛んでいるのが確認された。 実施例 12と合わせて、 実施例 13、 実施例 14、 比較例 7、 比較例 8の電池 の内部抵抗測定結果を表 5に示す。  In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the current value of AC pulse energization was set to 1. Ok A / Ah (6.5 kA) and energization was performed. In Comparative Example 8, when AC pulse energization was performed, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the cap. In addition, when the battery was disassembled, it was confirmed that the welding contact (protrusion) with the positive electrode current collector plate provided on the ring-shaped lead jumped off. Table 5 shows the internal resistance measurement results of the batteries of Example 13, Example 14, Comparative Example 7, and Comparative Example 8 in combination with Example 12.
表 5  Table 5
Figure imgf000053_0001
Figure imgf000053_0001
表 5に示したように、 実施例 13、 実施例 14の電池は、 実施例 12の電池と 同じ内部抵抗を示した。'これに対して比較例 7、 比較例 8は、 実施例に比べて、 電池の内部抵抗が高い値を示した。 比較例 7の電池を解体調査したところでは、 パルス通電の電流値が小さ過ぎたためか、 IE極集電板とリング状リードの溶接箇 所に接合不良が認められた。 一方、 比較例 8め場合は、 パルス通電の電流値が大 き過ぎたためか、 前記のように溶接点がはじけ飛び、 正極集電板とリング状リー ドが接合不良となっているのが確認された。 なお、 詳細は省くが、 実施例 13、 実施例 14の電池は、 実施例 12の電池と同等の高率放電特性を示したが、 内部 抵抗の大きい比較例 7、 比較例 8の電池は、 実施例に比べて高率放電特性が劣つ ているのが確認された。 As shown in Table 5, the batteries of Example 13 and Example 14 exhibited the same internal resistance as the battery of Example 12. 'On the other hand, Comparative Example 7 and Comparative Example 8 showed higher values of the internal resistance of the battery than the Example. When the battery of Comparative Example 7 was disassembled and investigated, the current value of pulse energization was too small. There was a bonding failure. On the other hand, in the case of Comparative Example 8, it is confirmed that the current value of the pulse energization is too large, or the weld point is repelled as described above, and the positive electrode current collector plate and the ring-shaped lead are poorly connected. It was done. Although details are omitted, the batteries of Example 13 and Example 14 showed high rate discharge characteristics equivalent to the battery of Example 12, but the batteries of Comparative Example 7 and Comparative Example 8 with large internal resistance were It was confirmed that the high rate discharge characteristics were inferior to those of the examples.
表 5に示した結果から、 正極集電板とリードを溶接する際のパルス通電の電流 値の大きさは正極板の容量 1 Ah当たり、 0. 4〜0. 8 (kA/Ah) 即ち、 接触点 1点あたり 0. 33KA/1点〜 0. 65 kAZ点が良いことがわかった。  From the results shown in Table 5, the magnitude of the current value of pulse energization when welding the positive electrode current collector plate and the lead is 0.4 to 0.8 (kA / Ah) per 1 Ah capacity of the positive electrode plate. It was found that 0.333KA / 1 point to 0.65 kAZ point per contact point was good.
(実施例 15 ) (Example 15)
第 2の溶接工程において、 交流パルス通電の通電時間を 3ms e cに設定し、 通電を実施したこと以外は実施例 12と同様にして密閉形電池を得た。 このとき 開弁圧を超えてガス発生していないことを確認した。  In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 3 ms ec and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(実施例 16 ) (Example 16)
第 2の溶接工程において、 交流パルス通電の通電時間を 6ms e cに設定し、 通電を実施したこと以外は実施例 12と同様にして密閉形電池を得た。 このとき 開弁圧を超えてガス発生していないことを確認した。  In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 6 ms ec and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(実施例 17) (Example 17)
第 2の溶接工程において、 交流パルス通電の通電時間を 7ms e cに設定し、 通電を実施したこと以外は実施例 12と同様にして密閉形電池を得た。 このとき 開弁圧を超えてガス発生していないことを確認した。  In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 7 ms ec and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(比較例 9 ) (Comparative Example 9)
第 2の溶接工程において、 交流パルス通電の通電時間を 2ms e cに設定し、 通電を実施したこと以外は実施例 12と同様にして密閉形電池を得た。 このとき 開弁圧を超えてガス発生していないことを確認した。 (比較例 1 0 ) In the second welding step, a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 2 ms ec and energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure. (Comparative Example 10)
第 2の溶接工程において、 交流パルス通電の通電時間を 8 m s e cに設定し、 通電を実施したこと以外は実施例 1 2と同様にして密閉形電池を得た。 この比較 例 1 0においては交流パルス通電を実施したときに、 開弁圧を超えてガス発生し キャップに設けた排気孔から少量ではあるが電解液の吹き出しが観察された。 実施例 1 2と合わせて、 実施例 1 5〜実施例 1 7、 比較例 9、 比較例 1 0の電 池の内部抵抗測定結果を表 6に示す。  In the second welding process, a sealed battery was obtained in the same manner as in Example 12 except that the energization time of AC pulse energization was set to 8 msec and energization was performed. In Comparative Example 10, when AC pulse energization was performed, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the cap. Table 6 shows the internal resistance measurement results of the batteries of Examples 15 to 17, Comparative Example 9, and Comparative Example 10 together with Example 12.
表 6  Table 6
Figure imgf000055_0001
Figure imgf000055_0001
表 6に示したように、 実施例 1 5〜実施例 1 7の電池は、 実施例 1 2の電池と 同じ内部抵抗を示した。 これに対して比較例 9、比較例 1 0は、実施例に比べて、 電池の内部抵抗が高い値を示した。 比較例 9の電池を解体調査したところでは、 パルス通電電気量が不足したためか、 正極集電板とリング状リードの溶接箇所に 接合不良が認められた。 一方、.比較例 1 0の場合は、 パルス通電電気量が過剰な ためか、 前記のように電解液が吹き出しために内部抵抗が高くなつたものと考え られる。 なお、 詳細は省くが、 実施例 1 5〜実施例 1 7の電池は、 実施例 1 2の 電池と同等の高率放電特性を示したが、 内部抵抗の大きい比較例 9、 比較例 1 0 の電池は、 実施例に比べて高率放電特性が劣っているのが確認された。 また、 通 電時に電解液が吹き出した比較例 1 0の場合は実施例に比べて高率放電特性のみ でなく、 充放電サイクル特性においても実施例に比べて劣っていることが確認さ れた。 As shown in Table 6, the batteries of Example 15 to Example 17 exhibited the same internal resistance as the battery of Example 12. On the other hand, Comparative Example 9 and Comparative Example 10 showed a higher value of the internal resistance of the battery than the Example. When the battery of Comparative Example 9 was disassembled, it was found that poor welding was observed at the welded part of the positive electrode current collector plate and the ring-shaped lead, probably because the amount of pulsed electricity was insufficient. On the other hand, in the case of Comparative Example 10, it is conceivable that the internal resistance was increased because the amount of electricity supplied by the pulse was excessive or the electrolyte solution was blown out as described above. Although details are omitted, the batteries of Example 15 to Example 17 showed the same high rate discharge characteristics as the battery of Example 12. However, Comparative Example 9 and Comparative Example 10 having a large internal resistance were used. It was confirmed that this battery was inferior in the high rate discharge characteristics as compared with the example. In addition, in Comparative Example 10 where the electrolyte was blown out during conduction, only the high rate discharge characteristics were compared to the Example. It was also confirmed that the charge / discharge cycle characteristics were inferior to those of the examples.
表 6に示した結果から、 正極集電板とリードを溶接する際のパルス通電の通電 時間の長さは、 3〜 7 m s e cが良いことが分かった。  From the results shown in Table 6, it was found that the length of the energization time of pulse energization when welding the positive electrode current collector plate and the lead is 3 to 7 msec.
