JP2013157158A - Layer-built battery and layer-built battery system - Google Patents

Layer-built battery and layer-built battery system Download PDF

Info

Publication number
JP2013157158A
JP2013157158A JP2012016012A JP2012016012A JP2013157158A JP 2013157158 A JP2013157158 A JP 2013157158A JP 2012016012 A JP2012016012 A JP 2012016012A JP 2012016012 A JP2012016012 A JP 2012016012A JP 2013157158 A JP2013157158 A JP 2013157158A
Authority
JP
Japan
Prior art keywords
electrode
battery
current collector
laminated battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012016012A
Other languages
Japanese (ja)
Other versions
JP5514971B2 (en
Inventor
Kazuo Tsutsumi
香津雄 堤
Masateru Nakoji
昌輝 名小路
Takashi Mukai
孝志 向井
Tetsuo Sakai
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST OF ENERGY ENGINEERING Inc
INSTITUTE OF ENERGY ENGINEERING Inc
Original Assignee
INST OF ENERGY ENGINEERING Inc
INSTITUTE OF ENERGY ENGINEERING Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST OF ENERGY ENGINEERING Inc, INSTITUTE OF ENERGY ENGINEERING Inc filed Critical INST OF ENERGY ENGINEERING Inc
Priority to JP2012016012A priority Critical patent/JP5514971B2/en
Publication of JP2013157158A publication Critical patent/JP2013157158A/en
Application granted granted Critical
Publication of JP5514971B2 publication Critical patent/JP5514971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such problems of a conventional wound battery that temperature rise in the battery cannot be suppressed, that the wound battery does not function as a battery when the temperature of an electrode rises, and that the battery dimensions increase when a pipe, or the like, for feeding a cooling medium is provided in the battery.SOLUTION: In a nonaqueous battery, heat transmission of an electrode is enhanced by laminating positive electrodes and negative electrodes in the axial direction of a hollow battery exterior body, thereby making the outer diameter of one of the positive electrode or negative electrode larger than the inner diameter of the exterior body so that the positive electrode or negative electrode comes into tight contact with the exterior body.

Description

本発明は、非水系電池の冷却構造に関する。詳しくは、非水系電池における冷却性能を向上した電池の冷却構造に関する。   The present invention relates to a cooling structure for a non-aqueous battery. Specifically, the present invention relates to a battery cooling structure with improved cooling performance in a non-aqueous battery.

蓄電池には、円筒型電池、角型電池など種々の形状の電池が開発され広く使用されている。そして、比較的小容量の電池には、耐圧性や封口の容易さの点から円筒型が採用され、比較的大容量の電池には、取扱いの容易性から角型が採用されている。   Various types of batteries such as cylindrical batteries and prismatic batteries have been developed and widely used as storage batteries. In addition, a cylindrical type is adopted for a relatively small capacity battery from the viewpoint of pressure resistance and ease of sealing, and a square type is adopted for a relatively large capacity battery for ease of handling.

また蓄電池の電極構造に着目すれば、大別して、積層タイプと捲回タイプの2つのタイプが広く使用されている。すなわち積層タイプの電池は、正極と負極がセパレータを介して交互に積層されてなる電極群が電池ケースに収納されてなる。積層タイプの電池の多くは角型の電池ケースを有している。一方捲回タイプは、正極と負極がセパレータを挟みつつ渦巻状に巻き取られた状態で電池ケースに収納されてなる。捲回タイプの電池ケースは円筒型のものもあるし角型のものもある。   If attention is paid to the electrode structure of the storage battery, two types, a stacked type and a wound type, are widely used. That is, in a stacked battery, an electrode group in which positive and negative electrodes are alternately stacked via separators is housed in a battery case. Many of the stacked type batteries have a rectangular battery case. On the other hand, the wound type is housed in a battery case in a state in which the positive electrode and the negative electrode are wound in a spiral shape with a separator interposed therebetween. The wound type battery case may be a cylindrical type or a square type.

特許文献1および特許文献2に、円筒型捲回電池に関する技術が開示されている。すなわち、図1において、蓄電池1は、電池ケース2内に配置された正極3、負極4、セパレータ5および電解液を主に備えている。そして電池ケース2は、上部に開口部2aを有する概ね円筒状の容器であり、その底面部が負極端子に設定されている。帯状の正極3と負極4とはセパレータ5を挟みつつ渦巻き状に巻き取られた状態で電池ケース2内に配置されている。また、電池ケースの開口部2aは、電池ケース2内に電解液が注入された状態で、封口板7により液密に封鎖されている。なお、封口板7の上面に設けたキャップ6が正極端子となる。正極端子は図示しないリード線により正極3に接続されている。円筒型捲回電池は前述したように比較的小容量の電池である。   Patent Document 1 and Patent Document 2 disclose techniques related to a cylindrical wound battery. That is, in FIG. 1, the storage battery 1 mainly includes a positive electrode 3, a negative electrode 4, a separator 5, and an electrolytic solution disposed in a battery case 2. The battery case 2 is a substantially cylindrical container having an opening 2a in the upper part, and the bottom part thereof is set as a negative electrode terminal. The strip-shaped positive electrode 3 and the negative electrode 4 are disposed in the battery case 2 in a state of being wound in a spiral while sandwiching the separator 5. Further, the opening 2 a of the battery case is sealed in a liquid-tight manner by the sealing plate 7 in a state where the electrolytic solution is injected into the battery case 2. The cap 6 provided on the upper surface of the sealing plate 7 serves as a positive electrode terminal. The positive electrode terminal is connected to the positive electrode 3 by a lead wire (not shown). As described above, the cylindrical wound battery is a battery having a relatively small capacity.

蓄電池の冷却構造については種々の方法が提案されている。その多くは、蓄電池を複数個組み合わせてモジュール化した組電池に関するものである。これは蓄電池をモジュール化して大容量化すると、蓄電池の温度上昇が問題となるからである。組電池の冷却構造については、組電池を収納した容器の表面に突起を設けて冷却空気の流れに乱れを生じさせて放熱をよくする方法(例えば、特許文献3)や、隣り合う組電池の間に穴開きの金属製の冷却板を介在させて冷却空気の通路を設ける方法(例えば、特許文献3、4)もしくは収納容器の外部に突出する冷却フィンを設ける方法(例えば、特許文献5)等が提案されている。   Various methods for cooling the storage battery have been proposed. Most of them relate to an assembled battery obtained by combining a plurality of storage batteries into a module. This is because when the storage battery is modularized to increase the capacity, the temperature rise of the storage battery becomes a problem. As for the cooling structure of the assembled battery, a method of improving the heat dissipation by providing a protrusion on the surface of the container containing the assembled battery to cause a disturbance in the flow of the cooling air (for example, Patent Document 3) A method of providing a cooling air passage with a metal cooling plate with a hole in between (for example, Patent Documents 3 and 4) or a method of providing a cooling fin protruding outside the storage container (for example, Patent Document 5) Etc. have been proposed.

特許文献6には、正極と負極の間にセパレータを介在させた角型積層電池ユニットにおいて、当該電池ユニットの間に冷却板を設けて、その冷却板に冷媒の流路を設けてなる電池ユニット積層体の冷却構造が開示されている。
特許文献7には、シート状のヒートシンクを正極と負極に配して、セパレータと共に捲回してなる円筒型捲回電池の技術が開示されている。
In Patent Document 6, in a prismatic laminated battery unit in which a separator is interposed between a positive electrode and a negative electrode, a cooling plate is provided between the battery units, and a battery flow path is provided on the cooling plate. A cooling structure for a laminate is disclosed.
Patent Document 7 discloses a technique of a cylindrical wound battery in which a sheet-shaped heat sink is disposed on a positive electrode and a negative electrode and wound together with a separator.

非水系二次電池、例えば、リチウム二次電池では、4V系正極材料(LiCoO、LiMn等)と黒鉛系負極材料、微小短絡を防止するための微多孔膜セパレータ、4.5Vまでの高電圧に耐える有機電解液などが利用されている。 For non-aqueous secondary batteries, such as lithium secondary batteries, 4V positive electrode materials (LiCoO 2 , LiMn 2 O 4 etc.) and graphite negative electrode materials, microporous membrane separators to prevent micro shorts, up to 4.5V Organic electrolytes that can withstand high voltages are used.

商品化以来、リチウム二次電池の容量は2倍以上に向上している。たとえば、パソコン向け円筒形電池(18650)の容量は、1994年に1200mAhであったものが2002年には2200mAh、2006年には2900mAhへと向上しているが、充填密度向上による高容量化は、限界に近づきつつあり、電池の発火事故などが報道されるに至っている。
リチウム二次電池発火のメカニズムは下記に示す(1)〜(6)のようであるといわれている(例えば、非特許文献2)。
(1)充電末期に黒鉛負極上でLiデンドライトや不純物金属(Cu、Fe、Niなど)が析出して微小短絡を引き起こし、温度が上昇する。
(2)80℃付近から負極表面被膜と電解液が反応開始して、温度上昇し安全装置であるPCT素子が作動して電流遮断される。
(3)80℃付近から電解液分解が開始してガス発生し、安全装置である圧力弁が作動して電流遮断される。
Since commercialization, the capacity of lithium secondary batteries has improved more than twice. For example, the capacity of the cylindrical battery for personal computers (18650), which was 1200 mAh in 1994, has increased to 2200 mAh in 2002 and 2900 mAh in 2006. It is approaching the limit, and the accident of battery ignition has been reported.
It is said that the lithium secondary battery ignition mechanism is as shown in (1) to (6) below (for example, Non-Patent Document 2).
(1) Li dendrite and impurity metals (Cu, Fe, Ni, etc.) are deposited on the graphite negative electrode at the end of charging, causing a micro short circuit, and the temperature rises.
(2) The reaction between the negative electrode surface coating and the electrolyte starts from around 80 ° C., the temperature rises, and the PCT element, which is a safety device, operates to cut off the current.
(3) Decomposition of the electrolyte starts from around 80 ° C. and gas is generated, and the pressure valve, which is a safety device, operates to cut off the current.

(4)120℃以上ではポリエチレンやポリプロピレンの微多孔膜セパレータの微多孔が閉じることで反応を遮断(シャットダウン機能の作動)して、電流遮断される。
(5)ところが、160℃以上ではセパレータが溶解して短絡を引き起こし発熱する。
(6)さらに、220℃以上では正極材料(LiCoO、LiMnなど)が熱分解して酸素放出して、有機溶媒と反応して急激な温度上昇を引き起こす。
そこで、電池の高容量化と安全性の両立が求められる。
(4) At 120 ° C. or higher, the microporous membrane separator made of polyethylene or polypropylene closes and the reaction is cut off (the shutdown function is activated), and the current is cut off.
(5) However, at 160 ° C. or higher, the separator dissolves, causing a short circuit and generating heat.
(6) Furthermore, at 220 ° C. or higher, the positive electrode material (LiCoO 2 , LiMn 2 O 4, etc.) is thermally decomposed to release oxygen and react with the organic solvent to cause a rapid temperature increase.
Therefore, it is required to achieve both high battery capacity and safety.

特開2002−198044号公報JP 2002-198044 A 特開2004−103350号公報JP 2004-103350 A 特開2009−016285号公報JP 2009-016285 A 特開2003−007355号公報JP 2003-007355 A 特開2001−143769号公報JP 2001-143769 A 国際公開2008/099609号公報International Publication No. 2008/099609 特開平11−144771号公報Japanese Patent Laid-Open No. 11-144771

第52回電池討論会講演要旨集(2B19)「LiFePO4正極の高出力化」 2011年Proceedings of the 52nd Battery Symposium (2B19) “High output of LiFePO4 positive electrode” 2011 KEC情報 次世代電池特集(二次電池の最新動向と将来展開)、No.215、pp.2〜8.2010年10月号.KEC Information Special Issue on Next Generation Batteries (Latest Rechargeable Battery Trends and Future Developments), No. 215, pp. 2-8. October 2010 issue.

非水系二次電池の構成要素のひとつであるセパレータは、正負極間の短絡を防止し、電解液を保持する機能の他、高温(約120℃)時にシャットダウン機能を発現して、電池の安全性を高める重要なパーツであるが、ポリエチレンやポリプロピレン等のフィルムを素材として採用しているので、正極や負極の電極と比べてその熱伝導度は小さく、熱を伝え難い。   The separator, which is one of the components of non-aqueous secondary batteries, prevents the short circuit between the positive and negative electrodes, holds the electrolyte, and also exhibits a shutdown function at high temperatures (about 120 ° C), thus ensuring battery safety Although it is an important part that enhances the properties, it uses polyethylene, polypropylene, and other films as its material, so its thermal conductivity is small compared to the positive and negative electrodes, and it is difficult to transfer heat.

図1に示す捲回電池の冷却について言及すれば、電極とセパレータの積層方向(円周方向)に対して直角方向(半径方向)に熱を伝える必要があるが、多層に重ねられた電極とセパレータを経て良好に熱伝達を行うことは困難である。図2は、電池表面(ケース)から中心部に向けての電池内部の温度勾配の状況を説明するための模式図である。図2によれば、円筒型捲回電池においてケースと電極は熱伝導度が高いので大きな温度勾配は生じないが、セパレータは熱伝導度が低いので大きな温度勾配を生じ、中心部に行くほど高温となっていることがわかる。   Referring to cooling of the wound battery shown in FIG. 1, it is necessary to conduct heat in a direction (radial direction) perpendicular to the stacking direction (circumferential direction) of the electrode and separator. It is difficult to transfer heat well through the separator. FIG. 2 is a schematic diagram for explaining the state of the temperature gradient inside the battery from the battery surface (case) toward the center. According to FIG. 2, in the cylindrical wound battery, the case and the electrode have a high thermal conductivity, so a large temperature gradient does not occur. However, the separator has a low thermal conductivity, and thus a large temperature gradient is generated. It turns out that it is.

すなわち、捲回電池の電池ケースの表面温度は周囲温度に近いものの、中心部分の温度は高く、特に充放電状態においてはかなり高温となる。電池ケースの外側を冷却しても、電池内部の温度は必要な程度に冷却されない。電解液は80℃以上で分解しガスを発生させ、安全装置である圧力弁が作動して電流が遮断される。一般に、リチウム二次電池に使用されている電解液においては(例えば、LiPF塩を溶解したプロピレンカーボネート、エチレンカーボネートなど)、80℃以上で電解液が気化或いは分解しガスが発生する。他方、セパレータは温度が高くなるとシャットダウンし、電池の機能を失う。一般に、リチウム二次電池に使用されているセパレータにおいては(例えば、ポリエチレン微多孔膜、ポリプロピレン微多孔膜など)、約120℃に達すると、材料が熱収縮して細孔が塞がれ、電極間の電流の流れを妨げる。また、高温環境下では電極の劣化は促進される。 That is, although the surface temperature of the battery case of the wound battery is close to the ambient temperature, the temperature of the central portion is high, and particularly in the charge / discharge state, the temperature is considerably high. Even if the outside of the battery case is cooled, the temperature inside the battery is not cooled to a necessary level. The electrolyte decomposes at 80 ° C. or higher to generate gas, and the pressure valve, which is a safety device, is activated to cut off the current. In general, in an electrolytic solution used in a lithium secondary battery (for example, propylene carbonate or ethylene carbonate in which a LiPF 6 salt is dissolved), the electrolytic solution is vaporized or decomposed at 80 ° C. or higher to generate gas. On the other hand, when the temperature rises, the separator shuts down and loses the battery function. In general, in a separator used in a lithium secondary battery (for example, a polyethylene microporous membrane, a polypropylene microporous membrane, etc.), when the temperature reaches about 120 ° C., the material is thermally contracted to close the pores, Hinder the flow of current between them. Further, the deterioration of the electrode is promoted under a high temperature environment.

電池の冷却方法として、電池ケースの表面に突起を設けて熱の放散を良くする方法(例えば、特許文献3)や、組電池の間に穴開きの金属板を設けて冷却空気を流して冷却する方法(例えば、特許文献3,4)もしくは冷却フィンを設ける方法(例えば、特許文献5)が提案されているが、これらはいずれも電池ケースの表面を冷却するのには有効であるが、セパレータによる温度勾配が存在するため捲回電池においては効果的な冷却方法ということができない。   As a method for cooling the battery, a method of providing protrusions on the surface of the battery case to improve heat dissipation (for example, Patent Document 3), or providing a metal plate with holes between the assembled batteries to flow cooling air and cooling it (For example, Patent Documents 3 and 4) or a method for providing cooling fins (for example, Patent Document 5) have been proposed, both of which are effective for cooling the surface of the battery case, Since there is a temperature gradient due to the separator, it cannot be an effective cooling method in a wound battery.

ヒートシンクを電極と共に捲回する方法(例えば、特許文献7)や、冷却水が流れるパイプを電池内部に収納する方法が提案されている。これらの方法は、電池ケースの表面を冷却するよりは効果的な冷却方法といえるかもしれないが、冷却のためのスペースを必要とし、電池寸法が大きくなり、体積当りの電気容量が低下する。   A method of winding a heat sink together with an electrode (for example, Patent Document 7) and a method of storing a pipe through which cooling water flows in the battery have been proposed. These methods may be said to be more effective cooling methods than cooling the surface of the battery case, but require a space for cooling, increase the battery size, and decrease the electric capacity per volume.

リチウム二次電池の用途としては携帯機器が中心であり高容量のLiCoO正極が使用され、2010年には18000MWhの電池生産が予想され、Coは約2万トン(世界生産量の約30%)必要となる。そこで、自動車用では、資源やコストの観点からマンガン系LiMnが利用されるが、高温時にMnが電解液に溶出し、材料自身が熱耐久性に欠ける。 Lithium secondary batteries are mainly used for portable devices, and high-capacity LiCoO 2 cathodes are used. In 2010, 18,000 MWh batteries are expected to be produced. Co is about 20,000 tons (about 30% of world production) ) Required. Thus, for automobiles, manganese-based LiMn 2 O 4 is used from the viewpoint of resources and cost, but Mn elutes into the electrolyte at high temperatures, and the material itself lacks thermal durability.

ジュール熱の量は、抵抗Rと電流Iの二乗の積により定まるため、非水系二次電池に限らず、電池に電流を流すとジュール熱により、電池内部に熱が発生する。低容量の電池であれば、その熱は、時間と共に電池系外へ排出されるため、電池温度の上昇をある程度が抑えることができる。しかし、例え低容量電池であっても、大きな電流密度で充放電を行うとジュール熱により電池内部が蓄熱されやすく、高容量になればその傾向は大きくなる。
したがって、電池内部が蓄熱されると電池の劣化を促進させ、また、安全性も低くなる。
Since the amount of Joule heat is determined by the product of the square of the resistance R and the current I, heat is generated inside the battery by Joule heat when a current is passed through the battery, not limited to non-aqueous secondary batteries. If the battery has a low capacity, the heat is discharged to the outside of the battery system over time, so that the rise in battery temperature can be suppressed to some extent. However, even in a low-capacity battery, if charging / discharging is performed with a large current density, the inside of the battery is likely to be stored by Joule heat, and this tendency increases as the capacity increases.
Therefore, when the inside of the battery is stored, the deterioration of the battery is promoted and the safety is also lowered.

二次電池の入出力特性を評価する指標として、放電レートが知られている。放電レートとは、公称容量値の容量を有するセルを定電流放電して、1時間で放電終了となる電流値を「1C率」とすることを基準とした指標であり、例えば、5時間で放電終了となる電流値は「0.2C率」、10時間で放電終了となる電流値は「0.1C率」と表記される。   A discharge rate is known as an index for evaluating input / output characteristics of a secondary battery. The discharge rate is an index based on a constant current discharge of a cell having a capacity of a nominal capacity value and setting the current value at which discharge is completed in 1 hour as “1C rate”. The current value at which discharge ends is expressed as “0.2 C rate”, and the current value at which discharge ends after 10 hours is expressed as “0.1 C rate”.

リン酸鉄リチウム(LiFePO)は、その高い入出力特性により、コバルト酸リチウム(LiCoO)、スピネル型マンガン酸リチウム(LiMn)などに代わるリチウム含有遷移金属酸化物として採用されつつある。しかし、このような高い入出力特性を有する電極(質量%比で、LiFePO:KB:PVdF=83:5:12、電極厚さ:65μm、容量密度:0.8mAh/cm)であっても、5C率以下の放電レートに留まる。放電レートは、電流密度が小さいほど高いため、現状では、高い入出力特性を得るために電極厚さを薄くせざるを得ず、一つのセルあたりの電極容量が小さくなる。 Lithium iron phosphate (LiFePO 4 ) is being adopted as a lithium-containing transition metal oxide to replace lithium cobaltate (LiCoO 2 ), spinel type lithium manganate (LiMn 2 O 4 ), etc. due to its high input / output characteristics. . However, it is an electrode having such high input / output characteristics (in terms of mass% ratio, LiFePO 4 : KB: PVdF = 83: 5: 12, electrode thickness: 65 μm, capacity density: 0.8 mAh / cm 2 ) However, the discharge rate stays below the 5C rate. Since the discharge rate is higher as the current density is smaller, at present, the electrode thickness has to be reduced to obtain high input / output characteristics, and the electrode capacity per cell is reduced.

そこで、例えば、非特許文献1では、各添加剤、バインダー、集電体等を最適化し、LiFePO正極の高出力化を図っているが、それでも、高速で充電或いは放電を行うと電池温度は高温になり、電極の劣化を促進するため、放熱性に優れた電池構造が求められる。 Therefore, for example, in Non-Patent Document 1, each additive, binder, current collector, and the like are optimized to increase the output of the LiFePO 4 positive electrode. However, when charging or discharging is performed at high speed, the battery temperature is In order to accelerate the deterioration of the electrode at a high temperature, a battery structure with excellent heat dissipation is required.

本発明は、係る課題を解決するためになされたものであり、電池内部の温度上昇を抑制するとともに、冷却のために電池内に余分なスペースを必要としない電池を提供する。さらには、大きな電流密度で充放電を行っても、電池の劣化を防ぐことを可能とする。   The present invention has been made to solve such a problem, and provides a battery that suppresses a temperature rise inside the battery and does not require an extra space in the battery for cooling. Furthermore, even if charging / discharging is performed with a large current density, it is possible to prevent deterioration of the battery.

前記した目的を達成するために、本発明に係る積層電池は、筒状の外装体の内部に、正極活物質を含む正極と、負極活物質を含む負極とが、イオンは透過するが電子を透過させないセパレータを介して、前記外装体の軸方向に積層されていて、かつ、非水系電解質を含む電解液を備えた電池であって、前記正極もしくは前記負極のいずれか一方の電極であって前記外装体の内面に当接して電気的に接続されている第1電極と、他方の電極であって前記外装体の内面に接触していない第2電極とを備えていて、導電性の集電体が、前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通していて、前記第2電極は前記集電体に当接して電気的に接続されていて、前記第1電極は前記集電体と接触していない(請求項1/図3)。   In order to achieve the above-described object, the laminated battery according to the present invention includes a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material in a cylindrical outer package, which transmit ions but transmit electrons. A battery that is laminated in the axial direction of the outer package through a non-permeable separator and includes an electrolyte solution containing a non-aqueous electrolyte, and is either the positive electrode or the negative electrode. A first electrode that is in contact with and electrically connected to the inner surface of the exterior body; and a second electrode that is the other electrode and that is not in contact with the inner surface of the exterior body. The electric body passes through the positive electrode, the negative electrode, and the separator in the axial direction of the outer package, and the second electrode is in contact with and electrically connected to the current collector, The electrode is not in contact with the current collector (Claim 1 / FIG. 3).

この構成によれば、セパレータは非水系の電解液を保持していて、正負極間の絶縁を図るとともに、イオンの透過を可能にしている。外装体は金属でできており、外装体に接触している方の電極(第1電極)の端子として機能する。正負極およびセパレータは、好ましくはシート状に形成されている。外装体は中空であって、各電極は外装体の軸方向に積層されて外装体内部に収納されている。第1電極の外形寸法(厚み方向と垂直方向の寸法)は外装体の内径よりも少し大きく作られている。第1電極はその外周の全体もしくは部分的に外装体の内面に接触している。第1電極が外装体内部に圧入されたときに、第1電極は外装体と接触して、電気的に接続されるのみならず、熱的にも小さな抵抗で外装体に接続されるので、電極の冷却に有効に作用する。   According to this configuration, the separator holds the non-aqueous electrolytic solution, insulates between the positive and negative electrodes, and enables the permeation of ions. The exterior body is made of metal and functions as a terminal of the electrode (first electrode) in contact with the exterior body. The positive and negative electrodes and the separator are preferably formed in a sheet shape. The exterior body is hollow, and each electrode is stacked in the axial direction of the exterior body and accommodated inside the exterior body. The outer dimension (dimension in the direction perpendicular to the thickness direction) of the first electrode is made slightly larger than the inner diameter of the exterior body. The first electrode is in contact with the entire inner surface or part of the outer surface of the exterior body. When the first electrode is pressed into the exterior body, the first electrode contacts the exterior body and is not only electrically connected, but also thermally connected to the exterior body with a small resistance, It works effectively to cool the electrode.

一方、第2電極の外径寸法は外装体の内径よりも小さく作られており、第2電極は外装体と接触せず絶縁されている。外装体は、好ましくは缶であってよく、鉄(Fe)、銅(Cu)、ニッケル(Ni)、アルミニューム(Al)、チタン(Ti)、クロム(Cr)、金(Au)、ステンレス鋼などの金属であってよいし、導電性のガラス、カーボン(C)やポリマーなどであってもよいが、熱伝導性と電子導電性の観点から、鉄、銅、ニッケル、アルミニューム、金、ステンレス鋼等が好ましい。なお、第1電極が正極である場合は、使用する活物質によって異なるが、耐酸化性の観点から、アルミニューム、ステンレス鋼等が好ましい。第1電極が負極である場合は、使用する活物質によって異なるが、耐還元性の観点から、銅、ニッケル、ステンレス鋼等が好ましい。   On the other hand, the outer diameter of the second electrode is made smaller than the inner diameter of the exterior body, and the second electrode is insulated without contacting the exterior body. The outer package may be a can, preferably iron (Fe), copper (Cu), nickel (Ni), aluminum (Al), titanium (Ti), chromium (Cr), gold (Au), stainless steel. It may be a metal such as conductive glass, carbon (C) or polymer, but from the viewpoint of thermal conductivity and electronic conductivity, iron, copper, nickel, aluminum, gold, Stainless steel or the like is preferable. In addition, when a 1st electrode is a positive electrode, although it changes with active materials to be used, an aluminum, stainless steel, etc. are preferable from a viewpoint of oxidation resistance. When the first electrode is a negative electrode, copper, nickel, stainless steel, and the like are preferable from the viewpoint of reduction resistance, although depending on the active material used.

第1電極で発生する熱は、直接外装体に伝えられる。途中に熱の不良導体を介さないので熱勾配(温度差)は小さい。第2電極で発生する熱は、セパレータを介して第1電極に伝えられる。途中に熱伝導度の小さいセパレータが介するが、1枚だけであり大きな熱抵抗とはならないので熱勾配は小さく抑えられる。更に、正負極とセパレータからなる電極群を軸方向に大きな圧力を持って外装体に押し込むことにより、第2電極が強く第1電極に押し付けられるので、第2電極の熱の移動はより大きくなる。捲回電池の温度勾配が大きいのは、外装体と電極の間に幾重もの熱を伝え難いセパレータが介在しているのと、その構造上大きな力で捲回することができないので電極間の熱の移動を大きくすることができないからである。   The heat generated in the first electrode is directly transferred to the exterior body. The thermal gradient (temperature difference) is small because there is no defective conductor on the way. Heat generated in the second electrode is transmitted to the first electrode through the separator. A separator having a low thermal conductivity is interposed in the middle, but only one sheet does not provide a large thermal resistance, so the thermal gradient can be kept small. Furthermore, the second electrode is strongly pressed against the first electrode by pushing the electrode group consisting of the positive and negative electrodes and the separator into the exterior body with a large pressure in the axial direction, so that the heat transfer of the second electrode becomes larger. . The temperature gradient of the wound battery is large because the separator between the outer body and the electrode, which is difficult to transfer heat, is interposed between the outer body and the electrode. This is because it is not possible to increase the movement of.

