JP2001283895A - Manufacturing method of electrochemical cell and electrochemical cell electrode - Google Patents

Manufacturing method of electrochemical cell and electrochemical cell electrode

Info

Publication number
JP2001283895A
JP2001283895A JP2000097184A JP2000097184A JP2001283895A JP 2001283895 A JP2001283895 A JP 2001283895A JP 2000097184 A JP2000097184 A JP 2000097184A JP 2000097184 A JP2000097184 A JP 2000097184A JP 2001283895 A JP2001283895 A JP 2001283895A
Authority
JP
Japan
Prior art keywords
active material
core
electrode plate
electrode
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000097184A
Other languages
Japanese (ja)
Inventor
Tsudoi Imazato
集 今里
Shigekazu Yasuoka
茂和 安岡
Takaaki Ikemachi
隆明 池町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000097184A priority Critical patent/JP2001283895A/en
Publication of JP2001283895A publication Critical patent/JP2001283895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode plate that does not generate winding slippage at winding and is not impaired in current collection at welding with the current collector in an electrochemical cell having a whirlpool shape electrode body of which electrode plate of the positive and negative electrodes is wound in a whirlpool shape and the electrode plates which are welded to the current collector. SOLUTION: At least one of the electrode plates has a core body which is provided with many punched holes nearly uniform on the total surface and active material is filled in the core body except for the one side of edge portion area along the long length direction, and the edge portion is installed with a conductive metal member of ribbon shape which is to be welded on the current collector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ一次電
池、アルカリ蓄電池などの電気化学電池に関し、より具
体的には、渦巻状電極体を具える円筒型又は角型の電気
化学電池及び電極板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical cell such as an alkaline primary battery and an alkaline storage battery, and more specifically, to a cylindrical or rectangular electrochemical cell having a spiral electrode body and an electrode plate. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】ペースト式(非焼結式)の電極板は、導電
性の有孔芯体に活物質ペーストを充填して形成される。
これは、焼結式のものと比べて、工程数が少なく、生産
性が良いので、ニッケル・カドミウム蓄電池、ニッケル
・水素化物蓄電池などの円筒型アルカリ蓄電池の渦巻状
電極体の製造に好適に使用されている。
2. Description of the Related Art A paste type (non-sintered type) electrode plate is formed by filling a conductive perforated core with an active material paste.
It is suitable for manufacturing spiral electrode bodies for cylindrical alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydride storage batteries because it has fewer steps and higher productivity than sintered type. Have been.

【0003】この種アルカリ蓄電池の概略構成を図1に
示す。図1において、渦巻状電極体(1)は、正極板(10)
と負極板(20)との間にセパレータ(30)を介在させ、渦巻
状に巻回して形成されており、該渦巻状電極体(1)は、
正極板の長手方向(巻回方向)の縁部(10a)が正極集電板
(12)にスポット溶接され、負極板(20)の長手方向(巻回
方向)の縁部(20a)が負極集電板(22)にスポット溶接され
た後、有底円筒形で負極端子を兼ねる外装缶(3)の中へ
収容される。負極集電体(22)は外装缶(3)の底面でスポ
ット溶接される。なお、正極集電板(12)には、予め集電
リード片(14)が一体に形成されており、正極集電板(12)
の集電リード片(14)の先端部が、正極端子を兼ねる封口
体(4)の底面に溶接される。外装缶(3)内にはアルカリ電
解液が注液され、封口体(4)にガスケット(6)を配した
後、外装缶(3)の上部開口部を内方にかしめて、アルカ
リ蓄電池が作製される。
FIG. 1 shows a schematic configuration of such an alkaline storage battery. In FIG. 1, a spiral electrode body (1) has a positive electrode plate (10).
And a negative electrode plate (20) with a separator (30) interposed therebetween, which is formed by spirally winding the spirally wound electrode body (1).
The edge (10a) in the longitudinal direction (winding direction) of the positive electrode plate is
(12), the edge (20a) in the longitudinal direction (winding direction) of the negative electrode plate (20) is spot-welded to the negative electrode current collector plate (22), and then the cylindrical negative electrode terminal is closed. It is housed in the outer can (3), which also serves as the outer can. The negative electrode current collector (22) is spot-welded on the bottom surface of the outer can (3). The positive electrode current collector plate (12) is integrally formed with a current collecting lead piece (14) in advance, and the positive electrode current collector plate (12)
Of the current collecting lead piece (14) is welded to the bottom surface of the sealing body (4) also serving as a positive electrode terminal. Alkaline electrolyte is injected into the outer can (3), and after the gasket (6) is placed on the sealing body (4), the upper opening of the outer can (3) is swaged inward to allow the alkaline storage battery to enter. It is made.

【0004】[0004]

