JP2006092828A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2006092828A
JP2006092828A JP2004274743A JP2004274743A JP2006092828A JP 2006092828 A JP2006092828 A JP 2006092828A JP 2004274743 A JP2004274743 A JP 2004274743A JP 2004274743 A JP2004274743 A JP 2004274743A JP 2006092828 A JP2006092828 A JP 2006092828A
Authority
JP
Japan
Prior art keywords
battery
unit cell
cell
sealing body
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004274743A
Other languages
Japanese (ja)
Other versions
JP4845362B2 (en
Inventor
Mitsunori Tokuda
光紀 徳田
Kazuhiro Kitaoka
和洋 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004274743A priority Critical patent/JP4845362B2/en
Publication of JP2006092828A publication Critical patent/JP2006092828A/en
Application granted granted Critical
Publication of JP4845362B2 publication Critical patent/JP4845362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a battery pack from deforming by forming it into a structure, capable of preventing a tip of a sealing body of an adjacent cell from contacting a bottom part of a metallic exterior can, even if the cell internal pressure rises and each cell swells, and to allow a pressure valve to operate at a predetermined pressure to prevent the reliability from deteriorating. <P>SOLUTION: In this battery pack 100, a sealing body 18 of one-side cell E is welded to a metallic outer covering can 16 of the other-side cell D through a connection member 20 so as to form a space W, between a tip 18a of the sealing body 18 of the one-side cell E and the bottom part of the metallic outer covering can 16 of the other-side cell D. Even if the battery's internal pressure rises to cause valve opening in the cell and a battery bulge is generated, the tip 18a of the sealing body 18 of the one-side cell E is prevented from contacting the bottom part of the metallic armoring can 16 of the other-side cell D. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、正極と負極がセパレータを介して積層された電極群と電解液からなる発電要素を備えた単電池の複数個が直列接続された組電池に係り、特に、発電要素を収容した一方極の端子を兼ねる金属製外装缶の開口部に絶縁体を介して他方極の端子を兼ねる封口体を備えた単電池の複数個が直列接続された組電池に関する。   The present invention relates to an assembled battery in which a plurality of unit cells each having a power generation element composed of an electrode group and an electrolyte solution, in which a positive electrode and a negative electrode are stacked via a separator, are connected in series. The present invention relates to an assembled battery in which a plurality of unit cells each having a sealing body that also serves as a terminal of the other electrode are connected in series to an opening of a metal outer can that also serves as a terminal of an electrode via an insulator.

一般に、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池あるいはリチウム二次電池は、正極および負極の間にセパレータを介在させ、これらを渦巻状に巻回した後、正極および負極の端部に集電体を接続して電極体を形成し、この電極体を金属製外装缶に収納して集電体から延伸するリード部を封口体に溶接した後、封口体を外装缶の開口部に絶縁ガスケットを介在させて装着することにより密閉して構成されている。このようなアルカリ蓄電池がHEV(Hybrid Electric Vehicles)やPEV(Pure Electric Vehicles)などの電気自動車の用途に用いられる場合、高出力が要求されるため、複数の単電池を直列に接続して組電池にして使用されるのが一般的である。   In general, alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries or lithium secondary batteries have a separator interposed between a positive electrode and a negative electrode, and after winding them in a spiral shape, A current collector is connected to form an electrode body, the electrode body is housed in a metal outer can, and a lead portion extending from the current collector is welded to the sealing body, and then the sealing body is attached to the opening of the outer can. It is configured to be hermetically sealed by attaching an insulating gasket. When such an alkaline storage battery is used for an electric vehicle such as HEV (Hybrid Electric Vehicles) or PEV (Pure Electric Vehicles), a high output is required. Therefore, a plurality of unit cells are connected in series to form an assembled battery. Generally, it is used.

このような組電池においては、複数の単電池を直列に接続する必要があり、種々の接続法が提案されている。例えば、特許文献1にて提案された組電池においては、図4(a)に示すように、単電池30a,30bが接続体31によって直列接続されている。この場合、接続体31は、金属製外装缶36に嵌合する円筒部34と、金属電極(封口体)37に当接する平面部35とを備えている。円筒部34には嵌合する金属製外装缶36方向に突出する4か所のプロジェクション突起33が形成されており、平面部35には当接する金属電極37方向に突出する4か所のプロジョクション突起32が形成されている。   In such an assembled battery, it is necessary to connect a plurality of single cells in series, and various connection methods have been proposed. For example, in the assembled battery proposed in Patent Document 1, the cells 30 a and 30 b are connected in series by a connection body 31 as shown in FIG. In this case, the connection body 31 includes a cylindrical portion 34 that fits into the metal outer can 36 and a flat portion 35 that abuts against a metal electrode (sealing body) 37. Four projection projections 33 projecting in the direction of the metal outer can 36 to be fitted are formed on the cylindrical portion 34, and four projections 33 projecting in the direction of the metal electrode 37 in contact with the plane portion 35. A projection 32 is formed.

そして、接続体31を溶接する場合、まず、平面部35が単電池30aの金属電極(封口体)37に溶接される。即ち、平面部35を金属電極(封口体)37の上に載置し、平面部35を金属電極(封口体)37側に加圧しつつ、接続体31と金属電極(封口体)37との間に溶接電流を流すようにする。これにより、プロジェクション突起32の4か所で接続体31は金属電極(封口体)37に溶接される。ついで、単電池30aの金属電極(封口体)37に溶接された接続体31の円筒部34を、単電池30bの金属製外装缶36に嵌合させ、金属製外装缶36と接続体31との間に溶接電流を流すようにする。すると、プロジェクション突起33の4か所で接続体31は金属製外装缶36に溶接される。これにより、単電池30aと単電池30bとは、接続体31により直列接続されたことになる。このような電池間接続を、所望の出力電圧が得られる数だけ連結することにより、組電池を構成することができる。
特開平10−106533
And when welding the connection body 31, the plane part 35 is first welded to the metal electrode (sealing body) 37 of the cell 30a. That is, the flat portion 35 is placed on the metal electrode (sealing body) 37, and the connecting portion 31 and the metal electrode (sealing body) 37 are pressed while pressing the flat portion 35 toward the metal electrode (sealing body) 37. A welding current is passed between them. Thereby, the connection body 31 is welded to the metal electrode (sealing body) 37 at the four positions of the projection protrusion 32. Next, the cylindrical portion 34 of the connection body 31 welded to the metal electrode (sealing body) 37 of the unit cell 30a is fitted into the metal exterior can 36 of the unit cell 30b, and the metal exterior can 36 and the connection body 31 are connected. A welding current is allowed to flow during Then, the connection body 31 is welded to the metal outer can 36 at four locations on the projection protrusion 33. Thereby, the unit cell 30 a and the unit cell 30 b are connected in series by the connection body 31. An assembled battery can be configured by connecting such inter-battery connections as many as a desired output voltage is obtained.
JP-A-10-106533