捲回電池の総括熱伝達係数(U1)は、数1で示されるところ、本発明に係る積層電池の総括熱伝達係数(U2)は、数2で示される。両者を比較すると、アンダーラインで示す項において大きな差が生じることが分かる。具体的な数値は、実施の形態で詳述するが、捲回電池の捲回数(n)が大きいほど、総括熱伝達係数は小さくなる。 The overall heat transfer coefficient (U 1 ) of the wound battery is expressed by Equation 1, and the overall heat transfer coefficient (U 2 ) of the laminated battery according to the present invention is expressed by Equation 2. When both are compared, it can be seen that there is a large difference in the term indicated by the underline. Although specific numerical values will be described in detail in the embodiment, the overall heat transfer coefficient decreases as the winding number (n) of the wound battery increases.

Figure 2013157158
Figure 2013157158

Figure 2013157158
Figure 2013157158

以上のように、本発明に係る積層電池の温度勾配は小さく、積層電池の中心部における温度上昇を小さくすることができる。このため電池内部に冷媒を流すためのパイプ等を設ける必要がないのでコンパクトな構造で温度上昇を抑えることができる。更には、外装体の冷却は比較的容易に行うことができるので、効果的に温度上昇を抑えることが可能となる。   As described above, the temperature gradient of the laminated battery according to the present invention is small, and the temperature rise at the center of the laminated battery can be reduced. For this reason, since it is not necessary to provide a pipe or the like for flowing a refrigerant inside the battery, the temperature rise can be suppressed with a compact structure. Furthermore, since the exterior body can be cooled relatively easily, the temperature rise can be effectively suppressed.

また、第2電極は前記集電体に当接して電気的に接続されていて、第1電極は前記集電体と接触していないので、正負極とセパレータは、それぞれ、その中心部分に集電体が通る穴を有しており、その穴を集電体が貫通している。第1電極の穴の径は、集電体の外径より大きく、このため第1電極は集電体と接触せず、第2電極の穴の径は、集電体の外径より小さく、このため第2電極は集電体と接触して電気的に接続されている。
集電体は第2電極の端子として機能する。また集電体は、電子伝導性を有しいる材料であれば特に限定されない。
本構成によれば、電解液は非水系の電解液であるところ、有機電解液がこれに相当する。アルカリ水溶液からなる電解液は水系の電解液の代表例である。
In addition, since the second electrode is in contact with and electrically connected to the current collector, and the first electrode is not in contact with the current collector, the positive and negative electrodes and the separator are each collected at the central portion thereof. The electric body has a hole through which the current collector passes through the hole. The diameter of the hole of the first electrode is larger than the outer diameter of the current collector, so that the first electrode does not contact the current collector, and the diameter of the hole of the second electrode is smaller than the outer diameter of the current collector, For this reason, the second electrode is in electrical contact with the current collector.
The current collector functions as a terminal of the second electrode. The current collector is not particularly limited as long as it is a material having electron conductivity.
According to this configuration, the electrolytic solution is a non-aqueous electrolytic solution, and the organic electrolytic solution corresponds to this. An electrolytic solution composed of an alkaline aqueous solution is a typical example of an aqueous electrolytic solution.

非水系二次電池には、リチウム二次電池、ナトリウム二次電池、マグネシウム二次電池、カルシウム二次電池などが挙げられ、リチウムイオンキャパシター、ナトリウムイオンキャパシター、マグネシウムイオンキャパシター、カルシウムイオンキャパシターも非水系二次電池に含まれる。   Non-aqueous secondary batteries include lithium secondary batteries, sodium secondary batteries, magnesium secondary batteries, calcium secondary batteries, etc., and lithium ion capacitors, sodium ion capacitors, magnesium ion capacitors, and calcium ion capacitors are also non-aqueous. Included in secondary batteries.

本発明に係る積層電池は、前記集電体の側面に溝加工が施されていて(請求項2)、当該集電体の溝がネジ溝であり、のネジの谷の径は前記第2電極に設けた前記集電体が貫通する穴の径より大きい(請求項3/図4)   In the laminated battery according to the present invention, a groove is formed on the side surface of the current collector (Claim 2), and the groove of the current collector is a screw groove, and the diameter of the valley of the screw is the second. The diameter of the current collector provided on the electrode is larger than the diameter of the hole (Claim 3 / FIG. 4).

この構成によれば、集電体の側面には溝加工が施されている。そして、その溝はネジ溝であってよく、第2電極に設けた穴の径が集電体のネジの谷の外径より小さく、第1電極に設けた穴の径が集電体のネジの山の外径より大きい。第2電極に設けた穴の径が集電体のネジの谷の外径より小さくすることにより、第2電極と集電体の接触を十分確保することが可能になる。   According to this configuration, the side surface of the current collector is grooved. The groove may be a screw groove, the diameter of the hole provided in the second electrode is smaller than the outer diameter of the screw valley of the current collector, and the diameter of the hole provided in the first electrode is the screw of the current collector. Larger than the outer diameter of the pile. By making the diameter of the hole provided in the second electrode smaller than the outer diameter of the screw valley of the current collector, it is possible to ensure sufficient contact between the second electrode and the current collector.

集電体にネジ溝加工を施さない場合、電極の組立時に集電体と電極との結合が緩み、集電体と電極の密接な接触が保たれなくなることがある。係る問題を解決するために、集電体にネジ溝加工を施した。すなわち、ネジのリードに沿って第2電極と集電体が強い嵌め合い状態を維持することとなる。これにより、組立加工時に電極が集電体から抜けるのを防止することが可能となる。   If the current collector is not subjected to thread groove processing, the connection between the current collector and the electrode may be loosened when the electrode is assembled, and the current collector and the electrode may not be kept in close contact with each other. In order to solve such a problem, the current collector was subjected to thread groove processing. That is, a strong fitting state is maintained between the second electrode and the current collector along the lead of the screw. As a result, it is possible to prevent the electrode from coming off the current collector during assembly processing.

本発明に係る積層電池は、前記集電体と、前記第2電極とが接着剤により接合されている(請求項4)。そして、好ましくは当該接着剤が、前記電解液で溶解しない樹脂と炭素粉末から構成され、その混合比が、全体を100質量%とすると、前記電解液で溶解しない樹脂が30〜90質量%、炭素粉末が10〜70質量%である(請求項5)。また、前記電解液で溶解しない樹脂が、より好ましくはポリイミドである(請求項6)。   In the laminated battery according to the present invention, the current collector and the second electrode are joined by an adhesive (Claim 4). And preferably, the adhesive is composed of a resin that does not dissolve in the electrolytic solution and carbon powder, and when the mixing ratio is 100% by mass, the resin that does not dissolve in the electrolytic solution is 30 to 90% by mass, Carbon powder is 10-70 mass% (Claim 5). Further, the resin that does not dissolve in the electrolytic solution is more preferably polyimide (Claim 6).

導電性を有する接着剤により集電体と第2電極を接合することによって、例え、第2電極に設けた穴の径が集電体のネジの谷の外径より大きくなっても、電気的に第2電極と集電体の接触を確保することが可能になる。
さらに、集電体と第2電極とを接着剤により接合することで組立加工時に電極が集電体から抜けてしまうのを確実に防止することができる。
Even if the diameter of the hole provided in the second electrode is larger than the outer diameter of the screw valley of the current collector by joining the current collector and the second electrode with a conductive adhesive, In addition, it is possible to ensure contact between the second electrode and the current collector.
Furthermore, by joining the current collector and the second electrode with an adhesive, it is possible to reliably prevent the electrode from falling out of the current collector during assembly processing.

そして、混合比を電解液で溶解しない樹脂が30〜90質量%に限定した理由は、30質量%未満であると炭素粉末が嵩高いため、十分な接着性を確保しにくく、90質量%を超える場合は、炭素粉末を混合しても十分な導電性を確保しにくいからである。したがって、電解液で溶解しない樹脂は30〜90質量%が好ましく、50〜70質量%がより好ましい。同様に、炭素粉末は、10〜70質量%であることが好ましく、30〜50質量%であることがより好ましい。   The reason why the resin that does not dissolve in the electrolytic solution is limited to 30 to 90% by mass is that the carbon powder is bulky if it is less than 30% by mass, so that it is difficult to ensure sufficient adhesiveness, and 90% by mass. When exceeding, it is because it is difficult to ensure sufficient conductivity even if carbon powder is mixed. Therefore, the resin that does not dissolve in the electrolytic solution is preferably 30 to 90% by mass, and more preferably 50 to 70% by mass. Similarly, it is preferable that carbon powder is 10-70 mass%, and it is more preferable that it is 30-50 mass%.

電解液で溶解しない樹脂とは、電解液に対して安定で且つ接着性を保持しておればよく、この観点から、CMC、PVA、ポリアクリル、ポリイミド、ポリアミド、ポリアミドイミドが好ましい。なかでも、耐熱性の観点から、ポリイミドが好ましい。   The resin that does not dissolve in the electrolytic solution only needs to be stable and maintain adhesiveness with respect to the electrolytic solution. From this viewpoint, CMC, PVA, polyacryl, polyimide, polyamide, and polyamideimide are preferable. Among these, polyimide is preferable from the viewpoint of heat resistance.

本発明に係る積層電池は、前記外装体が蓋付有底の円筒であってもよく(請求項7/図3)、また、前記外装体が断面が略矩形の有底の容器と、前記容器の開口部を覆う蓋部材を備えていてもよい(請求項8/図8)。この構成によれば、外装体は缶であってもよい。   In the laminated battery according to the present invention, the exterior body may be a bottomed cylinder with a lid (Claim 7 / FIG. 3), and the exterior body has a bottomed container having a substantially rectangular cross section; You may provide the cover member which covers the opening part of a container (Claim 8 / FIG. 8). According to this configuration, the exterior body may be a can.

本発明に係る積層電池システムは、当該積層電池の容器の底部と、隣接する積層電池の蓋部材とが対向する方向に積層して、複数の積層電池を直列に接続して構成される(請求項9/図9)。   The stacked battery system according to the present invention is configured by stacking a plurality of stacked batteries in series, in which the bottom of the container of the stacked battery and the lid member of the adjacent stacked battery are opposed to each other (claim) Item 9 / FIG. 9).

本発明に係る電池システムは、当該積層電池の容器の底部と、隣接する積層電池の蓋部材とが接触して、複数の積層電池が積層されることにより直列に接続したものであってもよい。 The battery system according to the present invention may be one in which a bottom portion of the container of the multilayer battery and a lid member of the adjacent multilayer battery are in contact with each other, and a plurality of multilayer batteries are stacked to be connected in series. .

この構成によれば、2つの積層電池の一方の蓋部材と他方の積層電池の容器の底部が当接することにより積層され、電気的に直列に接続される。複数の積層電池をこのように接続すれば、接続数に応じて電池システム(組電池)の出力電圧は高くなる。 According to this configuration, one lid member of two stacked batteries and the bottom of the container of the other stacked battery are brought into contact with each other, and are stacked and electrically connected in series. If a plurality of laminated batteries are connected in this way, the output voltage of the battery system (assembled battery) increases according to the number of connections.

本発明に係る積層電池は、前記外装体が円筒状の金属性の胴部と、当該胴部の軸方向開口部を覆う2つの蓋部を有していて、前記集電体は前記蓋部を貫通している(請求項10/図10)。   In the laminated battery according to the present invention, the exterior body includes a cylindrical metallic body portion and two lid portions covering the axial opening of the body portion, and the current collector is the lid portion. (Claim 10 / FIG. 10).

この構成によれば、集電体は蓋部を貫通して両端の蓋部に支持されていてもよい。外装体は、円管(パイプ)の両端開口部に蓋を備えたものであってもよい。外装体は円管と蓋により、その内部に密閉空間を形成する。密閉空間内に正負極とセパレータからなる電極群が収納される。蓋部は金属製であってもよい。第1電極の外径寸法は外装体の内径よりも少し大きく作られており、第2電極の外径寸法は外装体の内径よりも小さく作られている。   According to this configuration, the current collector may pass through the lid portion and be supported by the lid portions at both ends. The exterior body may be provided with lids at both end openings of a circular pipe (pipe). The exterior body is formed of a circular tube and a lid to form a sealed space therein. An electrode group including positive and negative electrodes and a separator is housed in the sealed space. The lid may be made of metal. The outer diameter of the first electrode is made slightly larger than the inner diameter of the outer package, and the outer diameter of the second electrode is made smaller than the inner diameter of the outer package.

本発明に係る接続金具は、積層電池の間に配される柱状の金属製の接続金具であって、当該接続金具の底面と上面にはそれぞれ軸方向に接続穴が設けられていて、上面に設けられた接続穴には一方の積層電池の集電体の端部が嵌合可能になっていて、底面に設けられた接続穴には他方の積層電池の集電体の端部が絶縁体を介して嵌合可能になっていて、隣接する積層電池を接続することを可能にしている(請求項11)。   The connection fitting according to the present invention is a columnar metal connection fitting arranged between stacked batteries, and the connection fitting is provided with a connection hole in the axial direction on the bottom and top surfaces of the connection fitting. The end of the current collector of one stacked battery can be fitted into the provided connection hole, and the end of the current collector of the other stacked battery is the insulator in the connection hole provided in the bottom surface. Can be fitted to each other, and adjacent stacked batteries can be connected to each other (claim 11).

接続金具は円柱もしくは角柱であってよく、接続金具の底面と上面はそれぞれ互いに隣接する積層電池の蓋部に面接可能となっている。上面に設けられた穴に集電体を嵌合することにより、一方の積層電池の集電体と他方の積層電池の蓋部が機械的に接続されるとともに、電気的に接続される。なお、底面に設けられた穴と集電体の間には絶縁体が介在しているので、隣接する積層電池の集電体は互いに絶縁されている。接続金具を用いることにより積層電池を直列に接続することが可能となる。   The connection fitting may be a cylinder or a prism, and the bottom and top surfaces of the connection fitting can be in contact with the lid portions of the laminated batteries adjacent to each other. By fitting the current collector into the hole provided on the upper surface, the current collector of one stacked battery and the lid of the other stacked battery are mechanically connected and electrically connected. In addition, since the insulator is interposed between the hole provided on the bottom surface and the current collector, the current collectors of the adjacent stacked batteries are insulated from each other. By using the connection fitting, it is possible to connect the stacked batteries in series.

本発明に係る積層電池システムは、前記接続金具を介して複数の積層電池を接続してなる(請求項12)。即ち、前記の積層電池において、前記第1蓋部を貫通した前記集電体が隣接する積層電池の前記接続穴に嵌合することにより、積層電池を複数直列接続することが可能である。   The laminated battery system according to the present invention is formed by connecting a plurality of laminated batteries via the connection fittings (claim 12). That is, in the laminated battery, a plurality of laminated batteries can be connected in series by fitting the current collector penetrating the first lid portion into the connection hole of the adjacent laminated battery.

この構成によれば、蓋部を貫通した集電体が隣接する積層電池の接続穴に嵌合することにより、接続金具を介して積層電池を複数直列接続する。そして、接続された積層電池の数に応じて、積層電池システムの端子電圧は大きくなる。   According to this configuration, a plurality of stacked batteries are connected in series via the connection fitting by fitting the current collector penetrating the lid portion into the connection hole of the adjacent stacked battery. And the terminal voltage of a laminated battery system becomes large according to the number of the laminated batteries connected.

本発明に係る積層電池は、前記外装体が筒状金属性の胴部と、当該胴部の軸方向開口部を覆う絶縁性の第1蓋部と第2蓋部を有していて、前記集電体は棒部と当該棒部の一端に形成された止め部とを備えており、前記棒部は前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通して当該棒部の他端において前記第1蓋部に支持されており、前記止め部は前記第2蓋部に当接している(請求項13)。   In the laminated battery according to the present invention, the exterior body includes a cylindrical metallic trunk, and an insulating first lid and a second lid that cover the axial opening of the trunk. The current collector includes a rod portion and a stop portion formed at one end of the rod portion, and the rod portion penetrates the positive electrode, the negative electrode, and the separator in the axial direction of the exterior body, and the rod The other end of the part is supported by the first lid part, and the stopper part is in contact with the second lid part (Claim 13).

この構成によれば、第1蓋部と第2蓋部は胴部の両端の開口部を覆うようになっており、外装体は胴部と蓋部により、その内部に密閉空間を形成しており、密閉空間内に正負極とセパレータからなる電極群が収納される構造となっている。第1電極の外径寸法は外装体の内径よりも少し大きく作られており、第2電極の外径寸法は外装体の内径よりも小さく作られていることは前述した通りである。   According to this structure, the 1st cover part and the 2nd cover part cover the opening part of the both ends of a trunk | drum, and an exterior body forms sealed space in the inside by the trunk | drum and lid part. In addition, an electrode group composed of positive and negative electrodes and a separator is housed in a sealed space. As described above, the outer diameter of the first electrode is made slightly larger than the inner diameter of the outer package, and the outer diameter of the second electrode is made smaller than the inner diameter of the outer package.

棒部より大きい外径を有している止め部は、電極群が集電体から抜け落ちるのを防止することを可能にしている。止め部は第2蓋部に当接しているので、集電体の軸方向の移動が制限される。   The stop portion having an outer diameter larger than that of the rod portion makes it possible to prevent the electrode group from falling off the current collector. Since the stop portion is in contact with the second lid portion, movement of the current collector in the axial direction is limited.

本発明に係る積層電池システムは、積層電池を金属製のブラケットを介して複数接続してなる積層電池システムであって、当該ブラケットは2つの穴を有していて、隣接する一方の積層電池の前記胴部が前記ブラケットの一方の穴に取付けられており、他方の積層電池の前記棒部が前記ブラケットの他方の穴に取付けられており、前記ブラケットを介して隣接する積層電池が直列に接続される(請求項14)。   The laminated battery system according to the present invention is a laminated battery system in which a plurality of laminated batteries are connected via a metal bracket, the bracket having two holes, and one of the adjacent laminated batteries. The trunk portion is attached to one hole of the bracket, the rod portion of the other laminated battery is attached to the other hole of the bracket, and adjacent laminated batteries are connected in series via the bracket. (Claim 14).

この構成によれば、ブラケットは板状の金属であり、鉄、銅、アルミニューム、ニッケル、チタンまたはステンレス鋼であってよく、鉄にニッケルメッキ、銅メッキ、アルミニュームメッキなどを施したものであってもよい。ブラケットは積層電池を組立てる構造体となると共に、隣接する積層電池を電気的に接続する役割を果たし、更には積層電池の放熱板としての機能も果たす。ブラケットにファン等で冷却空気を送ることにより冷却能力を高めることができる。複数のブラケットを用いて積層電池を次々と接続して、積層電池の直列数を増やして、出力電圧の高圧化を図ることが可能である。   According to this configuration, the bracket is a plate-like metal, and may be iron, copper, aluminum, nickel, titanium, or stainless steel, and the iron is subjected to nickel plating, copper plating, aluminum plating, or the like. There may be. The bracket serves as a structure for assembling the laminated batteries, serves to electrically connect adjacent laminated batteries, and further serves as a heat sink for the laminated batteries. The cooling capacity can be increased by sending cooling air to the bracket with a fan or the like. It is possible to increase the output voltage by connecting the stacked batteries one after another using a plurality of brackets to increase the number of stacked batteries in series.

本発明に係る積層電池は、筒状の外装体の内部に、正極活物質を含む正極と、負極活物質を含む負極とが、イオンは透過するが電子を透過させないセパレータを介して、前記外装体の軸方向に積層されていて、前記正極もしくは前記負極のいずれか一方の電極であって前記外装体の内面に当接して電気的に接続されている第1電極と、他方の電極であって前記外装体の内面に接触していない第2電極とを備えた積層電池であって、第1電極が負極であり第2電極が正極である第1積層電池と、第2電極が負極であり第1電極が正極である第2積層電池とを組み合わせた積層電池であって、導電性の第1集電体および第2集電体が、前記正極と前記負極と前記セパレータを前記外装体の軸方向に貫通して挿入されていて、前記第1集電体は前記負極に接触して電気的に接続されるとともに前記正極に接触しておらず、かつ、前記第2集電体は前記正極に接触して電気的に接続されるとともに前記負極に接触していない構造であってもよい(請求項15)。   In the laminated battery according to the present invention, the exterior of the battery case is formed through a separator in which a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material transmit ions but do not transmit electrons. A first electrode that is laminated in the axial direction of the body, and is one of the positive electrode and the negative electrode that is in contact with and electrically connected to the inner surface of the exterior body, and the other electrode. And a second electrode not in contact with the inner surface of the outer package, wherein the first electrode is a negative electrode and the second electrode is a positive electrode, and the second electrode is a negative electrode. A laminated battery combining a second laminated battery in which the first electrode is a positive electrode, wherein the conductive first current collector and the second current collector connect the positive electrode, the negative electrode, and the separator to the outer package. The first current collector is inserted in the axial direction of the The second current collector is in contact with and electrically connected to the positive electrode and is not in contact with the negative electrode. It may be a structure (claim 15).

この構成によれば、前記正極と前記負極と前記セパレータにはそれぞれ2つの穴が設けられていて、第1積層電池の正極は、第2集電体に接続されていて、負極は第1集電体に接続されている。また、第2積層電池の正極は、第2集電体に接続され、負極は第1集電体に接続されている。これにより、第1集電体が負極端子として機能し、第2集電体が正極端子として機能する。   According to this configuration, the positive electrode, the negative electrode, and the separator are each provided with two holes, the positive electrode of the first stacked battery is connected to the second current collector, and the negative electrode is the first collector. It is connected to an electric body. In addition, the positive electrode of the second stacked battery is connected to the second current collector, and the negative electrode is connected to the first current collector. Thereby, the 1st current collector functions as a negative electrode terminal, and the 2nd current collector functions as a positive electrode terminal.

第1電極の外形寸法は外装体の内径よりも少し大きく作られており、好ましくは、第1電極は、その全外周において外装体の内面に接触しているが、前周ではなく部分的に接触していてもよい。そうすれば、第1電極は外装体に電気的に接続されるからである。
なお本発明に係る積層電池は、前記外装体が有底の円筒であってもよい(請求項16)。外装体に缶を用いれば、積層電池の組立てが容易となる。
The outer dimension of the first electrode is made slightly larger than the inner diameter of the outer package. Preferably, the first electrode is in contact with the inner surface of the outer package on the entire outer periphery thereof, but partially on the front periphery. It may be in contact. This is because the first electrode is electrically connected to the exterior body.
In the laminated battery according to the present invention, the outer package may be a bottomed cylinder. If a can is used for the outer package, assembly of the laminated battery is facilitated.

また、本発明に係る積層電池は、前記第1集電体が前記第1積層電池の第1外装体に当接しており、前記第2集電体が前記第2積層電池の第2外装体に当接しており、前記第1外装体と前記第2外装体が絶縁体を介して接続されていてもよい(請求項17)。   In the multilayer battery according to the present invention, the first current collector is in contact with the first exterior body of the first multilayer battery, and the second current collector is the second exterior body of the second multilayer battery. The first exterior body and the second exterior body may be connected via an insulator (claim 17).

この構成によれば、第1積層電池の外装体(第1外装体)は負極に当接して電気的に接続され、第2積層電池の外装体(第2外装体)は正極に当接して電気的に接続さることになる。この場合、第1積層電池の外装体と第2積層電池の外装体の間は絶縁体を介して互いに絶縁することにより、第1積層電池の外装体が負極端子として機能し、第2積層電池の外装体が正極端子として機能する。
本発明に係る積層電池は、前記外装体の内面が熱伝導度の高い絶縁材であってもよい(請求項18)。
According to this configuration, the exterior body (first exterior body) of the first multilayer battery is in contact with and electrically connected to the negative electrode, and the exterior body (second exterior body) of the second multilayer battery is in contact with the positive electrode. It will be electrically connected. In this case, the exterior body of the first multilayer battery and the exterior body of the second multilayer battery are insulated from each other via an insulator, so that the exterior body of the first multilayer battery functions as a negative electrode terminal. The exterior body functions as a positive electrode terminal.
In the laminated battery according to the present invention, the inner surface of the outer package may be an insulating material having high thermal conductivity.

この構成によれば、外装体全体が熱伝導度の高い絶縁材であってもよい。また、外装体が熱伝導度の高い絶縁材を内方に有し、ステンレス鋼、アルミニューム、銅、ニッケル、クロム、鉄等の構造材を外方に有する二重構造であってもよい。熱伝導度の高い絶縁材としては、アルミナ、チタニア、ジルコニア、アルミナ・チタニア等のセラミックスが挙げられる。これらセラミックスは良好な絶縁性と絶縁耐力(約100V/mm)、高い熱伝導率(約7x10-3cal/cm/sec・℃)、大きな機械的強度(ロックウエル硬度50以上)を有している。熱伝導度の高い絶縁材として、ダイヤモンドであってもよい。構造材としてはステンレス鋼の他にチタン、ニッケル、銅、クロム、カーボン、アルミニュームなどであってもよい。 According to this configuration, the entire exterior body may be an insulating material having high thermal conductivity. Alternatively, the exterior body may have a double structure in which an insulating material having high thermal conductivity is provided on the inside and a structural material such as stainless steel, aluminum, copper, nickel, chromium, or iron is provided on the outside. Examples of the insulating material having high thermal conductivity include ceramics such as alumina, titania, zirconia, and alumina / titania. These ceramics have good insulation and dielectric strength (about 100 V / mm), high thermal conductivity (about 7 × 10 −3 cal / cm / sec · ° C.), and large mechanical strength (Rockwell hardness of 50 or more). . Diamond may be used as the insulating material having high thermal conductivity. The structural material may be titanium, nickel, copper, chromium, carbon, aluminum, etc. in addition to stainless steel.

本発明に係る積層電池システムは、複数の当該積層電池が、対向して設けられた集電板の間に配置されていて、一方の前記集電板に前記積層電池の正極に接続された正極端子が当接して電気的に接続され、他方の前記集電板に前記積層電池の負極に接続された負極端子が当接して電気的に接続されている(請求項19)。そして、前記集電板に平行な方向に冷却空気を送る手段を設けてもよい(請求項20)。   In the laminated battery system according to the present invention, a plurality of the laminated batteries are arranged between current collector plates provided opposite to each other, and one positive electrode terminal connected to the positive electrode of the laminated battery is disposed on one of the current collector plates. The negative electrode terminal connected to the negative electrode of the laminated battery is in contact with and electrically connected to the other current collector plate. A means for sending cooling air in a direction parallel to the current collector plate may be provided.

この構成によれば、集電板が電池システムの構造材になると共に、積層電池を電気的に接続する部材になり、かつ、放熱板として作用する。集電板に送風機等から冷却空気を送れば、積層電池の冷却に効果的である。   According to this configuration, the current collector plate serves as a structural material of the battery system, serves as a member for electrically connecting the stacked batteries, and acts as a heat sink. If cooling air is sent to the current collector plate from a blower or the like, it is effective for cooling the laminated battery.