【発明が解決しようとする課題】この円筒型アルカリ蓄
電池において、パンチ孔が多数開設されたいわゆるパン
チングメタルを用いて電極板の芯体を作製するものがあ
り、この電極板は次のようにして作製されている。芯体
基板として、多数のパンチ孔が略均等に開設され、複数
セル分の芯体を含む大きさのものを準備し、その全面に
活物質を充填して電極基板を作製した後、電極基板に充
填された活物質のうち、各セルの芯体の長手方向に沿う
一方の縁部(電池組立時に集電板と溶接される部分)とな
る位置に充填された活物質を剥離して、芯体基板の一部
を露出した後、電極基板を適宜切断することにより、各
セル分の電極板が得られる。なお、本明細書において、
「芯体基板」とは、全面に多数のパンチ孔が略均等に開
設され、複数セル分の芯体を含む大きさで、活物質が充
填されていない状態のものを意味し、「芯体」とは、電
極板サイズに切断されて、活物質が充填されていない状
態のものを意味している。また、「電極基板」とは、前
記芯体基板に活物質が充填された状態のものを意味し、
「電極板」とは、所定の電極板サイズに切断され、活物
質が充填された状態のものを意味する。
In this cylindrical alkaline storage battery, there is one in which a core of an electrode plate is manufactured by using a so-called punched metal having a large number of punched holes. This electrode plate is formed as follows. Have been made. As the core substrate, a punch substrate having a large number of punch holes formed substantially equally and including a core for a plurality of cells is prepared, and the entire surface thereof is filled with an active material to prepare an electrode substrate. Of the active material filled in, peel off the active material filled at a position that will be one edge along the longitudinal direction of the core of each cell (a part welded to the current collector plate during battery assembly), After exposing a part of the core substrate, the electrode substrate is appropriately cut to obtain an electrode plate for each cell. In this specification,
The “core substrate” means a substrate in which a large number of punch holes are formed substantially uniformly on the entire surface, the size includes a plurality of cells of the core, and is not filled with the active material. "Means a state in which the electrode material is cut to the size of the electrode plate and is not filled with the active material. Further, the "electrode substrate" means a state in which the core substrate is filled with an active material,
“Electrode plate” means a plate cut into a predetermined electrode plate size and filled with an active material.

【0005】ところで、電極基板から各セル分の電極板
を切り取る際、パンチ孔を通って切断されるため、得ら
れた電極板の芯体の端面はギザギザ状となる。図4は、
単一セルの芯体(41)を示しており、(40)はパンチ孔であ
る。図5は、芯体(41)の長手方向に沿う一方の縁部以外
の部分に活物質(42)が充填された電極板(20)を示してい
る。しかしながら、図5に示された電極板を用いて渦巻
状電極体を作製し、集電板に溶接すると、パンチ孔の部
分は集電板と接触することができないため、溶接箇所の
数が少なくなり、集電性に劣る問題がある。
By the way, when the electrode plate for each cell is cut from the electrode substrate, the electrode plate is cut through a punch hole, so that the end face of the core of the obtained electrode plate becomes jagged. FIG.
A single cell core (41) is shown, where (40) is a punch hole. FIG. 5 shows an electrode plate (20) in which a portion other than one edge along the longitudinal direction of the core (41) is filled with the active material (42). However, when a spiral electrode body is manufactured using the electrode plate shown in FIG. 5 and is welded to the current collector, the number of welding locations is small because the punched holes cannot contact the current collector. Therefore, there is a problem that the current collecting property is poor.

【0006】そこで、図6に示すように、芯体(41)のう
ち、集電板に溶接されるべき長手方向の縁部のみを、パ
ンチ孔のない部分(無孔部)(46)とする電極板がある。し
かし、パンチングメタルを用いた芯体は、厚さが約0.
05mm〜0.1mm程度と薄く、十分な剛性を有していな
いため、パンチ孔(40)のある部分(有孔部)と、パンチ孔
がない部分(無孔部)とではかなりの強度差がある。活物
質の芯体基板への充填は、活物質の塗着、乾燥及び圧延
の工程を経て行われるが、このような強度差があると、
圧延の際、延伸性の違いにより、有孔部と無孔部との間
に歪みを生じる。このため、得られた電極板を渦巻状に
巻回したとき、歪みに起因する巻ズレを生ずる。巻ズレ
が生じると、正極及び負極の各電極板の活物質面どうし
が完全に対向しなくなるので、有効反応面積が減少し、
電池容量、作動電圧の低下を招くという問題がある。
Therefore, as shown in FIG. 6, only the longitudinal edge portion of the core body (41) to be welded to the current collector plate is defined as a portion without a punch hole (non-porous portion) (46). There is an electrode plate to be used. However, the core made of punched metal has a thickness of about 0,0.
Since it is as thin as about 05 mm to 0.1 mm and does not have sufficient rigidity, there is a considerable difference in strength between the part with a punched hole (40) (perforated part) and the part without a punched hole (non-perforated part). There is. The filling of the core substrate with the active material is performed through the steps of coating the active material, drying and rolling, but with such a difference in strength,
During rolling, distortion occurs between a perforated portion and a non-perforated portion due to a difference in extensibility. For this reason, when the obtained electrode plate is spirally wound, a winding shift due to distortion occurs. When the winding displacement occurs, the active material surfaces of the positive and negative electrode plates do not completely face each other, so that the effective reaction area decreases,
There is a problem that battery capacity and operating voltage are reduced.

【0007】この巻ズレを防止するために、図7に示さ
れるように、芯体の長手方向の両方の縁部を、無孔部(4
6)(46)とするものがある。一方の縁部は、集電板に溶接
するため、活物質を充填しないのはやむを得ないが、他
方の縁部にも同様に活物質を塗着しない場合には電池容
量の低下を招く。しかし、無孔部に活物質を塗着して
も、そこでの塗着強度は、有孔部に比べて小さくなるた
め、無孔部では、巻回した際に活物質の脱落の虞れがあ
る。活物質の脱落は内部短絡の原因にもなるから、無孔
部に活物質を塗着することは好ましくない。
In order to prevent this winding deviation, as shown in FIG. 7, both edges of the core body in the longitudinal direction are connected to a non-porous portion (4).
6) (46). Since one edge is welded to the current collector plate, it is unavoidable not to fill the active material, but if the other edge is not coated with the active material, the battery capacity is reduced. However, even if the active material is applied to the non-porous portion, the coating strength there is smaller than that of the perforated portion. is there. Since the falling off of the active material causes an internal short circuit, it is not preferable to apply the active material to the non-porous portion.

