JP4242953B2 - Manufacturing method of battery pack - Google Patents

Manufacturing method of battery pack Download PDF

Info

Publication number
JP4242953B2
JP4242953B2 JP26625498A JP26625498A JP4242953B2 JP 4242953 B2 JP4242953 B2 JP 4242953B2 JP 26625498 A JP26625498 A JP 26625498A JP 26625498 A JP26625498 A JP 26625498A JP 4242953 B2 JP4242953 B2 JP 4242953B2
Authority
JP
Japan
Prior art keywords
assembled battery
welding
battery
unit cells
lead plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26625498A
Other languages
Japanese (ja)
Other versions
JP2000100416A (en
Inventor
幹朗 田所
章史 山脇
博 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26625498A priority Critical patent/JP4242953B2/en
Publication of JP2000100416A publication Critical patent/JP2000100416A/en
Application granted granted Critical
Publication of JP4242953B2 publication Critical patent/JP4242953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、複数の単電池を一列に並べて直列に接続している組電池の製造方法に関する。
【0002】
【従来の技術】
電動工具や電気自動車のように、大電流で放電する用途に、ニッケル−カドミウム電池、ニッケル−水素電池等のアルカリ電池が使用されている。これらの用途においては、高い出力が要求されるため、複数の単電池を直列に接続して、組電池の形態で使用されている。
【0003】
組電池は、図1に示すように、リード板2を介して、複数の単電池1を直列に接続して製作される。リード板2は、図2に示すように、一端を電池の封口板5に正極端子として設けている正極キャップ4に、他端を外装缶6の底に溶着して、隣接する単電池1を接続する。この図は溶接点を●で示している。さらに、リード板2は、互いに接近して配設される一対の溶接用電極棒3が押圧され、溶接用電極棒3に大電流を流してスポット溶接させる。封口板5の正極キャップ4にリード板2を溶接する一対の溶接用電極棒3は、鎖線で示すように、リード板2と封口板5の正極キャップ4とに溶接電流を流して、リード板2を封口板5の正極キャップ4に溶接する。また、外装缶6の底にリード板2を溶接する溶接用電極棒3は、リード板2と外装缶6とに溶接電流を流して、リード板2を外装缶6に溶接する。この状態で溶接されたリード板2をU曲して、単電池1を一列に並べた組電池とする。
【0004】
【発明が解決しようとする課題】
U曲されたリード板を介して直列に接続される組電池が放電されると、図3の矢印で示すように、リード板2に沿って流れる。この図において、リード板2の溶接点は○で示している。この図に示す組電池は、流れる電流が小さいときは、特に問題とはならないが、電動工具や電気自動車のように、大電流が流れる用途においては、リード板2の抵抗による電圧降下が生じ、組電池全体の放電時の作動電圧が低下するという問題点があった。
【0005】
隣接する電池を押圧して、U曲したリード板2の対向面を、図3の矢印で示す方法に移動させて互いに接触させることは、リード板2に発生する電圧降下を少なくすることに効果がある。しかしながら、実際には、リード板2の対向面を、常に低抵抗な状態で接触させるのは非常に難しい。とくに、リード板2の表面が経時的に酸化して表面抵抗が大きくなり、あるいは異物を挟着する状態となると、理想的な状態で電気的に接触させることは、ほとんど不可能である。このため、リード板を介して複数の単電池を接続した組電池は、リード板による電圧降下を、理想的な状態で低下させるのが極めて難しい。
【0006】
単電池の接続部分の抵抗は、たとえば、単電池の対向する電極を直接に半田付して少なくできる。しかしながら、半田付けは、電池から漏出する電解液等の影響で腐食しやすく、安定して長期間使用できない欠点がある。また、溶接に比較すると、連結する強度も低く、確実に接続するのが難しい欠点もある。
【0007】
このような欠点は、図4に示すように、単電池1の正極端子と負極端子を直接に溶着して解消できる。この図に示す組電池は、2個の単電池1の中心位置をずらせて直列に接続している。上下の単電池1を溶着する溶接用電極棒3は、図において下方の単電池1の蓋と、上方の単電池は外装缶6に接触させる。ふたつの溶接用電極棒3に溶接電流を流すと、下方の単電池1の蓋と、上方の単電池1の底とが溶着される。
【0008】
この構造の組電池は、単電池の接続部分の抵抗を小さくできる。しかしながら、この構造の組電池は、下方の単電池の蓋に溶接用電極棒を接触させるために、上下の単電池を直線状に連結できない欠点がある。さらに、多数の単電池を直列に接続するためには、何回も繰り返し溶接して、上下の単電池を連結する必要があって、接続手間がかかる欠点もある。
【0009】
本発明は、このような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、極めて簡単な構造で、単電池を理想的な状態で連結して、単電池の接続部分の電圧降下を極減できる組電池とその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は、従来のこのような弊害を解消するために、種々の実験を繰り返した結果、単電池に溶接電流を流すという、これまでの技術から推測もできない方法で、複数の単電池を理想的な状態で接続することに成功した。しかも、この方法で溶着された組電池は、単電池の接続部分の抵抗を極減できることに加えて、電池性能をも向上させることに成功した。