本発明に係る積層電池は、熱伝導度の高い絶縁材からなる筒状の外装体の内部に、正極活物質を含む正極と負極活物質を含む負極との間にイオンは透過するが電子を透過させないセパレータを介在させて構成された電極体が、前記外装体の軸方向に複数積層されていて、かつ、隣接する前記電極体の間に金属製の隔壁が設けられていて、前記正極と前記負極と前記隔壁が前記外装体の内面に当接している(請求項21)。また本発明に係る積層電池は、前記外装体が蓋付有底の円筒であってもよい(請求項22)。   In the laminated battery according to the present invention, ions are transmitted between a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material inside a cylindrical outer package made of an insulating material having high thermal conductivity, but electrons are transmitted. A plurality of electrode bodies configured by interposing a non-permeable separator are laminated in the axial direction of the exterior body, and a metal partition is provided between the adjacent electrode bodies, and the positive electrode The negative electrode and the partition are in contact with the inner surface of the exterior body (claim 21). In the laminated battery according to the present invention, the outer package may be a bottomed cylinder with a lid (Claim 22).

この構成によれば、外装体全体が熱伝導度の高い絶縁材であってもよい。また、外装体が熱伝導度の高い絶縁材を内方に有し、ステンレス鋼、アルミニューム、銅、ニッケル、クロム、鉄等の構造材を外方に有する二重構造であってもよい。熱伝導度の高い絶縁材としては、アルミナ、チタニア、ジルコニア、アルミナ・チタニア等のセラミックスが上げられる。ダイヤモンドであってもよい。構造材としてはステンレス鋼の他にチタン、ニッケル、銅、クロム、カーボン、アルミニュームであってもよい。   According to this configuration, the entire exterior body may be an insulating material having high thermal conductivity. Alternatively, the exterior body may have a double structure in which an insulating material having high thermal conductivity is provided on the inside and a structural material such as stainless steel, aluminum, copper, nickel, chromium, or iron is provided on the outside. Examples of the insulating material having high thermal conductivity include ceramics such as alumina, titania, zirconia, and alumina / titania. Diamond may be sufficient. The structural material may be titanium, nickel, copper, chromium, carbon, or aluminum in addition to stainless steel.

また、正極および負極の外径は外装体の内径より大きく作られており、正極と負極は共に外装体の密に接触しているので、正極および負極で発生した熱は高い熱伝達率で外装体に伝えられ、積層電池内部の温度上昇を抑制することが可能となる。このような事情は、請求項1に係る課題を解決する手段のところで説明した通りである。   In addition, the outer diameter of the positive electrode and the negative electrode is made larger than the inner diameter of the outer package, and both the positive electrode and the negative electrode are in close contact with the outer package, so that the heat generated at the positive electrode and the negative electrode has a high heat transfer rate. It is transmitted to the body and it becomes possible to suppress the temperature rise inside the laminated battery. Such a situation is as described in the means for solving the problem according to claim 1.

隔壁は、正極と負極とセパレータから構成される電極の間に配置されている。金属製の隔壁は電子を通すがイオンは通さない。よって、正負極の積層数に応じて、積層電池の出力電圧は高くなる。   The partition wall is disposed between electrodes composed of a positive electrode, a negative electrode, and a separator. Metal barriers allow electrons but not ions. Therefore, the output voltage of the laminated battery increases depending on the number of positive and negative electrode layers.

本発明に係る積層電池は、前記外装体の軸方向に積層された前記正負極およびセパレータからなる電極群の両端に押板を配し、当該押板により前記電極群を保持してなる(請求項23)。   The laminated battery according to the present invention includes a pressing plate disposed at both ends of an electrode group composed of the positive and negative electrodes and the separator stacked in the axial direction of the exterior body, and the electrode group is held by the pressing plate. Item 23).

この構成によれば、2つの押板の間に正極、負極、セパレータを積層した電極群が配置されることになる。この押板は、電極の組立時において、電極が集電体から脱落するのを防止して、作業性を高める。そして、組立後においては、電極群の圧縮状態を保持する役割を果たす。   According to this structure, the electrode group which laminated | stacked the positive electrode, the negative electrode, and the separator between two push plates is arrange | positioned. This pressing plate prevents the electrode from dropping off from the current collector during assembly of the electrode, thereby improving workability. And after an assembly, it plays the role which maintains the compression state of an electrode group.

発明に係る積層電池は、リチウム二次電池であることが好ましい(請求項24)。非水系積層電池がリチウム二次電池であることが好ましい。リチウムイオンを用いることで、動作電位と放電容量を高くすることができる。   The laminated battery according to the invention is preferably a lithium secondary battery (claim 24). The nonaqueous laminated battery is preferably a lithium secondary battery. By using lithium ions, the operating potential and the discharge capacity can be increased.

本発明に係る積層電池は、前記正極が、CMCをバンダーとするリン酸鉄リチウム(LiFePO)を含んでいる(請求項25)。CMCはカルボキシメチルセルロースの略称である。CMCをバインダーとするLiFePO正極は、CMCをバインダーとしていることで、高温環境下であっても電解液によるバインダー膨潤が少なく、また有機溶媒を用いずに電極を作製することができる。そのため、高温環境下であっても、高出力特性を維持でき、コストと環境の観点からも好ましいバインダーである。例えば、ポリフッ化ビニリデン(PVdF)をバインダーとするLiFePO正極の場合、高温環境下でPVdFが膨潤するため、電極のインピーダンスが大きくなる。したがって、電池の出力特性とサイクル寿命特性が低下するため、CMCを用いることが好ましい。また、LiFePOを活物質とすることで、高温環境下であっても活物質の分解による酸素放出がなく、高温耐久性が向上する。バインダーはCMCにSBR、PVA、フッ素樹脂、アクリル樹脂等を添加し、バインダーの強度を高めてもよい。正極は、活物質、バインダー、必要に応じて添加される導電剤から構成され、その混合比が、全体を100質量%とすると、活物質が75〜98質量%、バインダーが2〜25質量%、導電剤が0〜10質量%であることが好ましい。 In the laminated battery according to the present invention, the positive electrode contains lithium iron phosphate (LiFePO 4 ) with CMC as a band (Claim 25). CMC is an abbreviation for carboxymethylcellulose. Since the LiFePO 4 positive electrode using CMC as a binder uses CMC as a binder, there is little binder swelling due to the electrolyte even under a high temperature environment, and an electrode can be produced without using an organic solvent. Therefore, even in a high temperature environment, high output characteristics can be maintained, and the binder is preferable from the viewpoint of cost and environment. For example, in the case of a LiFePO 4 positive electrode using polyvinylidene fluoride (PVdF) as a binder, PVdF swells in a high-temperature environment, so that the impedance of the electrode increases. Therefore, it is preferable to use CMC because the output characteristics and cycle life characteristics of the battery are degraded. Further, by using LiFePO 4 as an active material, there is no oxygen release due to decomposition of the active material even in a high temperature environment, and high temperature durability is improved. For the binder, SBR, PVA, fluororesin, acrylic resin, or the like may be added to CMC to increase the strength of the binder. The positive electrode is composed of an active material, a binder, and a conductive agent added as necessary. When the mixing ratio is 100% by mass as a whole, the active material is 75 to 98% by mass and the binder is 2 to 25% by mass. The conductive agent is preferably 0 to 10% by mass.

本発明に係る積層電池の組み立て方法は、前記集電体の側面に形成したネジの谷と同じ外径を有する丸棒に前記正極と前記負極の間に前記セパレータが介在するように順次挿入して電極を積み重ねた後、積み重ねた電極群の両端に前記押板を配して前記電極群を保持する。そして、前記押板の両端に圧力をかけて前記電極群を圧縮して、圧縮状態を保持したまま前記丸棒を引き抜き、代わりに前記集電体を前記電極群にネジ込み、前記押板を前記集電体に螺号させて前記電極群の圧縮状態を保ちつつ電極集合体を組立てる。そして、前記電極集合体を前記外装体内部に圧入して、空気抜きを行い、電解液を注入する。(請求項27)。
この組立方法によれば、有底の円筒缶からなる外装体に電極集合体を圧入して、電解液を注入後に円筒缶を蓋部材で封印して、電池の密閉化を図る。
In the method for assembling the laminated battery according to the present invention, the separator is inserted into a round bar having the same outer diameter as that of the thread valley formed on the side surface of the current collector so that the separator is interposed between the positive electrode and the negative electrode. After the electrodes are stacked, the push plates are arranged at both ends of the stacked electrode groups to hold the electrode groups. Then, pressure is applied to both ends of the pressing plate to compress the electrode group, and the round bar is pulled out while maintaining the compressed state. Instead, the current collector is screwed into the electrode group, and the pressing plate is The current collector is screwed to assemble the electrode assembly while maintaining the compressed state of the electrode group. Then, the electrode assembly is press-fitted into the exterior body, air is evacuated, and an electrolytic solution is injected. (Claim 27).
According to this assembling method, the electrode assembly is press-fitted into an exterior body composed of a cylindrical can with a bottom, and after the electrolyte is injected, the cylindrical can is sealed with the lid member to seal the battery.

本発明に係る積層電池の組み立て方法は、前記集電体の側面に形成したネジの谷と同じ外径を有する丸棒に前記正極と前記負極の間に前記セパレータが介在するように順次挿入して電極を積み重ね圧縮した後、圧縮状態を保持しつつ前記丸棒を引き抜き、代わりに前記集電体をネジ込み電極集合体を組立てる。そして、前記電極集合体を前記外装体内部に圧入して、空気抜きを行い、電解液を注入した後、押板として作用する蓋部材で前記電極群を前記外装体内部に封入する(請求項28)。
この組立方法によれば、パイプ状の外装体に電極集合体を圧入した後、蓋部材により外装体開口部に蓋をして積層電池を密閉化を図る。
In the method for assembling the laminated battery according to the present invention, the separator is inserted into a round bar having the same outer diameter as that of the thread valley formed on the side surface of the current collector so that the separator is interposed between the positive electrode and the negative electrode. After stacking and compressing the electrodes, the round bar is pulled out while maintaining the compressed state, and the current collector is screwed in instead to assemble the electrode assembly. Then, the electrode assembly is press-fitted into the exterior body, air is evacuated, an electrolyte is injected, and then the electrode group is sealed inside the exterior body with a lid member that acts as a push plate. ).
According to this assembling method, the electrode assembly is press-fitted into the pipe-shaped exterior body, and then the exterior body opening is covered with the lid member to seal the laminated battery.

本発明に係る電極集合体の製作において、前記電解液に電流を供給して、前記電極集合体に電流を流すことによって、前記第2電極にアルカリ金属をドープし、不可逆容量を低減させる方法が有効である(請求項29)。   In the manufacture of the electrode assembly according to the present invention, a method of reducing the irreversible capacity by doping the second electrode with an alkali metal by supplying a current to the electrolyte solution and causing the current to flow through the electrode assembly. It is effective (claim 29).

電極集合体は、非水電解液中、前記集電体をネジ込まれた電極集合体に電流を流すことによって、第2電極にアルカリ金属をドープし、不可逆容量を低減させる。この不可逆容量を低減させる方法によれば、例え第2電極に不可逆容量を有する電極を用いても、第2電極にアルカリ金属がドープされるので、不可逆容量を低減した電極集合体を得ることができる。   The electrode assembly causes an irreversible capacity to be reduced by doping the second electrode with an alkali metal by causing a current to flow through the electrode assembly into which the current collector is screwed in a non-aqueous electrolyte. According to this method of reducing irreversible capacity, even if an electrode having irreversible capacity is used for the second electrode, the second electrode is doped with alkali metal, so that an electrode assembly with reduced irreversible capacity can be obtained. it can.

本発明は、電池内部の温度上昇を抑制するとともに、冷却のために余分なスペースを必要としない非水系二次電池の提供を可能にする。   The present invention makes it possible to provide a non-aqueous secondary battery that suppresses the temperature rise inside the battery and does not require extra space for cooling.

円筒型捲回電池の一部を破断した概略斜視図である。It is the schematic perspective view which fractured | ruptured some cylindrical winding batteries. 円筒型捲回電池の温度勾配の状況を模式的に示す図である。It is a figure which shows typically the condition of the temperature gradient of a cylindrical winding battery. 本発明の実施例1に係る円筒型積層電池の概略構成図であり、軸方向断面を示す図である。It is a schematic block diagram of the cylindrical laminated battery which concerns on Example 1 of this invention, and is a figure which shows an axial direction cross section. 集電体のネジ構造を模式的に示した図であり、集電体に電極群を挿入したときの部分拡大図である。It is the figure which showed typically the screw structure of the electrical power collector, and is the elements on larger scale when an electrode group is inserted in the electrical power collector. 縦溝構造の集電体の図面(平面図と側面図)である。It is drawing (a top view and a side view) of the collector of a longitudinal groove structure. 図3に示す本発明の第一実施形態に係る円筒型積層電池の変形例を示す概略軸方向断面図である。It is a schematic axial sectional view showing a modification of the cylindrical laminated battery according to the first embodiment of the present invention shown in FIG. 円筒型積層電池の組立方法を説明する断面図である。(a)は丸棒に電極群を組み込んだときの軸方向断面図であり、(b)は、丸棒を抜き集電体をねじ込んだときの軸方向断面図である。It is sectional drawing explaining the assembly method of a cylindrical laminated battery. (A) is an axial sectional view when an electrode group is incorporated in a round bar, and (b) is an axial sectional view when a current collector is screwed out by pulling out the round bar. 本発明の実施例2に係る角型積層電池の概略構成図である。(a)は軸方向断面図であり、(b)は平面図である。It is a schematic block diagram of the square laminated battery which concerns on Example 2 of this invention. (A) is an axial sectional view, and (b) is a plan view. 本発明の実施例2に係る角型積層電池を用いて組電池としたときの構成図である。It is a block diagram when it is set as an assembled battery using the square laminated battery which concerns on Example 2 of this invention. 本発明の実施例3に係る円筒型積層電池の概略構成図であり、軸方向断面を示す図である。It is a schematic block diagram of the cylindrical laminated battery which concerns on Example 3 of this invention, and is a figure which shows an axial direction cross section. 本発明の実施例3に係る円筒型積層電池を用いて組電池としたときの構成図である。(a)は接続金具と積層電池の接続情況を説明する概略構成図であり、(b)は組電池を構成した場合の構成を説明する図である。It is a block diagram when it is set as an assembled battery using the cylindrical laminated battery which concerns on Example 3 of this invention. (A) is a schematic block diagram explaining the connection condition of a connection metal fitting and a laminated battery, (b) is a figure explaining the structure at the time of comprising an assembled battery. 本発明の実施例4に係る円筒型積層電池を示す概略構成図であり、軸方向断面を示す図である。It is a schematic block diagram which shows the cylindrical laminated battery which concerns on Example 4 of this invention, and is a figure which shows an axial direction cross section. 本発明の実施例4に係る円筒型積層電池を用いて組電池としたときの構成図である。(a)は組電池を構成した場合を説明する図であり、(b)は組電池を構成するためのブラケットの平面図である。It is a block diagram when it is set as an assembled battery using the cylindrical laminated battery which concerns on Example 4 of this invention. (A) is a figure explaining the case where an assembled battery is comprised, (b) is a top view of the bracket for comprising an assembled battery. 本発明の実施例5に係る円筒型積層電池を示す概略構成図である。(a)は軸方向断面図であり、(b)は正極、負極、セパレータの平面図である。It is a schematic block diagram which shows the cylindrical laminated battery which concerns on Example 5 of this invention. (A) is an axial sectional view, and (b) is a plan view of a positive electrode, a negative electrode, and a separator. 本発明の実施例5に係る円筒型積層電池を用いて組電池としたときの構成図である。(a)は組電池を構成した場合を説明する図であり、(b)は組電池を構成するための放熱板の平面図である。It is a block diagram when it is set as an assembled battery using the cylindrical laminated battery which concerns on Example 5 of this invention. (A) is a figure explaining the case where an assembled battery is comprised, (b) is a top view of the heat sink for comprising an assembled battery. 本発明の実施例5に係る円筒型積層電池の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the cylindrical laminated battery which concerns on Example 5 of this invention. 本発明の実施例6に係る円筒型積層電池を示す概略構成図である。It is a schematic block diagram which shows the cylindrical laminated battery which concerns on Example 6 of this invention.

以下、本発明に係る実施形態を図面にしたがって説明するが、本発明はこの実施形態に限定されるものではない。本発明の積層電池に用いられる電極、電解液およびセパレータは、非水系二次電池で一般的に用いられるものであれば特に限定されない。非水系二次電池には、リチウム二次電池、ナトリウム二次電池、マグネシウム二次電池、カルシウム二次電池などが挙げられ、リチウムイオンキャパシター、ナトリウムイオンキャパシター、マグネシウムイオンキャパシター、カルシウムイオンキャパシターも非水系二次電池に含まれる。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments. The electrode, electrolyte solution and separator used in the laminated battery of the present invention are not particularly limited as long as they are generally used in non-aqueous secondary batteries. Non-aqueous secondary batteries include lithium secondary batteries, sodium secondary batteries, magnesium secondary batteries, calcium secondary batteries, etc., and lithium ion capacitors, sodium ion capacitors, magnesium ion capacitors, and calcium ion capacitors are also non-aqueous. Included in secondary batteries.

本発明の実施形態の説明において、説明の都合上リチウム二次電池について述べるが、非水系電解液を用いた二次電池であればよく、リチウム二次電池に限定されるものでない。   In the description of the embodiment of the present invention, a lithium secondary battery will be described for convenience of explanation, but any secondary battery using a non-aqueous electrolyte may be used, and the present invention is not limited to a lithium secondary battery.

本発明の各実施形態について説明するのに先立ち、全ての実施形態に共通する事項について説明を行う。すなわち、上記の二次電池のうち、動作電位と放電容量が高いことからリチウム二次電池が好ましい。以下、リチウム二次電池を例にして、最初に電極、電解液およびセパレータ等、主として電極の製造について説明し、その後、リチウム二次電池の他の主な構成部品の製造について説明をする。
<電極および主な構成部品の製造について>
Prior to describing each embodiment of the present invention, matters common to all the embodiments will be described. That is, among the above secondary batteries, a lithium secondary battery is preferable because of its high operating potential and high discharge capacity. Hereinafter, taking the lithium secondary battery as an example, the production of the electrode, such as the electrode, the electrolytic solution and the separator, will be described first, and then the production of other main components of the lithium secondary battery will be described.
<Manufacture of electrodes and main components>

負極は、チタン酸リチウム、CMC、およびケッチェンブラック(KB)を混合し(質量比で90:5:5)、スラリー状合剤を調整した。この合剤を厚さ20μmのステンレス鋼箔上に塗布し、仮乾燥した後、加熱処理(減圧中、160℃、5時間以上)して負極を得た。
ケッチェンブラックは、直径3〜500nm程度の炭素微粒子群であり、主として、電極の導電性を高める導電剤として用いられる。
The negative electrode was prepared by mixing lithium titanate, CMC, and ketjen black (KB) (mass ratio of 90: 5: 5) to prepare a slurry mixture. This mixture was applied onto a 20 μm-thick stainless steel foil, temporarily dried, and then heat-treated (in a reduced pressure, at 160 ° C. for 5 hours or more) to obtain a negative electrode.
Ketjen black is a group of carbon fine particles having a diameter of about 3 to 500 nm, and is mainly used as a conductive agent that improves the conductivity of the electrode.

負極は、リチウムの吸蔵および放出が可能な負極活物質およびバインダーを含有するものである。ここで、リチウムの吸蔵および放出が可能な負極活物質とは、初期の充電においてリチウムイオンを吸蔵することができ、且つ、その後の充放電時においてリチウムイオンを吸蔵・放出することができるものであれば上記のものに限定されない。材料コストと、低温環境下での充電や高速充電によりリチウムデンドライドが発生しにくいという観点から、ハードカーボン、ソフトカーボン、りん酸スズ、シリコン、一酸化珪素、スズ、一酸化スズ、二酸化スズ、シュウ酸スズ、スズ−銅合金等であってもよい。   The negative electrode contains a negative electrode active material capable of occluding and releasing lithium and a binder. Here, the negative electrode active material capable of occluding and releasing lithium is capable of occluding lithium ions during initial charging, and occluding and releasing lithium ions during subsequent charging and discharging. If there is, it is not limited to the above. From the standpoint of material costs and the difficulty of generating lithium dendrites due to low temperature charging and high speed charging, hard carbon, soft carbon, tin phosphate, silicon, silicon monoxide, tin, tin monoxide, tin dioxide, It may be tin oxalate, tin-copper alloy, or the like.

ソフトカーボンは、易黒鉛化性炭素ともよばれ、不活性雰囲気中で加熱処理を施した際に黒鉛構造となりやすいカーボン材料であり、ハードカーボンは、難黒鉛化性炭素ともよばれ、黒鉛構造の発達が抑えられた不規則な構造を持つものカーボン材料であり、両者のカーボンは、主として、リチウム二次電池の負極活物質として用いられる。   Soft carbon, also called graphitizable carbon, is a carbon material that tends to have a graphite structure when heat-treated in an inert atmosphere. Hard carbon, also called non-graphitizable carbon, has developed a graphite structure. A carbon material having a suppressed and irregular structure, and both carbons are mainly used as a negative electrode active material of a lithium secondary battery.

正極は、リン酸鉄リチウム、CMC、活性炭、およびKBを混合し(質量比で89:4:2:5)、スラリー状合剤を調整した。この合剤を厚さ20μmのステンレス鋼箔上に塗布し、仮乾燥した後、加熱処理(減圧中、160℃、5時間以上)して正極を得た。   The positive electrode was prepared by mixing lithium iron phosphate, CMC, activated carbon, and KB (89: 4: 2: 5 by mass ratio) to prepare a slurry mixture. This mixture was applied onto a stainless steel foil having a thickness of 20 μm, temporarily dried, and then heat-treated (during decompression, 160 ° C., 5 hours or more) to obtain a positive electrode.

正極は、リチウムの吸蔵および放出が可能な正極活物質およびバインダーを含有するものである。ここで、リチウムの吸蔵および放出が可能な正極活物質とは、初期の充電においてリチウムイオンを吸蔵することができ、且つ、その後の充放電時においてリチウムイオンを吸蔵・放出することができるものであれば上記のものに限定されない。酸化還元電位とリチウムイオンの吸蔵および放出が可能な量の観点から、例えば、コバルト酸リチウム、ニッケル酸リチウム、コバルトマンガンニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、酸化バナジウム系材料、硫黄系材料、グラファイト等の既存のものが挙げられる。材料コストと高温耐久性の観点から、正極の活物質はリン酸鉄リチウムが好ましい。   The positive electrode contains a positive electrode active material capable of inserting and extracting lithium and a binder. Here, the positive electrode active material capable of occluding and releasing lithium is capable of occluding lithium ions in the initial charge, and occluding and releasing lithium ions during subsequent charging and discharging. If there is, it is not limited to the above. From the viewpoint of the redox potential and the amount capable of occlusion and release of lithium ions, for example, lithium cobaltate, lithium nickelate, lithium cobalt manganese nickelate, lithium manganate, lithium iron phosphate, vanadium oxide-based materials, sulfur-based Examples include materials and existing materials such as graphite. From the viewpoint of material cost and high-temperature durability, the positive electrode active material is preferably lithium iron phosphate.

セパレータとしてポリプロピレンの微多孔膜を用いた。セパレータは、リチウムイオンを透過させるが電子を透過させない素材であればポリプロピレンに限定されない。例えば、ポリエチレン、ポリエステル、セルロース、アラミド、ポリアミド等の樹脂からなる多孔質シート、ガラスフィルター、不織布、織布等をセパレータを形成する素材として用いることができる。   A polypropylene microporous membrane was used as a separator. The separator is not limited to polypropylene as long as it is a material that transmits lithium ions but does not transmit electrons. For example, a porous sheet made of a resin such as polyethylene, polyester, cellulose, aramid, or polyamide, a glass filter, a nonwoven fabric, or a woven fabric can be used as a material for forming the separator.

電解液として1mol/LのLiPF/EC:DEC(50:50vol%)を採用した。電解液は、リチウム二次電池で一般的に用いられている非水電解質であればよい。電解液に使用される電解質は、リチウムイオンを含有する必要があることから、リチウム二次電池で用いられるものであれば上記のものに限定されないが、その電解質塩としては、リチウム塩が好適である。このリチウム塩としては、例えば、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウム及びトリフルオロメタンスルホン酸イミドリチウムよりなる群から選択される少なくとも一種を用いることができる。上記リチウム塩は、電気的陰性度が高く、イオン化しやすいことから、充放電サイクル特性に優れ、二次電池の充放電容量を向上させることができる。 As the electrolytic solution, 1 mol / L LiPF 6 / EC: DEC (50:50 vol%) was employed. The electrolyte solution may be a non-aqueous electrolyte that is generally used in lithium secondary batteries. Since the electrolyte used in the electrolyte solution needs to contain lithium ions, the electrolyte salt is not limited to the above as long as it is used in a lithium secondary battery, but a lithium salt is preferable as the electrolyte salt. is there. As the lithium salt, for example, at least one selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and lithium trifluoromethanesulfonate imide may be used. it can. Since the lithium salt has a high electronegative property and is easily ionized, it has excellent charge / discharge cycle characteristics and can improve the charge / discharge capacity of the secondary battery.

上記電解質の溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、γ−ブチロラクトン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、スルホラン、メチルスルホラン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシドよりなる群から選択される少なくとも一種を用いることができ、特に、プロピレンカーボネート単体、エチレンカーボネートとジエチルカーボネートとの混合物、又はγ−ブチロラクトン単体が好適である。   Examples of the solvent for the electrolyte include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), γ-butyrolactone, 2-methyltetrahydrofuran, 1,3-dioxolane, 4- At least selected from the group consisting of methyl-1,3-dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methyl sulfolane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide One kind can be used, and propylene carbonate alone, a mixture of ethylene carbonate and diethyl carbonate, or γ-butyrolactone alone is particularly suitable.

なお、上記エチレンカーボネートとジエチルカーボネートとの混合物の混合比は、エチレンカーボネート及びジエチルカーボネートともに10〜90vol%の範囲で任意に調整することができる。あるいは、溶媒を用いず、固体電解質でもかまわない。   The mixing ratio of the mixture of ethylene carbonate and diethyl carbonate can be arbitrarily adjusted in the range of 10 to 90 vol% for both ethylene carbonate and diethyl carbonate. Alternatively, a solid electrolyte may be used without using a solvent.

負極の作製方法としては、例えば、負極活物質、バインダーおよび必要に応じて導電剤を添加した粉末に、溶剤又は水を加えてペースト状にしたものを、集電体上に塗布成形することで製造することができる。同様に、正極の製造方法としては、正極活物質、バインダー、および必要に応じて導電剤を添加した粉末に溶剤又は水を加えてペースト状にしたものを、集電体上に塗布成形したものを使用することができる。   As a method for producing a negative electrode, for example, a powder obtained by adding a negative electrode active material, a binder, and, if necessary, a conductive agent to a paste by adding a solvent or water is applied and molded on a current collector. Can be manufactured. Similarly, as a method for producing the positive electrode, a powder obtained by adding a positive electrode active material, a binder, and, if necessary, a conductive agent to a paste by adding a solvent or water is applied and molded on a current collector. Can be used.

導電剤としては、ケッチェンブラック(KB)を用いたが、導電性を有する粉末であれば特に制約はないが、低い材料コストであり、しかも高い導電性を有する、炭素材料が好ましい。例えば、アセチレンブラック(AB)、黒鉛、カーボンファイバー、カーボンチューブ、非晶質炭素等の炭素材料を、一種単独で用いてもよいし、または二種以上を併用してもよい。   Ketjen black (KB) was used as the conductive agent, but there is no particular limitation as long as it is a conductive powder, but a carbon material having low material cost and high conductivity is preferable. For example, carbon materials such as acetylene black (AB), graphite, carbon fiber, carbon tube, and amorphous carbon may be used singly or in combination of two or more.