しかしながら、上述のように複数の単電池を直列接続する場合、隣接する単電池の封口体37の先端部と金属製外装缶36の底部との間の間隔(W)が短いと、充電時に電池内圧が上昇して各単電池が膨張すると、隣接する単電池の封口体37の先端部と金属製外装缶36の底部が接触するようになる。この場合、図4(b)に示すように、隣接する単電池の封口体37の先端部と金属製外装缶36の底部が接触すると、接触点Xで接触抵抗が生じるようになる。このため、通常の電流経路Y以外に、この接触点Xに異常電流経路Zが形成されて、接触点Xにおける接触抵抗によりジュール熱が発生して、接触点Xが発熱するようになる。この場合、接触点Xに大電流が流れる場合においては、この接触点Xが異常に発熱して、この種の組電池に変形が生じたり、信頼性が損なわれる恐れが生じた。   However, when a plurality of unit cells are connected in series as described above, if the interval (W) between the front end portion of the sealing body 37 of the adjacent unit cell and the bottom portion of the metal outer can 36 is short, the battery is charged during charging. When the internal pressure rises and each cell expands, the tip of the sealing body 37 of the adjacent cell and the bottom of the metal outer can 36 come into contact. In this case, as shown in FIG. 4B, contact resistance is generated at the contact point X when the tip of the sealing body 37 of the adjacent unit cell contacts the bottom of the metal outer can 36. For this reason, in addition to the normal current path Y, an abnormal current path Z is formed at the contact point X, Joule heat is generated by the contact resistance at the contact point X, and the contact point X generates heat. In this case, when a large current flows through the contact point X, the contact point X generates heat abnormally, and this type of battery pack may be deformed or reliability may be impaired.

また、電池内圧が上昇して各単電池が膨張して隣接する単電池の封口体37の先端部と金属製外装缶36の底部が接触するようになると、封口体37内に配設された圧力弁38の作動圧が上昇するようになる。ここで、圧力弁38の作動圧が上昇するようになると、予め設定された作動圧よりも高い圧力にならないと圧力弁38が作動しなくなるため、各単電池が破裂する恐れが生じるようになる。   Further, when the internal pressure of the battery rises and each unit cell expands and the tip of the sealing unit 37 of the adjacent unit cell comes into contact with the bottom of the metal outer can 36, the cell is disposed in the sealing unit 37. The operating pressure of the pressure valve 38 increases. Here, when the operating pressure of the pressure valve 38 increases, the pressure valve 38 does not operate unless the pressure is higher than a preset operating pressure, and thus each cell may be ruptured. .

一方、このような接続体31を用いずに、単電池30aの金属電極37と、単電池30bの金属製外装缶36の缶底とをダイレクトに溶接したものも知られている。この構造の場合、もともと両者が溶接されているので、各単電池の膨れに起因する接触により異常発熱を招くことはないが、膨れによって単電池の全長が長くなる。その結果、組電池の全長が長くなってしまい、組電池をケースに収納して保持している構造では、ケースを破壊してしまったり、組電池が折れ曲がってしまい、単電池間や組電池間の連結が外れてしまうという問題があった。さらに、金属電極である封口体の表面に直接溶接を行うために、単電池の膨れの際、封口体が圧迫されて、内蔵する安全弁38の作動圧が変化してしまうという問題もあった。   On the other hand, it is also known to directly weld the metal electrode 37 of the unit cell 30a and the bottom of the metal outer can 36 of the unit cell 30b without using such a connection body 31. In the case of this structure, since both are originally welded, abnormal heat generation is not caused by contact resulting from the swelling of each unit cell, but the entire length of the unit cell is increased by the swelling. As a result, the total length of the assembled battery becomes long, and in the structure in which the assembled battery is housed and held in the case, the case is broken or the assembled battery is bent, and between the single cells or between the assembled batteries. There was a problem that the connection of. Further, since welding is directly performed on the surface of the sealing body, which is a metal electrode, there is a problem that the operating pressure of the built-in safety valve 38 is changed due to the sealing body being pressed when the cell is swollen.

そこで、本発明は上記問題点を解決するためになされたものであって、電池内圧が上昇して各単電池が膨張するようになっても、隣接する単電池の封口体の先端部と金属製外装缶の底部が接触しないような構造にして、この種の組電池に変形が生じないようにしたり、圧力弁が所定の圧力で動作するようにして、信頼性が損なわれないようにすることを目的とするものである。   Therefore, the present invention has been made to solve the above-described problems, and even if the cell internal pressure rises and each cell expands, the tip of the sealing body of the adjacent cell and the metal Make the structure so that the bottom of the outer can is not in contact so that this type of battery pack does not deform, or the pressure valve operates at a specified pressure so that reliability is not impaired. It is for the purpose.

上記目的を達成するため、本発明の組電池は、一方の単電池の封口体の先端部と他方の単電池の金属製外装缶の底部との間に間隔(W)が形成されるように、一方の単電池の封口体と他方の単電池の金属製外装缶とが接続部材により溶接されている。そして、単電池に弁開放が生じるまで電池内圧が上昇して電池膨れが生じても、一方の単電池の封口体の先端部と他方の単電池の金属製外装缶の底部とが接触しないようになされていることを特徴とする。このように、電池内圧が上昇して電池膨れが生じても、一方の単電池の封口体の先端部と他方の単電池の外装缶底部の先端部とが接触しないようになされていると、単電池間は接続部材を通してのみ電流が流れることとなる。このため、いたずらに電池温度が上昇することもなくなることから、組電池に変形が生じたり、圧力弁が所定の圧力で動作しなかったりすることがなくなり、信頼性が損なわれることもない。   In order to achieve the above object, in the battery pack of the present invention, a gap (W) is formed between the tip of the sealing body of one unit cell and the bottom of the metal outer can of the other unit cell. The sealing body of one unit cell and the metal outer can of the other unit cell are welded by a connecting member. And even if a battery internal pressure rises until a valve opens in a single cell and a battery swells, the tip of the sealing body of one single cell does not contact the bottom of the metal outer can of the other single cell. It is characterized by being made. Thus, even if the battery internal pressure rises and the battery swells, the tip of the sealing body of one unit cell and the tip of the outer can bottom of the other unit cell are not in contact with each other. Current flows between the cells only through the connecting member. For this reason, since the battery temperature does not rise unnecessarily, the assembled battery is not deformed, the pressure valve does not operate at a predetermined pressure, and the reliability is not impaired.

この場合、単電池に弁開放が生じるまで電池内圧が上昇して電池膨れが生じた際の最大の膨れ量をwとすると、間隔(W)が1.1w〜1.5w(1.1w≦W≦1.5w)になるように設定されているのが好ましい。これは、間隔(W)が1.1wより短い場合は、電池内圧が上昇して電池膨れが生じた場合に、一方の単電池の封口体の先端部と他方の単電池の外装缶底部の先端部とが接触するようになって、その接触点での接触抵抗に起因するジュール熱により高温となって、変形が生じやすくなるからである。   In this case, if the maximum expansion amount when the battery internal pressure rises and the battery expansion occurs until the valve opens in the unit cell is w, the interval (W) is 1.1 w to 1.5 w (1.1 w ≦ It is preferable that W ≦ 1.5w). This is because when the interval (W) is shorter than 1.1 w, when the battery internal pressure rises and the battery bulges, the tip of the sealing body of one unit cell and the outer can bottom of the other unit cell This is because the tip portion comes into contact with each other, and the temperature becomes high due to Joule heat resulting from contact resistance at the contact point, and deformation is likely to occur.