【0011】
したがって、本発明の請求項1の組電池の製造方法は、複数の単電池1を一列に直列に接続して組電池を製造している。組電池の製造方法は、複数の単電池1を、金属板9を介して、あるいは金属板9を介することなく一列に並べて互いに正極端子と負極端子の電極金属11を直列に接続し、この状態で、組電池の両端に溶接用電極棒3を接触させて、単電池1に大電流パルス通電をして、正極端子と負極端子の電極金属11を、金属板9を介して、あるいは金属板9を介することなく直接に溶着している。
【0012】
【0013】
【0014】
【0015】
【0016】
【0017】
【0018】
さらに、本発明の請求項に記載される組電池の製造方法は、単電池1を充電状態として、単電池1を放電させる方向に大電流パルス通電している。
【0019】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための組電池を例示するものであって、本発明は組電池を以下のものに特定しない。
【0020】
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
【0021】
図5に示す組電池は、10個の単電池1を一列に直列に接続している。この図の組電池は、10個の単電池1を接続しているが、本発明の組電池は、連結する単電池の数を特定しない。また、本発明の組電池は、図6に示すように、複数の単電池1を一列に並べて直列に接続して、これ等を横に並列に並べて組電池とすることもできる。
【0022】
単電池1は、大電流で放電できる、ニッケル−水素電池やニッケル−カドミウム電池等のアルカリ二次電池である。ただ、本発明の組電池は、単電池をアルカリ二次電池に特定しない。現在すでに開発され、あるいはこれから開発される電池であって、大電流で放電できる全ての電池を単電池として使用できる。
【0023】
単電池1に適しているニッケル−水素電池は、以下の工程で製作する。
正極には、公知の焼結式ニッケル正極を使用する。負極には、公知のパンチングメタルを集電体としたペースト式水素吸蔵合金を付着したものを使用する。
正極と負極とを、厚みを約0.2mmとする、ポリプロピレン製の不織布からなるセパレータを介して捲回して渦巻電極群とする。
渦巻電極群の上下に、集電板を連結した後、渦巻電極群をSCサイズの電池缶に挿入する。
外装缶に電解液(LiOH、NaOHを含有した8NのKOH水溶液)を注入し、封口体で外装缶の開口部を気密に密閉して、公称容量2.2Ahのニッケル水素蓄電池とする。
【0024】
以上のようにして作製したニッケル−水素電池は、以下のようにして活性化する。
ニッケル−水素電池を、室温で、0.1C(220mA)の電流値で、16時間充電する。
1時間の休止の後、0.2C(440mA)の電流値で電池電圧が、1.0Vに低下するまで室温で放電する。
この充放電サイクルを5サイクル繰り返して、単電池として使用するニッケル−水素電池を活性化する。
【0025】
以上のようにして作成したニッケル−水素電池を単電池1に使用して、本発明の組電池がいかに優れた特性を示すかを比較するために、以下のようにして比較組電池を試作した。
【0026】
[比較例の組電池]
前記のようにして活性化の終了した10個の単電池1を使用して、これ等の単電池1を、図1に示すように、一列に並べて、U曲したリード板2を介して直列に接続した。リード板2には、厚みを0.15mm、幅を7mm、長さ:30mmとするニッケル板を使用した。リード板2は、図2に示すように、一対の溶接用電極棒3を使用して、抵抗電気溶接によりスポット溶接した。両端を隣接する単電池1の正極キャップ4と外装缶6の底に溶接した後、図1に示すように、リード板2をU曲して、単電池1をー列に並べた形状とした。
【0027】
本発明の組電池の特性を比較するために、以下のようにして実施例1〜4の組電池を作成した。ただし、以下の実施例の組電池は、単電池1を0.1C(220mA)で6時間充電して、充電状態とした後、大電流パルス通電をして、互いに正極端子と負極端子である電極金属11を溶接した。
【0028】
[実施例1]
比較例の組電池に使用したのと同じ単電池を、図7に示すように、正極端子と負極端子とが互いに接触するように、すなわち、単電池を直列に接続するように、保持筒7に入れて縦一列に保持する。この状態で、両端の単電池1を溶接用電極棒3で押圧する。溶接用電極棒3は、取出用のリード板8を挟着して両端の単電池1を押圧する。この状態で、組電池の正極と負極側との間に、組電池を放電させる方向に、一対の溶接用電極棒3で240Vの電圧を印加し、1KAの電流を約15ミリ秒間流す大電流パルス通電した。この大電流パルス通電において、単電池1の間のリード板2は、図8に示すように、U曲したリード板2の対向面が互いに溶接された。この図において溶接点を○で示している。
【0029】
[実施例2]
図9に示すように、金属板9として、直径8mmの円形ニッケル板(厚み:0.15mm)を、各単電池1の間に挟着して、10個の単電池1を保持筒7で縦一列に並べ、組電池の両端を、リード板8を介した一対の溶接用電極棒3で押圧しながら、実施例1と同一の大電流パルス通電処理を施して、単電池1間を接続した。図9において、溶接点を○で示している。
【0030】
[実施例3]
実施例2に使用した円形ニッケル板に、ニッケル−リンメッキをした金属板を使用する以外、実施例2と同じようにして組電池を製作した。円形ニッケル板のニッケル−リンメッキは、メッキの厚さを1μmとし、メッキ組成は、Ni89wt%、P11wt%とした。この実施例には、金属板9にニッケル−リンメッキした円形ニッケル板を使用したが、金属板9には、ニッケル−リン合金を使用することもできる。
【0031】
[実施例4]
単電池1に、正極端子である封口板5の上部表面に、図10に示すように円錐状の突起10を設けたものを使用し、さらに、単電池1の間にリード板を挟着することなく、隣接する単電池1の正極端子と負極端子の電極金属11を直接に接触させる状態で、保持筒7に入れる以外は、実施例1と同様にして、組電池を製作した。封口板5に設けた突起10は、突出する高さを0.5mmとし、底面の直径を1mmとし、さらに、隣接する突起10のピッチをlmmとした。封口板5の表面は、ニッケル−リンメッキしている。図10において溶接点を○で示している。
【0032】
[実施例5]
単電池1に、実施例4に使用した単電池の正極端子に設けたのと同じ形状の円錐状の突起を負極端子に設け、正極端子を平面状とする以外は、実施例4と同様にして、組電池を製作した。