バインダーとしては、カルボキシメチルセルロース(CMC)を用いた。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル、スチレンブタジエンゴム、スチレン−エチレン−ブチレン−スチレン共重合体、カルボキシメチルセルロース等の材料を一種単独で用いてもよく、二種以上を併用してもよい。高温耐久性の観点から、バインダーは、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル、カルボキシメチルセルロース等が好ましい。なかでも、カルボキシメチルセルロースは溶媒に水を用いることができるためより好ましい。
集電体としては、ステンレス鋼を用いたが、電子伝導性を有し、保持した負極材料に通電し得る材料であればこれに限定されない。
As the binder, carboxymethyl cellulose (CMC) was used. For example, polyvinylidene fluoride, polytetrafluoroethylene, polyimide, polyamide, polyamideimide, polyacryl, styrene butadiene rubber, styrene-ethylene-butylene-styrene copolymer, carboxymethyl cellulose, etc. may be used alone, Two or more kinds may be used in combination. From the viewpoint of high temperature durability, the binder is preferably polyimide, polyamide, polyamideimide, polyacryl, carboxymethylcellulose, or the like. Among these, carboxymethyl cellulose is more preferable because water can be used as a solvent.
As the current collector, stainless steel is used. However, the current collector is not limited to this as long as the material has electron conductivity and can conduct electricity to the held negative electrode material.

例えば、C、Ti、Cr、Ni、Au、Al等の導電性物質、および、これら導電性物質の2種類以上を含有する合金(例えば、ステンレス鋼)、導電性を有するガラスやポリマーなどを使用し得る。なお、第2電極が負極である場合、集電体は、電気伝導性が高く、電解液中の安定性がよい観点とリチウムと合金化しにくい材質が好ましく、具体的には、C、Ti、Cr、Ni、Cu、Au、ステンレス鋼等が好ましく、さらに材料コストの観点からC、Ni、Cu、ステンレス鋼等が好ましい。   For example, conductive materials such as C, Ti, Cr, Ni, Au, and Al, alloys containing two or more of these conductive materials (for example, stainless steel), conductive glass and polymers, etc. are used. Can do. In the case where the second electrode is a negative electrode, the current collector is preferably made of a material having high electrical conductivity and good stability in the electrolytic solution and not easily alloyed with lithium. Specifically, C, Ti, Cr, Ni, Cu, Au, stainless steel, and the like are preferable, and C, Ni, Cu, stainless steel, and the like are more preferable from the viewpoint of material cost.

第2電極が正極である場合、集電体は、電気伝導性が高く、電解液中の安定性とリチウムと合金化しにくい材質が好ましく、具体的には、C、Al、ステンレス鋼等が好ましい。集電体の形状には棒状を採用したが、この他、線状、板状、箔状、網状、織布、不織布、エキスパンド、多孔体又は発泡体があり、このうち充填密度を高めることができること、出力特性が良好なことから、エキスパンド、多孔体又は発泡体が好ましい。   When the second electrode is a positive electrode, the current collector is preferably made of a material that has high electrical conductivity and is not easily alloyed with lithium and stability in the electrolyte, and specifically, C, Al, stainless steel, etc. are preferred. . The shape of the current collector is a rod, but in addition, there are linear, plate-like, foil-like, net-like, woven fabric, non-woven fabric, expand, porous body or foam, among which the packing density can be increased. Expandable, porous or foamed materials are preferred because they can be produced and output characteristics are good.

外装体は、好ましくは缶であってよく、鉄(Fe)、銅(Cu)、ニッケル(Ni)、アルミニューム(Al)、チタン(Ti)、クロム(Cr)、金(Au)、ステンレス鋼などの金属であればよい。更に、導電性のガラス、カーボン(C)やポリマーなどであってもよいが、熱伝導性と電子導電性の観点から、鉄、銅、ニッケル、アルミニューム、金、ステンレス鋼等が好ましい。なお、第1電極が正極である場合は、使用する活物質によって異なるが、耐酸化性の観点から、アルミニューム、ステンレス鋼等が好ましい。第1電極が負極である場合は、使用する活物質によって異なるが、耐還元性の観点から、銅、ニッケル、ステンレス鋼等が好ましい。本実施形態においては、ともにステンレス鋼を用いた。   The outer package may be a can, preferably iron (Fe), copper (Cu), nickel (Ni), aluminum (Al), titanium (Ti), chromium (Cr), gold (Au), stainless steel. Any metal can be used. Furthermore, although conductive glass, carbon (C), a polymer, etc. may be sufficient, iron, copper, nickel, aluminum, gold | metal | money, stainless steel etc. are preferable from a viewpoint of heat conductivity and electronic conductivity. In addition, when a 1st electrode is a positive electrode, although it changes with active materials to be used, an aluminum, stainless steel, etc. are preferable from a viewpoint of oxidation resistance. When the first electrode is a negative electrode, copper, nickel, stainless steel, and the like are preferable from the viewpoint of reduction resistance, although depending on the active material used. In this embodiment, stainless steel is used for both.

本発明に係る積層電池は、集電体と第2電極が接着剤により接合されている。これは、導電性を有する接着剤により集電体と第2電極を接合することによって、例え、第2電極に設けた穴の径が集電体のネジの谷の外径より大きくなっても、電気的に第2電極と集電体の接触を確保することが可能になるからである。さらに、集電体と第2電極とを接着剤により接合することで組立加工時に電極が集電体から抜けてしまうのを確実に防止することができる。   In the laminated battery according to the present invention, the current collector and the second electrode are joined by an adhesive. Even if the diameter of the hole provided in the second electrode is larger than the outer diameter of the screw valley of the current collector, for example, by joining the current collector and the second electrode with a conductive adhesive. This is because it is possible to ensure electrical contact between the second electrode and the current collector. Furthermore, by joining the current collector and the second electrode with an adhesive, it is possible to reliably prevent the electrode from falling out of the current collector during assembly processing.

そして、好ましくは当該接着剤が、前記電解液で溶解しない樹脂と炭素粉末から構成され、その混合比が、全体を100質量%とすると、前記電解液で溶解しない樹脂が30〜90質量%、炭素粉末が10〜70質量%であるところ、混合比を電解液で溶解しない樹脂が30〜90質量%に限定した理由は、30質量%未満であると炭素粉末が嵩高いため、十分な接着性を確保しにくく、90質量%を超える場合は、炭素粉末を混合しても十分な導電性を確保しにくいからである。したがって、電解液で溶解しない樹脂は30〜90質量%が好ましく、50〜70質量%がより好ましい。同様に、炭素粉末は、10〜70質量%であることが好ましく、30〜50質量%であることがより好ましい。   And preferably, the adhesive is composed of a resin that does not dissolve in the electrolytic solution and carbon powder, and when the mixing ratio is 100% by mass, the resin that does not dissolve in the electrolytic solution is 30 to 90% by mass, When the carbon powder is 10 to 70% by mass, the reason why the resin that does not dissolve in the electrolytic solution is limited to 30 to 90% by mass is that the carbon powder is bulky if it is less than 30% by mass, and sufficient adhesion is achieved. This is because it is difficult to ensure sufficient conductivity, and when it exceeds 90% by mass, it is difficult to ensure sufficient conductivity even if carbon powder is mixed. Therefore, the resin that does not dissolve in the electrolytic solution is preferably 30 to 90% by mass, and more preferably 50 to 70% by mass. Similarly, it is preferable that carbon powder is 10-70 mass%, and it is more preferable that it is 30-50 mass%.

また、電解液で溶解しない樹脂としてポリイミドを採用した。電解液で溶解しない樹脂とは、ポリフッ化ビニリデン(PVdF)、ポリビニルアルコール(PVA)、エチレンビニルアルコール(EVA)、ポリテトラフルオロエチレン、ポリイミド(PI)、ポリアミド、ポリアミドイミド、ポリアクリル、スチレンブタジエンゴム(SBR)、スチレン−エチレン−ブチレン−スチレン共重合体(SEBS)、カルボキシメチルセルロース(CMC)、ポリアクリル、等が挙げられる。このうち、電解液に安定で且つ接着性の観点から、CMC、PVA、ポリアクリル、ポリイミド、ポリアミド、ポリアミドイミドが好ましい。なかでも、耐熱性の観点から、ポリイミドがより好ましい   In addition, polyimide was adopted as a resin that does not dissolve in the electrolytic solution. Resins that do not dissolve in the electrolyte include polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), ethylene vinyl alcohol (EVA), polytetrafluoroethylene, polyimide (PI), polyamide, polyamideimide, polyacryl, styrene butadiene rubber (SBR), styrene-ethylene-butylene-styrene copolymer (SEBS), carboxymethylcellulose (CMC), polyacryl, and the like. Among these, CMC, PVA, polyacryl, polyimide, polyamide, and polyamideimide are preferable from the viewpoint of being stable in the electrolytic solution and adhesiveness. Of these, polyimide is more preferable from the viewpoint of heat resistance.

図3に本発明の実施形態に係る円筒型積層電池の軸方向の概略断面図を示す。図3に示す円筒型積層電池11(以下、単に積層電池という)は、外装体15と集電体17と外装体内部に収納される電極体13を主な構成要素として備えている。外装体15は、有底の円筒缶12と、円筒缶12の開口部12cに取付けられた円盤状の蓋部材16とから構成されている。円筒缶12と蓋部材16はステンレス鋼でできているが、他の金属であってもよい。蓋部材16の外径は円筒缶12の開口部12cの内径より少し大きく、蓋部材16は電極体13収納後に円筒缶開口部12cにおいて絞まり嵌めして嵌合されている。   FIG. 3 is a schematic cross-sectional view in the axial direction of the cylindrical laminated battery according to the embodiment of the present invention. A cylindrical laminated battery 11 (hereinafter simply referred to as a laminated battery) shown in FIG. 3 includes an exterior body 15, a current collector 17, and an electrode body 13 housed inside the exterior body as main components. The exterior body 15 includes a bottomed cylindrical can 12 and a disk-shaped lid member 16 attached to the opening 12 c of the cylindrical can 12. The cylindrical can 12 and the lid member 16 are made of stainless steel, but may be other metals. The outer diameter of the lid member 16 is slightly larger than the inner diameter of the opening 12 c of the cylindrical can 12, and the lid member 16 is tightly fitted in the cylindrical can opening 12 c after the electrode body 13 is stored.

電極体13は、正極活物質を含む正極13aと、負極活物質を含む負極13bと、正極13aと負極13bの間に介在してイオンは透過するが電子を透過させないセパレータ13cから構成されていて、円筒缶12の軸方向(図3のX方向)に積層して外装体15の内部に収納されている。なお、電解液(図示せず)は、セパレータ13cに保持されている。正極13a、負極13b、セパレータ13cはいずれも中心に穴の開いた、円盤状の形状を有しており、正極13aの外径13abは円筒缶12の内径12aよりも小さく、正極13aと円筒缶12は接触していない。一方、負極13bの外径13bbは円筒缶12の内径12aより大きく、負極の外周13bbは円筒缶12の内面12aと接触しており、負極13bと円筒缶12は電気的に接続されている。好ましくは、負極13bの外径13bbは円筒缶12の内径12aより100μm大きい。   The electrode body 13 includes a positive electrode 13a including a positive electrode active material, a negative electrode 13b including a negative electrode active material, and a separator 13c that is interposed between the positive electrode 13a and the negative electrode 13b and transmits ions but does not transmit electrons. The cylindrical can 12 is stacked in the axial direction (X direction in FIG. 3) and stored in the exterior body 15. In addition, the electrolyte solution (not shown) is hold | maintained at the separator 13c. Each of the positive electrode 13a, the negative electrode 13b, and the separator 13c has a disk shape with a hole in the center. The outer diameter 13ab of the positive electrode 13a is smaller than the inner diameter 12a of the cylindrical can 12, and the positive electrode 13a and the cylindrical can 12 is not in contact. On the other hand, the outer diameter 13bb of the negative electrode 13b is larger than the inner diameter 12a of the cylindrical can 12, the outer periphery 13bb of the negative electrode is in contact with the inner surface 12a of the cylindrical can 12, and the negative electrode 13b and the cylindrical can 12 are electrically connected. Preferably, the outer diameter 13bb of the negative electrode 13b is 100 μm larger than the inner diameter 12a of the cylindrical can 12.

集電体17は、ステンレス鋼でできており、棒状の軸部17aと軸部17aの一端に配された止め部17bとを有している。集電体17の軸部17aは、正極13aと負極13bとセパレータ13cから構成される電極体13の中心を、外装体15の軸方向(図3のX方向)に貫通している。正極13aの中心に設けた穴13aaの径は、軸部17aの外径より小さく、正極13aは軸部17aと接触して電気的に接続されている。一方、負極13bの中心に設けた穴13baの径は、軸部17aの外径より大きく、負極13bは軸部17aと接触せず電気的に絶縁されている。   The current collector 17 is made of stainless steel, and has a rod-shaped shaft portion 17a and a stopper portion 17b disposed at one end of the shaft portion 17a. The shaft portion 17a of the current collector 17 passes through the center of the electrode body 13 including the positive electrode 13a, the negative electrode 13b, and the separator 13c in the axial direction of the exterior body 15 (X direction in FIG. 3). The diameter of the hole 13aa provided in the center of the positive electrode 13a is smaller than the outer diameter of the shaft portion 17a, and the positive electrode 13a is in contact with and electrically connected to the shaft portion 17a. On the other hand, the diameter of the hole 13ba provided at the center of the negative electrode 13b is larger than the outer diameter of the shaft portion 17a, and the negative electrode 13b is not in contact with the shaft portion 17a and is electrically insulated.

集電体17の側面にはネジ溝加工がされていてネジ部17cを構成している。具体的には、集電体17は模式的にその断面を図4に示すように、谷の径がdであり、山の径がDであるネジ構造を有している(d<D)。ネジの仕様はJISにいうMネジであるがISO仕様であってもよい。   The side surface of the current collector 17 is threaded to form a screw portion 17c. Specifically, the current collector 17 has a screw structure in which a trough diameter is d and a crest diameter is D (d <D) as schematically shown in FIG. . The specification of the screw is the M screw referred to in JIS, but may be the ISO specification.

図4は、集電体17と電極13の関係を模式的に表した断面図である。この図に示すように、正極13に設けた穴13aaの径は、ネジ部17cの谷の径(d)より小さく、正極13aは軸部17aに螺号して接触している。一方、負極13bに設けた穴13baの径は、ネジ部17cの山の径(D)より大きく、負極13bは軸部17aと接触していない。   FIG. 4 is a cross-sectional view schematically showing the relationship between the current collector 17 and the electrode 13. As shown in this figure, the diameter of the hole 13aa provided in the positive electrode 13 is smaller than the diameter (d) of the valley of the screw portion 17c, and the positive electrode 13a is screwed into contact with the shaft portion 17a. On the other hand, the diameter of the hole 13ba provided in the negative electrode 13b is larger than the diameter (D) of the crest of the screw portion 17c, and the negative electrode 13b is not in contact with the shaft portion 17a.

本実施例において、集電体17はM4のボルトを利用しており、その山の径(D)は4.0mm、谷の径(d)は3.7mmである。そして正極およびセパレータの穴の径13aa、13caは3.5mmである。   In this embodiment, the current collector 17 uses M4 bolts, and the peak diameter (D) is 4.0 mm and the valley diameter (d) is 3.7 mm. The diameters 13aa and 13ca of the positive and separator holes are 3.5 mm.

図5に他の実施形態に係る集電体17’の平面図と側面図を示す。集電体17’の側面全周に渡り軸方向にV字状の溝が設けられていて、その断面は鋸歯状となっている。鋸歯状の先端部は多少の丸みを帯びていてもよい。集電体の断面が鋸歯状であれば、電極との接触面が大きく、長手方向に圧密しても電極が溝に沿ってスライドして接触不良を生じにくい。一般に、二次電池は充放電を繰り返す過程において、膨張収縮をするところ、充放電過程において電極が変形しても、電極が溝に沿ってスライドするので電極が破損することがない。   FIG. 5 shows a plan view and a side view of a current collector 17 ′ according to another embodiment. A V-shaped groove is provided in the axial direction over the entire circumference of the side surface of the current collector 17 ′, and the cross section thereof has a sawtooth shape. The serrated tip may be somewhat rounded. If the cross section of the current collector is sawtooth-shaped, the contact surface with the electrode is large, and even if it is consolidated in the longitudinal direction, the electrode slides along the groove and hardly causes contact failure. In general, a secondary battery expands and contracts in the process of repeated charge and discharge, and even if the electrode is deformed in the charge and discharge process, the electrode slides along the groove so that the electrode is not damaged.

電極体13は、集電体の止め部17bの上に順次積み重ねるように配されていて、止め部17bは電極体13が集電体17の端部から脱落するのを防いでいる。止め部17bの形状は円盤状である。止め部17bは、円筒缶底部12bに配置されるのであるが、円筒缶底部12bと止め部17bとの間には絶縁板14が配せられていて、集電体17と円筒缶12が接触して電気的に短絡するのを防止している。止め部17bと反対側の軸部17aの端部は、蓋部材16の中央に設けられた軸受18によって支持されている。蓋部材16と軸部17aとが電気的短絡を起こすことを防止するために、軸受18は絶縁性材料でできている。
蓋部材16を貫通した軸部は正極端子17dを構成する。円筒缶12は負極端子として機能する。
次に実施例1の作用および効果について説明する。
<冷却構造について>
The electrode body 13 is disposed so as to be sequentially stacked on the current collector stop portion 17 b, and the stop portion 17 b prevents the electrode body 13 from falling off the end of the current collector 17. The shape of the stop portion 17b is a disk shape. The stopper portion 17b is disposed on the cylindrical can bottom portion 12b, but an insulating plate 14 is disposed between the cylindrical can bottom portion 12b and the stopper portion 17b so that the current collector 17 and the cylindrical can 12 are in contact with each other. This prevents an electrical short circuit. The end of the shaft portion 17a opposite to the stop portion 17b is supported by a bearing 18 provided at the center of the lid member 16. In order to prevent an electrical short circuit between the lid member 16 and the shaft portion 17a, the bearing 18 is made of an insulating material.
A shaft portion penetrating the lid member 16 constitutes a positive electrode terminal 17d. The cylindrical can 12 functions as a negative electrode terminal.
Next, operations and effects of the first embodiment will be described.
<About cooling structure>

負極13bの外径13bbは円筒缶12の内径12aより大きいので、負極13bは円筒缶12に強く押し当てられ、密に接触している。負極13bで発生した熱は直接円筒缶12に伝えられる。また、正極13aで発生した熱はセパレータ13cを介して負極13bに伝えられる。セパレータ13cは熱を伝えにくいが、薄く(本実施例においては10μm)、1枚のみであるので、熱の伝導に大きな妨げとならない。以上のようにして、電極13a,13bで発生した熱は小さな熱勾配で円筒缶12に伝えられ、積層電池内部の温度上昇を抑制することを可能にしている。   Since the outer diameter 13bb of the negative electrode 13b is larger than the inner diameter 12a of the cylindrical can 12, the negative electrode 13b is strongly pressed against the cylindrical can 12 and is in close contact therewith. The heat generated in the negative electrode 13 b is directly transmitted to the cylindrical can 12. The heat generated in the positive electrode 13a is transferred to the negative electrode 13b through the separator 13c. Although the separator 13c is difficult to transfer heat, it is thin (10 μm in this embodiment) and only one sheet does not hinder heat conduction. As described above, the heat generated in the electrodes 13a and 13b is transmitted to the cylindrical can 12 with a small thermal gradient, and it is possible to suppress the temperature rise inside the laminated battery.

このようにして、積層電池の中心部における温度上昇を小さくすることができるので、冷媒を流すためのパイプ等を電池内部に設ける必要がないので、コンパクトな構造で温度上昇を抑えることができる。更には、外装体12は外部に露出しているので冷却は比較的容易に行うことができ、従来の捲回電池に比べて、効果的に温度上昇を抑えることが可能となる。ここで、本発明の実施形態に係る積層電池と従来型の捲回電池の温度上昇の相違を計算例で示す。
捲回電池の総括熱伝達係数(U1)は、数3で示されるところ、本発明に係る積層電池
の総括熱伝達係数(U2)は、数4で示される。
In this way, since the temperature rise at the center of the laminated battery can be reduced, there is no need to provide a pipe or the like for flowing a refrigerant inside the battery, and thus the temperature rise can be suppressed with a compact structure. Furthermore, since the exterior body 12 is exposed to the outside, it can be cooled relatively easily, and the temperature rise can be effectively suppressed as compared with the conventional wound battery. Here, the difference in temperature rise between the laminated battery according to the embodiment of the present invention and the conventional wound battery is shown as a calculation example.
The overall heat transfer coefficient (U 1 ) of the wound battery is expressed by Equation 3, and the overall heat transfer coefficient (U 2 ) of the laminated battery according to the present invention is expressed by Equation 4.

Figure 2013157158
Figure 2013157158

Figure 2013157158
ここで、18650型電池を例に取り計算してみる。捲回電池の諸元は、
Figure 2013157158
Here, calculation will be made taking an 18650 type battery as an example. The specifications of the wound battery

t = 0.5mm , t+ = t- = ts = 10μm , k = k+ = k- = 40Wm-2 deg-1
h0 = 100 Wm-2 deg-1 , h1 = 1 Wm-2 deg-1 , ks = 1 Wm-2 deg-1 , n = 9/0.03 = 300
となり、これらの値を数3に代入して、U1 = 0.0011 Wm-2 deg-1を得る。
一方、本実施形態に係る積層電池の諸元は、
t = 0.5mm, t + = t - = t s = 10μm, k = k + = k - = 40Wm -2 deg -1
h 0 = 100 Wm -2 deg -1 , h 1 = 1 Wm -2 deg -1 , k s = 1 Wm -2 deg -1 , n = 9 / 0.03 = 300
By substituting these values into Equation 3, U 1 = 0.0011 Wm −2 deg −1 is obtained.
On the other hand, the specifications of the laminated battery according to this embodiment are as follows:

h0 = 100 Wm-2 deg-1 , t = 0.5mm , k = 40Wm-2 deg-1
h1 = 10000 Wm-2 deg-1 , t* = 0.009m , k* = 40Wm-2 deg-1
であるので、これらの値を数4に代入して、U2 = 100 Wm-2 deg-1を得る。
両者を比較すると、本発明に係る冷却構造は、従来の捲回電池比べて10万倍近く熱伝達に優れているといえる。
<第一実施形態の変形例>
h 0 = 100 Wm -2 deg -1 , t = 0.5mm, k = 40Wm -2 deg -1
h 1 = 10000 Wm -2 deg -1 , t * = 0.009m, k * = 40Wm -2 deg -1
Therefore, by substituting these values into Equation 4, U 2 = 100 Wm −2 deg −1 is obtained.
Comparing the two, it can be said that the cooling structure according to the present invention is excellent in heat transfer nearly 100,000 times as compared with the conventional wound battery.
<Modification of First Embodiment>

図6に本発明の実施例1に係る積層電池の変形例を示す。円筒型積層電池90は、円筒缶92の内部に電極集合体Bを収納して構成されている。電極集合体Bは、図7(b)に示すように、鉄にニッケルメッキを施した導電性の材料でできた棒状の集電体97と、電極体93から主として構成されている。そして、集電体97の側部外周にネジ溝加工したネジ部97cが設けられている。集電体97は、正極93aと負極93bとセパレータ93cから構成される電極体93の中心を貫通している。負極93bの中心に設けた穴93baの径は、ネジ部97cの谷の径(d)より小さく、負極93bは集電体97に接触している。一方、正極93aに設けた穴93aaの径は、ネジ部97cの山の径(D)より大きく、正極93aは集電体97と接触していない。具体的には集電体97はM4のボルトを利用しており、その山の径(D)は4.0mm、谷の径(d)は3.7mmである。そして正極およびセパレータの穴の径93aa、93caは3.5mmである。   FIG. 6 shows a modification of the laminated battery according to Example 1 of the present invention. The cylindrical laminated battery 90 is configured by accommodating the electrode assembly B inside a cylindrical can 92. As shown in FIG. 7B, the electrode assembly B mainly includes a rod-shaped current collector 97 made of a conductive material obtained by applying nickel plating to iron, and an electrode body 93. Then, a threaded portion 97c having a threaded groove is provided on the outer periphery of the side of the current collector 97. The current collector 97 passes through the center of the electrode body 93 including the positive electrode 93a, the negative electrode 93b, and the separator 93c. The diameter of the hole 93ba provided at the center of the negative electrode 93b is smaller than the diameter (d) of the valley of the screw portion 97c, and the negative electrode 93b is in contact with the current collector 97. On the other hand, the diameter of the hole 93aa provided in the positive electrode 93a is larger than the diameter (D) of the crest of the screw portion 97c, and the positive electrode 93a is not in contact with the current collector 97. Specifically, the current collector 97 uses M4 bolts, and the diameter (D) of the peak is 4.0 mm and the diameter (d) of the valley is 3.7 mm. The diameters 93aa and 93ca of the positive and separator holes are 3.5 mm.

電極体93は、集電体97下方に位置する押板98bの上に順次積み重ねるように配されていて、押板98bは電極体93が集電体97の端部から脱落するのを防いでいる。押板98bは円盤状のステンレス鋼でできている。積み重ねた電極体93の最上部には押板98aが配されていて、押板98a,bにより電極体93が圧縮可能になっている。   The electrode bodies 93 are arranged so as to be sequentially stacked on a push plate 98b positioned below the current collector 97, and the push plate 98b prevents the electrode body 93 from dropping off from the end of the current collector 97. Yes. The pressing plate 98b is made of disc-shaped stainless steel. A push plate 98a is disposed on the uppermost portion of the stacked electrode bodies 93, and the electrode bodies 93 can be compressed by the push plates 98a and 98b.

電極集合体Bは、円筒缶92の軸方向(図6のX方向)に挿入されている。負極93bの外径93bbは円筒缶92の内径92aよりも小さく、負極93bと円筒缶92は接触していない。一方、正極93aの外径93abは円筒缶92の内径92aより大きく、正極の外周93abは円筒缶92の内面92aと接触しており、正極93aと円筒缶92は電気的に接続されている。円筒缶92の上部開口部は蓋部材96により覆われていて、電極集合体Bを円筒缶92の内部に密閉可能にしている。蓋部材96と円筒缶92の間には絶縁材99が配置されていて、蓋部材96と円筒缶92とが接触して電気的に短絡するのを防止している。   The electrode assembly B is inserted in the axial direction of the cylindrical can 92 (X direction in FIG. 6). The outer diameter 93bb of the negative electrode 93b is smaller than the inner diameter 92a of the cylindrical can 92, and the negative electrode 93b and the cylindrical can 92 are not in contact with each other. On the other hand, the outer diameter 93ab of the positive electrode 93a is larger than the inner diameter 92a of the cylindrical can 92, the outer periphery 93ab of the positive electrode is in contact with the inner surface 92a of the cylindrical can 92, and the positive electrode 93a and the cylindrical can 92 are electrically connected. The upper opening of the cylindrical can 92 is covered with a lid member 96 so that the electrode assembly B can be sealed inside the cylindrical can 92. An insulating material 99 is disposed between the lid member 96 and the cylindrical can 92 to prevent the lid member 96 and the cylindrical can 92 from contacting and electrically short-circuiting.