(実施例 1 8 ) (Example 1 8)
第 2の溶接工程において、 交流パルス通電を 4サイクル通電ができるようにセ ットし、 通電したこと以外は実施例 1 2と同様にして密閉形電池を得た。 このと き開弁圧を超えてガス発生していないことを確認した。  In the second welding process, AC pulse energization was set so that 4-cycle energization was possible, and a sealed battery was obtained in the same manner as in Example 12 except that energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(実施例 1 9 ) (Example 1 9)
第 2の溶接工程において、 交流パルス通電を 6サイクル通電ができるようにセ ットし、 通電したこと以外は実施例 1 2と同様にして密閉形電池を得た。 このと き開弁圧を超えてガス発生していないことを確認した。  In the second welding process, AC pulse energization was set to allow 6 cycles of energization, and a sealed battery was obtained in the same manner as Example 12 except that energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(比較例 1 1 ) (Comparative Example 1 1)
第 2の溶接工程において、 交流パルス通電を 1サイクル通電ができるようにセ ッ卜し、 通電したこと以外は実施例 1 2と同様にして密閉形電池を得た。 このと き開弁圧を超えてガス発生していないことを確認した。  In the second welding process, AC pulse energization was set to allow one cycle energization, and a sealed battery was obtained in the same manner as in Example 12 except that energization was performed. At this time, it was confirmed that no gas was generated exceeding the valve opening pressure.
(比較例 1 2 ) (Comparative Example 1 2)
第 2の溶接工程において、 交流パルス通電を 8サイクル通電ができるようにセ ットし、 通電したこと以外は実施例 1 2と同様にして密閉形電池を得た。 この比 較例 1 2においては交流パルス通電を実施したときに、 開弁圧を超えてガス発生 しキャップに設けた排気孔から少量ではあるが電解液の吹き出しが観察された。 実施例 1 2と合わせて、 実施例 1 8、 実施例 1 9、 比較例 1 1、 比較例 1 2の 電池の内部抵抗測定結果を表 7に示す。 表 7 In the second welding process, AC pulse energization was set so that 8-cycle energization was possible, and a sealed battery was obtained in the same manner as in Example 12 except that energization was performed. In this Comparative Example 12, when AC pulse energization was performed, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the cap. Table 7 shows the internal resistance measurement results of the batteries of Example 18, Example 19, Comparative Example 11 and Comparative Example 12 together with Example 12. Table 7
Figure imgf000057_0001
表 7に示したように、 実施例 1 8、 実施例 1 9の電池は、 実施例 1 2の電池と 同じ内部抵抗を示した。 これに対して比較例 1 1、 比較例 1 2は、 実施例に比べ て、 電池の内部抵抗が高い値を示した。 比較例.1 1の電池を解体調査したところ では、 パルス通電電気量が不足したためか、 正極集電板とリング状リードの溶接 箇所に接合不良が認められた。 一方、 比較例 1 2の場合は、 パルス通電電気量が 過剰なためか、 前記のように電解液が吹き出しために内部抵抗が高くなつたもの と考えられる。 なお、 詳細は省くが、 実施例 1 8、 実施例 1 9の電池は、 実施例 1 2の電池と同等の高率放電特性を示したが、 内部抵抗の大きい比較例 1 1、 比 較例 1 2の電池は、 実施例に比べて高率放電特性が劣っているのが確認された。 また、 比較例 1 2の場合は実施例に比べて高率放電特性のみでなく、 充放電サイ クル特性においても実施例に比べて劣っていることが確認された。
Figure imgf000057_0001
As shown in Table 7, the batteries of Example 18 and Example 19 had the same internal resistance as the battery of Example 12. On the other hand, Comparative Example 1 1 and Comparative Example 1 2 showed a higher value of the internal resistance of the battery than the Example. When the battery of Comparative Example 11 was disassembled, it was found that there was a poor connection at the weld between the positive electrode current collector plate and the ring-shaped lead because of the insufficient amount of pulsed electricity. On the other hand, in the case of Comparative Example 1 or 2, it is considered that the internal resistance is increased because the amount of electricity supplied by the pulse is excessive or the electrolyte is blown out as described above. Although details are omitted, the batteries of Example 18 and Example 19 exhibited high rate discharge characteristics equivalent to the battery of Example 12. However, Comparative Example 11 with a large internal resistance, Comparative Example It was confirmed that the batteries of 1 and 2 were inferior in the high rate discharge characteristics as compared with the Examples. Further, it was confirmed that Comparative Example 12 was inferior not only in the high rate discharge characteristics but also in the charge / discharge cycle characteristics as compared with the Examples.
表 7に示した結果から、 パルス通電回数は、 2〜6回が良いことが分かった。 尚、実施例には 8点の溶接点を有するリード端子を用いたが、電池の大きさ(容 量) により溶接接点の点数は 1点以上を適宜選択すれば良い。  From the results shown in Table 7, it was found that 2 to 6 pulse energizations are good. In addition, although the lead terminal which has the welding point of 8 points was used for the Example, the number of the welding contacts should just select suitably one point or more according to the size (capacity) of a battery.
(実施例 2 0 ) (Example 20)
実施例 1 2の密閉形電池を 2個用い、 電池間接続部品として、 実施例 1 2に用 いたリング状リード (1 1 0 ) (接続リード) の 1 0点の突起がある側を 1個目 の電池の蓋に抵抗溶接で仮り止めした後、 図 4 8に示すように、 レーザ一溶接で 本溶接を行った。 ' Example 1 Use two sealed batteries of 2 and use the ring-shaped lead (1 1 0) (connection lead) used in Example 1 2 as the connection part between batteries. After temporarily securing the lid of the battery with resistance welding, as shown in Fig. 48, laser welding is performed. Main welding was performed. '
接続リード (1 10) を、 蓋に取り付けた接続リードの高さ 2mmの 8個の突 起が 2個目の電槽底に当接するように載置し、 加圧して突起と電槽底の当接面 1 個当たり 200 g f の押圧力を加えて、 図 49に示すように、 1個目の電池の負 極端子と、 2個目の負極端子とに外部の電源の接続し、 実施例 12の電池内部の 接続接点の溶接電流と同様な交流パルス通電の電流値を 0. 6 kA/Ah (3. 9 k A)、 通電時間を充電方向に 4. 5ms e c、 放電方向に 4. 5ms e cに 設定し、 該交流パルス通電を 1サイクルとして 2サイクル通電ができるようにセ ットし、 矩形波からなる交流パルスを通電した。 このとき、 いずれの電池からも 開弁圧を超えてガス発生していないことを確認した。 このようにして密閉形電池 と密閉形電池がリング状リ一ドで接続された組電池を作製した。  Place the connection leads (1 10) so that the 8 protrusions with a height of 2 mm of the connection leads attached to the lid are in contact with the second battery case bottom, Applying a pressing force of 200 gf per contact surface, connect an external power supply to the negative terminal of the first battery and the second negative terminal as shown in Figure 49. The current value of AC pulse energization similar to the welding current of the connection contacts inside the 12 batteries is 0.6 kA / Ah (3.9 kA), the energization time is 4.5 ms ec in the charging direction, and 4. in the discharging direction. Set to 5ms ec, set the AC pulse energization as one cycle, and set it so that it could be energized for 2 cycles, and energized an AC pulse consisting of a rectangular wave. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure. In this way, an assembled battery in which the sealed battery and the sealed battery were connected by a ring-shaped lead was produced.
(実施例 21) (Example 21)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の電流値を 0. 4kAZAh (2. 6 kA) に設定し、 通電したこと以外は実施 例 20と同様にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超え てガス発生していないことを確認した。  In the energization of the AC pulse that welds the weld contacts of the assembled battery, the current value of the alternating pulse energization was set to 0.4 kAZAh (2.6 kA), and the assembled battery was Obtained. At this time, it was confirmed that no gas was generated from any of the batteries exceeding the valve opening pressure.
(実施例 22 ) (Example 22)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の電流値を 0. 8 kAZAh (5. 2 kA) に設定し、 通電しだこと以外は実施 例 20と同様にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超え てガス発生していないことを確認した。  In the energization of the AC pulse that welds the weld contacts of the assembled battery, the current value of the AC pulse energization was set to 0.8 kAZAh (5.2 kA) and the assembly was performed in the same manner as in Example 20 except that the energization was started. A battery was obtained. At this time, it was confirmed that no gas was generated from any of the batteries exceeding the valve opening pressure.