【0033】
[実施例6]
実施例2において、金属板として使用した円形ニッケル板の表面に、円錐状の突起を設けたものを使用する以外、実施例2と同様にして、組電池を製作した。金属板に設けた突起は、突出する高さを0.5mmとし、底面の直径を1mmとし、さらに、隣接する突起のピッチをlmmとした。
【0034】
以上のようにして製作した組電池の高率放電特性を測定すると、以下のようになった。ただし、高率放電特性は以下の状態で測定した。
完全に放電した後、0.1C(220mA)で、16時間充電する。
充電を完了した後、1時間放置する。
その後、放電電流を30Aとして、組電池の電圧が8Vになると放電を停止する。
放電時間の中間時点(1/2)における組電池の電圧を測定すると、以下のようになった。
【0035】
比較例の組電池………10.1V
実施例1の組電池……10.4V
実施例2の組電池……10.6V
実施例3の組電池……10.7V
実施例4の組電池……10.9V
実施例5の組電池……10.9V
実施例6の組電池……10.8V
【0036】
この測定結果から、本発明の組電池は、リード板2をU曲して接続した比較例の組電池に比べて、大電流放電における出力電圧が高く、高率放電特性が極めて優れている。
【0037】
さらに、実施例1〜6で試作した組電池は、大電流パルス通電によって極板が活性化されて、製造直後の実質的な容量が向上した。この特長は、単電池をニッケル−水素電池にした場合において、最大限に発揮された。これは、ニッケル−水素電池では、負極に水素吸蔵合金を使用しており、この水素吸蔵合金は、単電池製造直後の活性度が低いという欠点があり、本発明では、単電池間を接続するための溶接電流が水素吸蔵合金の活性度を高めたものと考えられる。さらに、以上の実施例は、充電した単電池を放電させる方向に大電流パルス通電して、単電池を直列に接続したが、単電池を充電する方向に大電流パルス通電して、単電池を直列に接続することもできる。
【0038】
【発明の効果】
本発明の組電池の製造方法は、極めて簡単な構造で、単電池を理想的な状態で連結して、単電池の接続部分の電圧降下を極減できる特長がある。それは、本発明の組電池の製造方法が、組電池の両端に溶接用電極棒を接触させて、隣接する単電池の正極端子と負極端子の電極金属を、金属板を介して、あるいは金属板を介することなく直接に溶着して、複数の単電池を一列に直列に接続しているからである。このように、隣接する単電池を直接に溶着する組電池の製造方法は、リード板の抵抗による電圧降下を極減し、組電池全体の放電時の作動電圧、とくに、大電流放電における出力電圧を高くして、高率放電特性を向上できる特長がある。
【0039】
さらに、本発明の組電池の製造方法は、単電池をバイパスさせるのではなくて、単電池を充電し、又は放電する方向に溶接電流を流して、直列に接続するので、全ての単電池を直線状に揃えて接続できる。それは、複数の単電池を直線状に並べて、その両端に溶接用電極棒を接触させて溶着できるからである。さらに、この状態で直列に接続できるので、多数の単電池を1回の処理で確実に溶着できる特長もある。
【0040】
さらにまた、本発明の組電池の製造方法は、極めて簡単な方法で単電池を直列に接続できることに加えて、単電池を接続する溶接電流で極板を活性化して、製造直後の実質的な容量を向上できるという、まさに理想的な特長を実現する。
【図面の簡単な説明】
【図1】 従来の組電池を示す正面図
【図2】 単電池にリード板を抵抗電気溶接する状態を示す拡大正面図
【図3】 図1に示す組電池に電流が流れる状態を示す拡大正面図
【図4】 単電池を溶着する従来例を示す一部断面正面図
【図5】 本発明の実施例の組電池の正面図
【図6】 本発明の他の実施例の組電池の正面図
【図7】 図5に示す組電池の製造工程を示す断面図
【図8】 本発明の実施例1の組電池のリード板が溶着される状態を示す一部拡大正面図
【図9】 本発明の実施例2および3の組電池のリード板が溶着される状態を示す一部拡大正面図
【図10】 本発明の実施例4の組電池の単電池が溶着される状態を示す一部拡大正面図
【符号の説明】
1…単電池
2…リード板
3…溶接用電極棒
4…正極キャップ
5…封口板
6…外装缶
7…保持筒
8…リード板
9…金属板
10…突起
11…電極金属
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a set batteries connected in series by arranging a plurality of unit cells in a row.
[0002]
[Prior art]
Alkaline batteries such as nickel-cadmium batteries and nickel-hydrogen batteries are used for applications such as electric tools and electric vehicles that discharge with a large current. In these applications, since high output is required, a plurality of single cells are connected in series and used in the form of an assembled battery.
[0003]
As shown in FIG. 1, the assembled battery is manufactured by connecting a plurality of unit cells 1 in series via a lead plate 2. As shown in FIG. 2, the lead plate 2 has one end welded to the positive electrode cap 4 provided as a positive electrode terminal on the battery sealing plate 5 and the other end welded to the bottom of the outer can 6 so that the adjacent unit cell 1 is connected. Connecting. In this figure, the welding