円筒缶底部92bには絶縁シート94が配置されていて、集電体の端部97bが円筒缶底部92b直接接触して、集電体17と円筒缶12が電気的に短絡するのを防止している。集電体の他方の端部97aには、下に凸の板状の弾性体からなる接続板91が取り付けられている。接続板の端部91aは蓋部材の底面96bに当接しており、蓋部材96により下方に付勢されている。これにより、集電体97と蓋部材96とは接続板91を介して電気的に接続された状態となっている。
蓋部材96の中央に設けた突起96aは負極端子として機能する。また、円筒缶92は、正極端子として機能する。
An insulating sheet 94 is disposed on the cylindrical can bottom portion 92b, and the current collector end portion 97b is in direct contact with the cylindrical can bottom portion 92b to prevent the current collector 17 and the cylindrical can 12 from being electrically short-circuited. ing. A connecting plate 91 made of a plate-like elastic body that protrudes downward is attached to the other end 97a of the current collector. The end portion 91 a of the connection plate is in contact with the bottom surface 96 b of the lid member and is urged downward by the lid member 96. As a result, the current collector 97 and the lid member 96 are electrically connected via the connection plate 91.
The protrusion 96a provided at the center of the lid member 96 functions as a negative electrode terminal. The cylindrical can 92 functions as a positive electrode terminal.

次に、本発明に係る積層電池の組み立て方法を、図7を用いて説明する。集電体97の側面に形成されたネジの谷の径(d)より小さい3.5mmの外径を有する丸棒95に、正極93aと負極93bの間にセパレータ93cが介在するように順次挿入して電極体93a,b,cを積み重ねた後、積み重ねた電極群の両端に押板98a,bを配して電極群を保持して、電極集電体Aを組立てる。そして、押板98a、bを介して電極群を圧縮して、圧縮状態を保持したまま丸棒95を引き抜き、代わりに集電体97を押板98a,bにより保持された電極群に圧力をかけながら回転させることによりネジ込む。このとき、押板98a,bは集電体97に螺号されるので電極群の圧縮状態を保持した状態で電極集合体Bを組立てることが可能となる。そして、電極集合体Bを円筒缶92内部に圧入して、空気抜きを行い、電解液を注入する。電解液の注入後に円筒缶92の開口部に蓋部材96を取り付けて、円筒缶92の開口部をかしめて、積層電池の密閉化を図る。   Next, a method for assembling the laminated battery according to the present invention will be described with reference to FIG. Sequentially inserted into a round bar 95 having an outer diameter of 3.5 mm smaller than the diameter (d) of the thread valley formed on the side surface of the current collector 97 so that the separator 93c is interposed between the positive electrode 93a and the negative electrode 93b. Then, after the electrode bodies 93a, b, c are stacked, the push plates 98a, 98b are arranged on both ends of the stacked electrode groups to hold the electrode groups, and the electrode current collector A is assembled. Then, the electrode group is compressed via the push plates 98a and 98b, and the round bar 95 is pulled out while maintaining the compressed state. Instead, the current collector 97 is pressed against the electrode group held by the push plates 98a and 98b. Screw in by rotating while applying. At this time, since the push plates 98a and 98b are screwed to the current collector 97, it is possible to assemble the electrode assembly B while maintaining the compressed state of the electrode group. Then, the electrode assembly B is press-fitted into the cylindrical can 92, air is evacuated, and an electrolytic solution is injected. After injection of the electrolytic solution, a lid member 96 is attached to the opening of the cylindrical can 92, and the opening of the cylindrical can 92 is crimped to seal the laminated battery.

図8に本発明の実施例2に係る円筒型積層電池を示す。図8(b)の平面図に示すように、電池は全体として角型形状を有している。図8(a)に示す角型積層電池71は、胴部材72と蓋部材73からなる外装体75と、正極活物質を含む正極74a、負極活物質を含む負極74bと、正負極74a,74bの間に介在してイオンは透過するが電子を透過させないセパレータ74cからなる電極体74を主な構成要素として有している。胴部材72は、有底の角型の容器であり、その開口部72cを蓋部材73で覆うことにより、胴部材72の内方に密閉空間を形成可能にしている。胴部材72と蓋部材73はステンレス鋼でできているが、他の金属であってもよい。   FIG. 8 shows a cylindrical laminated battery according to Example 2 of the present invention. As shown in the plan view of FIG. 8B, the battery as a whole has a square shape. A rectangular laminated battery 71 shown in FIG. 8A includes an outer package 75 including a body member 72 and a lid member 73, a positive electrode 74a including a positive electrode active material, a negative electrode 74b including a negative electrode active material, and positive and negative electrodes 74a and 74b. It has an electrode body 74 made up of a separator 74c, which is interposed between them and transmits ions but does not transmit electrons, as a main component. The body member 72 is a bottomed rectangular container, and the opening 72c is covered with a lid member 73 so that a sealed space can be formed inside the body member 72. The body member 72 and the lid member 73 are made of stainless steel, but may be other metals.

正極74aと負極74bとが、セパレータ74cを介して、胴部材72の軸方向(図8のY方向)に積層され外装体75の内部に収納されている。なお、電解液(図示せず)は、セパレータ74cに保持されている。正極74a、負極74b、セパレータ74cはいずれもシート状であって、負極74bの外方寸法74bbは胴部材72の内方寸法72aよりも小さく、負極74bと胴部材72は接触していない。一方、正極74aの外方寸法74abは胴部材72の内方寸法72aより大きく、正極74aの外周74abは胴部材72の内面72aに圧力をもって接触しており、正極74aは胴部材72に電気的に接続されている。よって、電極体74で発生した熱は、小さな熱勾配で直接胴部材72に伝えられるので、電極体74の温度上昇は抑制される。好ましくは、正極74aの外方寸法74abは胴部材72の内方寸法72aより100μm大きい。   The positive electrode 74a and the negative electrode 74b are stacked in the axial direction of the body member 72 (Y direction in FIG. 8) via the separator 74c and housed in the exterior body 75. Note that an electrolytic solution (not shown) is held in the separator 74c. The positive electrode 74a, the negative electrode 74b, and the separator 74c are all sheet-like. The outer dimension 74bb of the negative electrode 74b is smaller than the inner dimension 72a of the trunk member 72, and the negative electrode 74b and the trunk member 72 are not in contact with each other. On the other hand, the outer dimension 74ab of the positive electrode 74a is larger than the inner dimension 72a of the barrel member 72, the outer periphery 74ab of the positive electrode 74a is in contact with the inner surface 72a of the barrel member 72 with pressure, and the positive electrode 74a is electrically connected to the barrel member 72. It is connected to the. Therefore, since the heat generated in the electrode body 74 is directly transmitted to the body member 72 with a small thermal gradient, the temperature rise of the electrode body 74 is suppressed. Preferably, the outer dimension 74 ab of the positive electrode 74 a is 100 μm larger than the inner dimension 72 a of the body member 72.

集電体77は、ステンレス鋼でできており、逆円錐状になった皿部77bとこれに続く軸部77aを有している。軸部77aの側面にはネジ溝加工が施されていてネジ部77cを形成していて、集電体77は全体として皿ネジを構成している。   The current collector 77 is made of stainless steel, and has a dish portion 77b having an inverted conical shape and a shaft portion 77a following the plate portion 77b. The side surface of the shaft portion 77a is threaded to form a screw portion 77c, and the current collector 77 constitutes a countersunk screw as a whole.

正極74aと負極74bとセパレータ74cから構成される電極体74には穴74aa、74ba、74caが設けられていて、集電体77の軸部77aが、電極体74を外装体75の軸方向(図8のY方向)に貫通している。負極74bに設けた穴74baの径は、軸部77aの外径より小さく、負極74bは軸部77aと接触して電気的に接続されている。一方、正極74aに設けた穴74aaの径は、軸部77aの外径より大きく、正極74aは軸部77aと接触せず電気的に絶縁されている。 The electrode body 74 composed of the positive electrode 74a, the negative electrode 74b, and the separator 74c is provided with holes 74aa, 74ba, and 74ca, and the shaft portion 77a of the current collector 77 connects the electrode body 74 in the axial direction of the exterior body 75 ( It penetrates in the Y direction of FIG. The diameter of the hole 74ba provided in the negative electrode 74b is smaller than the outer diameter of the shaft portion 77a, and the negative electrode 74b is in contact with and electrically connected to the shaft portion 77a. On the other hand, the diameter of the hole 74aa provided in the positive electrode 74a is larger than the outer diameter of the shaft portion 77a, and the positive electrode 74a is electrically insulated without contacting the shaft portion 77a.

4本の集電体77(図8(b)参照)は、電極体74の下方に設けた連結板77dによって、互いに連結されている。すなわち、連結板77dに設けたネジ穴77daに集電体の下端部77caにおいてネジ部77cが螺号することにより集電体77と連結板77dが連結される。電極体74は、連結板77dの上に順次積み重ねるように配されていて、連結板77dは電極体74が集電体77の端部から脱落するのを防いでいる。胴部材底部72bと連結板77dの間には絶縁板76bが配せられていて、連結板77dが胴部材底部72bと接触して、集電体77と胴部材72が電気的に短絡するのを防いでいる。具体的には、連結板77dはポリプロピレンからなる絶縁板76bにその周囲が囲まれている。   The four current collectors 77 (see FIG. 8B) are connected to each other by a connecting plate 77d provided below the electrode body 74. That is, the current collector 77 and the connection plate 77d are connected by screwing the screw portion 77c into the screw hole 77da provided in the connection plate 77d at the lower end 77ca of the current collector. The electrode bodies 74 are arranged so as to be sequentially stacked on the connection plate 77 d, and the connection plate 77 d prevents the electrode body 74 from dropping from the end of the current collector 77. An insulating plate 76b is disposed between the trunk member bottom portion 72b and the connecting plate 77d. The connecting plate 77d comes into contact with the trunk member bottom portion 72b, and the current collector 77 and the trunk member 72 are electrically short-circuited. Is preventing. Specifically, the connecting plate 77d is surrounded by an insulating plate 76b made of polypropylene.

蓋部材73は、平板部73aと平板部から直角に曲がる折れ曲り部73bとを有している。折れ曲り部73bの内方であって、胴部材の開口部72cには、絶縁板76aが配置されていて、最上方に位置する電極体74が蓋部材73と接触して電気的に短絡するのを防止している。絶縁板76aの蓋部材73と反対側の面には、胴部材72の開口部外縁が嵌合する溝76aaが設けられている。溝76aaと胴部材72の開口部外縁の間にはポリイミドからなるシール材176が配されていて、外装体75内部を気密に保持している。同様の目的で、絶縁板76aの集電体軸部77aが貫通する穴にもポリイミドからなるシール材176が配されている。   The lid member 73 has a flat plate portion 73a and a bent portion 73b that bends at a right angle from the flat plate portion. An insulating plate 76a is disposed inside the bent portion 73b and in the opening 72c of the trunk member, and the uppermost electrode body 74 contacts the lid member 73 and is electrically short-circuited. Is preventing. A groove 76aa into which the outer edge of the opening of the body member 72 is fitted is provided on the surface of the insulating plate 76a opposite to the lid member 73. A sealing material 176 made of polyimide is disposed between the groove 76aa and the outer edge of the opening of the body member 72 to keep the inside of the exterior body 75 airtight. For the same purpose, a sealing material 176 made of polyimide is also disposed in a hole through which the current collector shaft portion 77a of the insulating plate 76a passes.

蓋部材73は、皿ネジとして作用する集電体77によって、連結板77dに接続されており、電極体74を介して胴部材72に固定されている。胴部材72は正極端子として機能し、蓋部材73は負極端子として機能する。
<組電池>
The lid member 73 is connected to the connecting plate 77 d by a current collector 77 that acts as a countersunk screw, and is fixed to the body member 72 via the electrode body 74. The body member 72 functions as a positive electrode terminal, and the lid member 73 functions as a negative electrode terminal.
<Battery assembly>

図9に、角型積層電池71を用いて組電池70を構成したときの概略構成図を示す。角型積層電池71の蓋部材の平板部73aと隣接する角型積層電池の胴部材の底部72bとを対向方向に積層して面接させることにより、複数の角型積層電池を直列に接続する。直列接続された角型積層電池は正極端子板78aと負極端子板78bとにより挟持されている。すなわち、胴部材72に面接する正極端子板78aと蓋部材73に面接する負極端子板78bを配して、筐体70aに収納して組電池70を構成する。吸引ファン79aと押し込みファン79bにより、外部から冷却空気を筐体内70aに供給して、組電池70の冷却を図る。組電池の出力は正極端子78ab、負極端子78bbから外部に取り出される。   FIG. 9 shows a schematic configuration diagram when the assembled battery 70 is configured using the prismatic stacked battery 71. A plurality of prismatic laminated batteries are connected in series by laminating the flat plate portion 73a of the lid member of the prismatic laminated battery 71 and the bottom portion 72b of the trunk member of the adjacent prismatic laminated battery in the facing direction. The series-connected prismatic laminated batteries are sandwiched between a positive terminal plate 78a and a negative terminal plate 78b. That is, the assembled battery 70 is configured by arranging a positive terminal plate 78 a that contacts the body member 72 and a negative terminal plate 78 b that contacts the lid member 73 and housed in the housing 70 a. The assembled battery 70 is cooled by supplying cooling air from the outside to the inside 70 a by the suction fan 79 a and the pushing fan 79 b. The output of the assembled battery is taken out from the positive terminal 78ab and the negative terminal 78bb.

図10に本発明の実施例3に係るパイプ積層電池(以下、単に積層電池という)の軸方向の概略断面図を示す。図10に示す積層電池21は、外装体25と集電体27と外装体内部に収納される電極体23を主な構成要素として備えている。外装体25は、円管22と、円管22の両端にある開口部22bに取付けられた円盤状の蓋部材26とから構成されている。円管22と蓋部材26はステンレス鋼でできているが、他の金属であってもよい。蓋部材26の外径は円管22の開口部22bの内径より少し大きく、蓋部材26は電極体23の収納後に円管開口部22bにおいて絞まり嵌めして嵌合されている。   FIG. 10 is a schematic sectional view in the axial direction of a pipe laminated battery (hereinafter simply referred to as a laminated battery) according to Example 3 of the present invention. The laminated battery 21 shown in FIG. 10 includes an exterior body 25, a current collector 27, and an electrode body 23 housed in the exterior body as main components. The exterior body 25 includes a circular tube 22 and a disk-shaped lid member 26 attached to the opening portions 22b at both ends of the circular tube 22. The circular tube 22 and the lid member 26 are made of stainless steel, but may be other metals. The outer diameter of the lid member 26 is slightly larger than the inner diameter of the opening 22 b of the circular tube 22, and the lid member 26 is tightly fitted in the circular tube opening 22 b after the electrode body 23 is stored.

電極体23は、正極活物質を含む正極23aと、負極活物質を含む負極23bと、正極23aと負極23bの間に介在してイオンは透過するが電子を透過させないセパレータ23cから構成されていて、円管22の軸方向(図10のX方向)に積層して外装体25の内部に収納されている。なお、電解液(図示せず)は、セパレータ23cに保持されている。正極23a、負極23b、セパレータ23cはいずれも中心に穴の開いた、円盤状の形状を有しており、負極23bの外径23bbは円管22の内径22aよりも小さく、負極23bは円管22に接触していない。一方、正極23aの外径23abは円管22の内径22aより大きく、正極23aは円管22の内面22aと接触しており、円管22に電気的に接続されている。好ましくは、正極23aの外径23abは円管22の内径22aより100μm大きい。   The electrode body 23 includes a positive electrode 23a including a positive electrode active material, a negative electrode 23b including a negative electrode active material, and a separator 23c interposed between the positive electrode 23a and the negative electrode 23b to transmit ions but not transmit electrons. The tubes 22 are stacked in the axial direction of the circular tube 22 (X direction in FIG. 10) and housed in the exterior body 25. In addition, the electrolyte solution (not shown) is hold | maintained at the separator 23c. Each of the positive electrode 23a, the negative electrode 23b, and the separator 23c has a disk shape with a hole in the center. The outer diameter 23bb of the negative electrode 23b is smaller than the inner diameter 22a of the circular tube 22, and the negative electrode 23b is a circular tube. 22 is not touching. On the other hand, the outer diameter 23ab of the positive electrode 23a is larger than the inner diameter 22a of the circular tube 22, and the positive electrode 23a is in contact with the inner surface 22a of the circular tube 22 and is electrically connected to the circular tube 22. Preferably, the outer diameter 23ab of the positive electrode 23a is 100 μm larger than the inner diameter 22a of the circular tube 22.

集電体27は、ステンレス鋼でできており、中央部分の軸部27aと両端部分の端部27bとを有している。集電体27の軸部27aは、正極23aと負極23bとセパレータ23cから構成される電極体23の中心を、外装体25の軸方向(図10のX方向)に貫通している。負極23bの中心に設けた穴23baの径は、軸部27aの外径より小さく、負極23bは軸部27aと接触して電気的に接続されている。一方、正極23aの中心に設けた穴23aaの径は、軸部27aの外径より大きく、正極23aは軸部27aと接触せず電気的に絶縁されている。また、集電体27の側面にはネジ溝加工が施されネジ部27cを形成している。   The current collector 27 is made of stainless steel, and has a shaft portion 27a at a central portion and end portions 27b at both end portions. The shaft portion 27a of the current collector 27 penetrates the center of the electrode body 23 composed of the positive electrode 23a, the negative electrode 23b, and the separator 23c in the axial direction of the exterior body 25 (X direction in FIG. 10). The diameter of the hole 23ba provided at the center of the negative electrode 23b is smaller than the outer diameter of the shaft portion 27a, and the negative electrode 23b is in contact with and electrically connected to the shaft portion 27a. On the other hand, the diameter of the hole 23aa provided in the center of the positive electrode 23a is larger than the outer diameter of the shaft portion 27a, and the positive electrode 23a is electrically insulated without contacting the shaft portion 27a. Further, the side surface of the current collector 27 is threaded to form a threaded portion 27c.

電極体23は、集電体の軸部27aに串刺状態で順次積み重ねられている。集電体27はその両端部27bにおいて、蓋部材26の中央に設けられた軸受28によって支持されている。蓋部材26と集電体27とが電気的短絡を起こすことを防止するために、軸受28は絶縁性材料でできている。
蓋部材26を貫通した集電体端部27bは負極端子27cとなる。円管22は正極端子として機能する。
The electrode bodies 23 are sequentially stacked in a skewered state on the shaft portion 27a of the current collector. The current collector 27 is supported at both end portions 27b by a bearing 28 provided at the center of the lid member 26. In order to prevent an electrical short circuit between the lid member 26 and the current collector 27, the bearing 28 is made of an insulating material.
The current collector end portion 27b penetrating the lid member 26 becomes a negative electrode terminal 27c. The circular tube 22 functions as a positive electrode terminal.

次に、本発明に係る積層電池の組み立て方法について説明する。集電体27の側面に形成したネジの谷と同じ外径(d)を有する丸棒(図示せず)に正極23aと負極23bの間にセパレータ23cが介在するように順次挿入して電極を積み重ね圧縮した後、圧縮状態を保持しつつ丸棒を引き抜き、代わりに集電体23をネジ込み電極集合体を組立てる。そして、電極集合体を円管22内部に圧入して、空気抜きを行い、電解液を注入した後、押板として作用する蓋部材で電極群23を円管22の内部に圧力をもって封入する。この組立方法によれば、円管状の外装体に電極集合体を圧入した後、蓋部材26により円管開口部に蓋をして積層電池を密閉化を図ることができる。   Next, a method for assembling the laminated battery according to the present invention will be described. The electrodes are inserted by sequentially inserting the separator 23c between the positive electrode 23a and the negative electrode 23b in a round bar (not shown) having the same outer diameter (d) as the screw valley formed on the side surface of the current collector 27. After stacking and compressing, the round bar is pulled out while maintaining the compressed state, and the current collector 23 is screwed in instead to assemble the electrode assembly. Then, the electrode assembly is press-fitted into the circular tube 22, air is evacuated, the electrolyte is injected, and then the electrode group 23 is sealed inside the circular tube 22 with a lid member that acts as a push plate. According to this assembling method, after the electrode assembly is press-fitted into the tubular outer package, the laminated battery can be sealed by covering the circular tube opening with the lid member 26.

図11(a)には、積層電池21とともに接続金具29が図示されている。接続金具29は、積層電池21と隣接する積層電池21'の間に、蓋部材26に面接して配されている。この接続金具29は柱状の金属製であって、その軸方向は集電体27の軸方向(図11のX方向)と一致している。接続金具29の上面29a(図では左側の面)の中心部には上面29aに垂直方向の穴29aaが設けられていて、隣接する積層電池21'の集電体27'が嵌合可能になっている。接続金具29の底面29b(図では右側の面)の中心部には底面29bに垂直方向の穴29baが設けられていて、絶縁部材24が嵌合可能となっている。そして絶縁部材24の中央には垂直方向に穴24aが設けられていて、積層電池21の集電体軸部27aが嵌合可能になっている。接続金具の底面29bが積層電池の蓋部材26に面接することにより、積層電池21と隣接する積層電池21'とは、接続金具29を介して電気的に接続されることとなる。このとき、絶縁部材24は、集電体27と外装体25が接触して電気的に短絡を起こすことを防止する。   In FIG. 11A, the connection fitting 29 is shown together with the laminated battery 21. The connection fitting 29 is arranged in contact with the lid member 26 between the laminated battery 21 and the adjacent laminated battery 21 ′. The connection fitting 29 is made of columnar metal, and its axial direction coincides with the axial direction of the current collector 27 (X direction in FIG. 11). A hole 29aa perpendicular to the upper surface 29a is provided at the center of the upper surface 29a (the left surface in the figure) of the connection fitting 29 so that the current collector 27 ′ of the adjacent stacked battery 21 ′ can be fitted. ing. A hole 29ba perpendicular to the bottom surface 29b is provided at the center of the bottom surface 29b (right side surface in the figure) of the connection fitting 29 so that the insulating member 24 can be fitted therein. A hole 24a is provided in the center of the insulating member 24 in the vertical direction so that the current collector shaft portion 27a of the laminated battery 21 can be fitted. When the bottom surface 29 b of the connection fitting is in contact with the lid member 26 of the stacked battery, the stacked battery 21 and the adjacent stacked battery 21 ′ are electrically connected via the connection fitting 29. At this time, the insulating member 24 prevents the current collector 27 and the exterior body 25 from coming into contact with each other and causing an electrical short circuit.

図11(b)に示すように、接続金具29を用いて、互いに隣接する積層電池21を連結することにより、積層電池を直列に接続して組電池20とすることが可能となる。
本実施例の作用効果のうち、冷却構造に関する事項は、実施例1の項を参照されたい。
As shown in FIG. 11 (b), by connecting the stacked batteries 21 adjacent to each other using the connection fitting 29, the stacked batteries can be connected in series to form the assembled battery 20.
Of the operational effects of the present embodiment, refer to the section of Embodiment 1 for matters relating to the cooling structure.

図12に本発明の実施例4に係るパイプ積層電池(以下、積層電池という)の軸方向の概略断面図を示す。図12に示す積層電池61は、外装体65と集電体67と外装体内部に収納される電極体63を主な構成要素として備えている。外装体65は、円管62と、円管62の両端にある開口部62cに取付けられた円盤状の蓋部材66とから構成されており、その内部に電極体63を収納するための密閉空間を形成している。外装体の胴部となる円管62はステンレス鋼製である。蓋部材66は第1蓋部材66a(図の右側)と第2蓋部材66bとのより構成されており、いずれもポリプロピレンでできているが、絶縁性のある他の樹脂であってもよい。蓋部材66a,66bの外径はいずれも円管62の開口部62cの内径より少し大きく作られており、蓋部材66の外周にはシール材68が塗布されており、外装体65の内部を気密にする役割を果たす。シール材68としてはポリイミドを用いたが、シール性があれば他の材料でもよい。集電体67は、中央部分の棒状の軸部67aと軸部67aの一端に設けられた円盤状の止め部67bとを有している。集電体67は、ステンレス鋼でできている。   FIG. 12 is a schematic cross-sectional view in the axial direction of a pipe laminated battery (hereinafter referred to as a laminated battery) according to Example 4 of the invention. A laminated battery 61 shown in FIG. 12 includes an exterior body 65, a current collector 67, and an electrode body 63 housed inside the exterior body as main components. The exterior body 65 includes a circular tube 62 and a disk-shaped lid member 66 attached to the openings 62c at both ends of the circular tube 62, and a sealed space for housing the electrode body 63 therein. Is forming. The circular tube 62 that becomes the body portion of the exterior body is made of stainless steel. The lid member 66 is composed of a first lid member 66a (right side in the figure) and a second lid member 66b, both of which are made of polypropylene, but may be other insulating resins. The outer diameters of the lid members 66 a and 66 b are both made slightly larger than the inner diameter of the opening 62 c of the circular tube 62, and a sealing material 68 is applied to the outer periphery of the lid member 66 so that the interior of the exterior body 65 is covered. Plays an airtight role. Polyimide is used as the sealing material 68, but other materials may be used as long as they have a sealing property. The current collector 67 has a rod-shaped shaft portion 67a at the center and a disk-shaped stopper portion 67b provided at one end of the shaft portion 67a. The current collector 67 is made of stainless steel.

電極体63は、正極活物質を含む正極63aと、負極活物質を含む負極63bと、正極63aと負極63bの間に介在してイオンは透過するが電子を透過させないセパレータ63cから構成されていて、円管62の軸方向(図12のX方向)に積層して外装体65の内部に収納されている。なお、電解液(図示せず)は、セパレータ63cに保持されている。正極63a、負極63b、セパレータ63cはいずれも中心に穴の開いた、円盤状の形状を有しており、正極63aの外径63abは円管62の内径62aよりも小さく、正極63aと円管62は接触していない。一方、負極63bの外径63bbは円管62の内径62aより大きく、負極63bは円管62の内面62aと接触しており、円管62に電気的に接続されている。好ましくは、負極63bの外径63bbは円管62の内径62aより100μm大きい。   The electrode body 63 includes a positive electrode 63a including a positive electrode active material, a negative electrode 63b including a negative electrode active material, and a separator 63c that is interposed between the positive electrode 63a and the negative electrode 63b and transmits ions but does not transmit electrons. The tubes 62 are stacked in the axial direction of the circular tube 62 (X direction in FIG. 12) and housed in the exterior body 65. The electrolyte solution (not shown) is held by the separator 63c. Each of the positive electrode 63a, the negative electrode 63b, and the separator 63c has a disk shape with a hole in the center. The outer diameter 63ab of the positive electrode 63a is smaller than the inner diameter 62a of the circular tube 62. 62 is not in contact. On the other hand, the outer diameter 63bb of the negative electrode 63b is larger than the inner diameter 62a of the circular tube 62, and the negative electrode 63b is in contact with the inner surface 62a of the circular tube 62 and is electrically connected to the circular tube 62. Preferably, the outer diameter 63bb of the negative electrode 63b is 100 μm larger than the inner diameter 62a of the circular tube 62.

集電体67の軸部67aは、正極63aと負極63bとセパレータ63cから構成される電極体63の中心を、外装体25の軸方向(図12のX方向)に貫通している。正極63aの中心に設けた穴63aaの径は、軸部67aの外径より小さく、正極63aは軸部67aと接触して電気的に接続されている。一方、負極63bの中心に設けた穴63baの径は、軸部67aの外径より大きく、負極63bは軸部67aと接触せず電気的に絶縁されている。なお、集電体の止め部67bはポリプロピレンで覆われており、第2蓋部材66bの内部に収納されている。また、集電体67aの側面にはネジ溝加工が施されネジ部67cを形成している。   The shaft portion 67a of the current collector 67 passes through the center of the electrode body 63 composed of the positive electrode 63a, the negative electrode 63b, and the separator 63c in the axial direction of the exterior body 25 (X direction in FIG. 12). The diameter of the hole 63aa provided at the center of the positive electrode 63a is smaller than the outer diameter of the shaft portion 67a, and the positive electrode 63a is in contact with and electrically connected to the shaft portion 67a. On the other hand, the diameter of the hole 63ba provided in the center of the negative electrode 63b is larger than the outer diameter of the shaft portion 67a, and the negative electrode 63b is electrically insulated without contacting the shaft portion 67a. Note that the collector stop portion 67b is covered with polypropylene and housed inside the second lid member 66b. Further, a thread groove is formed on the side surface of the current collector 67a to form a threaded portion 67c.