(比較例 13 ) (Comparative Example 13)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の電流値を 0. 2 k A/Ah (1. 3 k A) に設定し、 通電したこと以外は実施 例 20と同様にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超え てガス発生していないことを確認した。 (比較例 14) ' Same as Example 20 except that the AC pulse energization was set to 0.2 kA / Ah (1.3 kA) for energization of the AC pulse for welding the battery pack contact point. As a result, an assembled battery was obtained. At this time, it was confirmed that no gas was generated from any of the batteries exceeding the valve opening pressure. (Comparative Example 14) ''
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の電流値を 1. O kAZAh (6. 5 k A) に設定し、 通電したこと以外は実施 例 20と同様にして組電池を得た。 この比較例 14においては交流パルス通電を 実施したときに、 開弁圧を超えてガス発生し電池のキャップに設けた排気孔から 少量ではあるが電解液の吹き出しが観察された。 また、 電池を解体したところリ ング状リード板に設けた正極集電板との溶接点 (突起) がはじけ飛んでいるのが 確認された。 実施例 20と合わせて、 実施例 21、 実施例 22、 比較例 13、 比較例 14の 組電池の内部抵抗測定結果を表 8に示す。 なお、 組電池の内部抵抗は、 1 kHz の交流を用いて組電池の正極端と負極端との間の抵抗を測定している。  In the energization of the AC pulse that welds the weld contacts of the assembled battery, the current value of the AC pulse energization is set to 1. O kAZAh (6.5 kA) and the assembly is performed in the same manner as in Example 20 except that the current is applied. A battery was obtained. In Comparative Example 14, when AC pulse energization was carried out, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the battery cap. Also, when the battery was disassembled, it was confirmed that the welding points (protrusions) with the positive electrode current collector provided on the ring-shaped lead plate had popped off. Table 8 shows the internal resistance measurement results of the assembled batteries of Example 21, Example 22, Comparative Example 13, and Comparative Example 14 in combination with Example 20. As for the internal resistance of the assembled battery, the resistance between the positive electrode end and the negative electrode end of the assembled battery was measured using an alternating current of 1 kHz.
8  8
Figure imgf000059_0001
表 8に示したように、 実施例 21、 実施例 22は、 実施例 20と同じ組電池の 内部抵抗を示した。 これに対して比較例 13、 比較例 14は、 実施例に比べて組 電池の内部抵抗が高い値を示した。比較例 13の電池を解体調査したところでは、 パルス通電の電流値が小さ過ぎたためか、 電槽とリング状リードの溶接箇所に接 合不良が認められた。 一方、 比較例 14の場合は、 パルス通電の電流値が大き過 ぎたたためか、 前記のように溶接点がはじけ飛び電槽とリング状リ一ドが接合不 良となっているのが確認された。 なお、 詳細は省くが、 実施例 21、 実施例 22 の組電池は、 実施例 20の組電池と同等の高率放電特性を示したが、 組電池の内 部抵抗の大きい比較例 13、 比較例 14は、 実施例に比べて高率放電特性が劣つ ているのが確認された。 ' 表 8に示した結果から、 電槽とリ一ドを溶接する際のパルス通電の電流値の大 きさは正極板の容量 1 Ah当たり、 0. 4〜0. 8 (kA/Ah)、 即ち、 接触 点 1点あたり 0. 33 k AZ 1点〜 0. 65 k AZ 1点が良いことがわかった。
Figure imgf000059_0001
As shown in Table 8, Example 21 and Example 22 showed the same internal resistance of the assembled battery as Example 20. On the other hand, Comparative Example 13 and Comparative Example 14 showed a higher value of the internal resistance of the assembled battery than the Example. When the battery of Comparative Example 13 was disassembled, it was found that there was a poor connection at the welded location between the battery case and the ring-shaped lead, probably because the current value of the pulse current was too small. On the other hand, in the case of Comparative Example 14, it was confirmed that the current value of the pulse energization was excessive, or that the welding point repelled and the battery case and the ring-shaped lead were poorly bonded as described above. It was. Although not described in detail, the assembled batteries of Example 21 and Example 22 showed high rate discharge characteristics equivalent to the assembled battery of Example 20, but Comparative Example 13 with a large internal resistance of the assembled battery was compared. In Example 14, it was confirmed that the high rate discharge characteristics were inferior to those of the Examples. ' From the results shown in Table 8, the magnitude of the current value of pulse energization when welding the battery case and the lead is 0.4 to 0.8 (kA / Ah) per 1 Ah capacity of the positive electrode plate, That is, it was found that a contact point of 0.33 k AZ 1 point to 0.65 k AZ 1 point is good.
(実施例 23 ) (Example 23)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の通電時間を 3ms e cに設定し、 通電を実施したこと以外は実施例 20と同様 にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超えてガス発生し ていないことを確認した。  In the energization of the AC pulse for welding the weld contact of the assembled battery, an assembled battery was obtained in the same manner as in Example 20 except that the energization time of the AC pulse energization was set to 3 ms ec and the energization was performed. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
(実施例 24) (Example 24)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の通電時間を 6ms e cに設定し、 通電を実施したこと以外は実施例 20と同様 にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超えてガス発生し ていないことを確認した。  In the energization of the AC pulse for welding the weld contact of the assembled battery, an assembled battery was obtained in the same manner as in Example 20, except that the energization time of the AC pulse energization was set to 6 ms ec. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
(実施例 25 ) (Example 25)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の通電時間を 7ms e cに設定し、 通電を実施したこと以外は実施例 20と同様 にして組電池を得た。 このとき、 いずれの霉池からも開弁圧を超えてガス発生し ていないことを確認した。  In the energization of the AC pulse for welding the weld contact of the assembled battery, an assembled battery was obtained in the same manner as in Example 20 except that the energization time of the AC pulse energization was set to 7 ms ec and the energization was performed. At this time, it was confirmed that no gas was generated from any of the ponds over the valve opening pressure.
(比較例 15) (Comparative Example 15)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の通電時間を 2ms e cに設定し、 通電を実施したこと以外は実施例 20と同様 にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超えてガス発生し ていないことを確認した。  In the energization of the AC pulse for welding the weld contact of the assembled battery, an assembled battery was obtained in the same manner as in Example 20 except that the energization time of the AC pulse energization was set to 2 ms ec and the energization was performed. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
(比較例 16) 組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 の通電時間を 8 m s e cに設定し、 通電を実施したこと以外は実施例 2 0と同様 にして組電池を得た。 この比較例 1 3においては交流パルス通電を実施したとき に、 開弁圧を超えてガス発生しキャップに設けた排気孔から少量ではあるが電解 液の吹き出しが観察された。 実施例 2 0と合わせて、 実施例 2 3〜実施例 2 5、 比較例 1 5、 比較例 1 6の 組電池の内部抵抗測定結果を表 9に示す。 (Comparative Example 16) In the energization of the AC pulse for welding the weld contact of the assembled battery, an assembled battery was obtained in the same manner as in Example 20 except that the energization time of the AC pulse energization was set to 8 msec and the energization was performed. In this comparative example 13, when AC pulse energization was performed, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the cap. Table 9 shows the results of measuring the internal resistance of the assembled batteries of Example 2 3 to Example 25, Comparative Example 15 and Comparative Example 16 together with Example 20.