points are indicated by ●. Further, the lead plate 2 is pressed by a pair of welding electrode rods 3 disposed close to each other, and a large current is caused to flow through the welding electrode rods 3 for spot welding. The pair of welding electrode rods 3 for welding the lead plate 2 to the positive electrode cap 4 of the sealing plate 5 causes a welding current to flow through the lead plate 2 and the positive electrode cap 4 of the sealing plate 5 as shown by chain lines. 2 is welded to the positive electrode cap 4 of the sealing plate 5. Further, the welding electrode rod 3 for welding the lead plate 2 to the bottom of the outer can 6 allows a welding current to flow through the lead plate 2 and the outer can 6 to weld the lead plate 2 to the outer can 6. The lead plate 2 welded in this state is U-curved to form an assembled battery in which the cells 1 are arranged in a row.
[0004]
[Problems to be solved by the invention]
When the assembled battery connected in series via the U-curved lead plate is discharged, it flows along the lead plate 2 as shown by the arrows in FIG. In this figure, the welding points of the lead plate 2 are indicated by ◯. The assembled battery shown in this figure is not particularly problematic when the flowing current is small, but in applications where a large current flows, such as an electric tool or an electric vehicle, a voltage drop occurs due to the resistance of the lead plate 2, There was a problem that the operating voltage at the time of discharging the entire assembled battery was lowered.
[0005]
Pressing adjacent batteries and moving the opposing surfaces of the U-curved lead plate 2 in the manner indicated by the arrows in FIG. 3 to bring them into contact with each other is effective in reducing the voltage drop generated in the lead plate 2. There is. However, in practice, it is very difficult to make the opposing surface of the lead plate 2 always contact in a low resistance state. In particular, when the surface of the lead plate 2 is oxidized with time to increase the surface resistance or foreign matter is sandwiched, it is almost impossible to make electrical contact in an ideal state. For this reason, it is extremely difficult for an assembled battery in which a plurality of unit cells are connected via a lead plate to reduce the voltage drop due to the lead plate in an ideal state.
[0006]
The resistance of the connecting portion of the unit cells can be reduced, for example, by directly soldering the opposing electrodes of the unit cells. However, soldering has a drawback that it is easily corroded by the influence of the electrolyte solution leaking from the battery and cannot be used stably for a long time. Moreover, compared with welding, there is also a drawback that the strength of coupling is low and it is difficult to reliably connect.