次に積層電池61の組み立て方法について説明する。集電体の止め部67bを収納した第2蓋部材66bを下にして、集電体の軸部67aに、正極63aと負極63bの間にセパレータ63cが介在するように順次電極体63を挿入して積み重ねて行く。止め部67bは電極体63が集電体67から抜け落ちるのを防止することを可能にしている。このようにして組み上がった電極体集合体を万力を使用して軸方向(図12のX方向)に圧縮し、圧縮状態を保持して円管62に圧入する。その後、真空ポンプを用いて、外装体65の内部の空気を排除して、電解液(図示せず)を外装体65の内部に注入して、第1蓋部材66aを取付ける。そして、ナット64を螺合させることにより第1蓋部材66aを固定して、外方(図の右方向)への移動を制限する。電極体63を外装体65に圧入後に円管開口部62cを嵌めることにより蓋部材66a,66bは円管62に圧着される。
第1蓋部材66aを貫通した集電体端部は正極端子67dを構成する。円管62は負極端子として機能する。
Next, a method for assembling the laminated battery 61 will be described. The electrode body 63 is sequentially inserted into the shaft portion 67a of the current collector so that the separator 63c is interposed between the positive electrode 63a and the negative electrode 63b with the second lid member 66b housing the current collector stop portion 67b facing down. And then go on to stack. The stopper portion 67 b makes it possible to prevent the electrode body 63 from falling off the current collector 67. The assembled electrode assembly is compressed in the axial direction (X direction in FIG. 12) using a vise, and is pressed into the circular tube 62 while maintaining the compressed state. Thereafter, the air inside the exterior body 65 is removed using a vacuum pump, an electrolytic solution (not shown) is injected into the exterior body 65, and the first lid member 66a is attached. And the 1st cover member 66a is fixed by screwing together the nut 64, and the movement to the outward (right direction of a figure) is restrict | limited. The lid members 66a and 66b are pressure-bonded to the circular tube 62 by fitting the circular tube opening 62c after press-fitting the electrode body 63 into the exterior body 65.
The end of the current collector passing through the first lid member 66a constitutes a positive electrode terminal 67d. The circular tube 62 functions as a negative electrode terminal.

大小2つの穴のあいた金属板からなる図13(b)に示すブラケット69を用いて積層電池61を接続して組電池60を構成してもよい(図13(a)参照)。ブラケット69には、積層電池の円管62が嵌合する穴69aと、正極端子67dが嵌合する穴69bが設けられていている。積層電池の円管62がブラケットの穴69aに取付けられている。そして、隣接する積層電池の正極端子67dがブラケットの他方の穴69bに挿入され、ナット64aを螺号させることにより、正極端子67dはブラケット69に取付けられている。このようにして、ブラケット69を介して複数の積層電池が直列に接続される。ブラケット69は、隣接する積層電池61を電気的に接続する役割を果たし、更には積層電池の放熱板としての機能も果たす。ブラケットに平行方向の冷却空気をファン69cで送ることにより冷却能力を高めることができる。複数のブラケットを用いて積層電池を次々と接続して、積層電池の直列数を増やして、出力電圧の高圧化を図ることが可能である。
本実施例の作用効果のうち、冷却構造に関する事項は、実施例1の項を参照されたい。
The assembled battery 60 may be configured by connecting the stacked batteries 61 using a bracket 69 shown in FIG. 13B made of a metal plate having two large and small holes (see FIG. 13A). The bracket 69 is provided with a hole 69a for fitting the circular tube 62 of the laminated battery and a hole 69b for fitting the positive electrode terminal 67d. A circular tube 62 of the laminated battery is attached to the hole 69a of the bracket. The positive electrode terminal 67d is attached to the bracket 69 by inserting the positive electrode terminal 67d of the adjacent laminated battery into the other hole 69b of the bracket and screwing the nut 64a. In this way, a plurality of stacked batteries are connected in series via the bracket 69. The bracket 69 serves to electrically connect adjacent stacked batteries 61 and further functions as a heat sink for the stacked batteries. The cooling capacity can be increased by sending cooling air in a direction parallel to the bracket by the fan 69c. It is possible to increase the output voltage by connecting the stacked batteries one after another using a plurality of brackets to increase the number of stacked batteries in series.
Of the operational effects of the present embodiment, refer to the section of Embodiment 1 for matters relating to the cooling structure.

図14に本発明の実施例5に係る円筒型積層電池(以下、単に積層電池という)の軸方向の概略断面図を示す。図14に示す積層電池41は、外装体45と集電体47と外装体内部に収納される電極体43を主な構成要素として備えた2つの電池41−1、41−2を、絶縁体からなる接続ピース44を介して接続してなる電池である。   FIG. 14 is a schematic cross-sectional view in the axial direction of a cylindrical laminated battery (hereinafter simply referred to as a laminated battery) according to Example 5 of the invention. A laminated battery 41 shown in FIG. 14 includes two batteries 41-1 and 41-2 each having an outer body 45, a current collector 47, and an electrode body 43 housed in the outer body as main components. It is the battery formed by connecting via the connection piece 44 which consists of.

第1電池41−1および第2電池41−2において、外装体45−1、45−2は、ステンレス鋼製の有底の円筒で構成されている。導電性を有しておれば、ステンレス鋼以外の金属であってもよい。   In the first battery 41-1 and the second battery 41-2, the exterior bodies 45-1 and 45-2 are made of a bottomed cylinder made of stainless steel. A metal other than stainless steel may be used as long as it has conductivity.

電極体43−1、43−2は、正極活物質を含む正極43−1a、43−2aと、負極活物質を含む負極43−1b、43−2bと、正極43−1a、43−2aと負極43−1b、43−2bの間に介在してイオンは透過するが電子を透過させないセパレータ43−1c、43−2cから構成されていて、それぞれ、外装体45−1、45−2の軸方向(図14のX方向)に積層して外装体内部に収納されている。正極43−1a、43−2a、負極43−1b、43−2b、セパレータ43−1c、43−2cはいずれも2つの穴の開いた、円盤状の形状を有している。   The electrode bodies 43-1 and 43-2 include positive electrodes 43-1a and 43-2a including a positive electrode active material, negative electrodes 43-1b and 43-2b including a negative electrode active material, and positive electrodes 43-1a and 43-2a. The separators 43-1c and 43-2c are interposed between the negative electrodes 43-1b and 43-2b and transmit ions but do not transmit electrons. It is stacked in the direction (X direction in FIG. 14) and stored inside the exterior body. The positive electrodes 43-1a and 43-2a, the negative electrodes 43-1b and 43-2b, and the separators 43-1c and 43-2c all have a disc shape with two holes.

集電体47−1、47−2は、ステンレス鋼でできており、棒状の軸部47−1a、47−2aと軸部47−1a、47−2aの一端に取付けられた止め部47−1b、47−2bとを有している。集電体の軸部47−1a、47−2aは、それぞれ、電極体43−1、43−1を、外装体45−1,45−2の軸方向(図14のX方向)に貫通している。また、集電体47−1、47−2の側面にはネジ溝加工が施されネジ部を形成している。   The current collectors 47-1 and 47-2 are made of stainless steel, and rod-shaped shaft portions 47-1a and 47-2a and stopper portions 47- attached to one ends of the shaft portions 47-1a and 47-2a. 1b, 47-2b. The shaft portions 47-1a and 47-2a of the current collectors penetrate the electrode bodies 43-1 and 43-1 in the axial direction of the exterior bodies 45-1 and 45-2 (the X direction in FIG. 14), respectively. ing. Further, thread grooves are formed on the side surfaces of the current collectors 47-1 and 47-2 to form screw portions.

第1電池41−1において、正極43−1aの外径43−1acは外装体45−1の内径45−1aよりも小さく、正極43−1aと外装体45−1は接触していない(図14(b)参照)。一方、負極43−1bの外径43−1bcは外装体45−1の内径45−1aより大きく、負極の外周43−1bcは外装体45−1の内面45−1aと接触しており、外装体45−1に電気的に接続されている。   In the first battery 41-1, the outer diameter 43-1ac of the positive electrode 43-1a is smaller than the inner diameter 45-1a of the outer package 45-1, and the positive electrode 43-1a and the outer package 45-1 are not in contact (FIG. 14 (b)). On the other hand, the outer diameter 43-1bc of the negative electrode 43-1b is larger than the inner diameter 45-1a of the outer package 45-1, and the outer periphery 43-1bc of the negative electrode is in contact with the inner surface 45-1a of the outer package 45-1. It is electrically connected to the body 45-1.

正極43−1aに設けた一方の穴43−1abの径は、軸部47−1aの外径より小さく、正極43−1aは軸部47−1aと接触して電気的に接続されている。一方、正極43−1aに設けた他方の穴43−1aaの径は、軸部47−2aの外径より大きく、正極43−1aは軸部47−2aと接触せず電気的に絶縁されている。   The diameter of one hole 43-1ab provided in the positive electrode 43-1a is smaller than the outer diameter of the shaft portion 47-1a, and the positive electrode 43-1a is in contact with and electrically connected to the shaft portion 47-1a. On the other hand, the diameter of the other hole 43-1aa provided in the positive electrode 43-1a is larger than the outer diameter of the shaft portion 47-2a, and the positive electrode 43-1a is electrically insulated without contacting the shaft portion 47-2a. Yes.

そして、負極43−1bに設けた一方の穴43−1bbの径は、軸部47−2aの外径より小さく、負極43−1bは軸部47−2aと接触して電気的に接続されている。一方、負極43−1bに設けた他方の穴43−1baの径は、軸部47−1aの外径より大きく、負極43−1bは軸部47−1aと接触せず電気的に絶縁されている。   The diameter of one hole 43-1bb provided in the negative electrode 43-1b is smaller than the outer diameter of the shaft portion 47-2a, and the negative electrode 43-1b is in contact with and electrically connected to the shaft portion 47-2a. Yes. On the other hand, the diameter of the other hole 43-1ba provided in the negative electrode 43-1b is larger than the outer diameter of the shaft portion 47-1a, and the negative electrode 43-1b is electrically insulated without contacting the shaft portion 47-1a. Yes.

第2電池41−2において、正極43−2aの外径43−2acは外装体45−2の内径45−2aよりも大きく、正極の外周43−2acは外装体45−2の内面45−2aと接触しており、外装体45−2に電気的に接続されている。一方、負極43−2bの外径43−2bcは外装体45−2の内径45−2aより小さく、負極43−2bと外装体45−2は接触していない。   In the second battery 41-2, the outer diameter 43-2ac of the positive electrode 43-2a is larger than the inner diameter 45-2a of the outer package 45-2, and the outer periphery 43-2ac of the positive electrode is the inner surface 45-2a of the outer package 45-2. And is electrically connected to the exterior body 45-2. On the other hand, the outer diameter 43-2bc of the negative electrode 43-2b is smaller than the inner diameter 45-2a of the outer package 45-2, and the negative electrode 43-2b and the outer package 45-2 are not in contact with each other.

正極43−2aに設けた一方の穴43−2aaの径は、軸部47−1aの外径より小さく、正極43−2aは軸部47−1aと接触して電気的に接続されている。一方、正極43−2aに設けた他方の穴43−2abの径は、軸部47−2aの外径より大きく、正極43−2aは軸部47−2aと接触せず電気的に絶縁されている。   The diameter of one hole 43-2aa provided in the positive electrode 43-2a is smaller than the outer diameter of the shaft portion 47-1a, and the positive electrode 43-2a is in contact with and electrically connected to the shaft portion 47-1a. On the other hand, the diameter of the other hole 43-2ab provided in the positive electrode 43-2a is larger than the outer diameter of the shaft portion 47-2a, and the positive electrode 43-2a is electrically insulated without contacting the shaft portion 47-2a. Yes.

そして、負極43−2bに設けた一方の穴43−2baの径は、軸部47−2aの外径より小さく、負極43−2bは軸部47−2aと接触して電気的に接続されている。一方、負極43−2bに設けた他方の穴43−2bbの径は、軸部47−1aの外径より大きく、負極43−2bは軸部47−1aと接触せず電気的に絶縁されている。   The diameter of one hole 43-2ba provided in the negative electrode 43-2b is smaller than the outer diameter of the shaft portion 47-2a, and the negative electrode 43-2b is in contact with and electrically connected to the shaft portion 47-2a. Yes. On the other hand, the diameter of the other hole 43-2bb provided in the negative electrode 43-2b is larger than the outer diameter of the shaft portion 47-1a, and the negative electrode 43-2b is electrically insulated without contacting the shaft portion 47-1a. Yes.

以上より、第1電池41−1において、第1外装体45−1は、負極端子となり、第1集電体47−1は、正極端子となる。一方、第2電池41−2において、第2外装体45−2は、正極端子となり、第2集電体47−2は、負極端子となる。第1外装体45−1と第2集電体の止め部47−2bが外装体45−1の底部において接触しているので、結局第1外装体45−1が負極端子として機能する。そして、第2外装体45−2と第1集電体の止め部47−1bが外装体45−2の底部において接触しているので、結局第2外装体45−2が正極端子として機能する。   As described above, in the first battery 41-1, the first exterior body 45-1 serves as a negative electrode terminal, and the first current collector 47-1 serves as a positive electrode terminal. On the other hand, in the second battery 41-2, the second exterior body 45-2 serves as a positive electrode terminal, and the second current collector 47-2 serves as a negative electrode terminal. Since the first exterior body 45-1 and the stop portion 47-2b of the second current collector are in contact with each other at the bottom of the exterior body 45-1, the first exterior body 45-1 eventually functions as a negative electrode terminal. And since the 2nd exterior body 45-2 and the stop part 47-1b of the 1st collector are contacting in the bottom part of the exterior body 45-2, the 2nd exterior body 45-2 eventually functions as a positive electrode terminal. .

以上述べたように、本発明は、2つの電池41−1、41−2において、接続ピース44を境にして、電極43−1a、43−2a、43−1b、43−2bの外径寸法と穴の寸法を入れ替えることにより、積層された電極体を共通に使用してなることを特徴としている。   As described above, according to the present invention, in the two batteries 41-1 and 41-2, the outer diameter dimensions of the electrodes 43-1a, 43-2a, 43-1b, and 43-2b with the connection piece 44 as a boundary. The stacked electrode bodies are used in common by changing the dimensions of the holes.

図15(a)に積層電池41を用いて組電池を構成した場合の接続図を示す。放熱板49(図15(b)参照)に、積層電池41の外装体45を取付ける穴49aを設けて、相隣り合う穴49aにそれぞれ異なる極性を有する外装体45−1と45−2を取付ける。積層電池41で発生した熱は放熱板49に伝えられて、別途設けた送風機49bからの冷却風で冷却されることとなる。また、放熱板は積層電池41の直並列接続の導電体としても作用する。
<変形例>
FIG. 15A shows a connection diagram in the case where an assembled battery is configured using the laminated battery 41. The heat sink 49 (see FIG. 15B) is provided with holes 49a for attaching the outer body 45 of the laminated battery 41, and the outer bodies 45-1 and 45-2 having different polarities are attached to the adjacent holes 49a. . The heat generated in the laminated battery 41 is transmitted to the heat radiating plate 49 and is cooled by cooling air from a separately provided blower 49b. The heat sink also acts as a series-parallel conductor of the laminated battery 41.
<Modification>

図16に本発明の実施例5の変形例に係る積層電池の軸方向の概略断面図を示す。図14と共通する部分は、特に明記しない場合は同じ符号を付したものとして説明する。外装体45は、熱伝導度の高い絶縁材46を内方に有し、ステンレス鋼等の構造材からなる円筒缶42を外方に有する二重構造となっている。すなわち、ステンレス鋼よりなる円筒缶42の内面42aに、アルミナよりなるセラミックス層(絶縁体46)がプラズマ溶射により形成されている。絶縁体46は熱伝導度の高い材料でできているので、電極体43−1,43−2で発生した熱は小さな熱勾配で円筒缶42に伝えられるので、積層電池41'の内部の温度上昇を抑制することが可能となる。絶縁体46は、熱伝導度の高く絶縁性を有したものであればよく、チタニア、アルミナ・チタニア等のセラミックスやダイヤモンドであってもよい。   FIG. 16 is a schematic cross-sectional view in the axial direction of a laminated battery according to a modification of Example 5 of the present invention. Parts that are the same as those in FIG. 14 will be described as having the same reference numerals unless otherwise specified. The exterior body 45 has an insulating material 46 having a high thermal conductivity on the inside and a double structure having a cylindrical can 42 made of a structural material such as stainless steel on the outside. That is, a ceramic layer (insulator 46) made of alumina is formed on the inner surface 42a of the cylindrical can 42 made of stainless steel by plasma spraying. Since the insulator 46 is made of a material having high thermal conductivity, the heat generated in the electrode bodies 43-1 and 43-2 is transferred to the cylindrical can 42 with a small thermal gradient, so that the temperature inside the laminated battery 41 ′ is increased. It is possible to suppress the rise. The insulator 46 only needs to have a high thermal conductivity and an insulating property, and may be ceramics such as titania, alumina / titania, or diamond.

電極体43は、絶縁体46で覆われているので、図14に示したような接続ピース44は必要としない。集電体の止め部47−1b、47−2bに軸部47−1a、47−2aの反対側に突出する端子部47−1c、47−2cを設けて、これら端子部47−1c、47−2cを外装体45に設けた絶縁物質からなる軸受48−1、48−2を介して積層電池41'の外方に取り出して、正極端子および負極端子とした。
本実施例の作用効果のうち、冷却構造に関する事項に関する事項は、実施例1の項を参照されたい。
Since the electrode body 43 is covered with the insulator 46, the connection piece 44 as shown in FIG. 14 is not required. Terminal portions 47-1c and 47-2c projecting on opposite sides of the shaft portions 47-1a and 47-2a are provided on the stopper portions 47-1b and 47-2b of the current collector, and these terminal portions 47-1c and 47-2 are provided. -2c was taken out of the laminated battery 41 ′ through bearings 48-1 and 48-2 made of an insulating material provided on the exterior body 45, and used as a positive electrode terminal and a negative electrode terminal.
Refer to the section of the first embodiment for matters relating to the cooling structure among the operational effects of the present embodiment.

図17に本発明の実施例6に係る円筒型積層電池(以下、単に積層電池という)の軸方向の概略断面図を示す。図17に示す積層電池51は、外装体55と外装体内部に収納された集電体57と電極体53を主な構成要素として備えている。外装体55は、有底の円筒缶52と、円筒缶内面52aに配置された絶縁体59と、円筒缶52の開口部52cに取付けられた円盤状の蓋部材56とから構成されている。円筒缶52と蓋部材56はステンレス鋼でできているが、ステンレス鋼の他にチタンやカーボンやアルミ等導電性を有する物体であってもよい。蓋部材56の外径は円筒缶52の開口部52cの内径より少し大きく、蓋部材56は電極体53収納後に円筒缶開口部52cにおいて絞まり嵌めして嵌合されている。   FIG. 17 is a schematic cross-sectional view in the axial direction of a cylindrical laminated battery (hereinafter simply referred to as a laminated battery) according to Example 6 of the invention. A laminated battery 51 shown in FIG. 17 includes an exterior body 55, a current collector 57 housed in the exterior body, and an electrode body 53 as main components. The exterior body 55 includes a bottomed cylindrical can 52, an insulator 59 disposed on the cylindrical can inner surface 52 a, and a disk-shaped lid member 56 attached to the opening 52 c of the cylindrical can 52. The cylindrical can 52 and the lid member 56 are made of stainless steel, but may be a conductive object such as titanium, carbon, or aluminum in addition to stainless steel. The outer diameter of the lid member 56 is slightly larger than the inner diameter of the opening 52c of the cylindrical can 52, and the lid member 56 is tightly fitted in the cylindrical can opening 52c after the electrode body 53 is stored.

電極体53は、正極活物質を含む正極53aと、負極活物質を含む負極53bと、正極53aと負極53bの間に介在してイオンは透過するが電子を透過させないセパレータ53cから構成されている。なお、電解液(図示せず)は、セパレータ53cに保持されている。係る電極体53が、円筒缶52の軸方向(図17のX方向)に積層され、外装体55の内部に収納されている。ここに、隣接する電極体53の間にはステンレス製の隔壁54が挿入されている。隔壁54は金属であるので電子(電気)は通すがイオンは通さないので、隣接する電極体53は電気的に互いに直列に接続されることとなる。積層電池51の出力電圧は、電極体53の積層数により定まる。本実施例において、1つの電極体53からなる単位電池の端子電圧は3.6Vであり、本実施例に係る積層電池51は、50個の単位電池を積層してなるので、その出力電圧は180Vとなる。   The electrode body 53 includes a positive electrode 53a including a positive electrode active material, a negative electrode 53b including a negative electrode active material, and a separator 53c that is interposed between the positive electrode 53a and the negative electrode 53b and transmits ions but does not transmit electrons. . Note that an electrolytic solution (not shown) is held in the separator 53c. The electrode body 53 is stacked in the axial direction of the cylindrical can 52 (X direction in FIG. 17) and housed in the exterior body 55. Here, a stainless steel partition wall 54 is inserted between the adjacent electrode bodies 53. Since the partition wall 54 is a metal, it allows electrons (electricity) to pass but does not allow ions to pass therethrough, so that the adjacent electrode bodies 53 are electrically connected in series with each other. The output voltage of the stacked battery 51 is determined by the number of stacked electrode bodies 53. In the present embodiment, the terminal voltage of the unit battery composed of one electrode body 53 is 3.6 V, and the stacked battery 51 according to the present embodiment is formed by stacking 50 unit batteries. 180V.

集電体57は、棒状に突出した軸部57aと軸部57aの一端に取付けられ円盤状に形成された板部57bとを有している。集電体の板部57bは、積層された電極体53を挟む形で対抗する方向で設けられている。そして、軸部57bは、それぞれ蓋部材56中央および円筒缶底部52bの中央に設けた穴58a、58bを貫通して、積層電池51の外方に突き出していて、それぞれ正極端子57caおよび負極端子57cbとして機能する。軸部57aが貫通す貫通する穴58a、58bには軸受58が装着されている。軸受58は絶縁性材料でできており、軸部57bが外装体55と接触して電気的に短絡するのを防止する。集電体57は、ステンレス鋼でできている。   The current collector 57 has a shaft portion 57a protruding like a rod and a plate portion 57b attached to one end of the shaft portion 57a and formed in a disk shape. The current collector plate portion 57b is provided in a facing direction so as to sandwich the stacked electrode bodies 53. The shaft portion 57b passes through holes 58a and 58b provided at the center of the lid member 56 and the center of the cylindrical can bottom portion 52b, respectively, and protrudes outward from the laminated battery 51. The positive electrode terminal 57ca and the negative electrode terminal 57cb are respectively provided. Function as. A bearing 58 is mounted in the through holes 58a and 58b through which the shaft portion 57a passes. The bearing 58 is made of an insulating material and prevents the shaft portion 57b from coming into contact with the exterior body 55 and being electrically short-circuited. The current collector 57 is made of stainless steel.

隔壁54、正極53a、負極53b、セパレータ53cはいずれも円盤状の形状を有しており、正極53aおよび負極53bの外径53aa、53baは外装体55の内径55aよりも大きく、電極体53は外装体55に圧力を持って接触している。好ましくは、正極53aおよび負極53bの外径53aa、53baは外装体55の内径55aよりも100μm大きい。   The partition wall 54, the positive electrode 53a, the negative electrode 53b, and the separator 53c all have a disk shape, and the outer diameters 53aa and 53ba of the positive electrode 53a and the negative electrode 53b are larger than the inner diameter 55a of the outer package 55. The exterior body 55 is in contact with pressure. Preferably, the outer diameters 53aa and 53ba of the positive electrode 53a and the negative electrode 53b are 100 μm larger than the inner diameter 55a of the outer package 55.

円筒缶52の内面52aに、アルミナよりなるセラミックス層をプラズマ溶射により絶縁体59を形成させた。絶縁体59は熱伝導度の高い材料でできているので、電極56a,56bで発生する熱は小さな熱勾配で円筒缶52に伝えられ、積層電池51の内部の温度上昇を抑制することが可能となる。更に、絶縁体59は、正極53aと負極53bとが電気的に短絡するのを防止している。絶縁体59は熱伝導度の高い材料でできているので、電極53a,53bで発生した熱は小さな熱勾配で円筒缶52に伝えられるので、積層電池内部の温度上昇を抑制することが可能となる。絶縁体46は、熱伝導度の高く絶縁性を有したものであればよく、チタニア、アルミナ・チタニア等のセラミックスが上げられる。これらは良好な絶縁性と絶縁耐力(約100V/mm)、高い熱伝導率(約7x10-3cal/cm/sec・℃)、大きな機械的強度(ロックウエル硬度50以上)を有している。絶縁体59を形成するこれらセラミックス層は、プラズマ溶射法をもちいて加工した。絶縁体59は熱伝導度の高い絶縁材であればよく、ダイヤモンドであってもよい。
本実施例の作用効果のうち、冷却構造に関する事項に関する事項は、実施例1の項を参照されたい。
<試験結果>
An insulator 59 was formed on the inner surface 52a of the cylindrical can 52 by plasma spraying a ceramic layer made of alumina. Since the insulator 59 is made of a material having high thermal conductivity, the heat generated by the electrodes 56a and 56b is transmitted to the cylindrical can 52 with a small thermal gradient, and the temperature rise inside the laminated battery 51 can be suppressed. It becomes. Furthermore, the insulator 59 prevents the positive electrode 53a and the negative electrode 53b from being electrically short-circuited. Since the insulator 59 is made of a material having a high thermal conductivity, the heat generated in the electrodes 53a and 53b is transferred to the cylindrical can 52 with a small thermal gradient, so that it is possible to suppress the temperature rise inside the laminated battery. Become. The insulator 46 only needs to have a high thermal conductivity and an insulating property, and examples thereof include ceramics such as titania and alumina / titania. They have good insulation and dielectric strength (about 100 V / mm), high thermal conductivity (about 7 × 10 −3 cal / cm / sec · ° C.), and large mechanical strength (Rockwell hardness of 50 or more). These ceramic layers forming the insulator 59 were processed using a plasma spraying method. The insulator 59 may be an insulating material having high thermal conductivity, and may be diamond.
Refer to the section of the first embodiment for matters relating to the cooling structure among the operational effects of the present embodiment.
<Test results>

本発明の実施例1に係る積層型のリチウム二次電池を、0.1C率、30C率で充電を行い、満充電後に積層電池の外装体表面の温度を調べた。温度計測は、電池外装体の表面を市販の放射温度計により測定した。温度計測に際しては無風状態について試験を実施した。また、比較例として、捲回型のリチウム二次電池(図1に示した構造のリチウム二次電池)でも、本発明の実施例1に係る積層型のリチウム二次電池と同様の試験を実施した。   The laminated lithium secondary battery according to Example 1 of the present invention was charged at a rate of 0.1 C and a rate of 30 C, and the temperature of the outer surface of the laminated battery was examined after full charge. In the temperature measurement, the surface of the battery outer package was measured with a commercially available radiation thermometer. When measuring temperature, a test was conducted in a windless state. Further, as a comparative example, a wound-type lithium secondary battery (lithium secondary battery having the structure shown in FIG. 1) was also tested in the same manner as the stacked lithium secondary battery according to Example 1 of the present invention. did.