表 9  Table 9
Figure imgf000061_0001
Figure imgf000061_0001
表 9に示したように、 実施例 2 3〜実施例 2 5は、 実施例 2 0と同じ組電池の 内部抵抗を示した。 これに対して比較例 1 5、 比較例 1 6は、 実施例に比べて組 電池の内部抵抗が高い値を示した。比較例 1 5の電池を解体調査したところでは、 パルス通電電気量が不足したためか、 電槽とリング状リードの溶接箇所に接合不 良が認められた。一方、比較例 1 6の場合は、パルス通電電気量が過剰なためか、 前記のように電解液が吹き出しために組電池の内部抵抗が高くなつたものと考え られる。 なお、 詳細は省くが、 実施例 2 3〜実施例 2 5の組電池は、 実施例 2 0 の組電池と同等の高率放電特性を示したが、 組電池の内部抵抗の大きい比較例 1 5、 比較例 1 6は、 実施例に比べて高率放電特性が劣っているのが確認された。 また、 通電時に電解液が吹き出した比較例 1 6の場合は実施例 2 0の組電池に比 ベて高率放電特性のみでなく、 充放電サイクル特性においても劣っていることが 確認された。 表 9に示した結果から、 電槽とリー を溶接する際のパルス通電の通電時間の 長さは、 3〜 7 m s e cが良いことが分かった。 As shown in Table 9, Example 2 3 to Example 25 showed the same internal resistance of the assembled battery as Example 20. On the other hand, Comparative Example 15 and Comparative Example 16 showed a higher value of the internal resistance of the assembled battery than the Example. When the battery of Comparative Example 15 was disassembled and investigated, it was found that there was a lack of pulsed electricity, and it was found that there was poor bonding at the welded place between the battery case and the ring-shaped lead. On the other hand, in the case of Comparative Example 16, it is considered that the internal resistance of the assembled battery was increased because the amount of electricity supplied with the pulse was excessive or the electrolyte solution was blown out as described above. Although not described in detail, the assembled batteries of Example 2 3 to Example 25 exhibited the same high-rate discharge characteristics as the assembled battery of Example 20. However, Comparative Example 1 having a large internal resistance of the assembled battery 1 5. It was confirmed that Comparative Example 16 was inferior in the high rate discharge characteristics as compared with the Example. Further, in Comparative Example 16 where the electrolyte was blown out during energization, it was confirmed that not only the high-rate discharge characteristics but also the charge / discharge cycle characteristics were inferior to the assembled battery of Example 20. From the results shown in Table 9, it was found that the length of the energization time of pulse energization when welding the battery case and Lee was 3-7 msec.
(実施例 2 6 ) (Example 2 6)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 を 4サイクル通電ができるようにセッ卜し、 通電したこと以外は実施例 2 0と同 様にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超えてガス発生 していないことを確認した。  In the energization of the AC pulse for welding the weld contact of the assembled battery, the assembled battery was obtained in the same manner as in Example 20 except that the AC pulse energization was set so that four cycles could be energized. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
(実施例 2 7 ) (Example 2 7)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 を 6サイクル通電ができるようにセットし、 通電したこと以外は実施例 2 0と同 様にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超えてガス発生 していないことを確認した。  In the energization of the AC pulse for welding the welding contact of the assembled battery, an alternating current pulse was set so that 6 cycles could be energized, and an assembled battery was obtained in the same manner as in Example 20 except that the energization was performed. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
(比較例 1 7 ) (Comparative Example 1 7)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 を 1サイクル通電ができるようにセットし、 通電したこと以外は実施例 2 0と同 様にして組電池を得た。 このとき、 いずれの電池からも開弁圧を超えてガス発生 していないことを確認した。  In the energization of the AC pulse for welding the weld contacts of the assembled battery, an assembled battery was obtained in the same manner as in Example 20 except that the AC pulse energization was set so that one cycle energization was possible. At this time, it was confirmed that none of the batteries generated gas exceeding the valve opening pressure.
(比較例 1 8 ) (Comparative Example 1 8)
組電池の溶接接点を溶接する前記交流パルスの通電において、 交流パルス通電 を 8サイクル通電ができるようにセッ卜し、 通電したこと以外は実施例 2 0と同 様にして組電池を得た。 この比較例 1 7においては交流パルス通電を実施したと きに、 開弁圧を超えてガス発生しキヤップに設けた排気孔から少量ではあるが電 解液の吹き出しが観察された。 実施例 2 0と合わせて、 実施例 2 6、 施例 2 7、 比較例 1 7、 比較例 1 8の 組電池の内部抵抗測定結果を表 1 0に未す。 In the energization of the AC pulse for welding the weld contacts of the assembled battery, the assembled battery was obtained in the same manner as in Example 20 except that the AC pulse energization was set so that 8-cycle energization was possible. In Comparative Example 17, when AC pulse energization was carried out, gas was generated exceeding the valve opening pressure, and a small amount of electrolyte was blown out from the exhaust hole provided in the cap. Combined with Example 2 0, Example 2 6, Example 2 7, Comparative Example 1 7, Comparative Example 1 8 The results of measuring the internal resistance of the assembled battery are not shown in Table 10.
表 1 0  Table 1 0
Figure imgf000063_0001
表 1 0に示したように、 実施例 2 6、 実施例 2 7は、 実施例 2 0と同じ組電池 の内部抵抗を示した。 これに対して比較例 1 7、 比較例 1 8は実施例に比べて、 組電池の内部抵抗が高い値を示した。 比較例 1 .7の電池を解体調査したところで は、 パルス通電電気量が不足したためか、 電槽とリング状リードの溶接箇所に接 合不良が認められた。 一方、 比較例 1 8の場合は、 パルス通電電気量が過剰なた めか、 前記のように電解液が吹き出しために組電池の内部抵抗が高くなつたもの と考えられる。 なお、 詳細は省くが、 実施例 2 6、 実施例 2 7の組電池は、 実施 例 2 0の組電池と同等の高率放電特性を示したが、 組電池の内部抵抗の大きい比 較例 1 7、 比較例 1 8は、 実施例に比べて高率放電特性が劣っているのが確認さ れた。 また、 比較例 1 8の場合は実施例に比べて高率放電特性のみでなく、 充放 電サイクル特性においても実施例に比べて劣っていることが確認された。
Figure imgf000063_0001
As shown in Table 10, Example 26 and Example 27 showed the same internal resistance of the assembled battery as Example 20. On the other hand, Comparative Example 17 and Comparative Example 18 showed a higher value of the internal resistance of the assembled battery than the Example. When the battery of Comparative Example 1.7 was disassembled, it was found that there was a poor connection at the weld location between the battery case and the ring-shaped lead, probably because the amount of pulsed electricity was insufficient. On the other hand, in the case of Comparative Example 18, it is considered that the internal resistance of the assembled battery was increased because the amount of electricity supplied by the pulse was excessive or the electrolyte solution was blown out as described above. Although not described in detail, the assembled batteries of Example 26 and Example 27 showed high rate discharge characteristics equivalent to the assembled battery of Example 20. However, the comparative example in which the internal resistance of the assembled battery is large 17 and Comparative Example 18 were confirmed to be inferior in the high rate discharge characteristics as compared to the Example. Further, in the case of Comparative Example 18 it was confirmed that not only the high rate discharge characteristics but also the charge / discharge cycle characteristics were inferior to the Examples as compared to the Examples.
表 1 0に示した結果から、パルス通電回数は、 2〜 6回が良いことが分かった。  From the results shown in Table 10, it was found that the number of pulse energizations should be 2 to 6 times.
(実施例 2 8 ) (Example 2 8)
実施例 2 0の方法にて、実施例 1 2の電池を 6個直列にして、 6 5 O mA ( 0 . 1 I t A) で 1 6時間充電後、 2 0 0 A ( 3 0 . 8 I t A相当) で、 力ット電圧 4. 0 Vまで放電した。'この電圧変化を図 5 2に記載する。  In the same manner as in Example 20, the six batteries of Example 12 were connected in series and charged with 6 5 O mA (0.1 I t A) for 16 hours, and then 2 0 0 A (3 0 .8 It was discharged to a force voltage of 4.0 V. 'This voltage change is shown in Fig. 52.
(比較例 1 9 ) 図 5 1に示すように、 はかま式接続リード (1 2 0 ) による接続方法を用い、 実施例 1 2の電池を 6個直列にして、 2 0 O A放電を行った。 この電圧変化を図 5 2に記載する。 (Comparative Example 1 9) As shown in FIG. 51, using a connection method using a hook-type connection lead (1 2 0), six batteries of Example 12 were connected in series, and 20 O OA discharge was performed. This voltage change is shown in Fig. 52.
(比較例 2 0 ) (Comparative Example 20)
図 5 1に示すように、 はかま式接続リード (1 2 0 ) による接続方法を用い、 比較例 5.の電池を 6個直列にして、 2 0 O A放電を行った。 この電圧変化を図 5 2に記載する。 実施例 1 2〜1 9と比較例 5〜1 2の一部の電池を用いて、 2 5 °Cの出力密度 を測定した。  As shown in FIG. 51, a connection method using a hook-type connection lead (1 2 0) was used, and six batteries of Comparative Example 5 were connected in series, and 20 O A discharge was performed. This voltage change is shown in Fig. 52. Using some of the batteries of Examples 1 to 19 and Comparative Examples 5 to 12, the power density at 25 ° C. was measured.