一方、間隔(W)が1.5wより大きい場合は、電池内圧が上昇して電池膨れが生じても、隣接する単電池の封口体の先端部と外装缶底部の先端部とが接触することはない。ところが、組電池の長さが長くなるため、一定の容積内に収納する必要がある場合には収容しきれなくなって、電池本数を少なくする必要が生じる。さらに、隣接する単電池間を接続する接続部材を大きくする必要が生じるため、この接続部材の抵抗値が増大して、高出力が得られなくなることや、組電池としての曲げ強度が弱くなるといった新たな問題が生じるようになるからである。   On the other hand, when the interval (W) is larger than 1.5 w, the tip of the sealing body of the adjacent unit cell and the tip of the outer can bottom contact each other even if the battery internal pressure rises and the battery swells. There is no. However, since the length of the assembled battery becomes long, when it is necessary to store it in a certain volume, it becomes impossible to store it, and it is necessary to reduce the number of batteries. Furthermore, since it becomes necessary to enlarge the connecting member that connects between adjacent single cells, the resistance value of the connecting member increases, and high output cannot be obtained, and the bending strength of the assembled battery is weakened. This is because new problems will arise.

また、金属製外装缶に使用される材質のヤング率は15×1010〜25×1010Paであるのが好ましい。これは、ヤング率が15×1010Paより低い金属製外装缶は変形しやすいために、電池内圧上昇に伴う電池膨れ量が大きくなって、隣接する単電池の封口体の先端部と金属製外装缶の底部の先端部とが接触し易くなるためである。一方、ヤング率が25×1010Paより大きい金属製外装缶は電池内圧上昇に伴う電池膨れ量が少なくなる反面、加工が難しいために金属製外装缶の材料としては不向きである。 The Young's modulus of the material used for the metal outer can is preferably 15 × 10 10 to 25 × 10 10 Pa. This is because the metal outer can whose Young's modulus is lower than 15 × 10 10 Pa is easily deformed, and therefore the amount of battery swell increases as the battery internal pressure increases, and the tip of the sealing unit of the adjacent unit cell and the metal It is because it becomes easy to contact the front-end | tip part of the bottom part of an exterior can. On the other hand, a metal outer can having a Young's modulus of greater than 25 × 10 10 Pa is less suitable for a metal outer can because it is difficult to process, while the amount of battery swelling associated with an increase in battery internal pressure is reduced.

以下に、本発明をニッケル−水素蓄電池に適用した場合の実施の形態を図1〜図3に基づいて説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1はニッケル−水素蓄電池(単電池)の断面を模式的に示す断面図である。図2は5個のニッケル−水素蓄電池(単電池)を接続して組電池とした状態を示す図であり、図2(a)は平面図であり、図2(b)は、図2(a)のA部を拡大して示す断面図であり、図2(c)は単電池間を接続して組電池とするための接続部材の一例を示す斜視図である。図3は単電池が膨張した場合の膨れ量と単電池間の距離との関係を説明する平面図である。   Below, although the embodiment at the time of applying the present invention to a nickel-hydrogen storage battery is described based on Drawing 1-Drawing 3, the present invention is not limited to this, and in the range which does not change the gist It can be implemented with appropriate changes. In addition, FIG. 1 is sectional drawing which shows typically the cross section of a nickel-hydrogen storage battery (unit cell). FIG. 2 is a diagram showing a state in which five nickel-hydrogen storage batteries (unit cells) are connected to form an assembled battery, FIG. 2 (a) is a plan view, and FIG. 2 (b) is a diagram of FIG. It is sectional drawing which expands and shows the A section of a), FIG.2 (c) is a perspective view which shows an example of the connection member for connecting between cells and making it an assembled battery. FIG. 3 is a plan view for explaining the relationship between the amount of swelling and the distance between the cells when the cells are expanded.

1.ニッケル−水素蓄電池(単電池)
まず、パンチングメタルからなる極板芯体の表面にニッケル焼結多孔体を形成した後、化学含浸法により水酸化ニッケルを主体とする活物質を同ニッケル焼結多孔体内に充填する。ついで、これを乾燥させた後、所定の厚みになるまで圧延し、所定の寸法になるように切断してニッケル正極板11を作製する。また、パンチングメタルからなる極板芯体の表面に水素吸蔵合金からなるペースト状負極活物質を充填し、乾燥させた後、所定の厚みになるまで圧延し、所定の寸法になるように切断して水素吸蔵合金負極板12を作製する。
1. Nickel-hydrogen storage battery (single cell)
First, a nickel sintered porous body is formed on the surface of an electrode plate core made of punching metal, and then the nickel sintered porous body is filled with an active material mainly composed of nickel hydroxide by a chemical impregnation method. Subsequently, after drying this, it rolls until it becomes a predetermined thickness, and cut | disconnects so that it may become a predetermined dimension, and the nickel positive electrode plate 11 is produced. Also, the surface of the electrode plate core made of punching metal is filled with a paste-like negative electrode active material made of hydrogen storage alloy, dried, rolled to a predetermined thickness, and cut to a predetermined size. Thus, the hydrogen storage alloy negative electrode plate 12 is produced.

これらのニッケル正極板11と水素吸蔵合金負極板12との間にセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製する。この後、この渦巻状電極群の上端面に露出するニッケル正極板11の極板芯体に正極集電体14を溶接する。また、渦巻状電極群の下端面に露出する水素吸蔵合金負極板12の極板芯体に負極集電体15を溶接して電極体とする。得られた電極体の正極集電体14の上部に円筒状の正極用リード17を溶接した後、鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)16内に収納し、水素吸蔵合金負極板12に溶接された負極集電体15を外装缶16の内底面に溶接する。なお、外装缶16に用いる材質のヤング率は20×1010Paとした。 A separator 13 is interposed between the nickel positive electrode plate 11 and the hydrogen storage alloy negative electrode plate 12, and a spiral electrode group is produced by winding in a spiral shape. Thereafter, the positive electrode current collector 14 is welded to the electrode plate core body of the nickel positive electrode plate 11 exposed at the upper end surface of the spiral electrode group. Further, the negative electrode current collector 15 is welded to the electrode plate core body of the hydrogen storage alloy negative electrode plate 12 exposed at the lower end surface of the spiral electrode group to form an electrode body. After the cylindrical positive electrode lead 17 is welded to the upper part of the positive electrode current collector 14 of the obtained electrode body, a bottomed cylindrical outer can in which iron is nickel-plated (the outer surface of the bottom surface becomes a negative electrode external terminal) ) The negative electrode current collector 15 housed in 16 and welded to the hydrogen storage alloy negative electrode plate 12 is welded to the inner bottom surface of the outer can 16. The Young's modulus of the material used for the outer can 16 was 20 × 10 10 Pa.