まず、0.1C率で充電を行った結果では、本発明の実施例1に係る積層型のリチウム二次電池であっても、捲回型のリチウム二次電池であっても5℃以上の温度上昇が観測されなかった。しかし、30C率で充電を行った結果では、本発明の実施例1に係る積層型のリチウム二次電池の温度昇は5℃未満であったのに対し、捲回型のリチウム二次電池の温度上昇は、16℃であった。   First, as a result of charging at a rate of 0.1 C, the laminated lithium secondary battery according to Example 1 of the present invention or the wound lithium secondary battery has a temperature of 5 ° C. or higher. No temperature increase was observed. However, as a result of charging at a rate of 30 C, the temperature rise of the stacked lithium secondary battery according to Example 1 of the present invention was less than 5 ° C., whereas that of the wound lithium secondary battery was The temperature rise was 16 ° C.

この試験結果から、本発明の実施例1に係る積層型のリチウム二次電池は電池内の熱伝導度が大きいため、例え充電により温度が上昇しても、すぐに温度が下がるが、捲回型のリチウム二次電池では、電池内の熱伝導度が小さいため、充電により温度が上昇しても、なかなか温度が下がらないことが推察される。
<電池或いは電池システムの用途>
From this test result, the laminated lithium secondary battery according to Example 1 of the present invention has a large thermal conductivity in the battery, and therefore, even if the temperature rises due to charging, the temperature immediately decreases. In the type lithium secondary battery, since the thermal conductivity in the battery is small, it is presumed that even if the temperature increases due to charging, the temperature does not easily decrease.
<Application of battery or battery system>

本発明の積層型の非水系二次電池は、非水系二次電池であるため、単セルあたりの動作電圧が高く、高エネルギー密度で充放電を行っても電池の蓄熱は少なく、且つ特殊な設備を必要とせずにも容易に積層型電池を構成されるため、電動工具、自動車等の電源として使用ができるだけでなく、電気機器、電気製品、または、乗り物等の用途での使用が可能となる。また、バックアップ用の電源としても使用可能である。   Since the laminated non-aqueous secondary battery of the present invention is a non-aqueous secondary battery, the operating voltage per unit cell is high, and even when charging / discharging at a high energy density, the battery has little heat storage and is special. Since a laminated battery can be easily configured without the need for equipment, it can be used not only as a power source for electric tools, automobiles, etc., but also for use in applications such as electrical equipment, electrical products, or vehicles. Become. It can also be used as a backup power source.

電気機器、電気製品、または、乗り物には、例えば、エアコン、洗濯機、テレビ、冷蔵庫、冷凍庫、冷房機器、ノートパソコン、パソコンキーボード、パソコン用ディスプレイ、デスクトップ型パソコン、ノート型パソコン、CRTモニター、パソコンラック、プリンター、一体型パソコン、マウス、ハードディスク、パソコン周辺機器、アイロン、衣類乾燥機、ウインドウファン、トランシーバー、送風機、換気扇、テレビ、音楽レコーダー、音楽プレーヤー、オーブン、レンジ、洗浄機能付便座、温風ヒーター、カーコンポ、カーナビ、懐中電灯、加湿器、携帯カラオケ機、換気扇、乾燥機、乾電池、空気清浄器、携帯電話、非常用電灯、ゲーム機、血圧計、コーヒーミル、コーヒーメーカー、こたつ、コピー機、ディスクチェンジャー、ラジオ、シェーバー、ジューサー、シュレッダー、浄水器、照明器具、除湿器、食器乾燥機、炊飯器、ステレオ、ストーブ、スピーカー、ズボンプレッサー、掃除機、体脂肪計、体重計、ヘルスメーター、ムービープレーヤー、電気カーペット、電気釜、炊飯器、電気かみそり、電気スタンド、電気ポット、電子ゲーム機、携帯ゲーム機、電子辞書、電子手帳、電子レンジ、電磁調理器、電卓、電動カート、電動車椅子、電動工具、電動歯ブラシ、あんか、散髪器具、電話機、時計、インターホン、エアサーキュレーター、電撃殺虫器、複写機、ホットプレート、トースター、ドライヤー、電動ドリル、給湯器、パネルヒーター、粉砕機、はんだごて、ミシン、ビデオカメラ、ビデオデッキ、ファクシミリ、ファンヒーター、フードプロセッサー、布団乾燥機、ヘッドホン、電気ポット、ホットカーペット、ホットプレート、マイク、マッサージ機、豆電球、ミキサー、ミシン、もちつき機、床暖房パネル、ランタン、リモコン、冷温庫、冷水器、冷凍ストッカー、冷風器、ワープロ、泡だて器、電子楽器、オートバイ、おもちゃ類、芝刈り機、うき、自転車、自動車、ハイブリッド自動車、電気自動車、鉄道、船、飛行機、非常用蓄電池などが挙げられる。   For electrical equipment, electrical products, or vehicles, for example, air conditioners, washing machines, TVs, refrigerators, freezers, air conditioners, laptop computers, computer keyboards, computer displays, desktop computers, laptop computers, CRT monitors, personal computers Rack, printer, integrated computer, mouse, hard disk, computer peripherals, iron, clothes dryer, window fan, walkie-talkie, blower, ventilator, TV, music recorder, music player, oven, range, toilet seat with washing function, hot air Heater, Car component, Car navigation system, Flashlight, Humidifier, Portable karaoke machine, Exhaust fan, Dryer, Dry cell, Air purifier, Mobile phone, Emergency light, Game machine, Sphygmomanometer, Coffee mill, Coffee maker, Kotatsu, Copy machine , Disc changer, la Oh, shaver, juicer, shredder, water purifier, lighting equipment, dehumidifier, dish dryer, rice cooker, stereo, stove, speaker, trouser press, vacuum cleaner, body fat scale, weight scale, health meter, movie player, electric Carpet, electric kettle, rice cooker, electric razor, table lamp, electric kettle, electronic game machine, portable game machine, electronic dictionary, electronic notebook, microwave oven, electromagnetic cooker, calculator, electric cart, electric wheelchair, electric tool, electric Toothbrush, Anka, Haircut, Phone, Clock, Intercom, Air Circulator, Electric Shock Insulator, Copying Machine, Hot Plate, Toaster, Dryer, Electric Drill, Water Heater, Panel Heater, Crusher, Soldering Iron, Sewing Machine, Video Camera, video deck, facsimile, fan heater, food processor , Futon dryer, headphones, electric kettle, hot carpet, hot plate, microphone, massage machine, bean bulb, mixer, sewing machine, mochi machine, floor heating panel, lantern, remote control, cold storage, water heater, refrigeration stocker, air cooler , Word processors, whisks, electronic musical instruments, motorcycles, toys, lawn mowers, uki, bicycles, automobiles, hybrid cars, electric cars, railways, ships, airplanes, emergency storage batteries, etc.

本発明に係る積層電池は、産業用のみならず民生用の二次電池として好適に用いることができる。   The laminated battery according to the present invention can be suitably used as a secondary battery not only for industrial use but also for consumer use.

1 蓄電池
2 電池ケース
3 正極
4 負極
5 セパレータ
6 キャップ
7 封口板
11 円筒型積層電池
12 円筒缶(a:側部内面)
13 電極体(a:正極、b:負極、c:セパレータ)
14 絶縁板
15 外装体
16 蓋部材
17 集電体
18 軸受
20 組電池
21 パイプ積層電池
22 円管(a:内面)
23 電極体(a:正極、b:負極、c:セパレータ)
24 絶縁部材
25 外装体
26 蓋部材
27 集電体
28 軸受
29 接続金具
41 円筒型積層電池
42 円筒缶
43 電極体(a:正極、b:負極、c:セパレータ)
44 接続ピース
45 外装体
46 絶縁体
47 集電体
48 軸受
49 放熱板
51 円筒型積層電池
52 円筒缶(a:側部内面)
53 電極体(a:正極、b:負極、c:セパレータ)
54 隔壁
55 外装体
56 蓋部材
57 集電体
58 軸受
59 絶縁体
60 組電池
61 パイプ積層電池
62 円管(a:内面)
63 電極体(a:正極、b:負極、c:セパレータ)
64 ナット
65 外装体
66 蓋部材
67 集電体
68 シール材
69 ブラケット
70 組電池
71 角型積層電池
72 胴部材(a:内面)
73 蓋部材
74 電極体(a:正極,b:負極,c:セパレータ)
75 外装体
76 絶縁板
77 集電体
78 端子板
79 ファン
80 シール材
90 円筒型積層電池
91 接続板
92 円筒缶(a:内部側面、b:底部)
93 電極体(a:正極、b:負極、c:セパレータ)
94 絶縁シート
95 丸棒
96 蓋部材(a:正極端子、b:底部)
97 集電体(a:頂部、b:底部、c:ネジ部)
98 押板
99 絶縁材
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Battery case 3 Positive electrode 4 Negative electrode 5 Separator 6 Cap 7 Sealing plate 11 Cylindrical laminated battery 12 Cylindrical can (a: side part inner surface)
13 Electrode body (a: positive electrode, b: negative electrode, c: separator)
14 Insulating plate 15 Exterior body 16 Lid member 17 Current collector 18 Bearing 20 Assembly battery 21 Pipe laminated battery 22 Circular tube (a: inner surface)
23 electrode body (a: positive electrode, b: negative electrode, c: separator)
24 Insulating member 25 Exterior body 26 Cover member 27 Current collector 28 Bearing 29 Connection fitting 41 Cylindrical laminated battery 42 Cylindrical can 43 Electrode body (a: positive electrode, b: negative electrode, c: separator)
44 Connection piece 45 Exterior body 46 Insulator 47 Current collector 48 Bearing 49 Heat sink 51 Cylindrical laminated battery 52 Cylindrical can (a: side inner surface)
53 Electrode body (a: positive electrode, b: negative electrode, c: separator)
54 Partition 55 Exterior body 56 Lid member 57 Current collector 58 Bearing 59 Insulator 60 Battery assembly 61 Pipe laminated battery 62 Circular tube (a: inner surface)
63 electrode body (a: positive electrode, b: negative electrode, c: separator)
64 Nut 65 Exterior body 66 Cover member 67 Current collector 68 Sealing material 69 Bracket 70 Battery pack 71 Square laminated battery 72 Body member (a: inner surface)
73 Lid member 74 Electrode body (a: positive electrode, b: negative electrode, c: separator)
75 Exterior body 76 Insulation plate 77 Current collector 78 Terminal plate 79 Fan 80 Sealing material 90 Cylindrical laminated battery 91 Connection plate 92 Cylindrical can (a: inner side surface, b: bottom)
93 electrode body (a: positive electrode, b: negative electrode, c: separator)
94 Insulating sheet 95 Round bar 96 Lid member (a: positive terminal, b: bottom)
97 Current collector (a: top, b: bottom, c: screw)
98 Press plate 99 Insulation material

前記した目的を達成するために、本発明に係る積層電池は、筒状の外装体の内部に、正極活物質を含む正極と、負極活物質を含む負極とが、イオンは透過するが電子を透過させないセパレータを介して、前記外装体の軸方向に積層されている、電解液を備えた電池であって、前記正極および前記負極のいずれか一方の電極であって前記外装体の内面に当接して電気的に接続されている第1電極と、他方の電極であって前記外装体の内面に接触していない第2電極とを備えていて、導電性の集電体が、前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通していて、前記第2電極は前記集電体に当接して電気的に接続されていて、前記第1電極は前記集電体と接触しておらず、かつ、前記集電体が、前記第2電極と接着剤により接合されている。また、本発明に係る積層電池は、前記電解液が非水系電解質を含んでいることが好ましい。 In order to achieve the above-described object, the laminated battery according to the present invention includes a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material in a cylindrical outer package, which transmit ions but transmit electrons. A battery provided with an electrolyte solution, which is laminated in the axial direction of the outer package through a non-permeable separator, and is an electrode of either the positive electrode or the negative electrode and contacts the inner surface of the outer package. A first electrode that is in contact and electrically connected, and a second electrode that is the other electrode and is not in contact with the inner surface of the exterior body, and the conductive current collector includes the positive electrode The negative electrode and the separator are penetrated in the axial direction of the exterior body, the second electrode is in contact with and electrically connected to the current collector, and the first electrode is connected to the current collector. contact with Orazu and the current collector, by an adhesive and the second electrode It has been engaged. In the laminated battery according to the present invention, it is preferable that the electrolytic solution contains a non-aqueous electrolyte.

本発明に係る積層電池は、前記集電体の側面に溝加工が施されていて、当該集電体の溝がネジ溝であり、のネジの谷の径は前記第2電極に設けた前記集電体が貫通する穴の径より大きい(図4)。 In the laminated battery according to the present invention, a groove is formed on the side surface of the current collector, the groove of the current collector is a screw groove, and the diameter of the valley of the screw is provided in the second electrode. collector is larger than the diameter of the hole penetrating (Figure 4).

本発明に係る積層電池は、前記接着剤が、前記電解液で溶解しない樹脂と炭素粉末から構成され、その混合比が、全体を100質量%とすると、前記電解液で溶解しない樹脂が30〜90質量%、炭素粉末が10〜70質量%であることが好ましい。また、前記電解液で溶解しない樹脂が、より好ましくはポリイミドである。 Stacked battery according to the present invention, the adhesive, the consist resin and carbon powder that does not dissolve in the electrolytic solution, the mixture ratio, when the entirety is taken as 100 mass%, the resin does not dissolve in the electrolyte solution 30 It is preferable that it is 90 mass% and carbon powder is 10-70 mass%. The resin that does not dissolve in the electrolytic solution is more preferably polyimide .

本発明に係る積層電池は、前記外装体が蓋付有底の円筒であってもよく(図3)、また、前記外装体が断面が略矩形の有底の容器と、前記容器の開口部を覆う蓋部材を備えていてもよい(図8)。この構成によれば、外装体は缶であってもよい。 In the laminated battery according to the present invention, the outer casing may be a bottomed cylinder with a lid (FIG. 3), the outer casing is a bottomed container having a substantially rectangular cross section, and the opening of the container May be provided (FIG. 8). According to this configuration, the exterior body may be a can.

本発明に係る積層電池システムは、当該積層電池の容器の底部と、隣接する積層電池の蓋部材とが対向する方向に積層して、複数の積層電池を直列に接続して構成される(図9)。 Laminated cell system according to the present invention includes a bottom portion of the container of the cell stack, it is laminated in a direction in which the lid member of the stacked battery adjacent faces, is constituted by connecting a plurality of stacked cells in series (FIG. 9).

本発明に係る積層電池は、前記外装体が円筒状の金属性の胴部と、当該胴部の軸方向開口部を覆う2つの蓋部を有していて、前記集電体は前記蓋部を貫通している(図10)。 In the laminated battery according to the present invention, the exterior body includes a cylindrical metallic body portion and two lid portions covering the axial opening of the body portion, and the current collector is the lid portion. (FIG. 10).

本発明に係る接続金具は、積層電池の間に配される柱状の金属製の接続金具であって、当該接続金具の底面と上面にはそれぞれ軸方向に接続穴が設けられていて、上面に設けられた接続穴には一方の積層電池の集電体の端部が嵌合可能になっていて、底面に設けられた接続穴には他方の積層電池の集電体の端部が絶縁体を介して嵌合可能になっていて、隣接する積層電池を接続することを可能にしている。 The connection fitting according to the present invention is a columnar metal connection fitting arranged between stacked batteries, and the connection fitting is provided with a connection hole in the axial direction on the bottom and top surfaces of the connection fitting. The end of the current collector of one stacked battery can be fitted into the provided connection hole, and the end of the current collector of the other stacked battery is the insulator in the connection hole provided in the bottom surface. It is possible to connect the stacked batteries adjacent to each other.

本発明に係る積層電池システムは、前記接続金具を介して複数の積層電池を接続してなる。即ち、前記の積層電池において、前記第1蓋部を貫通した前記集電体が隣接する積層電池の前記接続穴に嵌合することにより、積層電池を複数直列接続することが可能である。 The laminated battery system according to the present invention is formed by connecting a plurality of laminated batteries via the connection fitting . That is, in the laminated battery, a plurality of laminated batteries can be connected in series by fitting the current collector penetrating the first lid portion into the connection hole of the adjacent laminated battery.

本発明に係る積層電池は、前記外装体が筒状金属性の胴部と、当該胴部の軸方向開口部を覆う絶縁性の第1蓋部と第2蓋部を有していて、前記集電体は棒部と当該棒部の一端に形成された止め部とを備えており、前記棒部は前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通して当該棒部の他端において前記第1蓋部に支持されており、前記止め部は前記第2蓋部に当接している。 In the laminated battery according to the present invention, the exterior body includes a cylindrical metallic trunk, and an insulating first lid and a second lid that cover the axial opening of the trunk. The current collector includes a rod portion and a stop portion formed at one end of the rod portion, and the rod portion penetrates the positive electrode, the negative electrode, and the separator in the axial direction of the exterior body, and the rod at the other end parts are supported on the first cover portion, the stopper portion is in contact with the second cap portion.

本発明に係る積層電池システムは、積層電池を金属製のブラケットを介して複数接続してなる積層電池システムであって、当該ブラケットは2つの穴を有していて、隣接する一方の積層電池の前記胴部が前記ブラケットの一方の穴に取付けられており、他方の積層電池の前記棒部が前記ブラケットの他方の穴に取付けられており、前記ブラケットを介して隣接する積層電池が直列に接続される。 The laminated battery system according to the present invention is a laminated battery system in which a plurality of laminated batteries are connected via a metal bracket, the bracket having two holes, and one of the adjacent laminated batteries. The trunk portion is attached to one hole of the bracket, the rod portion of the other laminated battery is attached to the other hole of the bracket, and adjacent laminated batteries are connected in series via the bracket. Is done.

本発明に係る積層電池は、前記外装体の軸方向に積層された前記正負極およびセパレータからなる電極群の両端に押板を配し、当該押板により前記電極群を保持してなる。 Stacked battery according to the present invention, arranged push plate across said positive and negative electrode and the electrode group consisting of a separator are laminated in the axial direction of said outer body, ing to hold the electrode group by the push plate.

発明に係る積層電池は、リチウム二次電池であることが好ましい。非水系積層電池がリチウム二次電池であることが好ましい。リチウムイオンを用いることで、動作電位と放電容量を高くすることができる。 Stacked battery according to the invention, arbitrary preferred that a lithium secondary battery. The nonaqueous laminated battery is preferably a lithium secondary battery. By using lithium ions, the operating potential and the discharge capacity can be increased.

本発明に係る積層電池は、前記正極が、CMCをバンダーとするリン酸鉄リチウム(LiFePO)を含んでいる。CMCはカルボキシメチルセルロースの略称である。CMCをバインダーとするLiFePO正極は、CMCをバインダーとしていることで、高温環境下であっても電解液によるバインダー膨潤が少なく、また有機溶媒を用いずに電極を作製することができる。そのため、高温環境下であっても、高出力特性を維持でき、コストと環境の観点からも好ましいバインダーである。例えば、ポリフッ化ビニリデン(PVdF)をバインダーとするLiFePO正極の場合、高温環境下でPVdFが膨潤するため、電極のインピーダンスが大きくなる。したがって、電池の出力特性とサイクル寿命特性が低下するため、CMCを用いることが好ましい。また、LiFePOを活物質とすることで、高温環境下であっても活物質の分解による酸素放出がなく、高温耐久性が向上する。バインダーはCMCにSBR、PVA、フッ素樹脂、アクリル樹脂等を添加し、バインダーの強度を高めてもよい。正極は、活物質、バインダー、必要に応じて添加される導電剤から構成され、その混合比が、全体を100質量%とすると、活物質が75〜98質量%、バインダーが2〜25質量%、導電剤が0〜10質量%であることが好ましい。 In the laminated battery according to the present invention, the positive electrode contains lithium iron phosphate (LiFePO 4 ) using CMC as a band . CMC is an abbreviation for carboxymethylcellulose. Since the LiFePO 4 positive electrode using CMC as a binder uses CMC as a binder, there is little binder swelling due to the electrolyte even under a high temperature environment, and an electrode can be produced without using an organic solvent. Therefore, even in a high temperature environment, high output characteristics can be maintained, and the binder is preferable from the viewpoint of cost and environment. For example, in the case of a LiFePO 4 positive electrode using polyvinylidene fluoride (PVdF) as a binder, PVdF swells in a high-temperature environment, so that the impedance of the electrode increases. Therefore, it is preferable to use CMC because the output characteristics and cycle life characteristics of the battery are degraded. Further, by using LiFePO 4 as an active material, there is no oxygen release due to decomposition of the active material even in a high temperature environment, and high temperature durability is improved. For the binder, SBR, PVA, fluororesin, acrylic resin, or the like may be added to CMC to increase the strength of the binder. The positive electrode is composed of an active material, a binder, and a conductive agent added as necessary. When the mixing ratio is 100% by mass as a whole, the active material is 75 to 98% by mass and the binder is 2 to 25% by mass. The conductive agent is preferably 0 to 10% by mass.

本発明に係る積層電池の組み立て方法は、集電体の側面に形成したネジの谷の径より小さい外径を有する丸棒に正極と、負極と、前記正極と前記負極との間に介在するセパレータとを、順次挿入して積み重ねて電極組立てる。そして、積み重ねた前記電極群の両端に押板を配して前記電極群を保持する。そして、前記押板に圧力をかけて前記電極群を圧縮して、圧縮状態を保持したまま前記丸棒を引き抜き、前記丸棒の代わりに前記集電体を前記電極群にネジ込み、前記押板を前記集電体に螺させて前記電極群の圧縮状態を保ちつつ電極集合体を組立てる。そして、前記電極集合体を外装体内部に圧入して、空気抜きを行い、電解液を注入する。
この組立方法によれば、有底の円筒缶からなる外装体に電極集合体を圧入して、電解液を注入後に円筒缶を蓋部材で封印して、電池の密閉化を図る。
In the method for assembling a laminated battery according to the present invention, a round bar having an outer diameter smaller than the diameter of a thread valley formed on a side surface of a current collector is interposed between a positive electrode, a negative electrode, and the positive electrode and the negative electrode. a separator, assembling the electrode assembly stacked sequentially inserted. Then, by arranging the push plate across said electrode group stacked holding the electrode group. Then, pressure is applied to the pressing plate to compress the electrode group, the round bar is pulled out while maintaining the compressed state, and the current collector is screwed into the electrode group instead of the round bar, and the pressing unit is pressed. by screwing the plate to the current collector assembled electrode assembly while maintaining the compressed state of the electrode group. Then, the electrode assembly is press-fitted into the exterior body, air is vented, and an electrolytic solution is injected.
According to this assembling method, the electrode assembly is press-fitted into an exterior body composed of a cylindrical can with a bottom, and after the electrolyte is injected, the cylindrical can is sealed with the lid member to seal the battery.

本発明に係る積層電池の組み立て方法は、集電体の側面に形成したネジの谷の径より小さい外径を有する丸棒に正極と、負極と、前記正極と前記負極との間に前記介在するセパレータとを、順次挿入して積み重ね圧縮して電極組立てる。そして、圧縮状態を保持しつつ前記丸棒を引き抜き、前記丸棒の代わりに前記集電体をネジ込み電極集合体を組立てる。そして、前記電極集合体を前記外装体内部に圧入して、空気抜きを行い、電解液を注入した後、押板として作用する蓋部材で前記電極集合体を前記外装体内部に封入する。
この組立方法によれば、パイプ状の外装体に電極集合体を圧入した後、蓋部材により外装体開口部に蓋をして積層電池を密閉化を図る。
Method of assembling a laminated battery according to the present invention, the round bar having a diameter smaller than the outer diameter of the screw formed on the side surface of the collector trough, said during a positive electrode, a negative electrode, the positive electrode and the negative electrode Interposing separators are sequentially inserted and stacked and compressed to assemble the electrode group . Then, the round bar is pulled out while maintaining the compressed state, and the current collector is screwed in place of the round bar to assemble the electrode assembly. Then, the electrode assembly is press-fitted into the exterior body, air is evacuated, an electrolyte is injected, and then the electrode assembly is sealed inside the exterior body with a lid member that acts as a push plate.
According to this assembling method, the electrode assembly is press-fitted into the pipe-shaped exterior body, and then the exterior body opening is covered with the lid member to seal the laminated battery.

本発明に係る電極集合体の製作において、
電解液に電流を供給して、正極と、負極と、前記正極と前記負極との間に介在するセパレータからなる電極群を複数集電体に積み重ねてなる電極集合体に電流を流すことによって、外装体に当接した電極にアルカリ金属をドープし、不可逆容量を低減させる方法が有効である。
In the production of the electrode assembly according to the present invention,
By supplying a current to the electrolytic solution, by passing a current through an electrode assembly formed by stacking a plurality of electrode groups composed of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode , A method of reducing the irreversible capacity by doping an electrode in contact with the outer package with an alkali metal is effective .

電極集合体Bは、円筒缶92の軸方向(図6のX方向)に挿入されている。負極93bの外径は円筒缶92の内径よりも小さく、負極の外周93bbと円筒缶の内面92aは接触していない。一方、正極93aの外径は円筒缶92の内径より大きく、正極の外周93abは円筒缶92の内面92aと接触しており、正極93aと円筒缶92は電気的に接続されている。円筒缶92の上部開口部は蓋部材96により覆われていて、電極集合体Bを円筒缶92の内部に密閉可能にしている。蓋部材96と円筒缶92の間には絶縁材99が配置されていて、蓋部材96と円筒缶92とが接触して電気的に短絡するのを防止している。 The electrode assembly B is inserted in the axial direction of the cylindrical can 92 (X direction in FIG. 6). The outer diameter of the negative electrode 93b is smaller than the inner diameter of the cylindrical can 92, and the outer periphery 93bb of the negative electrode and the inner surface 92a of the cylindrical can are not in contact with each other. On the other hand, the outer diameter of the positive electrode 93a is larger than the inner diameter of the cylindrical can 92, the outer periphery 93ab of the positive electrode is in contact with the inner surface 92a of the cylindrical can 92, and the positive electrode 93a and the cylindrical can 92 are electrically connected. The upper opening of the cylindrical can 92 is covered with a lid member 96 so that the electrode assembly B can be sealed inside the cylindrical can 92. An insulating material 99 is disposed between the lid member 96 and the cylindrical can 92 to prevent the lid member 96 and the cylindrical can 92 from contacting and electrically short-circuiting.

円筒缶底部92bには絶縁シート94が配置されていて、集電体の端部97bが円筒缶底部92b直接接触して、集電体97と円筒缶92が電気的に短絡するのを防止している。集電体の他方の端部97aには、下に凸の板状の弾性体からなる接続板91が取り付けられている。接続板の端部91aは蓋部材の底面96bに当接しており、蓋部材96により下方に付勢されている。これにより、集電体97と蓋部材96とは接続板91を介して電気的に接続された状態となっている。
蓋部材96の中央に設けた突起96aは負極端子として機能する。また、円筒缶92は、正極端子として機能する。
An insulating sheet 94 is disposed on the cylindrical can bottom portion 92b, and an end 97b of the current collector is in direct contact with the cylindrical can bottom portion 92b to prevent the current collector 97 and the cylindrical can 92 from being electrically short-circuited. doing. A connecting plate 91 made of a plate-like elastic body that protrudes downward is attached to the other end 97a of the current collector. The end portion 91 a of the connection plate is in contact with the bottom surface 96 b of the lid member and is urged downward by the lid member 96. As a result, the current collector 97 and the lid member 96 are electrically connected via the connection plate 91.
The protrusion 96a provided at the center of the lid member 96 functions as a negative electrode terminal. The cylindrical can 92 functions as a positive electrode terminal.

次に、本発明に係る積層電池の組み立て方法を、図7を用いて説明する。集電体97の側面に形成されたネジの谷の径(d)より小さい3.5mmの外径を有する丸棒95に、正極93aと負極93bの間にセパレータ93cが介在するように順次挿入して電極体93a,b,cを積み重ねた後、積み重ねた電極群の両端に押板98a,bを配して電極群を保持して、電極集電体Aを組立てる。そして、押板98a、bを介して電極群を圧縮して、圧縮状態を保持したまま丸棒95を引き抜き、代わりに集電体97を押板98a,bにより保持された電極群に圧力をかけながら回転させることによりネジ込む。このとき、押板98a,bは集電体97に螺合されるので電極群の圧縮状態を保持した状態で電極集合体Bを組立てることが可能となる。そして、電極集合体Bを円筒缶92内部に圧入して、空気抜きを行い、電解液を注入する。電解液の注入後に円筒缶92の開口部に蓋部材96を取り付けて、円筒缶92の開口部をかしめて、積層電池の密閉化を図る。
<実施例2>
Next, a method for assembling the laminated battery according to the present invention will be described with reference to FIG. Sequentially inserted into a round bar 95 having an outer diameter of 3.5 mm smaller than the diameter (d) of the thread valley formed on the side surface of the current collector 97 so that the separator 93c is interposed between the positive electrode 93a and the negative electrode 93b. Then, after the electrode bodies 93a, b, c are stacked, the push plates 98a, 98b are arranged on both ends of the stacked electrode groups to hold the electrode groups, and the electrode current collector A is assembled. Then, the electrode group is compressed via the push plates 98a and 98b, and the round bar 95 is pulled out while maintaining the compressed state. Instead, the current collector 97 is pressed against the electrode group held by the push plates 98a and 98b. Screw in by rotating while applying. At this time, the push plate 98a, b is made possible to assemble the electrode assembly B while maintaining the compressed state of the electrode group since it is screwed to the collector 97. Then, the electrode assembly B is press-fitted into the cylindrical can 92, air is evacuated, and an electrolytic solution is injected. After injection of the electrolytic solution, a lid member 96 is attached to the opening of the cylindrical can 92, and the opening of the cylindrical can 92 is crimped to seal the laminated battery.
<Example 2>

図8に本発明の実施例2に係る積層電池を示す。図8(b)の平面図に示すように、電池は全体として角型形状を有している。図8(a)に示す角型積層電池71は、胴部材72と蓋部材73からなる外装体75と、正極活物質を含む正極74a、負極活物質を含む負極74bと、正負極74a,74bの間に介在してイオンは透過するが電子を透過させないセパレータ74cからなる電極体74を主な構成要素として有している。胴部材72は、有底の角型の容器であり、その開口部72cを蓋部材73で覆うことにより、胴部材72の内方に密閉空間を形成可能にしている。胴部材72と蓋部材73はステンレス鋼でできているが、他の金属であってもよい。 Shows the engagement Ru laminated battery in Example 2 of the present invention in FIG. As shown in the plan view of FIG. 8B, the battery as a whole has a square shape. A rectangular laminated battery 71 shown in FIG. 8A includes an outer package 75 including a body member 72 and a lid member 73, a positive electrode 74a including a positive electrode active material, a negative electrode 74b including a negative electrode active material, and positive and negative electrodes 74a and 74b. It has an electrode body 74 made up of a separator 74c, which is interposed between them and transmits ions but does not transmit electrons, as a main component. The body member 72 is a bottomed rectangular container, and the opening 72c is covered with a lid member 73 so that a sealed space can be formed inside the body member 72. The body member 72 and the lid member 73 are made of stainless steel, but may be other metals.

Claims (29)

筒状の外装体の内部に、正極活物質を含む正極と、負極活物質を含む負極とが、イオンは透過するが電子を透過させないセパレータを介して、前記外装体の軸方向に積層されていて、かつ、非水系電解質を含む電解液を備えた電池であって、
前記正極もしくは前記負極のいずれか一方の電極であって前記外装体の内面に当接して電気的に接続されている第1電極と、他方の電極であって前記外装体の内面に接触していない第2電極とを備えていて、
導電性の集電体が、前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通していて、前記第2電極は前記集電体に当接して電気的に接続されていて、前記第1電極は前記集電体と接触していない積層電池。
A positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are laminated in the axial direction of the outer package through a separator that transmits ions but does not transmit electrons. And a battery equipped with an electrolyte containing a non-aqueous electrolyte,
A first electrode that is either the positive electrode or the negative electrode that is in contact with and electrically connected to the inner surface of the exterior body, and the other electrode that is in contact with the inner surface of the exterior body. With no second electrode,
A conductive current collector passes through the positive electrode, the negative electrode, and the separator in the axial direction of the exterior body, and the second electrode is in contact with and electrically connected to the current collector. The laminated battery is such that the first electrode is not in contact with the current collector.
前記集電体の側面に溝加工が施されている請求項1に記載の積層電池。   The laminated battery according to claim 1, wherein a groove is formed on a side surface of the current collector. 請求項2における集電体の溝がネジ溝であり、当該集電体のネジの谷の径は前記第2電極に設けた前記集電体が貫通する穴の径より大きい積層電池。   The stacked battery according to claim 2, wherein the current collector groove is a screw groove, and a diameter of a screw trough of the current collector is larger than a diameter of a hole through which the current collector provided in the second electrode passes. 前記集電体が、前記第2電極と接着剤により接合されている請求項1〜3のいずれかに一項に記載の積層電池。   The laminated battery according to claim 1, wherein the current collector is bonded to the second electrode with an adhesive. 前記接着剤が、前記電解液で溶解しない樹脂と炭素粉末から構成され、その混合比が、全体を100質量%とすると、前記電解液で溶解しない樹脂が30〜90質量%、炭素粉末が10〜70質量%である請求項1〜4のいずれか一項に記載の積層電池。   The adhesive is composed of a resin and carbon powder that does not dissolve in the electrolytic solution, and the mixing ratio is 100% by mass as a whole. The resin that does not dissolve in the electrolytic solution is 30 to 90% by mass, and the carbon powder is 10%. It is -70 mass%, The laminated battery as described in any one of Claims 1-4. 前記電解液で溶解しない樹脂が、ポリイミドである請求項1〜5のいずれか一項に記載の積層電池。   The laminated battery according to any one of claims 1 to 5, wherein the resin that does not dissolve in the electrolytic solution is polyimide. 前記外装体が蓋付有底の円筒である請求項1〜6のいずれか一項に記載の積層電池。   The laminated battery according to claim 1, wherein the outer package is a bottomed cylinder with a lid. 前記外装体が断面が略矩形の有底の容器と、前記容器の開口部を覆う蓋部材を備えている請求項1〜6のいずれか一項に記載の積層電池。   The laminated battery according to any one of claims 1 to 6, wherein the exterior body includes a bottomed container having a substantially rectangular cross section and a lid member that covers an opening of the container. 請求項8に記載の積層電池において、当該積層電池の容器の底部と、隣接する積層電池の蓋部材とが対向する方向に積層して、複数の積層電池を直列に接続した積層電池システム。   The stacked battery system according to claim 8, wherein the bottom of the container of the stacked battery and the lid member of the adjacent stacked battery are stacked in a facing direction, and a plurality of stacked batteries are connected in series. 前記外装体が円筒状の金属性の胴部と、当該胴部の軸方向開口部を覆う2つの蓋部を有していて、前記集電体は前記蓋部を貫通している請求項1〜6のいずれか一項に記載の積層電池。   The said exterior body has a cylindrical metallic trunk | drum and two cover parts which cover the axial direction opening part of the said trunk | drum, The said electrical power collector has penetrated the said cover part. The laminated battery as described in any one of -6. 請求項10に記載の積層電池の間に配される柱状の金属製の接続金具であって、当該接続金具の底面と上面にはそれぞれ軸方向に接続穴が設けられていて、上面に設けられた接続穴には一方の積層電池の集電体の端部が嵌合可能になっていて、底面に設けられた接続穴には他方の積層電池の集電体の端部が絶縁体を介して嵌合可能になっていて、隣接する積層電池を接続することを可能にしてなる接続金具。   A columnar metal connection fitting disposed between the laminated batteries according to claim 10, wherein the connection fitting is provided with a connection hole in an axial direction on the bottom surface and the top surface of the connection fitting. The end of the current collector of one stacked battery can be fitted into the connected hole, and the end of the current collector of the other stacked battery is inserted through the insulator into the connection hole provided on the bottom surface. A fitting that can be fitted to each other and can connect adjacent stacked batteries. 請求項10に記載の積層電池において、請求項11に記載の接続金具を介して複数の積層電池を接続してなる積層電池システム。   The multilayer battery system according to claim 10, wherein a plurality of multilayer batteries are connected through the connection fitting according to claim 11. 前記外装体が筒状金属性の胴部と、当該胴部の軸方向開口部を覆う絶縁性の第1蓋部と第2蓋部を有していて、前記集電体は棒部と当該棒部の一端に形成された止め部とを備えており、前記棒部は前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通して当該棒部の他端において前記第1蓋部に支持されており、前記止め部は前記第2蓋部に当接している請求項1〜6のいずれか一項に記載の積層電池。   The exterior body has a cylindrical metallic trunk, and an insulating first lid and a second lid that cover the axial opening of the trunk, and the current collector includes a rod and the lid A stop portion formed at one end of the rod portion, and the rod portion passes through the positive electrode, the negative electrode, and the separator in the axial direction of the exterior body, and the first portion at the other end of the rod portion. The laminated battery according to any one of claims 1 to 6, being supported by a lid, and the stopper being in contact with the second lid. 請求項13に記載の積層電池を金属製のブラケットを介して複数接続してなる積層電池システムであって、
当該ブラケットは2つの穴を有していて、
隣接する一方の積層電池の前記胴部が前記ブラケットの一方の穴に取付けられており、他方の積層電池の前記棒部が前記ブラケットの他方の穴に取付けられており、前記ブラケットを介して隣接する積層電池が直列に接続される積層電池システム。
A stacked battery system comprising a plurality of the stacked batteries according to claim 13 connected via a metal bracket,
The bracket has two holes,
The body part of one adjacent laminated battery is attached to one hole of the bracket, and the rod part of the other laminated battery is attached to the other hole of the bracket, and is adjacent via the bracket. A stacked battery system in which stacked batteries are connected in series.
筒状の外装体の内部に、正極活物質を含む正極と、負極活物質を含む負極とが、イオンは透過するが電子を透過させないセパレータを介して、前記外装体の軸方向に積層されていて、前記正極もしくは前記負極のいずれか一方の電極であって前記外装体の内面に当接して電気的に接続されている第1電極と、他方の電極であって前記外装体の内面に接触していない第2電極とを備えた積層電池であって、
第1電極が負極であり第2電極が正極である第1積層電池と、
第2電極が負極であり第1電極が正極である第2積層電池とを組み合わせた積層電池であって、
導電性の第1集電体および第2集電体が、前記正極と前記負極と前記セパレータを前記外装体の軸方向に貫通して挿入されていて、前記第1集電体は前記負極に接触して電気的に接続されるとともに前記正極に接触しておらず、かつ、前記第2集電体は前記正極に接触して電気的に接続されるとともに前記負極に接触していない請求項1〜6のいずれか一項に記載の積層電池。
A positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are laminated in the axial direction of the outer package through a separator that transmits ions but does not transmit electrons. A first electrode that is either the positive electrode or the negative electrode that is in contact with and electrically connected to the inner surface of the exterior body, and the other electrode that is in contact with the inner surface of the exterior body. A laminated battery comprising a second electrode that is not
A first laminated battery in which the first electrode is a negative electrode and the second electrode is a positive electrode;
A laminated battery combining a second laminated battery in which the second electrode is a negative electrode and the first electrode is a positive electrode;
A conductive first current collector and a second current collector are inserted through the positive electrode, the negative electrode, and the separator in the axial direction of the exterior body, and the first current collector is connected to the negative electrode. The second current collector is in contact with and electrically connected to the positive electrode and not in contact with the negative electrode. The laminated battery as described in any one of 1-6.
前記外装体が有底の円筒である請求項15に記載の積層電池。   The laminated battery according to claim 15, wherein the outer package is a bottomed cylinder. 前記第1集電体が前記第1積層電池の第1外装体に当接しており、前記第2集電体が前記第2積層電池の第2外装体に当接しており、前記第1外装体と前記第2外装体が絶縁体を介して接続された請求項15または16のいずれか一項に記載の積層電池。   The first current collector is in contact with the first exterior body of the first multilayer battery, the second current collector is in contact with the second exterior body of the second multilayer battery, and the first exterior body The laminated battery as described in any one of Claim 15 or 16 with which the body and the said 2nd exterior body were connected via the insulator. 前記外装体の内面が熱伝導度の高い絶縁材である請求項15〜17のいずれか一項に記載の積層電池。   The laminated battery according to any one of claims 15 to 17, wherein an inner surface of the exterior body is an insulating material having high thermal conductivity. 請求項15〜18に記載の積層電池を複数接続してなる積層電池システムであって、
複数の当該積層電池が、対向して設けられた集電板の間に配置されていて、一方の前記集電板に前記積層電池の正極に接続された正極端子が当接して電気的に接続され、他方の前記集電板に前記積層電池の負極に接続された負極端子が当接して電気的に接続されている積層電池システム。
A stacked battery system comprising a plurality of the stacked batteries according to claim 15 connected to each other,
A plurality of the laminated batteries are arranged between the current collector plates provided facing each other, and the positive electrode terminal connected to the positive electrode of the laminated battery is in contact with and electrically connected to one of the current collector plates, A laminated battery system in which a negative electrode terminal connected to the negative electrode of the laminated battery is in contact with and electrically connected to the other current collector plate.
前記集電板に平行な方向の冷却空気を送る手段を設けた請求項19に記載の積層電池システム。   The laminated battery system according to claim 19, further comprising means for sending cooling air in a direction parallel to the current collector plate. 熱伝導度の高い絶縁材からなる筒状の外装体の内部に、正極活物質を含む正極と負極活物質を含む負極との間にイオンは透過するが電子を透過させないセパレータを介在させて構成された電極体が、前記外装体の軸方向に複数積層されていて、かつ、隣接する前記電極体の間に金属製の隔壁が設けられていて、前記正極と前記負極と前記隔壁が前記外装体の内面に当接している積層電池。   A cylindrical exterior body made of an insulating material with high thermal conductivity is interposed with a separator that transmits ions but does not transmit electrons between a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material. A plurality of electrode bodies are laminated in the axial direction of the exterior body, and a metal partition is provided between the adjacent electrode bodies, and the positive electrode, the negative electrode, and the partition are the exterior A laminated battery in contact with the inner surface of the body. 前記外装体が蓋付有底の円筒である請求項21に記載の積層電池。   The laminated battery according to claim 21, wherein the outer package is a cylinder with a bottom with a lid. 前記外装体の軸方向に積層された前記正負極およびセパレータからなる電極群の両端に押板を配し、当該押板により前記電極群を保持してなる請求項1〜10、13のいずれか一項に記載の積層電池。  14. The structure according to claim 1, wherein a pressing plate is disposed at both ends of the electrode group composed of the positive and negative electrodes and the separator laminated in the axial direction of the outer package, and the electrode group is held by the pressing plate. The laminated battery according to one item. 積層電池がリチウム二次電池である請求項1〜23いずれか一項に記載の積層電池あるいは積層電池システム。   The laminated battery or the laminated battery system according to any one of claims 1 to 23, wherein the laminated battery is a lithium secondary battery. 前記正極が、CMCをバンダーとするリン酸鉄リチウムを含んでいる請求項1〜24いずれかに一項に記載の積層電池あるいは積層電池システム。   The laminated battery or the laminated battery system according to claim 1, wherein the positive electrode contains lithium iron phosphate using CMC as a band. 請求項1〜25いずれかに一項に記載の積層電池あるいは積層電池システムを用いた電気設備。   The electrical installation using the laminated battery or laminated battery system as described in any one of Claims 1-25. 前記集電体の側面に形成したネジの谷と同じ外径を有する丸棒に前記正極と前記負極の間に前記セパレータが介在するように順次挿入して電極を積み重ねた後、積み重ねた電極群の両端に前記押板を配して前記電極群を保持する。そして、前記押板に圧力をかけて前記電極群を圧縮して、圧縮状態を保持したまま前記丸棒を引き抜き、代わりに前記集電体を前記電極群にネジ込み、前記押板を前記集電体に螺号させて前記電極群の圧縮状態を保ちつつ電極集合体を組立てる。そして、前記電極集合体を前記外装体内部に圧入して、空気抜きを行い、電解液を注入する積層電池の組立て方法。   The electrodes are stacked after sequentially inserting electrodes into a round bar having the same outer diameter as the thread valley formed on the side surface of the current collector so that the separator is interposed between the positive electrode and the negative electrode. The electrode plate is held by arranging the pressing plates at both ends of the electrode. Then, pressure is applied to the push plate to compress the electrode group, and the round bar is pulled out while maintaining the compressed state. Instead, the current collector is screwed into the electrode group, and the push plate is moved to the current collector. The electrode assembly is assembled while the electrode group is screwed to keep the electrode group in a compressed state. And the assembly method of the laminated battery which press-fits the said electrode assembly inside the said exterior body, vents air, and inject | pours electrolyte solution. 前記集電体の側面に形成したネジの谷と同じ外径を有する丸棒に前記正極と前記負極の間に前記セパレータが介在するように順次挿入して電極を積み重ね圧縮した後、圧縮状態を保持しつつ前記丸棒を引き抜き、代わりに前記集電体をネジ込み電極集合体を組立てる。そして、前記電極集合体を前記外装体内部に圧入して、空気抜きを行い、電解液を注入した後、押板として作用する蓋部材で前記電極群を前記外装体内部に封入する積層電池の組立て方法。   After the electrodes are stacked and compressed sequentially into a round bar having the same outer diameter as the thread valley formed on the side surface of the current collector so that the separator is interposed between the positive electrode and the negative electrode, the compressed state is changed. The round bar is pulled out while being held, and the current collector is screwed in instead to assemble the electrode assembly. Then, the electrode assembly is press-fitted into the exterior body, the air is evacuated, the electrolyte is injected, and then an assembly of a laminated battery in which the electrode group is sealed inside the exterior body with a lid member that acts as a push plate. Method. 前記電解液に電流を供給して、前記電極集合体に電流を流すことによって、前記第2電極にアルカリ金属をドープし、不可逆容量を低減させた電極集合体を得る方法。   A method of obtaining an electrode assembly in which an irreversible capacity is reduced by supplying an electric current to the electrolytic solution and causing the current to flow through the electrode assembly to dope the second electrode with an alkali metal.
JP2012016012A 2012-01-29 2012-01-29 Stacked battery and stacked battery system Active JP5514971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016012A JP5514971B2 (en) 2012-01-29 2012-01-29 Stacked battery and stacked battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016012A JP5514971B2 (en) 2012-01-29 2012-01-29 Stacked battery and stacked battery system

Publications (2)

Publication Number Publication Date
JP2013157158A true JP2013157158A (en) 2013-08-15
JP5514971B2 JP5514971B2 (en) 2014-06-04

Family

ID=49052144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016012A Active JP5514971B2 (en) 2012-01-29 2012-01-29 Stacked battery and stacked battery system

Country Status (1)

Country Link
JP (1) JP5514971B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517988A (en) * 2011-05-06 2014-07-24 エベルト、クラウス Lithium secondary battery cell array
JP2015210917A (en) * 2014-04-25 2015-11-24 株式会社豊田自動織機 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2016066457A (en) * 2014-09-24 2016-04-28 日本特殊陶業株式会社 All-solid battery and method for manufacturing the same
JP2016164868A (en) * 2015-02-27 2016-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2016181393A (en) * 2015-03-24 2016-10-13 三菱自動車工業株式会社 Battery case
JP2017004902A (en) * 2015-06-15 2017-01-05 トヨタ自動車株式会社 Manufacturing method for battery container, and battery container
CN106663749A (en) * 2014-08-21 2017-05-10 株式会社Lg化学 Battery cell having improved cooling performance
JP2017174710A (en) * 2016-03-25 2017-09-28 エクセルギー・パワー・システムズ株式会社 Laminated battery
JP2017174519A (en) * 2016-03-21 2017-09-28 エクセルギー・パワー・システムズ株式会社 Electrode for battery, manufacturing method of electrode for battery and laminated battery
CN109613055A (en) * 2018-12-27 2019-04-12 上海工程技术大学 A kind of the stable state measuring method and measurement device of cylindrical battery radial direction thermal coefficient
CN110521040A (en) * 2017-11-16 2019-11-29 松下知识产权经营株式会社 Air cell anode and air cell
WO2021192251A1 (en) * 2020-03-27 2021-09-30 株式会社堤水素研究所 Solid-electrolyte battery

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379374A (en) * 1943-03-17 1945-06-26 Paul D Payne Manufacture of electric storage cells
JPS5686763U (en) * 1979-12-07 1981-07-11
JPS57500805A (en) * 1980-06-13 1982-05-06
JPS57500854A (en) * 1980-06-13 1982-05-13
JPS57204664U (en) * 1981-06-24 1982-12-27
JPS59157964A (en) * 1983-01-03 1984-09-07 ジ−・テイ−・イ−・プロダクツ・コ−ポレイシヨン Electrochemical cell
JPS603562U (en) * 1983-06-17 1985-01-11 松下電器産業株式会社 alkaline battery
JPS60158668U (en) * 1984-03-30 1985-10-22 日本電池株式会社 small lead acid battery
JPH10106623A (en) * 1996-10-01 1998-04-24 Mitsubishi Heavy Ind Ltd Sodium secondary battery
JP2000048854A (en) * 1998-07-31 2000-02-18 Toshiba Battery Co Ltd Cylindrical secondary battery
JP2003242958A (en) * 2002-02-20 2003-08-29 Kyocera Corp Lithium cell
JP2006092828A (en) * 2004-09-22 2006-04-06 Sanyo Electric Co Ltd Battery pack
JP2006147268A (en) * 2004-11-18 2006-06-08 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
JP2007294323A (en) * 2006-04-26 2007-11-08 Gs Yuasa Corporation:Kk Method for manufacturing nonaqueous electrolytic solution battery
JP2011029408A (en) * 2009-07-24 2011-02-10 Showa Denko Kk Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer
WO2013042640A1 (en) * 2011-09-21 2013-03-28 エクセルギー工学研究所株式会社 Laminated battery and battery pack using same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379374A (en) * 1943-03-17 1945-06-26 Paul D Payne Manufacture of electric storage cells
JPS5686763U (en) * 1979-12-07 1981-07-11
JPS57500805A (en) * 1980-06-13 1982-05-06
JPS57500854A (en) * 1980-06-13 1982-05-13
JPS57204664U (en) * 1981-06-24 1982-12-27
JPS59157964A (en) * 1983-01-03 1984-09-07 ジ−・テイ−・イ−・プロダクツ・コ−ポレイシヨン Electrochemical cell
JPS603562U (en) * 1983-06-17 1985-01-11 松下電器産業株式会社 alkaline battery
JPS60158668U (en) * 1984-03-30 1985-10-22 日本電池株式会社 small lead acid battery
JPH10106623A (en) * 1996-10-01 1998-04-24 Mitsubishi Heavy Ind Ltd Sodium secondary battery
JP2000048854A (en) * 1998-07-31 2000-02-18 Toshiba Battery Co Ltd Cylindrical secondary battery
JP2003242958A (en) * 2002-02-20 2003-08-29 Kyocera Corp Lithium cell
JP2006092828A (en) * 2004-09-22 2006-04-06 Sanyo Electric Co Ltd Battery pack
JP2006147268A (en) * 2004-11-18 2006-06-08 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
JP2007294323A (en) * 2006-04-26 2007-11-08 Gs Yuasa Corporation:Kk Method for manufacturing nonaqueous electrolytic solution battery
JP2011029408A (en) * 2009-07-24 2011-02-10 Showa Denko Kk Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer
WO2013042640A1 (en) * 2011-09-21 2013-03-28 エクセルギー工学研究所株式会社 Laminated battery and battery pack using same
JP2013080698A (en) * 2011-09-21 2013-05-02 Institute Of Energy Engineering Inc Laminate battery and laminate battery system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517988A (en) * 2011-05-06 2014-07-24 エベルト、クラウス Lithium secondary battery cell array
JP2015210917A (en) * 2014-04-25 2015-11-24 株式会社豊田自動織機 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
US10249919B2 (en) 2014-08-21 2019-04-02 Lg Chem, Ltd. Battery cell having improved cooling performance
CN106663749A (en) * 2014-08-21 2017-05-10 株式会社Lg化学 Battery cell having improved cooling performance
JP2016066457A (en) * 2014-09-24 2016-04-28 日本特殊陶業株式会社 All-solid battery and method for manufacturing the same
JP2016164868A (en) * 2015-02-27 2016-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2016181393A (en) * 2015-03-24 2016-10-13 三菱自動車工業株式会社 Battery case
JP2017004902A (en) * 2015-06-15 2017-01-05 トヨタ自動車株式会社 Manufacturing method for battery container, and battery container
US10355252B2 (en) 2015-06-15 2019-07-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing bottomed cuboid battery container
JP2017174519A (en) * 2016-03-21 2017-09-28 エクセルギー・パワー・システムズ株式会社 Electrode for battery, manufacturing method of electrode for battery and laminated battery
JP2017174710A (en) * 2016-03-25 2017-09-28 エクセルギー・パワー・システムズ株式会社 Laminated battery
CN110521040A (en) * 2017-11-16 2019-11-29 松下知识产权经营株式会社 Air cell anode and air cell
CN109613055A (en) * 2018-12-27 2019-04-12 上海工程技术大学 A kind of the stable state measuring method and measurement device of cylindrical battery radial direction thermal coefficient
CN109613055B (en) * 2018-12-27 2023-12-12 上海工程技术大学 Steady state measuring method and measuring device for radial heat conductivity coefficient of cylindrical battery
WO2021192251A1 (en) * 2020-03-27 2021-09-30 株式会社堤水素研究所 Solid-electrolyte battery

Also Published As

Publication number Publication date
JP5514971B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5514971B2 (en) Stacked battery and stacked battery system
KR102170005B1 (en) Battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system
JP6528666B2 (en) Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6136612B2 (en) Lithium ion secondary battery electrode, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
KR20210030914A (en) Power storage device
WO2017014245A1 (en) Lithium ion secondary battery
WO2010125755A1 (en) Assembled sealing body and battery using same
JP6264429B2 (en) Batteries, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
JP2009301892A (en) Battery
US11742490B2 (en) Positive electrode, battery, battery pack, electronic device, electric motor vehicle, power storage device, and power system
US20200203724A1 (en) Electrode, nonaqueous electrolyte battery and battery pack
JPWO2017119171A1 (en) Non-aqueous secondary battery, positive electrode active material for non-aqueous secondary battery, and method for producing the same
JP2005011540A (en) Nonaqueous electrolyte secondary battery
CN110945743A (en) Charging device and charging method
US20080199764A1 (en) Safer high energy battery
EP3675261A1 (en) Method for producing power storage element and power storage element
JP2000331715A (en) Nonaqueous secondary battery
JP7298853B2 (en) secondary battery
JP3579227B2 (en) Thin rechargeable battery
JP2013206741A (en) Electrode for lithium secondary battery, lithium secondary battery and electric apparatus using the same
WO2022209062A1 (en) Secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP2019016493A (en) Electrode body sub-unit, electrode unit, multilayer electrode body and power storage element
JP2018147565A (en) Method for manufacturing power storage element and power storage element
CN110915039B (en) Positive electrode active material, positive electrode, battery pack, electronic device, electric vehicle, power storage device, and power system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130501

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130501

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131107

R150 Certificate of patent or registration of utility model

Ref document number: 5514971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250