なお、 出力密度の測定方法は、 段落 [ 0 0 6 1 ] に記載の方法と同じである。 出力密度を縦軸に内部抵抗を横軸にプロッ卜した結果を図 5 3に示す。  The method for measuring the output density is the same as the method described in paragraph [0 0 6 1]. Figure 53 shows the results of plotting output density on the vertical axis and internal resistance on the horizontal axis.
この結果、 内部抵抗の低減と出力密度の向上に良い相関が得られ、 本発明に係 る溶接方法を用いた密閉形電池や本発明に係る溶接方法を用いた組電池は、 極め て低い抵抗と高い出力を有し、 H E V用電池に好適であると考えられる。 産業上の利用可能性  As a result, there is a good correlation between the reduction of internal resistance and the improvement of output density, and sealed batteries using the welding method according to the present invention and assembled batteries using the welding method according to the present invention have extremely low resistance. Therefore, it is considered suitable for HEV batteries. Industrial applicability
本発明の密閉形電池及びその密閉形電池の複数個で構成した組電池は、 低い抵 抗と高い出力を有するものであるから、 電気自動車や電動工具等の電池として有 用である。  Since the sealed battery of the present invention and the assembled battery composed of a plurality of the sealed batteries have low resistance and high output, they are useful as batteries for electric vehicles, power tools, and the like.

Claims

請求め範囲 Claim
1 . 密閉形電池の電槽を閉鎖する蓋の内面と上部集電板の上面とがリードを介し て接続された密閉形電池において、 前記蓋の内面に前記リードの一方の面が溶接 された後、 前記上部集電板の上面に前記リードの他方の面が溶接されたものであ ることを特徴とする密閉形電池。 1. In a sealed battery in which the inner surface of a lid that closes the battery case of the sealed battery and the upper surface of the upper current collector plate are connected via a lead, one surface of the lead is welded to the inner surface of the lid The sealed battery is characterized in that the other surface of the lead is welded to the upper surface of the upper current collector plate.
2 . 前記上部集電板の上面と前記リードの他方の面との溶接が、 前記電槽を密閉 した後で行われたものであることを特徴とする請求の範囲第 1項に記載の密閉形 電池。  2. The sealing according to claim 1, wherein the welding of the upper surface of the upper current collector plate and the other surface of the lead is performed after the battery case is sealed. Battery.
3 . 前記上部集電板の上面と前記リードの他方の面との溶接が、 外部電源により 交流パルスを通電して行われたものであることを特徴とする請求の範囲第 2項に 記載の密閉形電池。  3. The welding of the upper surface of the upper current collector plate and the other surface of the lead is performed by applying an AC pulse from an external power source. Sealed battery.
4. 前記蓋の内面における前記リードの溶接点から該溶接点に最も近い前記上部 集電板の上面における前記リードの溶接点までの前記リードの長さが、 前記蓋の 内面における前記リードの溶接点から前記上部集電板の上面に至る最短距離の 1 〜 2 . 1倍であることを特徴とする請求の範囲第 1項〜第 3項のいずれか一項に 記載の密閉形電池。  4. The length of the lead from the welding point of the lead on the inner surface of the lid to the welding point of the lead on the upper surface of the upper current collector plate closest to the welding point is the welding of the lead on the inner surface of the lid. 4. The sealed battery according to claim 1, wherein the sealed battery is 1 to 2.1 times the shortest distance from a point to the upper surface of the upper current collector plate. 5.
5 . 前記蓋がその内面における平坦部から下方に湾曲又は屈曲した部分を有し、 前記蓋の湾曲又は屈曲部分に前記リードの一方の面が溶接されたものであり、 前 記蓋の湾曲又は屈曲部分における前記リードの溶接点から該溶接点に最も近い前 記上部集電板の上面における前記リ一ドの溶接点までの前記リードの長さと、 前 記蓋の湾曲又は屈曲部分における前記リードの溶接点から前記蓋の平坦部に至る 前記蓋の湾曲又は屈曲部分の長さの合計が、 前記蓋の平坦部と前記上部集電板の 間隔の 1〜 2 . 1倍であることを特徴とする請求の範囲第 1項〜第 3項のいずれ か一項に記載の密閉形電池。  5. The lid has a portion curved or bent downward from a flat portion on its inner surface, and one surface of the lead is welded to the curved or bent portion of the lid, The length of the lead from the welding point of the lead in the bent part to the weld point of the lead on the upper surface of the upper current collector plate closest to the welding point, and the lead in the curved or bent part of the lid The total length of the curved or bent portion of the lid from the weld point to the flat portion of the lid is 1 to 2.1 times the distance between the flat portion of the lid and the upper current collector plate. The sealed battery according to any one of claims 1 to 3, wherein:
6 . 前記上部集電板がその上面における平坦部から上方に湾曲又は屈曲した部分 を有し、 前記上部集電板の湾曲又は屈曲部分に前記リードの他方の面が溶接され たものであり、 前記蓋の内面における前記リードの溶接点から該溶接点に最も近 い前記上部集電板の湾曲又は屈曲部分における前記リードの溶接点までの前記リ 一ドの長さと、 前記上部集電板の湾曲文は屈曲部分における前記リ一ドの溶接点 から前記上部集電板の平坦部に至る前記上部集電板の湾曲又は屈曲部分の長さの 合計が、 前記蓋と前記上部集電板の平坦部の間隔の 1〜2 . 1倍であることを特 徵とする請求の範囲第 1項〜第 3項のいずれか一項に記載の密閉形電池。 6. The upper current collector plate has a portion curved or bent upward from a flat portion on the upper surface thereof, and the other surface of the lead is welded to the curved or bent portion of the upper current collector plate, From the welding point of the lead on the inner surface of the lid to the welding point of the lead at the curved or bent portion of the upper current collector plate closest to the welding point. The length of the upper current collector plate and the length of the curved portion of the upper current collector plate from the weld point of the lead at the bent portion to the flat portion of the upper current collector plate The hermetic seal according to any one of claims 1 to 3, wherein the total is 1 to 2.1 times the distance between the flat portion of the lid and the upper current collector plate. Battery.
7 . 前記蓋がその内面における平坦部から下方に湾曲又は屈曲した部分を有し、 かつ、 前記上部集電板がその上面における平坦部から上方に湾曲又は屈曲した部 分を有したものであり、 前記蓋の湾曲又は屈曲部分に前記リードの一方の面が溶 接された後、 前記上部集電板の湾曲又は屈曲部分に前記リードの他方の面が溶接 されたものであり、 前記蓋の湾曲又は屈曲部分における前記リードの溶接点から 該溶接点に最も近い前記上部集電板の湾曲又は屈曲部分における前記リードの溶 接点までの前記リードの長さと、 前記蓋の湾曲又は屈曲部分における前記リード の溶接点から前記蓋の平坦部に至る前記蓋の湾曲又は屈曲部分の長さと、 前記上 部集電板の湾曲又は屈曲部分における前記リードの溶接点から前記上部集電板の 平坦部に至る前記上部集電板の湾曲又は屈曲部分の長さの合計が、 前記蓋の平坦 部と前記上部集電板の平坦部との間隔の 1〜 2 . 1倍であることを特徴とする請 求の範囲第 1項〜第 3項のいずれか一項に記載の密閉形電池。  7. The lid has a portion bent or bent downward from the flat portion on the inner surface thereof, and the upper current collector plate has a portion bent or bent upward from the flat portion on the upper surface thereof. The one surface of the lead is welded to the curved or bent portion of the lid, and the other surface of the lead is welded to the curved or bent portion of the upper current collector plate. The length of the lead from the welding point of the lead in the curved or bent part to the weld point of the lead in the curved or bent part of the upper current collector plate closest to the welding point, and the bent or bent part of the lid From the welding point of the lead to the flat part of the lid, the length of the curved or bent part of the lid, and from the welding point of the lead at the curved or bent part of the upper current collecting plate to the flat part of the upper current collecting plate To The total length of the curved or bent portions of the upper current collector plate is 1 to 2.1 times the distance between the flat portion of the lid and the flat portion of the upper current collector plate. 4. The sealed battery according to any one of items 1 to 3,
8 . 前記リードがリング状リードであり、 前記蓋の内面に前記リング状リードの 一方の面が溶接された後、 前記上部集電板の上面に前記リング状リードの他方の 面が溶接されたものであることを特徴とする請求の範囲第 1項〜第 3項のいずれ か一項に記載の密閉形電池。  8. The lead is a ring-shaped lead, and after one surface of the ring-shaped lead is welded to the inner surface of the lid, the other surface of the ring-shaped lead is welded to the upper surface of the upper current collector plate The sealed battery according to any one of claims 1 to 3, wherein the battery is a battery.