ついで、外装缶16の上 部内周側に防振リング19aを挿入し、外装缶16の上部外周側に溝入れ加工を施して防振リング19aの上端部に凹部16aを形成した。この後、外装缶16内に30質量%の水酸化カリウム(KOH)水溶液からなる電解液を注入する。ついで、この外装缶16の開口部の上部に、封口板18aの底面が正極用リード17の円筒部分に接触するように配置する。ここで、封口板18aの上部には正極キャップ(正極外部端子)18bが設けられており、この正極キャップ18b内には弁板18cとスプリング18dからなる弁体を備えており、封口板18aの中央にはガス抜き孔が形成されており、封口板18aと正極キャップ18bとで封口体18が形成される。なお、封口体18の封口板18aの周縁には、予め絶縁ガスケット19bが嵌着されている。   Next, a vibration isolating ring 19a was inserted into the upper inner peripheral side of the outer can 16 and a groove was formed on the upper outer peripheral side of the outer can 16 to form a recess 16a at the upper end of the anti-vibration ring 19a. Thereafter, an electrolytic solution made of a 30 mass% potassium hydroxide (KOH) aqueous solution is injected into the outer can 16. Subsequently, it arrange | positions so that the bottom face of the sealing board 18a may contact the cylindrical part of the lead | read | reed 17 for positive electrodes on the upper part of the opening part of this exterior can 16. FIG. Here, a positive electrode cap (positive electrode external terminal) 18b is provided on the upper portion of the sealing plate 18a, and a valve body including a valve plate 18c and a spring 18d is provided in the positive electrode cap 18b. A vent hole is formed in the center, and the sealing body 18 is formed by the sealing plate 18a and the positive electrode cap 18b. An insulating gasket 19b is fitted in advance on the periphery of the sealing plate 18a of the sealing body 18.

ついで、正極キャップ(正極外部端子)18bの上面に一方の溶接電極(図示せず)を配置するとともに、外装缶16の底面(負極外部端子)の下面に他方の溶接電極(図示せず)を配置する。この後、これらの一対の溶接電極間に所定の圧力を加えながら、これらの溶接電極間に電池の放電方向に所定の電圧を印加し、所定のパルス電流を流す通電処理を施した。この通電処理により、封口板18aの底面と正極用リード17の周側縁との接触部分が溶接されることとなる。   Next, one welding electrode (not shown) is arranged on the upper surface of the positive electrode cap (positive electrode external terminal) 18b, and the other welding electrode (not shown) is arranged on the lower surface of the bottom surface (negative electrode external terminal) of the outer can 16. Deploy. Thereafter, while applying a predetermined pressure between the pair of welding electrodes, a predetermined voltage was applied between the welding electrodes in the discharge direction of the battery, and an energization process was performed to flow a predetermined pulse current. By this energization process, the contact portion between the bottom surface of the sealing plate 18a and the peripheral side edge of the positive electrode lead 17 is welded.

このように、一対の溶接電極間に所定の圧力を加えながら、これらの溶接電極間に電圧を印加して、通電処理を施すことにより、円筒状の正極用リード17の高さ寸法にばらつきがあっても、円筒状の正極用リード17の周側縁と封口板18aの底面との間に接触点を形成することが可能となる。これにより、溶接強度に優れた溶接部を形成することができるようになる。なお、封口板18aの下面に小突起部を設けるか、あるいは円筒状の正極用リード17の下面に接触する周側縁に小突起部を設けると、この小突起部に電流が集中するようになるため、一層溶接強度が大きい溶接部が形成されるようになる。   As described above, by applying a voltage between the welding electrodes while applying a predetermined pressure between the pair of welding electrodes and applying an energization process, the height dimension of the cylindrical positive electrode lead 17 varies. Even in such a case, a contact point can be formed between the peripheral edge of the cylindrical positive electrode lead 17 and the bottom surface of the sealing plate 18a. Thereby, the welding part excellent in welding strength can be formed now. If a small protrusion is provided on the lower surface of the sealing plate 18a, or if a small protrusion is provided on the peripheral edge that contacts the lower surface of the cylindrical positive electrode lead 17, current is concentrated on the small protrusion. As a result, a welded portion having higher welding strength is formed.

ついで、プレス機を用いて封口体18に加圧力を加えて、絶縁ガスケット19bの下端が外装缶16の上部外周に設けられた凹部16aの位置になるまで封口体18を外装缶16内に押し込む。この後、外装缶16の開口端縁を内方にかしめて電池を封口することによりニッケル−水素蓄電池10(単電池A,B,C,D,E)が得られる。なお、この封口時の加圧力により、円筒状の正極用リード17は押しつぶされ、その断面形状は円形が押しつぶされた楕円形状となる。   Next, a pressure is applied to the sealing body 18 using a press machine, and the sealing body 18 is pushed into the outer can 16 until the lower end of the insulating gasket 19b is positioned at the recess 16a provided on the outer periphery of the upper portion of the outer can 16. . Thereafter, the nickel-hydrogen storage battery 10 (cells A, B, C, D, E) is obtained by sealing the battery by crimping the opening edge of the outer can 16 inward. The cylindrical positive electrode lead 17 is crushed by the applied pressure at the time of sealing, and the cross-sectional shape becomes an elliptical shape in which a circular shape is crushed.

2.組電池
ついで、上述のように作製されたニッケル−水素蓄電池10(単電池A,B,C,D,E)を用いて、図2(a)に示すように、これらの各単電池A,B,C,D,Eの間に接続部材20を介在させて、各単電池A,B,C,D,Eを直列に接続して組電池とする。ここで、接続部材20は、図2(c)に示すように、段状の平面部21の外周に円筒部22を連結した形状になるように、鉄、銅、ニッケルやそれらの合金などの導電性が良好な金属板のプレス成形により形成されている。
2. Next, using the nickel-hydrogen storage battery 10 (single cells A, B, C, D, E) produced as described above, as shown in FIG. A connecting member 20 is interposed between B, C, D, and E, and the unit cells A, B, C, D, and E are connected in series to form an assembled battery. Here, as shown in FIG. 2C, the connecting member 20 is made of iron, copper, nickel, or an alloy thereof so that the cylindrical portion 22 is connected to the outer periphery of the stepped flat portion 21. It is formed by press molding of a metal plate with good conductivity.

そして、平面部21の中心部には正極キャップ18bの外径よりも大径の開孔23が形成されているとともに、この開孔23の周囲には、正極キャップ18bに向けて突出する複数のプロジェクション突起24が形成されている。一方、円筒部22は外装缶16の底部に嵌合されるように、その内径は外装缶16の外径よりも若干大きく形成されており、その側壁には外装缶16に向けて突出する複数のプロジェクション突起25が形成されている。この場合、図2(b)に示すように、単電池Eの封口板18aの上に段状の平面部21載置し、平面部21を封口板18a側に加圧しつつ、接続部材20と封口板18aとの間に溶接電流を流すと、プロジェクション突起(この場合は4か所)24で接続部材20は封口板18aに溶接される。   An opening 23 having a diameter larger than the outer diameter of the positive electrode cap 18b is formed at the center of the flat surface portion 21, and a plurality of protrusions projecting toward the positive electrode cap 18b are formed around the opening 23. Projection protrusions 24 are formed. On the other hand, the inner diameter of the cylindrical portion 22 is formed to be slightly larger than the outer diameter of the outer can 16 so that the cylindrical portion 22 is fitted to the bottom portion of the outer can 16. Projection projections 25 are formed. In this case, as shown in FIG. 2 (b), the stepped flat portion 21 is placed on the sealing plate 18a of the unit cell E, and the connecting member 20 is pressed while pressing the flat portion 21 toward the sealing plate 18a. When a welding current is passed between the sealing plate 18a and the projection projection (in this case, four locations) 24, the connecting member 20 is welded to the sealing plate 18a.