【0008】本発明は上記問題点に鑑みてなされたもの
で、巻きズレを生ずることなく渦巻状電極体を作製する
ことができ、かつ、集電性を損なうことなく集電板に溶
接することのできる電極板を用いたアルカリ蓄電池、及
び該アルカリ蓄電池用電極板の製造方法を提供すること
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is possible to manufacture a spiral electrode body without causing a winding deviation and to weld to a current collector plate without impairing the current collecting performance. An object of the present invention is to provide an alkaline storage battery using an electrode plate that can be used, and a method for manufacturing an electrode plate for the alkaline storage battery.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、正極と負極の電極板がセパレータを介
して渦巻状に巻回された渦巻状電極体を具え、電極板が
集電板に溶接されてなるアルカリ蓄電池において、少な
くとも一方の電極板は、全面に多数のパンチ孔が略均等
に開設された芯体を有しており、該芯体の長手方向に沿
う一方の縁部以外の部分に活物質が充填され、前記縁部
には、集電板に溶接されるべきリボン状導電金属部材を
取り付けるようにしたものである。
In order to achieve the above object, according to the present invention, there is provided a spiral electrode body in which positive and negative electrode plates are spirally wound with a separator interposed therebetween. In the alkaline storage battery welded to the electric plate, at least one of the electrode plates has a core body having a large number of punch holes formed substantially uniformly on the entire surface, and one edge along the longitudinal direction of the core body. A portion other than the portion is filled with an active material, and a ribbon-shaped conductive metal member to be welded to the current collector is attached to the edge.

【0010】本発明の電極板は、単一セルの芯体が複
数含まれる大きさを有し、全面に多数のパンチ孔が略均
等に開設された芯体基板を準備し、該芯体基板の全面に
活物質を塗着し、乾燥し、圧延することにより、活物質
が充填された電極基板を作製する工程と、電極基板に
充填された活物質のうち、各セルの芯体の長手方向に沿
う一方の縁部となる位置に充填された活物質を剥離し、
芯体基板の一部を露出する工程と、芯体基板の露出面
にリボン状導電金属部材を溶接する工程と、電極基板
を切断して、各セル分の電極板を得る工程とによって作
製される。
The electrode plate of the present invention has a size including a plurality of cores of a single cell, and prepares a core substrate having a large number of punch holes formed substantially uniformly on the entire surface thereof. A step of preparing an electrode substrate filled with the active material by coating the active material on the entire surface of the substrate, drying and rolling, and the length of the core of each cell among the active materials filled in the electrode substrate. Peel the active material filled at the position that will be one edge along the direction,
A step of exposing a part of the core substrate, a step of welding a ribbon-shaped conductive metal member to an exposed surface of the core substrate, and a step of cutting the electrode substrate to obtain an electrode plate for each cell. You.

【0011】なお、電極板の製造方法は、前記工程とす
る順序の他にも、電極基板の作製→活物質の剥離→
電極基板の切断→導電金属部材の溶接、とする順序
でもよく、或はまた、電極基板の作製→電極基板の
切断→活物質の剥離→導電金属部材の溶接、とする
順序でもよい。また、芯体基板から単一セル用に予め切
断された芯体を用いて電極板を作製する場合、活物質の
充填→活物質の剥離→導電金属部材の溶接、とする順序
にて行われる。
The method of manufacturing the electrode plate includes, in addition to the order of the above-described steps, production of an electrode substrate → separation of an active material →
The order may be as follows: cutting of the electrode substrate → welding of the conductive metal member, or the order of producing the electrode substrate → cutting of the electrode substrate → peeling of the active material → welding of the conductive metal member. In the case where an electrode plate is manufactured using a core cut in advance for a single cell from a core substrate, filling of an active material → peeling of an active material → welding of a conductive metal member is performed in the following order. .

【0012】[0012]

【作用及び効果】本発明の渦巻型アルカリ蓄電池用電極
板では、集電板に溶接されるべき芯体の長手方向の縁部
が直線状であり、集電板との溶接時に、十分な溶接箇所
を確保することができるので、溶接不良による集電性の
低下を招く虞れはない。芯体に無孔部を有しないため、
従来のように縁部が無孔部であった場合と比べると圧延
を施した際に極板に生じる歪みが小さくなる。したがっ
て、電極板を渦巻状に巻回したときに生じる巻ズレを小
さくできる。また前記縁部は有孔部であるため、活物質
の塗着強度が高く、巻回時や充放電サイクル時に活物質
が脱落しにくい。このような電極板を具えた電池は、従
来の電極板に比べて集電体の溶接不良が起こり難く、ま
た、セパレータを介して本発明電極板と対極とを巻回し
て電極体を構成した場合に巻ズレが少ないため、対向面
積の減少は極めて少ない。また、電極板からの活物質の
脱落が少ないため、従来の電極板を用いた電池に比べ
て、高容量、高作動電圧で信頼性の高い渦巻状アルカリ
蓄電池が得られる。電極板の製造についても、簡素化さ
れた工程であるので、自動化が容易であり、生産性にす
ぐれている。
In the electrode plate for a spiral-wound alkaline storage battery according to the present invention, the longitudinal edge of the core to be welded to the current collector is straight, and sufficient welding is performed when welding with the current collector. Since a portion can be secured, there is no possibility that the current collecting property may be reduced due to poor welding. Because there is no non-porous part in the core,
Compared to the conventional case where the edge portion is a non-porous portion, distortion generated in the electrode plate when rolling is performed is reduced. Therefore, it is possible to reduce the winding deviation caused when the electrode plate is spirally wound. Further, since the edge portion is a perforated portion, the active material has a high coating strength, and the active material does not easily fall off during winding or charge / discharge cycle. A battery provided with such an electrode plate is less likely to cause current collector welding failure than a conventional electrode plate, and has an electrode body formed by winding the electrode plate of the present invention and a counter electrode through a separator. In this case, since the winding displacement is small, the decrease in the facing area is extremely small. In addition, since the active material is less likely to fall off from the electrode plate, a highly reliable spiral alkaline storage battery having a higher capacity, a higher operating voltage, and higher voltage than a battery using a conventional electrode plate can be obtained. The manufacturing of the electrode plate is also a simplified process, so that automation is easy and the productivity is excellent.

【0013】[0013]

【発明の実施の形態】本発明の電極板が適用されるアル
カリ蓄電池の一例は、図1に示すとおりであり、その概
略構成は既に説明したので、電極板の製造の一例につい
て、具体的実施例を挙げて説明する。なお、次の発明例
では、本発明に係る電極板を負極板に適用する例を示
す。また、負極には水素吸蔵合金を用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an alkaline storage battery to which the electrode plate of the present invention is applied is as shown in FIG. 1 and its schematic configuration has already been described. This will be described with an example. In the following invention examples, examples are shown in which the electrode plate according to the present invention is applied to a negative electrode plate. Further, a hydrogen storage alloy is used for the negative electrode.

【0014】発明例 発明例の電極板(負極板)の製造方法を図3を参照して説
明する。孔径1.8mmの孔が、横方向(極板の巻回方向と
平行)に円中心間距離を4mm間隔、縦方向(極板の巻回方
向と直交)に円中心間距離を2.8mmにて、全面に亘って
略均等に開設され、縦列で4セル分の芯体(41)を含む電
極板を一度に製造できる帯状の薄鋼板(厚さ0.06mm、
縦幅192mm)を芯体基板(28)として用意した(図3
(a))。なお、列数についてはこれに限られるものでな
いことは勿論である。この芯体基板に供される薄板は、
通常、鉄又はニッケルを主材とする金属板が使用される
が、これに限定されるものではなく、従来より電極基板
として使用されている各種の金属薄板、例えば銅板、銀
板等を使用することができる。
[0014] will be described with reference to FIG. 3 a production method of the inventive example invention embodiment of the electrode plate (negative electrode). A hole with a hole diameter of 1.8 mm has a distance between circle centers of 4 mm in the horizontal direction (parallel to the winding direction of the electrode plate) and a distance of 2.8 mm in the vertical direction (perpendicular to the winding direction of the electrode plate). In a belt-like thin steel plate (thickness 0.06 mm,
(Width 192 mm) was prepared as a core substrate (28) (FIG. 3).
(a)). Note that the number of columns is not limited to this. The thin plate provided for this core substrate is
Usually, a metal plate mainly composed of iron or nickel is used.However, the present invention is not limited to this. Various metal thin plates conventionally used as an electrode substrate, such as a copper plate and a silver plate, are used. be able to.

【0015】次いで、水素吸蔵合金粉末100重量部に
対し、結着剤であるポリエチレンオキサイド(PEO)の
5重量%水溶液を20重量部加え、これらを混合して活
物質ペーストを調製し、この活物質ペーストを芯体基板
の全体に塗着し、乾燥、圧延することにより、活物質(4
2)が充填された電極基板(29)を作製する(図3(b)参
照)。
Next, 20 parts by weight of a 5% by weight aqueous solution of polyethylene oxide (PEO) as a binder is added to 100 parts by weight of the hydrogen storage alloy powder, and these are mixed to prepare an active material paste. The material paste is applied to the entire core substrate, dried and rolled, so that the active material (4
An electrode substrate (29) filled with 2) is produced (see FIG. 3B).

【0016】電極基板(29)に充填された活物質(42)のう
ち、各セルの芯体(41)の長手方向に沿う一方の縁部とな
る位置に充填された活物質を剥離し、芯体基板(28)の一
部を露出させる(図3(c)参照)。活物質(42)の剥離は、
電極基板(29)に、例えば超音波振動を与えて行なうこと
ができる。
Of the active material (42) filled in the electrode substrate (29), the active material filled at a position corresponding to one edge along the longitudinal direction of the core body (41) of each cell is peeled off, A part of the core substrate (28) is exposed (see FIG. 3 (c)). The peeling of the active material (42)
For example, ultrasonic vibration can be applied to the electrode substrate (29).

【0017】芯体基板(28)の露出面にリボン状導電金属
部材(24)を溶接する(図3(d)参照)。このリボン状導電
金属部材として、ニッケル、鉄にニッケルめっきしたも
の等が挙げられる。なお、図中、芯体基板(28)のパンチ
孔(40)を破線で示している。
A ribbon-shaped conductive metal member (24) is welded to the exposed surface of the core substrate (28) (see FIG. 3D). Examples of the ribbon-shaped conductive metal member include nickel and iron plated with nickel. In the figure, the punch holes (40) of the core substrate (28) are indicated by broken lines.

【0018】溶接された導電金属部材(24)の幅方向中央
部を通るX−X線と、所定の電極板長さとなるY−Y線
にて、電極基板(29)を切断し(図3(d)参照)、厚み0.
40mm、長さ560mm、幅48.0mm、活物質の塗着面
積560mm×47.0mmの負極板を作製した。得られた
1セル分の負極板(電極板)(20)を図2に示す。図2中、
導電金属部材(24)の下にある芯体の孔(40)の部分を破線
で示している。リボン状導電金属部材(24)の幅は、本実
施例の電極板サイズの場合、1.0mm以上とするのが好
ましい。
The electrode substrate (29) is cut along an XX line passing through the central portion in the width direction of the welded conductive metal member (24) and a YY line having a predetermined electrode plate length (FIG. 3). (See (d)), thickness 0.
A negative electrode plate having a size of 40 mm, a length of 560 mm, a width of 48.0 mm, and an active material application area of 560 mm × 47.0 mm was prepared. FIG. 2 shows the obtained negative electrode plate (electrode plate) (20) for one cell. In FIG.
The portion of the hole (40) of the core body below the conductive metal member (24) is indicated by a broken line. The width of the ribbon-shaped conductive metal member (24) is preferably 1.0 mm or more in the case of the electrode plate size of the present embodiment.

【0019】比較例1 芯体の長手方向の一方の縁部を無孔部とし、リボン状導
電部材を取り付けていない点以外は、上記発明例と同じ
構造の負極板を作製した。この負極板は図6に示すもの
と同じであり、これを比較例1とする。
COMPARATIVE EXAMPLE 1 A negative electrode plate having the same structure as that of the above-described invention was prepared except that one edge in the longitudinal direction of the core was made non-porous and no ribbon-shaped conductive member was attached. This negative electrode plate is the same as that shown in FIG.

【0020】比較例2 この負極板は、芯体の長手方向の両方の縁部を無孔部と
したもので、集電板と溶接する側の縁部には、比較例1
と同様、リボン状導電部材が取り付けられておらず、集
電板と溶接しない側の縁部には活物質を充填している。
これら縁部以外は、上記発明例と同じ構造であり、これ
を比較例2とする。この負極板は図7に示すものと同じ
である(但し、図7の無孔部には活物質が示されていな
い)。
Comparative Example 2 In this negative electrode plate, both edges in the longitudinal direction of the core were made non-porous, and the edge on the side to be welded to the current collector plate was provided with Comparative Example 1
Similarly to the above, the ribbon-shaped conductive member is not attached, and the edge on the side not welded to the current collector is filled with an active material.
Other than these edges, the structure is the same as that of the above-described invention, and this is referred to as Comparative Example 2. This negative electrode plate is the same as that shown in FIG. 7 (however, the active material is not shown in the non-porous portion in FIG. 7).

【0021】比較例3 芯体の長手方向の一方の縁部にリボン状導電金属部材を
取り付けていない点以外は、上記本発明例と同じ構造の
負極板を作製した。この負極板は図5に示すものと同じ
であり、これを比較例3とする。
COMPARATIVE EXAMPLE 3 A negative electrode plate having the same structure as that of the above-described present invention example was prepared except that a ribbon-shaped conductive metal member was not attached to one edge of the core in the longitudinal direction. This negative electrode plate is the same as that shown in FIG.

【0022】発明例及び比較例1〜比較例3の各負極板
について、負極板と活物質塗着面の幅が同一のニッケル
正極板とを、負極の非集電体側の端部と正極活物質充填
部上端とが同じ高さになるように対向させ、セパレータ
を間に介して巻回し、ニッケル・金属水素化物の渦巻状
電極体を作製した。
With respect to each of the negative electrodes of the invention examples and Comparative Examples 1 to 3, a negative electrode plate and a nickel positive electrode plate having the same active material coating surface width were used. The upper end of the material-filled portion was placed so as to face the same height, and was wound with a separator interposed therebetween to produce a spiral electrode body of nickel / metal hydride.

【0023】作製した渦巻状電極体について、正極及び
負極の電極板の巻ズレ量(mm)を測定した。更に、巻回時
に活物質が脱落するか否かについても観察した。表1に
巻ズレ量の測定結果を示す。
With respect to the produced spiral electrode body, the amount of winding deviation (mm) between the positive and negative electrode plates was measured. Further, it was also observed whether or not the active material dropped during winding. Table 1 shows the measurement results of the amount of winding deviation.

【0024】[0024]

【表1】 [Table 1]

【0025】表1を参照すると、比較例1は巻ズレ量が
最も大きい。これは、比較例1は、一方の縁部のみを無
孔部としているので、両縁部での延伸性の違いが大き
く、無孔部側と有孔部側との間で圧延による歪みが大き
く生じたためと考えられる。また、比較例2は、比較例
1に次いで巻きズレ量が大きい。比較例2は、両方の縁
部を無孔部としているものであるが、この場合にも、活
物質の塗着後極板を圧延した時に、両縁部で延伸性の違
いによる歪みが少し生じており、巻回時に巻ズレが発生
したと考えられる。発明例と比較例3の巻きズレ量は殆
んど差がなく、両方とも巻きズレ量は小さかった。これ
は、発明例と比較例3は、長手方向の両方の縁部が有孔
部になっているためと考えられる。
Referring to Table 1, Comparative Example 1 has the largest amount of winding deviation. This is because, in Comparative Example 1, since only one edge portion is a non-porous portion, the difference in extensibility at both edges is large, and distortion due to rolling between the non-porous portion side and the perforated portion side is reduced. It is considered that this occurred greatly. Further, Comparative Example 2 has a larger winding displacement amount than Comparative Example 1. In Comparative Example 2, both edges were made non-porous, but also in this case, when the electrode plate was rolled after application of the active material, distortion due to the difference in extensibility at both edges was small. It is considered that winding deviation occurred during winding. There was almost no difference in the amount of winding deviation between the invention example and Comparative Example 3, and the amount of winding deviation was small in both cases. This is considered to be because the invention example and the comparative example 3 have perforated portions at both edges in the longitudinal direction.

【0026】巻回時に活物質が脱落するか否かを観察し
たところ、一方の縁部の無孔部に活物質を充填した比較
例2について、活物質の脱落が観察された。このことか
ら、芯体の長手方向に沿う両方の縁部を無孔部とするこ
とにより芯体の両端部の強度を確保し、かつその一方に
活物質を塗着することによって反応面積を確保しようと
する方法は、活物質の脱落に起因する電池性能の低下を
招く虞れがあることがわかった。
Observation of whether or not the active material fell off during the winding showed that the active material fell off in Comparative Example 2 in which the non-porous portion at one edge was filled with the active material. From this, the strength of both ends of the core body is secured by making both edges along the longitudinal direction of the core body non-porous, and the reaction area is secured by applying active material to one of them. It has been found that the method to be used may cause a decrease in battery performance due to the loss of the active material.

【0027】次に、前述のニッケル・金属水素化物の渦
巻状電極体を用いて、供試用の電池を作製した。電極体
下端(芯体の長手方向の縁部)を負極集電板に溶接した
後、外装缶に挿入し、負極集電板の他端を缶底に溶接し
た。次いで電解液として7.5規定の水酸化カリウム水
溶液を注入し、封口して公称容量7000mAHの供試
用ニッケル・金属水素化物蓄電池を3個ずつ作製した。
Next, a test battery was manufactured using the above-mentioned spiral electrode body of nickel / metal hydride. After welding the lower end of the electrode body (the edge in the longitudinal direction of the core body) to the negative electrode current collector, it was inserted into an outer can, and the other end of the negative electrode current collector was welded to the bottom of the can. Next, a 7.5 N aqueous solution of potassium hydroxide was injected as an electrolytic solution, and the cells were sealed to produce three test nickel / metal hydride storage batteries having a nominal capacity of 7000 mAH.

【0028】発明例及び比較例1〜比較例3の供試電池
について、充放電による初期コンディショニングを行な
った後、1400mAの電流で公称容量の160%まで
充電し、70Aの比較的大きな電流で1.0Vまで放電
したときの電池放電容量と作動電圧を測定した。その測
定結果を表2に示す。
With respect to the test batteries of the invention examples and Comparative Examples 1 to 3, after performing initial conditioning by charging and discharging, the batteries were charged to 160% of the nominal capacity at a current of 1400 mA, and charged at a relatively large current of 70 A to 1%. The battery discharge capacity and operating voltage when discharged to 0.0 V were measured. Table 2 shows the measurement results.

【0029】[0029]

【表2】 [Table 2]

【0030】表2の結果を参照すると、作動電圧につい
ては、比較例1が最も劣っている。これは、比較例1の
巻きズレ量が最も大きく、渦巻状電極体の負極板と負極
集電板とを溶接すべき箇所に凹凸が生じており、溶接不
十分となって電池の内部抵抗が上昇したためと考えられ
る。比較例2もかなりの巻きズレ量が生じていたため、
作動電圧が小さくなっている。比較例3は、巻きズレ量
が少なかったが、負極板の溶接すべき縁部にはパンチ孔
があるため、溶接点数が減少して、内部抵抗の上昇を招
いたものと考えられる。これに対し、発明例の作動電圧
が大きかったのは、発明例の渦巻状電極体の巻きズレ量
が少なく、かつ、負極板の溶接すべき縁部が直線状であ
るため、十分な溶接点数を確保できたためと考えられ
る。
Referring to the results in Table 2, the working voltage is the poorest in Comparative Example 1. This is because the amount of winding deviation of Comparative Example 1 was the largest, and irregularities were generated at the portion where the negative electrode plate of the spiral electrode body and the negative electrode current collector plate were to be welded. Probably because of the rise. Comparative Example 2 also had a considerable amount of winding deviation,
Operating voltage is low. In Comparative Example 3, although the amount of winding deviation was small, it is considered that the number of welding points was reduced due to the presence of punch holes at the edges of the negative electrode plate to be welded, resulting in an increase in internal resistance. On the other hand, the operating voltage of the invention example was large because the spiral displacement of the spiral electrode body of the invention example was small and the edge of the negative electrode plate to be welded was straight, so that the number of welding points was sufficient. Probably because it was able to secure.

【0031】次に、放電容量についても、発明例は、比
較例1〜比較例3に比べて大きい結果を示している。こ
れは、発明例の作動電圧が比較例1〜比較例3よりも高
く、終始電圧に達するまでの時間が長くなったためと考
えられる。さらに、比較例1及び比較例2では巻ズレ量
が大きいために有効反応面積が減少し、実質上の極板容
量が減少していることも原因となっているものと考えら
れる。
Next, with respect to the discharge capacity, the invention example shows a larger result than the comparative examples 1 to 3. This is presumably because the working voltage of the invention example was higher than that of the comparative examples 1 to 3, and the time required to reach the entire voltage became longer. Further, in Comparative Examples 1 and 2, it is considered that the effective reaction area was reduced due to a large amount of winding displacement, and the substantial electrode plate capacity was also reduced.

【0032】表1及び表2の結果より、巻きズレ量が少
ないほど、放電容量及び作動電圧の向上に寄与すること
がわかる。
From the results shown in Tables 1 and 2, it can be seen that the smaller the amount of winding deviation, the more the discharge capacity and operating voltage are improved.

【0033】本発明の電極板は正極板にも適用できる。
この場合にも、前記負極板の場合と同様に、活物質、結
着剤、導電剤及び水を混合・混練して適度の粘性を有す
る正極合剤を調製し、パンチングメタルへの塗着、乾燥
及び圧延を経て、活物質の充填が行なうことができる。
The electrode plate of the present invention can be applied to a positive electrode plate.
Also in this case, similarly to the case of the negative electrode plate, an active material, a binder, a conductive agent and water are mixed and kneaded to prepare a positive electrode mixture having an appropriate viscosity, and applied to a punching metal, After drying and rolling, the filling of the active material can be performed.

【0034】上記実施例は、アルカリ蓄電池について説
明したが、本発明はこれに限定されるものではなく、ア
ルカリ一次電池を含め、渦巻状電極体を具える円筒型又
は角型の各種電気化学電池に適用できることは勿論であ
る。
Although the above embodiments have been described with reference to an alkaline storage battery, the present invention is not limited to this, and includes various types of cylindrical or prismatic electrochemical batteries having a spiral electrode body, including an alkaline primary battery. Of course, it can be applied to

【図面の簡単な説明】[Brief description of the drawings]

【図1】渦巻状電極体を具えるアルカリ蓄電池の概略構
成を、電池内部を破断して示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of an alkaline storage battery having a spiral electrode body, with the inside of the battery cut away.

【図2】本発明の電極板を示す図である。FIG. 2 is a view showing an electrode plate of the present invention.

【図3】本発明の電極板を製造する工程の一例を説明す
る図である。
FIG. 3 is a diagram illustrating an example of a process for manufacturing an electrode plate according to the present invention.

【図4】パンチングメタルの芯体を示す図である。FIG. 4 is a view showing a core of a punching metal.

【図5】従来の電極板の他の例を示す図である。FIG. 5 is a view showing another example of a conventional electrode plate.

【図6】従来の電極板の他の例を示す図である。FIG. 6 is a view showing another example of a conventional electrode plate.

【図7】従来の電極板の他の例を示す図である。FIG. 7 is a view showing another example of a conventional electrode plate.

【符号の説明】 (1) 渦巻状電極体 (10) 正極板(電極板) (20) 負極板(電極板) (22) 負極集電板 (24) リボン状の導電金属部材 (28) 芯体基板 (29) 電極基板 (30) セパレータ (40) パンチ孔 (41) 芯体 (42) 活物質 (46) 無孔部[Description of Signs] (1) Spiral electrode body (10) Positive electrode plate (electrode plate) (20) Negative electrode plate (electrode plate) (22) Negative current collector plate (24) Ribbon-shaped conductive metal member (28) Core Body substrate (29) Electrode substrate (30) Separator (40) Punch hole (41) Core (42) Active material (46) Non-porous part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 6/02 H01M 6/02 Z // H01M 10/28 10/28 A (72)発明者 池町 隆明 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA02 BB06 BB08 BB14 CC05 5H022 AA04 BB11 CC21 EE01 5H024 AA03 AA14 BB00 BB02 BB05 BB08 CC12 DD09 DD12 DD15 5H028 AA05 BB03 BB04 BB05 CC12 5H050 AA19 BA04 BA11 CA03 CB16 FA05 GA02 GA03 GA07 GA08 GA12 GA22 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 6/02 H01M 6/02 Z // H01M 10/28 10/28 A (72) Inventor Takaaki Ikemachi Osaka 2-5-5 Keihanhondori, Moriguchi-shi, F-term (reference) in Sanyo Electric Co., Ltd. CC12 5H050 AA19 BA04 BA11 CA03 CB16 FA05 GA02 GA03 GA07 GA08 GA12 GA22

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極の電極板がセパレータを介し
て渦巻状に巻回された渦巻状電極体を具え、電極板が集
電板に溶接されてなる電気化学電池において、 少なくとも一方の電極板は、全面に多数のパンチ孔が略
均等に開設された芯体を有し、該芯体の長手方向に沿う
一方の縁部以外の部分に活物質が充填され、前記縁部に
は、集電板に溶接されるべきリボン状導電金属部材が取
り付けられていることを特徴とする電気化学電池。
1. An electrochemical cell comprising a spirally wound electrode body in which positive and negative electrode plates are spirally wound with a separator interposed therebetween, and wherein the electrode plate is welded to a current collecting plate. The plate has a core body in which a number of punch holes are formed substantially evenly on the entire surface, and a portion other than one edge along the longitudinal direction of the core is filled with an active material. An electrochemical cell, wherein a ribbon-shaped conductive metal member to be welded is attached to a current collector plate.
【請求項2】 パンチ孔が多数開設された導電性芯体の
長手方向に沿う一方の縁部以外の部分に活物質が充填さ
れてなる電気化学電池用電極板を製造する方法であっ
て、 単一セルの芯体が複数含まれる大きさを有し、全面に多
数のパンチ孔が略均等に開設された芯体基板を準備し、
該芯体基板の全面に、活物質を塗着し、乾燥し、圧延す
ることにより、活物質が充填された電極基板を作製する
工程と、 電極基板に充填された活物質のうち、各セルの芯体の長
手方向に沿う一方の縁部となる位置に充填された活物質
を剥離し、芯体基板の一部を露出する工程と、 芯体基板の露出した面にリボン状導電金属部材を溶接す
る工程と、 電極基板を切断して、各セル分の電極板を得る工程と、
によって形成されることを特徴とする電気化学電池用電
極板の製造方法。
2. A method for producing an electrode plate for an electrochemical battery, wherein an active material is filled in a portion other than one edge along a longitudinal direction of a conductive core having a large number of punched holes, Prepare a core substrate having a size that includes a plurality of cores of a single cell, and having a number of punch holes formed substantially uniformly on the entire surface,
A step of applying an active material to the entire surface of the core substrate, drying and rolling to produce an electrode substrate filled with the active material; Exfoliating the filled active material at a position to be one edge along the longitudinal direction of the core body to expose a part of the core substrate; and a ribbon-shaped conductive metal member on the exposed surface of the core substrate. Welding an electrode substrate, and cutting an electrode substrate to obtain an electrode plate for each cell,
A method for producing an electrode plate for an electrochemical cell, characterized by being formed by:
【請求項3】 パンチ孔が多数開設された導電性芯体の
長手方向に沿う一方の縁部以外の部分に活物質が充填さ
れてなる電気化学電池用電極板を製造する方法であっ
て、 単一セルの芯体が複数含まれる大きさを有し、全面に多
数のパンチ孔が略均等に開設された芯体基板を準備し、
該芯体基板の全面に、活物質を塗着し、乾燥し、圧延す
ることにより、活物質が充填された電極基板を作製する
工程と、 電極基板に充填された活物質のうち、各セルの芯体の長
手方向に沿う一方の縁部となる位置に充填された活物質
を剥離し、芯体基板の一部を露出する工程と、 電極基板を切断して、芯体の一部が露出した各セル分の
電極板を得る工程と、 芯体の露出面にリボン状導電金属部材を溶接する工程
と、によって形成されることを特徴とする電気化学電池
用電極板の製造方法。
3. A method for producing an electrode plate for an electrochemical cell, wherein an active material is filled in a portion other than one edge along a longitudinal direction of a conductive core having a large number of punched holes, Prepare a core substrate having a size that includes a plurality of cores of a single cell, and having a number of punch holes formed substantially uniformly on the entire surface,
A step of applying an active material to the entire surface of the core substrate, drying and rolling to produce an electrode substrate filled with the active material; A step of exfoliating the active material filled at a position to be one edge along the longitudinal direction of the core body and exposing a part of the core body substrate; A method for manufacturing an electrode plate for an electrochemical cell, comprising: a step of obtaining an electrode plate for each exposed cell; and a step of welding a ribbon-shaped conductive metal member to an exposed surface of a core.
【請求項4】 パンチ孔が多数開設された導電性芯体の
長手方向に沿う一方の縁部以外の部分に活物質が充填さ
れてなる電気化学電池用電極板を製造する方法であっ
て、 単一セルの芯体が複数含まれる大きさを有し、全面に多
数のパンチ孔が略均等に開設された芯体基板を準備し、
該芯体基板の全面に、活物質を塗着し、乾燥し、圧延す
ることにより、活物質が充填された電極基板を作製する
工程と、 電極基板を切断して、各セル分の電極板を得る工程と、 電極板に充填された活物質のうち、各セルの芯体の長手
方向に沿う一方の縁部となる位置に充填された活物質を
剥離し、芯体の一部を露出する工程と、 芯体の露出面にリボン状導電金属部材を溶接する工程
と、によって形成されることを特徴とする電気化学電池
用電極板の製造方法。
4. A method for producing an electrode plate for an electrochemical cell, wherein an active material is filled in a portion other than one edge along a longitudinal direction of a conductive core having a large number of punched holes, Prepare a core substrate having a size that includes a plurality of cores of a single cell, and having a number of punch holes formed substantially uniformly on the entire surface,
A step of applying an active material to the entire surface of the core substrate, drying and rolling to prepare an electrode substrate filled with the active material; and cutting the electrode substrate to form an electrode plate for each cell. And exfoliating the active material filled in the electrode plate at a position to be one edge along the longitudinal direction of the core of each cell, exposing a part of the core. And a step of welding a ribbon-shaped conductive metal member to an exposed surface of the core body. A method for manufacturing an electrode plate for an electrochemical cell, comprising:
【請求項5】 パンチ孔が多数開設された導電性芯体の
長手方向に沿う一方の縁部以外の部分に活物質が充填さ
れてなる電気化学電池用電極板を製造する方法であっ
て、 全面に多数のパンチ孔が略均等に開設された芯体に、活
物質を塗着し、乾燥し、圧延することにより、芯体の全
面に活物質を充填する工程と、 芯体に充填された活物質のうち、芯体の長手方向に沿う
一方の縁部となる位置に充填された活物質を剥離し、芯
体の一部を露出する工程と、 芯体の露出面にリボン状導電金属部材を溶接する工程
と、により形成されることを特徴とする電気化学電池用
電極板の製造方法。
5. A method for producing an electrode plate for an electrochemical cell, wherein an active material is filled in a portion other than one edge along a longitudinal direction of a conductive core having a large number of punched holes, A step of applying the active material to a core body having a large number of punch holes formed substantially uniformly on the entire surface, drying and rolling, thereby filling the entire surface of the core body with the active material; Exfoliating the active material, which is filled at a position corresponding to one edge along the longitudinal direction of the core body, to expose a part of the core body, and forming a ribbon-shaped conductive material on the exposed surface of the core body. A method of manufacturing an electrode plate for an electrochemical cell, wherein the method is performed by welding a metal member.
JP2000097184A 2000-03-31 2000-03-31 Manufacturing method of electrochemical cell and electrochemical cell electrode Pending JP2001283895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097184A JP2001283895A (en) 2000-03-31 2000-03-31 Manufacturing method of electrochemical cell and electrochemical cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097184A JP2001283895A (en) 2000-03-31 2000-03-31 Manufacturing method of electrochemical cell and electrochemical cell electrode

Publications (1)

Publication Number Publication Date
JP2001283895A true JP2001283895A (en) 2001-10-12

Family

ID=18611837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097184A Pending JP2001283895A (en) 2000-03-31 2000-03-31 Manufacturing method of electrochemical cell and electrochemical cell electrode

Country Status (1)

Country Link
JP (1) JP2001283895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317694A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Nickel hydride storage battery
US9343726B2 (en) 2010-12-30 2016-05-17 Samsung Sdi Co., Ltd. Rechargeable battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317694A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Nickel hydride storage battery
US7435511B2 (en) 2002-04-25 2008-10-14 Matsushita Electric Industrial Co., Ltd. Nickel-metal hydride storage battery
US9343726B2 (en) 2010-12-30 2016-05-17 Samsung Sdi Co., Ltd. Rechargeable battery

Similar Documents

Publication Publication Date Title
JP4401634B2 (en) Storage battery and manufacturing method thereof
JP3819570B2 (en) Cylindrical alkaline storage battery using non-sintered electrodes
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP5016236B2 (en) battery
JP3349268B2 (en) Electrode manufacturing method
JP2000077054A (en) Battery and its manufacture
JPWO2006073123A1 (en) Nickel metal hydride storage battery and method of manufacturing the negative electrode
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
JP3649909B2 (en) battery
JP2001283895A (en) Manufacturing method of electrochemical cell and electrochemical cell electrode
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JP4152084B2 (en) Square alkaline storage battery
JP3953139B2 (en) Non-sintered nickel electrode for alkaline storage battery
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
JP3893856B2 (en) Square alkaline storage battery
JP3869540B2 (en) Cylindrical battery with spiral electrode body and method for manufacturing the same
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same
JP2005071964A (en) Alkaline accumulator
JP3416346B2 (en) Spiral-type alkaline storage battery electrode plate and method of manufacturing spiral-type alkaline storage battery
JP2006092828A (en) Battery pack
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JP2000340251A (en) Square battery
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JPH11307089A (en) Battery electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106