9 . 前記リードがリング状の主リード及び補助リードからなるものであり、 前記 蓋の内面に前記主リ一ドの一方の面が溶接された後、 前記上部集電板の上面に前 記主リードの他方の面が前記補助リードを介して溶接されたものであることを特 徴とする請求の範囲第 8項に記載の密閉形電池。  9. The lead is composed of a ring-shaped main lead and an auxiliary lead, and one surface of the main lead is welded to the inner surface of the lid, and then the upper surface of the upper current collector plate is 9. The sealed battery according to claim 8, wherein the other surface of the lead is welded through the auxiliary lead.
1 0 . 前記リードが枠状部と前記枠状部の内周及び外周から下方に向けて延びた 二重構造の側壁部を有するものであり、 前記蓋の内面に前記リ一ドの枠状部が溶 接された後、 前記上部集電板の上面に前記リ一ドの二重構造の側壁部の端部が溶 接されたものであることを特徴とする請求の範囲第 1項〜第 3項のいずれか一項 に記載の密閉形電池。 1 0. The lead has a frame-shaped portion and a side wall portion having a double structure extending downward from an inner periphery and an outer periphery of the frame-shaped portion, and a frame shape of the lead is formed on an inner surface of the lid. The first aspect of the invention is characterized in that, after the welded portion, the end portion of the side wall portion of the double structure of the lead is welded to the upper surface of the upper current collector plate. The sealed battery according to any one of items 3 to 4.
1 1 . 前記二重構造の側壁部を有するリードが、 前記枠状部を V字の折り部分と する断面が逆 V字状又は前記枠状部を U字の 2つの折り部分及び底辺とする断面 が逆 U字状のものであることを特徴とする請求の範囲第 1 0項に記載の密閉形電 池。 1 1. The lead having the side wall portion of the double structure has an inverted V-shaped cross-section with the frame-shaped portion as a V-shaped folded portion, or the frame-shaped portion has two U-shaped folded portions and a bottom side. The sealed battery according to claim 10, characterized in that the cross section has an inverted U-shape.
1 2 . 前記リードが前記枠状部及び前記二重構造の側壁部を有する主リード部並 びに補助リード部からなり、 前記主リード部の二重構造の側壁部の端部には、 そ れぞれ、 複数の突片状又は連続した平板状の補助リード部が形成されているもの であり、 前記蓋の内面に前記主リード部の枠状部が溶接された後、 前記上部集電 板の上面に前記補助リード部が溶接されたものであることを特徴とする請求の範 囲第 1 0項に記載の密閉形電池。  1 2. The lead is composed of a main lead portion having the frame-shaped portion and the double-structure side wall portion, and an auxiliary lead portion, and an end portion of the double-structure side wall portion of the main lead portion is provided therewith. A plurality of protrusion-like or continuous flat auxiliary lead portions are formed, and after the frame-like portion of the main lead portion is welded to the inner surface of the lid, the upper current collector plate The sealed battery according to claim 10, wherein the auxiliary lead portion is welded to the upper surface of the sealed battery.
1 3 . 前記リードが枠状部と前記枠状部の内周及び外周から上方に向けて延びた 二重構造の側壁部を有するものであり、 前記蓋の内面に前記リ一ドの二重構造の 側壁部の端部が溶接された後、 前記上部集電板の上面に前記リードの枠状部が溶 接されたものであることを特徴とする請求の範囲第 1項〜第 3項のいずれか一項 に記載の密閉形電池。  1 3. The lead has a frame-like portion and a side wall portion having a double structure extending upward from the inner periphery and the outer periphery of the frame-like portion, and the lead is doubled on the inner surface of the lid. 4. The first to third aspects of the invention, wherein the frame portion of the lead is welded to the upper surface of the upper current collector plate after the end of the side wall portion of the structure is welded. The sealed battery according to any one of the above.
1 4 . 前記二重構造の側壁部を有するリードが、 前記枠状部を V字の折り部分と する断面が V字状又は前記枠状部を U字の 2つの折り部分及び底辺とする断面が U字状のものであることを特徴とする請求の範囲第 1 3項に記載の密閉形電池。 14. The lead having the side wall portion of the double structure has a V-shaped cross-section with the frame-shaped portion as a V-shaped folded portion, or a cross-section with the frame-shaped portion as two U-shaped folded portions and a bottom side. The sealed battery according to claim 13, wherein is U-shaped.
1 5 . 前記リードが前記枠状部及び前記二重構造の側壁部を有する主リード部並 びに補助リード部からなり、 前記主リード部の二重構造の側壁部の端部には、 そ れぞれ、 複数の突片状又は連続した平板状の補助リード部が形成されているもの であり、 前記蓋の内面に前記補助リード部が溶接された後、 前記上部集電板の上 面に前記主リード部の枠状部が溶接されたものであることを特徴とする請求の範 囲第 1 3項に記載の密閉形電池。 15. The lead is composed of a main lead portion having the frame-shaped portion and the double-structure side wall portion, and an auxiliary lead portion, and an end portion of the double-structure side wall portion of the main lead portion is provided therewith. A plurality of protrusion-like or continuous flat auxiliary lead portions are formed, and after the auxiliary lead portions are welded to the inner surface of the lid, the upper current collecting plate is provided on the upper surface. 14. The sealed battery according to claim 13, wherein the frame portion of the main lead portion is welded.
1 6 . 前記リードの枠状部の内周及び外周が円形であることを特徴とする請求の 範囲第 1 0項に記載の密閉形電池。  16. The sealed battery according to claim 10, wherein an inner periphery and an outer periphery of the frame portion of the lead are circular.
1 7 . 前記リードの枠状部の内周及び外周が円形であることを特徴とする請求の 範囲第 1 3項に記載の密閉形電池。  17. The sealed battery according to claim 13, wherein an inner periphery and an outer periphery of the frame portion of the lead are circular.
1 8 . 前記リードの二重構造の側壁部が蛇腹様に加工されていることを特徴とす る請求の範囲第 1 0項に記載の密閉形電池。 1 8. The side wall of the double structure of the lead is processed in a bellows-like manner. The sealed battery according to claim 10.
1 9 . 前記リードの二重構造の側壁部が蛇腹様に加工されていることを特徴とす る請求の範囲第 1 3項に記載の密閉形電池。  19. The sealed battery according to claim 13, wherein a side wall portion of the double structure of the lead is processed in a bellows shape.
2 0 . 前記リードの枠状部及び二重構造の側壁部が、 周方向に間隔をおいて分割 され複数のパーツとされていることを特徴とする請求の範囲第 1 0項に記載の密 閉形電池。  20. The dense frame according to claim 10, wherein the frame portion of the lead and the side wall portion of the double structure are divided into a plurality of parts at intervals in the circumferential direction. Closed battery.
2 1 . 前記リードの枠状部及び二重構造の側壁部が、 周方向に間隔をおいて分割 され複数のパーツとされていることを特徴とする請求の範囲第 1 3項に記載の密 閉形電池。  21. The dense frame according to claim 13, wherein the frame portion of the lead and the side wall portion of the double structure are divided into a plurality of parts at intervals in the circumferential direction. Closed battery.