なお、接続部材20が金属製外装缶16のかしめ部16bに接触すると短絡が生じるため、このかしめ部16bと接続部材20との間に円筒状絶縁体26を配設するようにしている。ついで、単電池Eに溶接された接続部材20の円筒部22内に単電池Dの金属製外装缶16を嵌合させた後、単電池Dの金属製外装缶16と接続部材20との間に溶接電流を流すと、プロジェクション突起(この場合は4か所)25で接続部材20は金属製外装缶16に溶接される。このような接続を所定の個数(この実施例の場合は5個とする)の単電池について行うことにより、図2(a)に示すよな5個の単電池A,B,C,D,Eが直列接続された組電池100が得られる。   Note that a short circuit occurs when the connection member 20 comes into contact with the caulking portion 16b of the metal outer can 16. Therefore, the cylindrical insulator 26 is disposed between the caulking portion 16b and the connection member 20. Next, after fitting the metal outer can 16 of the unit cell D in the cylindrical portion 22 of the connection member 20 welded to the unit cell E, the metal outer can 16 of the unit cell D and the connection member 20 are connected. When a welding current is passed through the connecting member 20, the connection member 20 is welded to the metal outer can 16 by projection projections (in this case, four locations) 25. By performing such a connection on a predetermined number of cells (5 in this embodiment), five cells A, B, C, D, as shown in FIG. The assembled battery 100 in which E is connected in series is obtained.

ここで、単電池間距離W(図3(a)参照)が、後述するように電池内圧が上昇して最大に膨張したときの単電池の最大長さwに対して、1.0倍(W=1.0w)になるように形成した組電池100を組電池A1とした。同様に、単電池間距離Wを最大長さwに対して、1.1倍(W=1.1w)になるように形成した組電池100を組電池A2とし、1.3倍(W=1.3w)になるように形成した組電池100を組電池A3とし、1.5倍(W=1.5w)になるように形成した組電池100を組電池A4とし、1.6倍(W=1.6w)になるように形成した組電池100を組電池A5とし、2.0倍(W=2.0w)になるように形成した組電池100を組電池A6とした。   Here, the inter-cell distance W (see FIG. 3A) is 1.0 times the maximum length w of the single cells when the internal pressure of the battery increases and expands to the maximum, as will be described later ( The assembled battery 100 formed so that W = 1.0w) was designated as an assembled battery A1. Similarly, an assembled battery 100 formed such that the inter-cell distance W is 1.1 times (W = 1.1 w) with respect to the maximum length w is referred to as an assembled battery A2, and 1.3 times (W = The assembled battery 100 formed to be 1.3 w) is referred to as an assembled battery A3, and the assembled battery 100 formed to be 1.5 times (W = 1.5 w) is referred to as an assembled battery A4, which is 1.6 times ( The assembled battery 100 formed so that W = 1.6w) was designated as assembled battery A5, and the assembled battery 100 formed so as to be 2.0 times (W = 2.0w) was designated as assembled battery A6.

ここで、電池の内圧が上昇して電池が最大に膨張したときの単電池の最大長さwは、図3(b)に示すように、封口体18側の膨れ量w1と、外装缶16の底部側の膨れ量w2との和(w=w1+w2)として、以下のようにして求めた。
この場合、まず、単電池10の外装缶16の底部の中央部に直径が1mmの孔を開けた後、この孔にガス注入口を接続する。そして、このガス注入口から窒素ガスを注入して、弁板18cとスプリング18dからなる弁体が作動する圧力を予め求める。ついで、ガス注入口から窒素ガスを注入して、上述のようにして予め求めた弁体が作動する圧力に達してから1分経過後の正極キャップ18bの先端部の位置を求めて、加圧する前の位置との差を求めて、封口体18側の膨れ量(w1)を求める。
Here, as shown in FIG. 3B, the maximum length w of the unit cell when the internal pressure of the battery rises and the battery expands to the maximum is the amount of swelling w1 on the side of the sealing body 18 and the outer can 16. As the sum (w = w1 + w2) of the bulging amount w2 on the bottom side, the following was obtained.
In this case, first, a hole having a diameter of 1 mm is formed in the center of the bottom of the outer can 16 of the unit cell 10, and then a gas inlet is connected to this hole. And nitrogen gas is inject | poured from this gas injection port, and the pressure which act | operates the valve body which consists of the valve plate 18c and the spring 18d is calculated | required previously. Next, nitrogen gas is injected from the gas injection port, and the position of the front end portion of the positive electrode cap 18b after one minute has elapsed after reaching the pressure at which the valve body determined in advance as described above is reached and pressurized. The difference from the previous position is obtained, and the swelling amount (w1) on the sealing body 18 side is obtained.

一方、単電池10の封口体18の封口板18aに直径が1mmの孔を開けた後、この孔にガス注入口を接続する。そして、このガス注入口から窒素ガスを注入して、上述のようにして予め求めた弁体が作動する圧力に達してから1分経過後の外装缶16の底部の先端部の位置を求めて、加圧する前の位置との差を求めて、外装缶16側の膨れ量(w2)を求める。得られた封口体18側の膨れ量w1と、外装缶16の底部側の膨れ量w2との和(w=w1+w2)を求めることにより、電池の内圧が上昇して電池が最大に膨張したときの単電池の最大長さwを求めることができる。   On the other hand, after making a hole with a diameter of 1 mm in the sealing plate 18a of the sealing body 18 of the unit cell 10, a gas inlet is connected to this hole. Then, nitrogen gas is injected from this gas inlet, and the position of the tip of the bottom of the outer can 16 after one minute has elapsed after reaching the pressure at which the valve body determined in advance as described above is activated. Then, the difference from the position before pressurization is obtained, and the swelling amount (w2) on the outer can 16 side is obtained. By obtaining the sum (w = w1 + w2) of the obtained swollen amount w1 on the sealing body 18 side and the swollen amount w2 on the bottom side of the outer can 16, the battery internal pressure increases and the battery expands to the maximum The maximum length w of the single cell can be obtained.

3.組電池の充放電試験
ついで、上述のような組電池A1〜A6をそれぞれ10個ずつ作製して、これらの10個ずつの各組電池A1〜A6を用いて、1Itの充電電流で16時間充電した後、1Itの放電電流で電池電圧が0.9Vになるまで放電させて、放電時間から各組電池A1〜A6の初期放電容量C1を求めた。ついで、1Itの電流値で上述のように充放電を10回繰り返した後、1Itの充電電流で16時間充電を行い、その後、10Itの放電電流で電池電圧が0.9Vになるまで放電させて、放電時間から各組電池A1〜A6の10It放電後の放電容量C10を求めた。この試験において、単電池が温度上昇した組電池の個数を求めると、下記の表1に示すような結果となった。ついで、求めた放電容量C10から初期放電容量C1に対する割合((C10/C1)×100%)を出力特性(この場合は、10個の組電池の平均値)として求めると、下記の表1に示すような結果が得られた。ただし、組電池A1においては、温度上昇する電池が認められ信頼性が損なわれることから出力特性の評価に対して除外した。

Figure 2006092828
3. Next, 10 assembled batteries A1 to A6 as described above were prepared, and each of these 10 assembled batteries A1 to A6 was used to charge the battery for 16 hours at a charging current of 1 It. After that, the battery was discharged at a discharge current of 1 It until the battery voltage became 0.9 V, and the initial discharge capacity C1 of each of the assembled batteries A1 to A6 was obtained from the discharge time. Next, after charging and discharging 10 times as described above at a current value of 1 It, charging is performed for 16 hours with a charging current of 1 It, and then discharging is performed until the battery voltage becomes 0.9 V with a discharging current of 10 It. The discharge capacity C10 after 10 It discharge of each of the assembled batteries A1 to A6 was determined from the discharge time. In this test, when the number of the assembled batteries whose temperature was increased, the results shown in Table 1 below were obtained. Next, when the ratio ((C10 / C1) × 100%) to the initial discharge capacity C1 is obtained from the obtained discharge capacity C10 as output characteristics (in this case, the average value of 10 assembled batteries), it is shown in Table 1 below. The results shown were obtained. However, the assembled battery A1 was excluded from the evaluation of the output characteristics because a battery with a rising temperature was recognized and the reliability was impaired.
Figure 2006092828

上記表1の結果から明らかなように、単電池の間隔(W)を電池膨れ量(w)の1.0倍(W=1.0w)とした組電池A1においては、温度上昇した組電池が2組あることから、組電池の信頼性に問題があると考えられる。また、単電池の間隔(W)を電池膨れ量(w)の1.6倍(W=1.6w)とした組電池A5、および2.0倍(W=2.0w)とした組電池A6においては、出力特性が低下していることが分かる。これは、単電池の間隔(W)を長くすることで、接続部材20の長さ(円筒部22の長さ)を長くする必要が生じて、接続部材20での抵抗値が増大して出力特性が低下したと考えられる。また、単電池間の間隔(W)が長くなることで組電池としての曲げ強度も低下していることが分かった。   As is apparent from the results in Table 1, in the assembled battery A1 in which the interval (W) between the single cells is 1.0 times (W = 1.0 w) the amount of battery swelling (w), the assembled battery whose temperature has increased. Therefore, it is considered that there is a problem in the reliability of the assembled battery. In addition, the battery pack A5 in which the interval (W) between the single cells is 1.6 times (W = 1.6w) the battery swelling amount (w), and the battery pack having 2.0 times (W = 2.0w). In A6, it can be seen that the output characteristics are degraded. This is because it is necessary to increase the length of the connecting member 20 (the length of the cylindrical portion 22) by increasing the interval (W) of the single cells, and the resistance value at the connecting member 20 increases and outputs. It is considered that the characteristics have deteriorated. Moreover, it turned out that the bending strength as an assembled battery is also falling because the space | interval (W) between single cells becomes long.

一方、単電池の間隔(W)を電池膨れ量(w)の1.1倍(W=1.1w)〜1.5倍(W=1.5w)とした組電池A2〜A4においては、温度上昇が生じることはなく、また、出力特性も良好であることが分かる。このことから、単電池の間隔(W)は、電池膨れ量(w)の1.1倍(W=1.1w)〜1.5倍(W=1.5w)とするのが好ましいということができる。   On the other hand, in the assembled batteries A2 to A4 in which the interval (W) of the single cells is 1.1 times (W = 1.1w) to 1.5 times (W = 1.5w) of the battery swelling amount (w), It can be seen that the temperature does not increase and the output characteristics are also good. Therefore, it is preferable that the interval (W) of the single cells is 1.1 times (W = 1.1w) to 1.5 times (W = 1.5w) the amount of battery swelling (w). Can do.

4.外装缶のヤング率の検討
ついで、外装缶に用いる材質のヤング率について検討した。そこで、ヤング率が10×1010Paの材質の外装缶16を用いて上述と同様に単電池10を作製するとともに、この単電池10を用いて上述と同様に組電池B1を作製した。同様に、ヤング率が12×1010Paの材質の外装缶16を用いて組電池B2を作製し、ヤング率が15×1010Paの材質の外装缶16を用いて組電池B3を作製し、ヤング率が20×1010Paの材質の外装缶16を用いて組電池B4(上述したA3と同様である)を作製し、ヤング率が23×1010Paの材質の外装缶16を用いて組電池B5を作製し、ヤング率が25×1010Paの材質の外装缶16を用いて組電池B6を作製し、ヤング率が28×1010Paの材質の外装缶16を用いて組電池B7を作製した。
4). Examination of Young's modulus of outer can Next, the Young's modulus of the material used for the outer can was examined. Therefore, the single battery 10 was produced in the same manner as described above using the outer can 16 made of a material having a Young's modulus of 10 × 10 10 Pa, and the assembled battery B1 was produced using the single battery 10 in the same manner as described above. Similarly, the assembled battery B2 is produced using the outer can 16 made of a material having a Young's modulus of 12 × 10 10 Pa, and the assembled battery B3 is produced using an outer can 16 having a material having a Young's modulus of 15 × 10 10 Pa. The assembled battery B4 (similar to A3 described above) is produced using the outer can 16 made of a material having a Young's modulus of 20 × 10 10 Pa, and the outer can 16 made of a material having a Young's modulus of 23 × 10 10 Pa is used. The assembled battery B5 is manufactured, the assembled battery B6 is manufactured using the outer can 16 made of a material having a Young's modulus of 25 × 10 10 Pa, and the assembled battery B6 is manufactured using the outer can 16 made of a material having a Young's modulus of 28 × 10 10 Pa. Battery B7 was produced.

この場合、外装缶16の材質は表面にニッケルメッキを施した鉄100%であるが、鉄素材には互いにヤング率の異なる素材を複数種類混合して使用し、その混合比率を変化させてヤング率を調整した。尚、外装缶16にステンレスなどのような複数の金属が含まれる合金を用いる場合には、それらの金属の合金比率を変化させることによってもヤング率を調整することができる。   In this case, the material of the outer can 16 is 100% iron with nickel plating on the surface, but a mixture of materials with different Young's modulus is used as the iron material, and the mixing ratio is changed to change the Young The rate was adjusted. When an alloy containing a plurality of metals such as stainless steel is used for the outer can 16, the Young's modulus can also be adjusted by changing the alloy ratio of these metals.

ついで、これらの各組電池B1〜B7を用いて、1Itの充電電流で16時間充電した後、1Itの放電電流で電池電圧が0.9Vになるまで放電させて、放電時間から各組電池B1〜B7の初期放電容量C1を求めた。ついで、1Itの電流値で上述のように充放電を10回繰り返した後、1Itの充電電流で16時間充電を行い、その後、10Itの放電電流で電池電圧が0.9Vになるまで放電させて、放電時間から各組電池B1〜B7の10It放電後の放電容量C10を求めた。   Next, using each of these assembled batteries B1 to B7, after charging for 16 hours with a charging current of 1 It, the battery is discharged until the battery voltage becomes 0.9 V with a discharging current of 1 It, and each assembled battery B1 is discharged from the discharging time. The initial discharge capacity C1 of ~ B7 was obtained. Next, after charging and discharging 10 times as described above at a current value of 1 It, charging is performed for 16 hours with a charging current of 1 It, and then discharging is performed until the battery voltage becomes 0.9 V with a discharging current of 10 It. The discharge capacity C10 after 10 It discharge of each of the assembled batteries B1 to B7 was determined from the discharge time.

ついで、求めた放電容量C10から初期放電容量C1に対する割合((C10/C1)×100%)を出力特性(この場合は、10個の組電池の平均値)として求めると、下記の表2に示すような結果が得られた。また、この試験において、各組電池B1〜B7の総膨れ量を求め、組電池B4(A3)の総膨れ量を100とし、他の組電池の総膨れ量をそれとの比率で表すと、下記の表2に示すような結果が得られた。

Figure 2006092828
Next, when the ratio ((C10 / C1) × 100%) to the initial discharge capacity C1 is obtained from the obtained discharge capacity C10 as output characteristics (in this case, the average value of 10 assembled batteries), it is shown in Table 2 below. The results shown were obtained. Further, in this test, when the total swelling amount of each of the assembled batteries B1 to B7 is obtained, the total swelling amount of the assembled battery B4 (A3) is set to 100, and the total swelling amount of the other assembled batteries is expressed as a ratio to the following. The results as shown in Table 2 were obtained.
Figure 2006092828

上記表2の結果から明らかなように、ヤング率が15×1010Pa以上の材質の外装缶16を用いて作製された組電池B3〜B7においては、総膨れ量も少なく、出力特性も向上していることが分かる。ただし、ヤング率が28×1010Paと大きい材質は外装缶16の加工が困難で、生産性が低下する。このため、電池用外装缶の材質としては不適であるので、ヤング率が25×1010Pa以下の材質から選択して用いる必要がある。この場合、ヤング率が10×1010Paの材質の外装缶16を用いて作製された組電池B1およびヤング率が12×1010Paの材質の外装缶16を用いて作製された組電池B2の総膨れ量が大きく、その出力特性が低下していることが分かる。 As is apparent from the results in Table 2 above, the assembled batteries B3 to B7 manufactured using the outer can 16 made of a material having a Young's modulus of 15 × 10 10 Pa or more have a small total swelling amount and improved output characteristics. You can see that However, a material having a large Young's modulus of 28 × 10 10 Pa makes it difficult to process the outer can 16 and decreases the productivity. For this reason, since it is unsuitable as a material of the battery can, it is necessary to select and use a material having a Young's modulus of 25 × 10 10 Pa or less. In this case, the assembled battery B1 produced using the outer can 16 made of a material having a Young's modulus of 10 × 10 10 Pa and the assembled battery B2 made using an outer can 16 made of a material having a Young's modulus of 12 × 10 10 Pa. It can be seen that the total amount of swelling is large and its output characteristics are degraded.

これは、ヤング率が15×1010Pa未満の材質で形成された外装缶は、電池内圧が上昇することにより膨れ量が大きいために、隣接する単電池の正極キャップと外装缶の底部との間が接触するようになる。このため、この接触部が局所的に高温となって、その抵抗値が増大し、抵抗電圧降下により出力特性が低下したと考えられる。この場合、隣接する単電池間の距離Wを広く取るようにすれば、隣接する単電池の正極キャップと外装缶の底部とが接触することを防止できるようになるが、隣接する単電池間の距離Wが大きくなると、一定の容積内に収容できる単電池の個数を減少させる必要が生じるため、好ましいことではない。 This is because an outer can made of a material having a Young's modulus of less than 15 × 10 10 Pa has a large amount of swelling due to an increase in the internal pressure of the battery, so that the positive cap of the adjacent unit cell and the bottom of the outer can The space comes into contact. For this reason, it is considered that the contact portion becomes locally high in temperature, the resistance value thereof increases, and the output characteristics are deteriorated due to a resistance voltage drop. In this case, if the distance W between the adjacent unit cells is widened, the positive electrode cap of the adjacent unit cell and the bottom of the outer can can be prevented from contacting each other. An increase in the distance W is not preferable because it is necessary to reduce the number of single cells that can be accommodated in a certain volume.

上述したように、本発明においては、電池内圧が上昇して各単電池が膨張するようになっても、隣接する単電池の封口体の先端部と金属製外装缶の底部とが接触しないように、隣接する単電池の一方の封口体と他方の金属製外装缶とが接続部材により溶接されている。このため、電池内圧が上昇して各単電池が膨張しても、単電池間は接続部材を通してのみ電流が流れることとなる。この結果、いたずらに電池温度が上昇することもなくなることから、組電池に変形が生じたり、圧力弁が所定の圧力で動作しなかったりすることがなくなり、信頼性が損なわれることもない。   As described above, in the present invention, even if the cell internal pressure increases and each cell expands, the tip of the sealing body of the adjacent cell does not contact the bottom of the metal outer can. In addition, one sealing body of the adjacent unit cell and the other metal outer can are welded by the connecting member. For this reason, even if the cell internal pressure rises and each cell expands, current flows only between the cells through the connection member. As a result, the battery temperature does not rise unnecessarily, so that the assembled battery is not deformed, the pressure valve does not operate at a predetermined pressure, and the reliability is not impaired.

なお、上述した実施の形態においては、単電池を5個だけ用いて組電池にする例を説明したが、本発明を適用すれば何個の単電池を接続しても組電池を製造できることは明らかである。また、上述した実施の形態においては、封口体を正極端子とし、外装缶を負極端子とした例について説明したが、封口体を負極端子とし、外装缶を正極端子としてもよい。さらに、上述した実施の形態においては、本発明をニッケル−水素蓄電池に適用する例について説明したが、本発明はニッケル−水素蓄電池に限らず、ニッケル−カドミウム蓄電池やリチウム二次電池等の他の蓄電池にも本発明を適用できることは明らかである。   In the embodiment described above, an example in which only five unit cells are used to form an assembled battery has been described. However, if the present invention is applied, it is possible to manufacture an assembled battery regardless of how many unit cells are connected. it is obvious. Moreover, in embodiment mentioned above, although the sealing body was used as the positive electrode terminal and the exterior can was used as the negative electrode terminal, the sealing body may be used as the negative electrode terminal and the exterior can may be used as the positive electrode terminal. Furthermore, in embodiment mentioned above, although the example which applies this invention to a nickel-hydrogen storage battery was demonstrated, this invention is not limited to nickel-hydrogen storage battery, but other nickel-cadmium storage battery, lithium secondary battery, etc. It is clear that the present invention can be applied to a storage battery.

さらに、接続部材20の形状についても変更することができる。例えば、円筒部22をなくして、平面部21の表裏各面からプロジェクション突起を互いに逆向きに突出させた接続部材を単電池間に挟むような構造のものでも良い。この場合、プロジェクション突起の突出高さによって、単電池間の間隔を調整することができる。   Further, the shape of the connecting member 20 can be changed. For example, the cylindrical part 22 may be eliminated, and a connection member in which projection protrusions protrude in opposite directions from the front and back surfaces of the flat part 21 may be sandwiched between the single cells. In this case, the interval between the single cells can be adjusted by the projection height of the projection protrusion.

ニッケル−水素蓄電池(単電池)の断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of a nickel-hydrogen storage battery (unit cell). 5個のニッケル−水素蓄電池(単電池)を接続して組電池とした状態を示す図であり、図2(a)は平面図であり、図2(b)は、図2(a)のA部を拡大して示す断面図であり、図2(c)は単電池間を接続して組電池とするための接続部材の一例を示す斜視図である。It is a figure which shows the state which connected the five nickel-hydrogen storage batteries (unit cell) to make the assembled battery, FIG. 2 (a) is a top view, FIG.2 (b) is a figure of Fig.2 (a). It is sectional drawing which expands and shows A section, FIG.2 (c) is a perspective view which shows an example of the connection member for connecting between cells and making it an assembled battery. 単電池が膨張した場合の膨れ量と単電池間の距離との関係を説明する平面図である。It is a top view explaining the relationship between the amount of swelling when a cell expands, and the distance between the cells. 従来例の組電池の一例を示す図である。It is a figure which shows an example of the assembled battery of a prior art example.

符号の説明Explanation of symbols

10(A,A,C,D,E)…単電池、11…正極板、12…負極板、13…セパレータ、14…正極集電体、15…負極集電体、16…金属製外装缶、16a…凹部、16b…かしめ部、17…正極用リード、18…封口体、18a…封口板、18b…正極キャップ、18c…弁板、18d…スプリング、19a…防振リング、19b…絶縁ガスケット、20…接続部材、21…平面部、22…円筒部、23…開孔、24…プロジェクション突起、25…プロジェクション突起、26…円筒状絶縁体、100…組電池
10 (A, A, C, D, E): single cell, 11: positive electrode plate, 12: negative electrode plate, 13: separator, 14 ... positive electrode current collector, 15 ... negative electrode current collector, 16 ... metal outer can , 16a ... concave portion, 16b ... caulking portion, 17 ... positive electrode lead, 18 ... sealing body, 18a ... sealing plate, 18b ... positive electrode cap, 18c ... valve plate, 18d ... spring, 19a ... vibration isolating ring, 19b ... insulating gasket , 20 ... connection member, 21 ... plane part, 22 ... cylindrical part, 23 ... opening, 24 ... projection protrusion, 25 ... projection protrusion, 26 ... cylindrical insulator, 100 ... assembled battery

Claims (4)

発電要素を収容した一方極の端子を兼ねる金属製外装缶の開口部に絶縁体を介して他方極の端子を兼ねる封口体を備えた単電池の複数個が直列接続された組電池であって、
一方の単電池の封口体の先端部と他方の単電池の金属製外装缶の底部との間に間隔(W)が形成されるように前記一方の単電池の封口体と前記他方の単電池の金属製外装缶とが接続部材により溶接されており、
前記単電池に弁開放が生じるまで電池内圧が上昇して電池膨れが生じても、前記一方の単電池の封口体の先端部と前記他方の単電池の金属製外装缶の底部とが接触しないようになされていることを特徴とする組電池。
An assembled battery in which a plurality of unit cells having a sealing body that also serves as a terminal of the other electrode via an insulator are connected in series to an opening of a metal outer can that also serves as a terminal of one electrode that houses a power generation element. ,
The sealing unit of the one unit cell and the other unit cell so that a gap (W) is formed between the tip of the sealing unit of one unit cell and the bottom of the metal outer can of the other unit cell. The metal outer can is welded by the connecting member,
Even if the internal pressure of the battery rises and the battery bulges until the valve opens in the unit cell, the tip of the sealing body of the one unit cell does not contact the bottom of the metal outer can of the other unit cell. An assembled battery characterized by being configured as described above.
前記接続部材と前記一方の単電池の封口体との接触部、および前記接続部材と前記他方の単電池の外装缶の接触部がそれぞれ溶接接続されていることを特徴とする請求項1に記載の組電池。   The contact portion between the connecting member and the sealing body of the one unit cell, and the contact portion of the outer can of the other unit cell are welded and connected, respectively. Battery pack. 前記単電池に弁開放が生じるまで電池内圧が上昇して電池膨れが生じた際の最大の膨れ量をwとすると、
前記間隔(W)は1.1w〜1.5w(1.1w≦W≦1.5w)であることを特徴とする請求項1または請求項2に記載の組電池。
Assuming that the maximum swelling amount when the battery internal pressure rises and the battery bulges until the valve opens in the unit cell is w,
The assembled battery according to claim 1, wherein the interval (W) is 1.1 w to 1.5 w (1.1 w ≦ W ≦ 1.5 w).
前記外装缶に使用される材質のヤング率は15×1010〜25×1010Paであることを特徴とする請求項1から請求項3のいずれかに記載の組電池。
4. The assembled battery according to claim 1, wherein the material used for the outer can has a Young's modulus of 15 × 10 10 to 25 × 10 10 Pa. 5.
JP2004274743A 2004-09-22 2004-09-22 Assembled battery Active JP4845362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274743A JP4845362B2 (en) 2004-09-22 2004-09-22 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274743A JP4845362B2 (en) 2004-09-22 2004-09-22 Assembled battery

Publications (2)

Publication Number Publication Date
JP2006092828A true JP2006092828A (en) 2006-04-06
JP4845362B2 JP4845362B2 (en) 2011-12-28

Family

ID=36233623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274743A Active JP4845362B2 (en) 2004-09-22 2004-09-22 Assembled battery

Country Status (1)

Country Link
JP (1) JP4845362B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971367B1 (en) 2007-05-31 2010-07-20 주식회사 엘지화학 Electrical Connecting Member of Assembling Type and Secondary Battery Pack Containing the Same
WO2013042640A1 (en) * 2011-09-21 2013-03-28 エクセルギー工学研究所株式会社 Laminated battery and battery pack using same
JP2013157158A (en) * 2012-01-29 2013-08-15 Institute Of Energy Engineering Inc Layer-built battery and layer-built battery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203249B1 (en) 2017-10-10 2021-01-13 주식회사 엘지화학 Cylindrical Battery Cell Having Connection Cap

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224056A (en) * 1983-06-03 1984-12-15 Matsushita Electric Ind Co Ltd Device for connecting batteries
JP2001345086A (en) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd Battery pack
JP2001345088A (en) * 2000-03-30 2001-12-14 Sanyo Electric Co Ltd Battery pack and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224056A (en) * 1983-06-03 1984-12-15 Matsushita Electric Ind Co Ltd Device for connecting batteries
JP2001345088A (en) * 2000-03-30 2001-12-14 Sanyo Electric Co Ltd Battery pack and its manufacturing method
JP2001345086A (en) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd Battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971367B1 (en) 2007-05-31 2010-07-20 주식회사 엘지화학 Electrical Connecting Member of Assembling Type and Secondary Battery Pack Containing the Same
US8795877B2 (en) 2007-05-31 2014-08-05 Lg Chem, Ltd. Electrical connecting member of assembling type and secondary battery pack containing the same
WO2013042640A1 (en) * 2011-09-21 2013-03-28 エクセルギー工学研究所株式会社 Laminated battery and battery pack using same
JP2013157158A (en) * 2012-01-29 2013-08-15 Institute Of Energy Engineering Inc Layer-built battery and layer-built battery system

Also Published As

Publication number Publication date
JP4845362B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5011664B2 (en) Sealed secondary battery
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
JP4259890B2 (en) Sealed storage battery
JP7128666B2 (en) secondary battery
JP3943822B2 (en) Battery spiral electrode group and battery
JP4179943B2 (en) Cylindrical alkaline storage battery
WO2002043166A1 (en) Square battery
JP2018045994A (en) Cylindrical alkaline secondary battery
KR101038115B1 (en) The cylindrical storage battery
JP2010009841A (en) Cylindrical sealed battery
JP4845362B2 (en) Assembled battery
JP4088732B2 (en) Secondary battery
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP2001325935A (en) Sealed alkaline battery
JP2002298906A (en) Nickel-hydrogen secondary battery
US10374260B2 (en) Cylindrical alkaline secondary battery
JP5157049B2 (en) Sealed battery, method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
CN111183536A (en) Energy storage device and method of manufacturing an energy storage device
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP5383154B2 (en) Cylindrical secondary battery
JP2000251871A (en) Alkaline secondary battery
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JP5183251B2 (en) Assembled battery
JP2002289170A (en) Alkali secondary battery
JP2004327066A (en) Secondary battery and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4845362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3