[0007]
Such a defect can be eliminated by directly welding the positive electrode terminal and the negative electrode terminal of the cell 1 as shown in FIG. In the assembled battery shown in this figure, the center positions of the two unit cells 1 are shifted and connected in series. The welding electrode rod 3 for welding the upper and lower unit cells 1 is in contact with the lid of the lower unit cell 1 and the upper unit cell in contact with the outer can 6 in the figure. When a welding current is passed through the two welding electrode rods 3, the lid of the lower unit cell 1 and the bottom of the upper unit cell 1 are welded together.
[0008]
The assembled battery having this structure can reduce the resistance of the connecting portion of the unit cells. However, the assembled battery having this structure has a drawback that the upper and lower unit cells cannot be connected in a straight line because the electrode rod for welding is brought into contact with the lid of the lower unit cell. Furthermore, in order to connect a large number of unit cells in series, it is necessary to repeatedly weld the unit cells to connect the upper and lower unit cells, and there is a drawback that it takes time and effort to connect.
[0009]
The present invention has been developed for the purpose of solving such drawbacks. An important object of the present invention is to provide an assembled battery and a method for manufacturing the same, which can connect the single cells in an ideal state with an extremely simple structure and can minimize the voltage drop at the connecting portion of the single cells. .
[0010]
[Means for Solving the Problems]
In order to eliminate the above-described adverse effects, the present inventors have repeated a variety of experiments, and as a result, a welding current is allowed to flow through the single cell. Successfully connected in an ideal state. Moreover, the assembled battery welded by this method has succeeded in improving the battery performance in addition to reducing the resistance of the connecting portion of the unit cells.
[0011]
Therefore, according to the manufacturing method of the assembled battery of claim 1 of the present invention, the assembled battery is manufactured by connecting a plurality of single cells 1 in series in a row. The method of manufacturing the assembled battery is such that a plurality of single cells 1 are arranged in a line through the metal plate 9 or without the metal plate 9, and the electrode metals 11 of the positive electrode terminal and the negative electrode terminal are connected in series to each other. Then, the electrode rod for welding 3 is brought into contact with both ends of the assembled battery, and the unit cell 1 is energized with a large current pulse, and the electrode metal 11 of the positive electrode terminal and the negative electrode terminal is passed through the metal plate 9 or the metal plate. It welds directly without going through 9.
[0012]
[0013]
[0014]
[0015]
[0016]
[0017]
[0018]
Furthermore, in the method for manufacturing an assembled battery described in claim 2 of the present invention, a large current pulse is applied in a direction in which the unit cell 1 is discharged with the unit cell 1 in a charged state.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. However, the example shown below illustrates the assembled battery for embodying the technical idea of the present invention, and the present invention does not specify the assembled battery as follows.
[0020]
Further, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the examples are referred to as “the scope of claims” and “the means for solving the problems”. It is added to the member shown by. However, the members shown in the claims are not limited to the members in the embodiments.
[0021]
The assembled battery shown in FIG. 5 has 10 unit cells 1 connected in series in a row. In the assembled battery of this figure, ten unit cells 1 are connected, but the assembled battery of the present invention does not specify the number of unit cells to be connected. Moreover, as shown in FIG. 6, the assembled battery of this invention can arrange | position the several cell 1 in a line, connect in series, and can arrange these in parallel and make an assembled battery.
[0022]
The unit cell 1 is an alkaline secondary battery such as a nickel-hydrogen battery or a nickel-cadmium battery that can be discharged with a large current. However, the battery pack of the present invention does not specify a single battery as an alkaline secondary battery. All batteries that have been developed or will be developed at the present time and can be discharged with a large current can be used as single cells.
[0023]
A nickel-hydrogen battery suitable for the unit cell 1 is manufactured by the following process.
A known sintered nickel positive electrode is used as one positive electrode. For the negative electrode, a paste-type hydrogen storage alloy having a known punching metal current collector attached thereto is used.
2 The positive electrode and the negative electrode are wound through a separator made of a nonwoven fabric made of polypropylene having a thickness of about 0.2 mm to form a spiral electrode group.
After the current collector plates are connected to the upper and lower sides of the three spiral electrode groups, the spiral electrode groups are inserted into an SC size battery can.
4. Electrolytic solution (8N KOH aqueous solution containing LiOH and NaOH) is poured into the outer can, and the opening of the outer can is hermetically sealed with a sealing body to obtain a nickel hydride storage battery having a nominal capacity of 2.2 Ah.
[0024]
The nickel-hydrogen battery produced as described above is activated as follows.
A 1 nickel-hydrogen battery is charged at room temperature at a current value of 0.1 C (220 mA) for 16 hours.
2 After 1 hour of rest, discharge at room temperature until the battery voltage drops to 1.0 V at a current value of 0.2 C (440 mA).
This charge / discharge cycle is repeated five times to activate a nickel-hydrogen battery used as a single battery.
[0025]
In order to compare how excellent the assembled battery of the present invention shows by using the nickel-hydrogen battery prepared as described above for the unit cell 1, a comparative assembled battery was produced as a prototype as follows. .
[0026]
[Battery of comparative example]
As shown in FIG. 1, the unit cells 1 that have been activated as described above are used, and these unit cells 1 are arranged in a line and connected in series via a U-curved lead plate 2. Connected to. The lead plate 2 was a nickel plate having a thickness of 0.15 mm, a width of 7 mm, and a length of 30 mm. As shown in FIG. 2, the lead plate 2 was spot-welded by resistance electric welding using a pair of welding electrode rods 3. After welding both ends of the positive electrode cap 4 of the adjacent unit cell 1 and the bottom of the outer can 6, as shown in FIG. 1, the lead plate 2 is bent in a U shape so that the unit cells 1 are arranged in a row. .
[0027]
In order to compare the characteristics of the assembled batteries of the present invention, assembled batteries of Examples 1 to 4 were prepared as follows. However, the assembled batteries of the following examples are charged with a single current 1 at 0.1 C (220 mA) for 6 hours, charged, and then energized with a large current pulse to be a positive electrode terminal and a negative electrode terminal. The electrode metal 11 was welded.
[0028]
[Example 1]
As shown in FIG. 7, the same unit cell used for the assembled battery of the comparative example is arranged so that the positive electrode terminal and the negative electrode terminal are in contact with each other, that is, so that the unit cells are connected in series. And keep it in a vertical row. In this state, the unit cells 1 at both ends are pressed by the welding electrode rod 3. The welding electrode rod 3 sandwiches the lead plate 8 for taking out and presses the unit cells 1 at both ends. In this state, a voltage of 240 V is applied by a pair of welding electrode rods 3 in the direction of discharging the assembled battery between the positive electrode and the negative electrode side of the assembled battery, and a current of 1 KA flows for about 15 milliseconds. Pulse energized. In this large current pulse energization, the lead plates 2 between the single cells 1 were welded to each other on the opposing surfaces of the U-curved lead plate 2 as shown in FIG. In this figure, the welding points are indicated by circles.
[0029]
[Example 2]
As shown in FIG. 9, as the metal plate 9, a circular nickel plate (thickness: 0.15 mm) having a diameter of 8 mm is sandwiched between the unit cells 1, and the ten unit cells 1 are held by the holding cylinder 7. A single battery 1 is connected by applying the same high-current pulse energization process as in Example 1 while arranging the batteries in a vertical row and pressing both ends of the assembled battery with a pair of welding electrode rods 3 via lead plates 8. did. In FIG. 9, the welding points are indicated by ◯.
[0030]
[Example 3]
An assembled battery was produced in the same manner as in Example 2, except that a nickel-phosphorous plated metal plate was used for the circular nickel plate used in Example 2. Nickel-phosphorous plating of a circular nickel plate had a plating thickness of 1 μm and a plating composition of Ni 89 wt% and P11 wt%. In this embodiment, a circular nickel plate obtained by plating nickel-phosphorous on the metal plate 9 is used. However, a nickel-phosphorous alloy can also be used for the metal plate 9.
[0031]
[Example 4]
A unit cell 1 having a conical protrusion 10 as shown in FIG. 10 on the upper surface of a sealing plate 5 as a positive electrode terminal is used, and a lead plate is sandwiched between the unit cells 1. An assembled battery was manufactured in the same manner as in Example 1 except that the positive electrode terminal of the adjacent unit cell 1 and the electrode metal 11 of the negative electrode terminal were placed in direct contact with each other, and placed in the holding cylinder 7. The protrusion 10 provided on the sealing plate 5 has a protruding height of 0.5 mm, a bottom surface diameter of 1 mm, and a pitch of adjacent protrusions 10 of 1 mm. The surface of the sealing plate 5 is nickel-phosphorous plated. In FIG. 10, the welding points are indicated by ◯.
[0032]
[Example 5]
The unit cell 1 is the same as the example 4 except that a conical protrusion having the same shape as that provided on the positive electrode terminal of the unit cell used in Example 4 is provided on the negative electrode terminal and the positive electrode terminal is planar. The assembled battery was manufactured.
[0033]
[Example 6]
In Example 2, an assembled battery was manufactured in the same manner as in Example 2 except that a circular nickel plate used as a metal plate was provided with a conical protrusion. The protrusion provided on the metal plate had a protruding height of 0.5 mm, a bottom surface diameter of 1 mm, and an adjacent protrusion pitch of 1 mm.
[0034]
When the high rate discharge characteristics of the assembled battery manufactured as described above were measured, it was as follows. However, the high rate discharge characteristics were measured in the following state.
1 After complete discharge, charge at 0.1 C (220 mA) for 16 hours.
2 After completing charging, leave it for 1 hour.
3 Thereafter, when the discharge current is 30 A and the voltage of the assembled battery reaches 8 V, the discharge is stopped.
When the voltage of the assembled battery at the intermediate time (1/2) of the four discharge times was measured, it was as follows.
[0035]
Battery of comparative example ... 10.1V
The assembled battery of Example 1 ... 10.4V
The assembled battery of Example 2 ... 10.6V
The assembled battery of Example 3 ... 10.7V
Battery pack of Example 4 ... 10.9V
Battery pack of Example 5: 10.9V
The assembled battery of Example 6 ... 10.8V
[0036]
From this measurement result, the assembled battery of the present invention has a higher output voltage in a large current discharge and extremely excellent high-rate discharge characteristics than the assembled battery of the comparative example in which the lead plate 2 is bent and connected.
[0037]
Furthermore, in the assembled batteries produced in Examples 1 to 6, the electrode plate was activated by energizing a large current pulse, and the substantial capacity immediately after production was improved. This feature was exhibited to the maximum when the unit cell was a nickel-hydrogen battery. This is because the nickel-hydrogen battery uses a hydrogen storage alloy for the negative electrode, and this hydrogen storage alloy has a disadvantage that the activity immediately after the manufacture of the unit cells is low. In the present invention, the unit cells are connected to each other. It is considered that the welding current for increasing the activity of the hydrogen storage alloy. Furthermore, in the above embodiment, a large current pulse was applied in the direction of discharging the charged unit cell, and the unit cells were connected in series, but a large current pulse was applied in the direction of charging the unit cell. It can also be connected in series.
[0038]
【The invention's effect】
Method for producing a set batteries of the present invention, an extremely simple structure, the unit cells are connected in an ideal state, there is a feature that can extremely reduced voltage drop of the connection portion of the cells. It method set batteries of the present invention, by contacting a welding electrode rod at both ends of the battery pack, the electrode metal of positive and negative terminals of the unit cells adjacent via a metal plate, or metal This is because the plurality of single cells are connected in series in a row by welding directly without using a plate. Thus, the manufacturing method set batteries welding the unit cells adjacent directly, the Hesi voltage drop due to resistance of the lead plate electrode, the operating voltage at the time of discharging the entire battery pack, in particular, the output of the large-current discharge There is a feature that high voltage discharge characteristics can be improved by increasing the voltage.
[0039]
Furthermore, the manufacturing method set batteries of the present invention, rather than to bypass the unit cell to charge the battery cells, or by passing a welding current in the discharge directions, so connected in series, all of the cells Can be connected in a straight line. This is because a plurality of single cells can be arranged in a straight line, and welding electrode bars can be brought into contact with both ends thereof for welding. Furthermore, since it can be connected in series in this state, there is also a feature that a large number of single cells can be reliably welded in one process.
[0040]
Furthermore, the manufacturing method set batteries of the present invention, in addition to being able to connect the unit cells in series in a very simple manner, to activate the electrode plate in the welding current for connecting the unit cells, immediately after production substantially Realizing the ideal feature of improving the capacity.
[Brief description of the drawings]
1 is a front view showing a conventional assembled battery. FIG. 2 is an enlarged front view showing a state in which a lead plate is resistance-electrically welded to a single battery. FIG. 3 is an enlarged view showing a state in which a current flows through the assembled battery shown in FIG. Front view [Fig. 4] Partial cross-sectional front view showing a conventional example of welding a single cell [Fig. 5] Front view of an assembled battery of an embodiment of the present invention [Fig. 6] of an assembled battery of another embodiment of the present invention FIG. 7 is a cross-sectional view showing a manufacturing process of the assembled battery shown in FIG. 5. FIG. 8 is a partially enlarged front view showing a state where the lead plate of the assembled battery of Example 1 of the present invention is welded. FIG. 10 is a partially enlarged front view showing a state in which the lead plates of the assembled batteries of Examples 2 and 3 of the present invention are welded. FIG. 10 shows a state in which the unit cell of the assembled battery of Example 4 of the present invention is welded. Partially enlarged front view [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Single cell 2 ... Lead plate 3 ... Electrode rod 4 for welding 4 ... Positive electrode cap 5 ... Sealing plate 6 ... Exterior can 7 ... Holding cylinder 8 ... Lead plate 9 ... Metal plate 10 ... Protrusion 11 ... Electrode metal

Claims (2)

複数の単電池(1)を一列に直列に接続してなる組電池の製造方法において、複数の単電池(1)を、金属板(9)を介して、あるいは金属板(9)を介することなく一列に並べて互いに正極端子と負極端子の電極金属(11)を直列に接続し、この状態で、組電池の両端に溶接用電極棒(3)を接触させて、単電池(1)に大電流パルス通電の溶接電流を流して、正極端子と負極端子の電極金属(11)を、金属板(9)を介して、あるいは金属板(9)を介することなく直接に溶着することを特徴とする組電池の製造方法 In a method for manufacturing an assembled battery in which a plurality of unit cells (1) are connected in series in a row, the plurality of unit cells (1) are connected via a metal plate (9) or a metal plate (9). Connect the electrode metal (11) of the positive electrode terminal and the negative electrode terminal in series with each other, and connect the electrode rod for welding (3) to both ends of the assembled battery in this state. It is characterized by flowing a current pulse energizing welding current and welding the electrode metal (11) of the positive terminal and the negative terminal directly through the metal plate (9) or without going through the metal plate (9). Manufacturing method of assembled battery. 単電池(1)を充電状態として、単電池(1)を放電させる方向に大電流パルス通電する請求項に記載される組電池の製造方法。The method for producing an assembled battery according to claim 1 , wherein the single battery (1) is charged and a large current pulse is applied in a direction in which the single battery (1) is discharged.
JP26625498A 1998-09-21 1998-09-21 Manufacturing method of battery pack Expired - Fee Related JP4242953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26625498A JP4242953B2 (en) 1998-09-21 1998-09-21 Manufacturing method of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26625498A JP4242953B2 (en) 1998-09-21 1998-09-21 Manufacturing method of battery pack

Publications (2)

Publication Number Publication Date
JP2000100416A JP2000100416A (en) 2000-04-07
JP4242953B2 true JP4242953B2 (en) 2009-03-25

Family

ID=17428431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26625498A Expired - Fee Related JP4242953B2 (en) 1998-09-21 1998-09-21 Manufacturing method of battery pack

Country Status (1)

Country Link
JP (1) JP4242953B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733009B2 (en) 2000-03-30 2006-01-11 三洋電機株式会社 Manufacturing method and manufacturing apparatus of assembled battery
EP1331682B1 (en) 2002-01-28 2012-12-12 Sanyo Electric Co., Ltd. Battery pack
JP2004071265A (en) 2002-08-05 2004-03-04 Sanyo Electric Co Ltd Battery
JP5094783B2 (en) * 2009-04-28 2012-12-12 エネルギー コントロール リミテッド High conductivity connection structure
JP5835885B2 (en) * 2010-11-12 2015-12-24 オリンパス株式会社 Capsule endoscope
CA2901318A1 (en) * 2013-02-27 2014-09-04 Ioxus, Inc. Energy storage device assembly
US20190296316A1 (en) * 2018-03-26 2019-09-26 GM Global Technology Operations LLC Battery tab having a localized welded joint and method of making the same
DE102022128236A1 (en) 2022-10-25 2024-04-25 Volkswagen Aktiengesellschaft Method for the electrically conductive connection of a pole of a battery cell to a contact element, battery cell and battery module

Also Published As

Publication number Publication date
JP2000100416A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
JP5051410B2 (en) Sealed battery lead, sealed battery using the lead, and method of manufacturing the battery
JP3745424B2 (en) Battery manufacturing method
JP5082861B2 (en) Battery manufacturing method, battery manufactured by the method, and battery inspection method
US6013389A (en) Cylindrical storage battery
WO2006059733A1 (en) Sealed cell, manufacturing method thereof, and battery formed by a plurality of sealed cells
JP2001143684A (en) Battery and method for manufacturing the same
WO2005020351A1 (en) Cylindrical cell and manufacturing method thereof
JP4242953B2 (en) Manufacturing method of battery pack
US6713211B2 (en) Square shaped battery
CN101010818B (en) Closed battery, its manufacturing method, battery pack composed of closed batteries, and its manufacturing method
JP4062388B2 (en) Alkaline storage battery
JP5016236B2 (en) battery
JP3733009B2 (en) Manufacturing method and manufacturing apparatus of assembled battery
JP5157049B2 (en) Sealed battery, method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
JP4090167B2 (en) Storage battery and manufacturing method thereof
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP3619706B2 (en) Storage battery
JP4107468B2 (en) battery
JP2000306597A (en) Nickel-hydrogen secondary battery
JP2000251867A (en) Cylindrical storage battery
JP2004055371A (en) Cylindrical battery and connection structure between batteries using the same
JP3952488B2 (en) Alkaline storage battery
JP3906001B2 (en) Alkaline storage battery and method of manufacturing the same
JP2000285899A (en) Metal plate collector and secondary battery using same
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070221

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370