2 2 . 前記リードの二重構造の側壁部が、 周方向に間隔をおいて下端又は上端か ら縦方向にスリッ卜加工され少なくとも一部又は全部が分断されていることを特 徴とする請求の範囲第 1 0項に記載の密閉形電池。  2. The side wall portion of the double structure of the lead is slitted in the vertical direction from the lower end or the upper end at intervals in the circumferential direction, and is at least partially or entirely divided. The sealed battery according to item 10 in the above range.
2 3 . 前記リードの二重構造の側壁部が、 周方向に間隔をおいて下端又は上端か ら縦方向にスリツ卜加工され少なくとも一部又は全部が分断されていることを特 徴とする請求の範囲第 1 3項に記載の密閉形電池。  2 3. The side wall portion of the double structure of the lead is slitted in the vertical direction from the lower end or the upper end at intervals in the circumferential direction, and is at least partially or entirely divided. A sealed battery as set forth in paragraph 1 of 3.
2 4. 密閉形電池の電槽を閉鎖する蓋の内面と上部集電板の上面とをリードを介 して接続する密閉形電池の製造方法において、 前記蓋の内面に前記リードの一方 の面を溶接する第 1の溶接工程と、 前記上部集電板が前記電槽の開放端側に位置 するように、 前記上部集電板を接合した極群を前記電槽内に収容し、 電解液を注 液し、 前記リードの他方の面が前記上部集電板の上面に当接するように前記蓋を 載置し、 前記電槽を密閉した後、 密閉形電池の正負極両端子間に溶接のための電 流を電池を介して通電することにより前記上部集電板の上面に前記リードの他方 の面を溶接する第 2の溶接工程とを、 この溶接順序で行うことを特徴とする密閉 形電池の製造方法。 .  2 4. In the method of manufacturing a sealed battery in which the inner surface of the lid that closes the battery case of the sealed battery and the upper surface of the upper current collector plate are connected via a lead, one surface of the lead is connected to the inner surface of the lid. A first welding step of welding the electrode assembly, and a pole group joined to the upper current collector plate in the battery case so that the upper current collector plate is positioned on the open end side of the battery case. The lid is placed so that the other surface of the lead comes into contact with the upper surface of the upper current collecting plate, the battery case is sealed, and then welded between the positive and negative terminals of the sealed battery. A second welding step in which the other surface of the lead is welded to the upper surface of the upper current collector plate by energizing the current for the battery through the battery in this welding sequence. A manufacturing method of a battery. .
2 5 . 前記リードがリング状の主リード及び補助リードからなるものであり、 前 記蓋の内面に前記主リードの一方の面を溶接する第 1の溶接工程の後、 前記主リ —ドの他方の面に補助リードを溶接し、 前記上部集電板の上面に前記主リードの 他方の面を前記補助リードを介して溶接する第 2の溶接工程を行うことを特徴と する請求の範囲第 2 4項に記載の密閉形電池の製造方法。 25. The lead is composed of a ring-shaped main lead and an auxiliary lead, and after the first welding step of welding one surface of the main lead to the inner surface of the lid, the main lead An auxiliary lead is welded to the other surface, and a second welding step is performed in which the other surface of the main lead is welded to the upper surface of the upper current collector plate via the auxiliary lead. 2 The method for producing a sealed battery as described in 4 above.
26. 前記リードの溶接面には、 それぞれ突起が形成されていることを特徴とす る請求の範囲第 24項に記載の密閉形電池の製造方法。 26. The method for manufacturing a sealed battery according to claim 24, wherein a protrusion is formed on each welding surface of the lead.
27. 前記リング状の主リード及び補助リードの溶接面には、 それぞれ突起が形 成されていることを特徴とする請求の範囲第 25項に記載の密閉形電池の製造方 法。  27. The method for manufacturing a sealed battery according to claim 25, wherein protrusions are formed on the weld surfaces of the ring-shaped main lead and auxiliary lead, respectively.
28. 前記第 2の溶接工程を、 外部電源 より交流パルスを通電して行うことを 特徴とする請求の範囲第 24項〜第 27項のいずれか一項に記載の密閉形電池の 製造方法。  28. The method for manufacturing a sealed battery according to any one of claims 24 to 27, wherein the second welding step is performed by applying an AC pulse from an external power source.
29. 前記交流パルスを通電したときに、 前記密閉形電池内部の圧力が該電池の 開弁圧を超えないことを特徴とする請求の範囲第 28項に記載の密閉形電池の製 造方法。  29. The method for producing a sealed battery according to claim 28, wherein when the AC pulse is applied, a pressure inside the sealed battery does not exceed a valve opening pressure of the battery.
30. 前記交流パルスの通電において、 充電パルス及び放電パルスの電流値を電 '池の単位容量当たり、 0. 4〜0. 8 kAZAhとすることを特徴とする請求の 範囲第 28項に記載の密閉形電池の製造方法。  30. In the energization of the AC pulse, the current value of the charge pulse and the discharge pulse is set to 0.4 to 0.8 kAZAh per unit capacity of the battery. A manufacturing method of a sealed battery.
31. 前記交流パルスの通電において、 充電パルス及び放電パルスの電流値を前 記上部集電板と前記リードの溶接接点の接点 1点あたり、 0. 33 kAZl点〜 0. 65'kAZl点とすることを特徴とする請求の範囲第 28項に記載の密閉形 電池の製造方法。  31. In energization of the AC pulse, the current value of the charge pulse and discharge pulse is 0.33 kAZl point to 0.65 'kAZl point per contact point of the upper current collector plate and the welding contact point of the lead. 30. The method for producing a sealed battery according to claim 28, wherein:
32. 前記交流パルスの通電において、 充電パルスの通電時間及び放電パルスの 通電時間を 3〜 7ms e cとすることを特徴とする請求の範囲第 28項に記載の 密閉形電池の製造方法。  32. The method for producing a sealed battery according to claim 28, wherein in the energization of the AC pulse, the energization time of the charge pulse and the energization time of the discharge pulse are 3 to 7 ms ec.
33. 前記交流パルスの通電において、 充電と放電を 1セットとした交流パルス の通電を 2回〜 6回実施することを特徴とする請求の範囲第 28項に記載の密閉 形電池の製造方法。  33. The method for manufacturing a sealed battery according to claim 28, wherein in the energization of the alternating current pulse, the energization of the alternating current pulse with charging and discharging as one set is performed 2 to 6 times.
34. 請求の範囲第 1項〜第 3項のいずれか一項に記載の密閉形電池の複数個で 構成したことを特徴とする組電池。  34. An assembled battery comprising a plurality of the sealed batteries according to any one of claims 1 to 3.
35. 前記組電池を構成する少なくとも 1つの密閉形電池内に、 外部電源により 交流パルスを通電して、 該電池と該電池と隣り合う電池の端子同士を直にまたは 電池間接続部品を介して溶接することを特徴とする請求の範囲第 34項に記載の 組電池の製造方法。 35. In at least one sealed battery constituting the assembled battery, an AC pulse is applied by an external power source, and the battery and the battery terminals adjacent to the battery are directly connected to each other or via inter-battery connection parts. Welding according to claim 34, characterized in that it is welded. A method for producing an assembled battery.
3 6 . 前記交流パルスを通電したときに、 前記密閉形電池内部の圧力が該電池の 開弁圧を超えないことを特徴とする請求の範囲第 3 5項に記載の組電池の製造方 法。  36. The method for manufacturing an assembled battery according to claim 35, wherein when the AC pulse is applied, the pressure inside the sealed battery does not exceed the valve opening pressure of the battery. .
3 7 . 前記組電池を溶接する前記交流パルスの通電において、 充電パルス及び放 電パルスの電流値を電池の単位容量当たり、 0 . 4〜0 . 8 k AZA hとするこ とを特徴とする請求の範囲第 3 5項に記載の組電池の製造方法。  3 7. In the energization of the AC pulse for welding the assembled battery, the current value of the charge pulse and the discharge pulse is set to 0.4 to 0.8 kAZA h per unit capacity of the battery. The method for producing an assembled battery according to claim 35.
; , ,,
3 8 . 前記組電池を溶接する前記交流パルスの通電において、 充電パルス及び 放電パルスの電流値を前記電池の端子同士または前記電池の端子と電池間接続部 品の接合箇所の接点 1点あたり、 0 . 3 3 八ダ1点〜0 . 6 5 k AZ l点とす ることを特徴とする請求の範囲第 3 5項に記載の組電池の製造方法。 3 8. In the energization of the AC pulse for welding the assembled battery, the current value of the charge pulse and the discharge pulse is set to the contact between the terminals of the battery or the connection point of the connection part between the battery terminal and the battery, 36. The method for producing an assembled battery according to claim 35, wherein the point is from 0.33 free points to 0.65 k AZ l points.
3 9 . 前記組電池を溶接する前記交流パルスの通電において、 充電パルスの通電 時間及び放電パルスの通電時間を 3〜 7 m s e cとすることを特徴とする請求の 範囲第 3 5項に記載の組電池の製造方法。  39. In the energization of the AC pulse for welding the assembled battery, the energization time of the charge pulse and the energization time of the discharge pulse are set to 3 to 7 msec. Battery manufacturing method.
4 0 . 前記組電池の溶接接点を溶接する前記交流パルスの通電において、 充電と 放電を 1セットとした交流パルスの通電を 2回〜 6回実施することを特徴とする 請求の範 ¾第 3 5項に記載の組電池の製造方法。  40. In the energization of the AC pulse for welding the welding contact of the assembled battery, the energization of the AC pulse with charging and discharging as one set is performed 2 to 6 times. 6. A method for producing an assembled battery according to item 5.
4 1 . 前記組電池を構成する少なくとも 1つの密閉形電池と該電池と隣合う電池 の端子同士を電池間接続部品を介して溶接する組電池の製造方法であって、 前記 少なくとも 1つの電池の蓋に電池間接続部品の一端を接合し、 前記電池間接続部 品の他端を該電池と隣り合う電池の端子に当接させ、 少なくとも 1つの密閉形電 池内に通電することにより前記電池間接続部品の他端と隣り合う電池の端子を溶 接することを特徴とする請求の範囲第 3 5項に記載の組電池の製造方法。  4 1. A method of manufacturing an assembled battery in which at least one sealed battery constituting the assembled battery and terminals of a battery adjacent to the battery are welded to each other through an inter-battery connection component, wherein the at least one battery One end of the inter-battery connection part is joined to the lid, the other end of the inter-battery connection part is brought into contact with the terminal of the battery adjacent to the battery, and the battery is energized in at least one sealed battery. 36. The method for manufacturing an assembled battery according to claim 35, wherein the terminal of the battery adjacent to the other end of the connection part is welded.
PCT/JP2005/014159 2004-07-28 2005-07-27 Closed battery, its manufacturing method, battery pack composed of closed batteries, and its manufacturing method WO2006011645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800256036A CN101010818B (en) 2004-07-28 2005-07-27 Closed battery, its manufacturing method, battery pack composed of closed batteries, and its manufacturing method

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2004220443 2004-07-28
JP2004-220443 2004-07-28
JP2004-228543 2004-08-04
JP2004-228544 2004-08-04
JP2004228544 2004-08-04
JP2004228543 2004-08-04
JP2004249013 2004-08-27
JP2004-249013 2004-08-27
JP2004308823 2004-10-22
JP2004-308823 2004-10-22
JP2005-022306 2005-01-28
JP2005022306 2005-01-28

Publications (1)

Publication Number Publication Date
WO2006011645A1 true WO2006011645A1 (en) 2006-02-02

Family

ID=35786379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014159 WO2006011645A1 (en) 2004-07-28 2005-07-27 Closed battery, its manufacturing method, battery pack composed of closed batteries, and its manufacturing method

Country Status (2)

Country Link
CN (1) CN101010818B (en)
WO (1) WO2006011645A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082861B2 (en) * 2006-02-07 2012-11-28 株式会社Gsユアサ Battery manufacturing method, battery manufactured by the method, and battery inspection method
CN103273323A (en) * 2013-05-31 2013-09-04 益阳科力远电池有限责任公司 Automatic bottom-pad punching, placing and welding integrated machine
CN113851689A (en) * 2020-06-26 2021-12-28 三星Sdi株式会社 Rechargeable battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427137B (en) * 2011-12-05 2014-02-26 郑州宇通客车股份有限公司 Battery, battery current collector, and welding method for battery current collector
CN103456911A (en) * 2012-05-28 2013-12-18 原瑞电池科技(深圳)有限公司 Battery module
CN109994782A (en) * 2019-04-02 2019-07-09 众联智能设备(深圳)有限公司 A kind of cylindrical lithium battery circulation carrier and nickel sheet bending butt-joint mechanism
EP4318699A3 (en) 2021-01-19 2024-02-28 LG Energy Solution, Ltd. Electrode assembly, battery, battery pack and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143684A (en) * 1999-08-27 2001-05-25 Sanyo Electric Co Ltd Battery and method for manufacturing the same
JP2001155712A (en) * 1999-11-26 2001-06-08 Matsushita Electric Ind Co Ltd Cylindrical storage battery
JP2002100342A (en) * 2000-09-26 2002-04-05 Sanyo Electric Co Ltd Cylindrical secondary battery
JP2002231216A (en) * 2001-02-02 2002-08-16 Sanyo Electric Co Ltd Collector lead, storage battery using the same, and its manufacturing method
JP2003297335A (en) * 2002-04-05 2003-10-17 Matsushita Electric Ind Co Ltd Storage battery and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134819B1 (en) * 2000-03-14 2007-04-25 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143684A (en) * 1999-08-27 2001-05-25 Sanyo Electric Co Ltd Battery and method for manufacturing the same
JP2001155712A (en) * 1999-11-26 2001-06-08 Matsushita Electric Ind Co Ltd Cylindrical storage battery
JP2002100342A (en) * 2000-09-26 2002-04-05 Sanyo Electric Co Ltd Cylindrical secondary battery
JP2002231216A (en) * 2001-02-02 2002-08-16 Sanyo Electric Co Ltd Collector lead, storage battery using the same, and its manufacturing method
JP2003297335A (en) * 2002-04-05 2003-10-17 Matsushita Electric Ind Co Ltd Storage battery and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082861B2 (en) * 2006-02-07 2012-11-28 株式会社Gsユアサ Battery manufacturing method, battery manufactured by the method, and battery inspection method
CN103273323A (en) * 2013-05-31 2013-09-04 益阳科力远电池有限责任公司 Automatic bottom-pad punching, placing and welding integrated machine
CN103273323B (en) * 2013-05-31 2016-01-20 益阳科力远电池有限责任公司 Weldering heelpiece all-in-one is put in automatic punching
CN113851689A (en) * 2020-06-26 2021-12-28 三星Sdi株式会社 Rechargeable battery

Also Published As

Publication number Publication date
CN101010818B (en) 2011-06-08
CN101010818A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
JP5051410B2 (en) Sealed battery lead, sealed battery using the lead, and method of manufacturing the battery
JP5082861B2 (en) Battery manufacturing method, battery manufactured by the method, and battery inspection method
CN100511770C (en) Sealed cell, manufacturing method thereof, and battery formed by a plurality of sealed cells
JP2936604B2 (en) Square sealed alkaline storage battery using hydrogen storage alloy negative electrode
WO2006011645A1 (en) Closed battery, its manufacturing method, battery pack composed of closed batteries, and its manufacturing method
WO2007004712A1 (en) Nickel-hydrogen battery and production method thereof
JP5157049B2 (en) Sealed battery, method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
JP5016236B2 (en) battery
JP7193420B2 (en) Nickel-metal hydride secondary battery manufacturing method
JP2002298906A (en) Nickel-hydrogen secondary battery
JP4079563B2 (en) Storage battery and manufacturing method thereof
US8557410B2 (en) Secondary battery with a spirally-rolled electrode group
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP2000251871A (en) Alkaline secondary battery
JP2006278016A (en) Sealed battery and its manufacturing method as well as battery pack constituted of a plurality of the same
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP3952489B2 (en) Alkaline storage battery
JP2006032304A (en) Storage battery equipped with winding electrode plate group
JP2006049096A (en) Battery pack and its manufacturing method
JP2000106168A (en) Alkaline storage battery
JP2008210675A (en) Battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580025603.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase