JP2011029408A - Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer - Google Patents
Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer Download PDFInfo
- Publication number
- JP2011029408A JP2011029408A JP2009173602A JP2009173602A JP2011029408A JP 2011029408 A JP2011029408 A JP 2011029408A JP 2009173602 A JP2009173602 A JP 2009173602A JP 2009173602 A JP2009173602 A JP 2009173602A JP 2011029408 A JP2011029408 A JP 2011029408A
- Authority
- JP
- Japan
- Prior art keywords
- electrode layer
- carbon
- electrochemical capacitor
- lithium
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、酸化還元を伴わない非ファラデー反応により電荷を蓄積することによる容量と酸化還元を伴うファラデー反応により電荷を蓄積することによる容量とを合わせて持つ電気化学キャパシタ並びにそれに用いる電極層およびその製法に関する。本発明は、高いエネルギー密度を有し、高温から低温までの広い温度環境にて、内部抵抗が低く、耐電圧が高く、大電流での急速な充放電が可能で、且つ安定した高出力が得られる電気化学キャパシタ並びにそれに用いる電極層およびその製法に関する。 The present invention relates to an electrochemical capacitor having a capacity by accumulating charges by a non-Faraday reaction without oxidation-reduction and a capacity by accumulating charges by a Faraday reaction with oxidation-reduction, an electrode layer used therefor, and an electrode layer thereof It relates to the manufacturing method. The present invention has a high energy density, a low internal resistance, a high withstand voltage, a rapid charge / discharge with a large current, and a stable high output in a wide temperature environment from a high temperature to a low temperature. The present invention relates to an electrochemical capacitor to be obtained, an electrode layer used therefor, and a method for producing the same.
二次電池や電気化学キャパシタは、電気自動車(EV)やハイブリット自動車(HEV)等の主電源や補助電源として、または太陽光発電や風力発電などの再生可能エネルギーの電力蓄積デバイスとして、開発が盛んに進められている。
電気化学キャパシタとしては、電気二重層キャパシタ、ハイブリッドキャパシタ、レドックスキャパシタが知られている。
電気二重層キャパシタ(シンメトリクキャパシタと呼ばれることがある。)は、正および負の両電極層に活性炭のような比表面積の大きい材料が用いられる。該電極層と電解液との界面に電気二重層が形成され、酸化還元を伴わない非ファラデー反応による蓄電が成される。電気二重層キャパシタは、一般に二次電池に比べて、出力密度が高く、急速充放電特性に優れている。
キャパシタの静電エネルギJは、式:J=(1/2)×CV2で定義される。Cは静電容量、Vは耐電圧である。電気二重層キャパシタの耐電圧は2.7〜3.3V程度と低い。そのために、電気二重層キャパシタの静電エネルギーは、二次電池の1/10以下である。
Secondary batteries and electrochemical capacitors are actively developed as main power sources and auxiliary power sources for electric vehicles (EV) and hybrid vehicles (HEV), or as power storage devices for renewable energy such as solar power generation and wind power generation. It is advanced to.
As the electrochemical capacitor, an electric double layer capacitor, a hybrid capacitor, and a redox capacitor are known.
An electric double layer capacitor (sometimes called a symmetrical capacitor) uses a material having a large specific surface area such as activated carbon for both positive and negative electrode layers. An electric double layer is formed at the interface between the electrode layer and the electrolytic solution, and electricity is stored by a non-Faraday reaction without redox. An electric double layer capacitor generally has a higher output density and excellent rapid charge / discharge characteristics than a secondary battery.
The electrostatic energy J of the capacitor is defined by the formula: J = (1/2) × CV 2 . C is a capacitance and V is a withstand voltage. The withstand voltage of the electric double layer capacitor is as low as about 2.7 to 3.3V. Therefore, the electrostatic energy of the electric double layer capacitor is 1/10 or less of the secondary battery.
ハイブリッドキャパシタ(アシンメトリックキャパシタと呼ばれることがある。)は、相互に異なる材料から成る正極層と負極層とをリチウムイオンを含む電解液中にセパレータを介して対向させたものである。このような構成にすると、正極層では酸化還元を伴わない非ファラデー反応による蓄電が、負極層では酸化還元を伴うファラデー反応による蓄電がそれぞれ成され、大きな静電容量Cを生み出すことができる。このため、ハイブリッドキャパシタは電気二重層キャパシタに比べて大きなエネルギー密度が得られるであろうと期待されている。 A hybrid capacitor (sometimes referred to as an asymmetric capacitor) has a positive electrode layer and a negative electrode layer made of different materials facing each other in an electrolyte solution containing lithium ions via a separator. With such a configuration, power storage by non-Faraday reaction that does not involve oxidation / reduction is performed in the positive electrode layer, and power storage by Faraday reaction that involves oxidation / reduction is performed in the negative electrode layer, thereby generating a large capacitance C. For this reason, it is expected that the hybrid capacitor will obtain a larger energy density than the electric double layer capacitor.
ハイブリッドキャパシタの正極層および負極層に用いられる材料が種々提案されている。
例えば、特許文献1には、正極層に活性炭を用い、負極層にリチウムイオンを吸蔵および脱離しうる炭素材料に化学的方法または電気化学的方法にてリチウムイオンを吸蔵させたものを用いることが提案されている。
特許文献2には、正極層に活性炭を用い、負極層にリチウムイオンを吸蔵および脱離しうる炭素材料とチタン酸リチウムとを用いることが提案されている。
また、特許文献3には、正極層に活性炭とリチウム含有遷移金属酸化物とを用い、負極層にリチウムイオンを吸蔵および脱離しうる炭素材料を用いることが提案されている。
Various materials used for the positive electrode layer and the negative electrode layer of the hybrid capacitor have been proposed.
For example, in Patent Document 1, activated carbon is used for the positive electrode layer, and a carbon material that can occlude and desorb lithium ions in the negative electrode layer is used in which lithium ions are occluded by a chemical method or an electrochemical method. Proposed.
特許文献4には、同一外装材内に、リチウムイオンの吸蔵および放出が可能なリチウム含有遷移金属酸化物を主体とした電池正極層を含む電池正極、アニオンの吸着および脱着が可能な炭素質材料を主体としたキャパシタ正極層を含むキャパシタ正極、リチウムイオンの吸蔵および放出が可能な炭素質材料またはリチウム含有チタン酸化物のうちの少なくとも1種からなる活物質を主体とした電池負極層を含む電池負極、リチウムイオンの吸蔵および挿入が可能な炭素質材料またはリチウム含有チタン酸化物のうちの少なくとも1種からなる活物質を主体としたキャパシタ負極層を含むキャパシタ負極、およびリチウム塩を含む有機電解液が収納されてなり、上記の電池正極と上記のキャパシタ正極とが電気的に接続され、かつ上記の電池負極と上記のキャパシタ負極も電気的に接続されている複合エネルギー素子が提案されている。
また、特許文献5には、正極層にコバルト酸リチウム、活性炭、導電剤およびバインダーを含むスラリー合剤を用い、負極層に黒鉛、活性炭およびバインダーからなるスラリー合剤を用い、電解液にリチウムイオンを含むものを用いた、電池・キャパシタ複合素子が記載されている。
Patent Document 4 discloses a battery positive electrode including a battery positive electrode layer mainly composed of a lithium-containing transition metal oxide capable of occluding and releasing lithium ions in the same exterior material, and a carbonaceous material capable of adsorbing and desorbing anions. Capacitor positive electrode including a capacitor positive electrode layer mainly composed of lithium, a battery including a battery negative electrode layer mainly composed of an active material made of at least one of a carbonaceous material capable of occluding and releasing lithium ions or lithium-containing titanium oxide A negative electrode, a capacitor negative electrode including a capacitor negative electrode layer mainly composed of an active material composed of at least one of a carbonaceous material or lithium-containing titanium oxide capable of occluding and inserting lithium ions, and an organic electrolyte containing a lithium salt The battery positive electrode and the capacitor positive electrode are electrically connected, and the battery negative The above capacitor negative even complex energy elements are electrically connected have been proposed.
In
特許文献1に記載のハイブリッドキャパシタでは、負極層にリチウムイオンを吸蔵させた炭素材料が用いられる。この負極層への吸蔵処理は一般にリチウムイオンドープと呼ばれている処理である。このリチウムイオンドープには一週間〜二週間という長い時間を要し、工程管理が難しいなどの工業的な大量生産において解決しなければならない課題がある。
特許文献2に記載のハイブリッドキャパシタは、耐電圧が2.5〜3.0V程度である。チタン酸リチウムの比容量は活性炭の比容量の約5倍であるが、耐電圧が低いので、エネルギー密度は従来の電気二重層キャパシタと差ほど変わらず、不十分であった。
一方、特許文献3に記載のハイブリッドキャパシタや特許文献4または5に記載の複合素子は、耐電圧が高いが、セル容量が低く、結局、エネルギ密度は不十分であった。
In the hybrid capacitor described in Patent Document 1, a carbon material in which lithium ions are occluded in the negative electrode layer is used. This occlusion process in the negative electrode layer is a process generally called lithium ion doping. This lithium ion doping requires a long time of one week to two weeks, and there is a problem that must be solved in industrial mass production, such as difficult process control.
The hybrid capacitor described in
On the other hand, the hybrid capacitor described in
このように、前記特許文献に記載の電気化学キャパシタでは、エネルギ−密度が10Wh/L程度であり、環境対応自動車、自然エネルギー貯蔵用途などで要望されている30Wh/L以上のエネルギー密度を安定して得ることができていない。
本発明の目的は、高いエネルギー密度を有し、高温から低温までの広い温度環境にて、内部抵抗が低く、耐電圧が高く、大電流での急速な充放電が可能で、且つ安定した高出力が得られる電気化学キャパシタ並びにそれに用いる電極層およびその製法を提供することである。
As described above, the electrochemical capacitor described in the above-mentioned patent document has an energy density of about 10 Wh / L, and stabilizes an energy density of 30 Wh / L or more which is required for environmentally-friendly automobiles and natural energy storage applications. Have not been able to get.
The object of the present invention is to have a high energy density, a low internal resistance, a high withstand voltage, a rapid charge and discharge at a large current, and a stable high in a wide temperature environment from a high temperature to a low temperature. It is an object to provide an electrochemical capacitor capable of obtaining an output, an electrode layer used therefor, and a method for producing the same.
本発明者らは、上記目的を達成するために鋭意検討した。その結果、正極層にリチウム含有遷移金属酸化物と導電性助剤と繊維状炭素と結晶性活性炭と含有するものを用い、負極層にリチウムイオンを吸蔵および脱離しうる炭素材料と導電性助剤と繊維状炭素と結晶性活性炭とを含有するものを用い、且つ電解液にリチウム塩と第四級オニウム塩とを含有するものを用いると、リチウムイオンドープを行うことなく、高いエネルギー密度を有し、高温から低温までの広い温度環境にて、内部抵抗が低く、耐電圧が高く、大電流での急速な充放電が可能で、且つ安定した高出力が得られる電気化学キャパシタを提供できることを見出した。本発明はこの知見に基づきさらに検討することによって完成するに至ったものである。 The present inventors diligently studied to achieve the above object. As a result, a carbon material and a conductive auxiliary agent capable of inserting and extracting lithium ions in the negative electrode layer using a lithium-containing transition metal oxide, a conductive auxiliary agent, fibrous carbon, and crystalline activated carbon in the positive electrode layer And carbon fiber and crystalline activated carbon, and when the electrolyte contains a lithium salt and a quaternary onium salt, a high energy density is obtained without performing lithium ion doping. In addition, it is possible to provide an electrochemical capacitor that has a low internal resistance, a high withstand voltage, can be rapidly charged / discharged with a large current, and can obtain a stable high output in a wide temperature environment from high temperature to low temperature. I found it. The present invention has been completed by further study based on this finding.
すなわち、本発明は以下の態様を含むものである。
〔1〕 リチウム含有遷移金属酸化物と導電性助剤と繊維状炭素と結晶性活性炭とを含有する正極層、 リチウムイオンを吸蔵および脱離しうる炭素材料と導電性助剤と繊維状炭素と結晶性活性炭とを含有する負極層、および リチウム塩と第四級オニウム塩とを含有する有機電解液、 を有する電気化学キャパシタ。
〔2〕前記の正極層および/または負極層に含有される繊維状炭素が、気相法によって得られた炭素繊維またはカーボンナノチューブである前記〔1〕に記載の電気化学キャパシタ。
〔3〕前記の正極層および/または負極層に含有される繊維状炭素は、比表面積が10〜20m2/gで、平均繊維径が1〜500nmで且つ粉体抵抗値が0.02Ω・cm以下である炭素繊維Vと、比表面積が100〜1000m2/gで、平均繊維径が1〜500nmで且つ粉体抵抗値が0.025Ω・cm以上である炭素繊維Aとを、質量比で1:2〜1:10の範囲で混合したものである、前記〔1〕または〔2〕に記載の電気化学キャパシタ。
〔4〕リチウム含有遷移金属酸化物が、Ti、V、Mn、Fe、Co、Ni、ZnおよびWからなる群から選ばれる少なくとも1種の元素とリチウム元素とを含む複合酸化物である前記〔1〕〜〔3〕のいずれか1項に記載の電気化学キャパシタ。
〔5〕リチウム含有遷移金属酸化物が正極層中に10〜60質量%含まれている前記〔1〕〜〔4〕のいずれか1項に記載の電気化学キャパシタ。
〔6〕リチウムイオンを吸蔵および脱離しうる炭素材料は、液相置換法による真密度が1.45〜1.6g/cm3である、前記〔1〕〜〔5〕のいずれか1項に記載の電気化学キャパシタ。
〔7〕リチウムイオンを吸蔵および脱離しうる炭素材料が負極層中に10〜60質量%含まれている前記〔1〕〜〔6〕のいずれか1項に記載の電気化学キャパシタ。
〔8〕前記の正極層および/または負極層に含有される導電性助剤は、空隙率が55〜85%で、比表面積が700〜1400m2/gで且つ中空シェル構造を有する導電性カーボンである前記〔1〕〜〔7〕のいずれか1項に記載の電気化学キャパシタ。
〔9〕前記の正極層および/または負極層に含有される結晶性活性炭は、比表面積が800〜2200m2/gである、前記〔1〕〜〔8〕のいずれか1項に記載の電気化学キャパシタ。
〔10〕前記の有機電解液は、リチウムイオンの濃度と第四級オニウムイオンの濃度との合計が2〜4mol/Lで、且つリチウムイオンの量が第四級オニウムイオンの量に対してモル比で0.5〜1である、前記〔9〕に記載の電気化学キャパシタ。
〔11〕負極層の容量が正極層の容量に対する比で1.1〜1.5である前記〔1〕〜〔10〕のいずれか1項に記載の電気化学キャパシタ。
That is, the present invention includes the following aspects.
[1] A positive electrode layer containing a lithium-containing transition metal oxide, a conductive aid, fibrous carbon, and crystalline activated carbon, a carbon material capable of inserting and extracting lithium ions, a conductive aid, fibrous carbon, and a crystal An electrochemical capacitor comprising: a negative electrode layer containing conductive activated carbon; and an organic electrolyte containing a lithium salt and a quaternary onium salt.
[2] The electrochemical capacitor according to [1], wherein the fibrous carbon contained in the positive electrode layer and / or the negative electrode layer is a carbon fiber or a carbon nanotube obtained by a vapor phase method.
[3] The fibrous carbon contained in the positive electrode layer and / or the negative electrode layer has a specific surface area of 10 to 20 m 2 / g, an average fiber diameter of 1 to 500 nm, and a powder resistance value of 0.02Ω · mass ratio of carbon fiber V having a specific surface area of 100 to 1000 m 2 / g, carbon fiber A having an average fiber diameter of 1 to 500 nm and a powder resistance value of 0.025 Ω · cm or more. The electrochemical capacitor according to [1] or [2], wherein the electrochemical capacitor is mixed in a range of 1: 2 to 1:10.
[4] The lithium-containing transition metal oxide is a composite oxide containing at least one element selected from the group consisting of Ti, V, Mn, Fe, Co, Ni, Zn, and W and a lithium element [ [1] The electrochemical capacitor according to any one of [3].
[5] The electrochemical capacitor according to any one of [1] to [4], wherein 10 to 60% by mass of the lithium-containing transition metal oxide is contained in the positive electrode layer.
[6] The carbon material capable of occluding and desorbing lithium ions has a true density of 1.45 to 1.6 g / cm 3 according to a liquid phase substitution method, according to any one of the above [1] to [5] The electrochemical capacitor as described.
[7] The electrochemical capacitor according to any one of [1] to [6], wherein the negative electrode layer contains 10 to 60% by mass of a carbon material capable of inserting and extracting lithium ions.
[8] The conductive assistant contained in the positive electrode layer and / or the negative electrode layer is a conductive carbon having a porosity of 55 to 85%, a specific surface area of 700 to 1400 m 2 / g, and a hollow shell structure. The electrochemical capacitor according to any one of the above [1] to [7].
[9] The electricity according to any one of [1] to [8], wherein the crystalline activated carbon contained in the positive electrode layer and / or the negative electrode layer has a specific surface area of 800 to 2200 m 2 / g. Chemical capacitor.
[10] In the organic electrolyte, the sum of the concentration of lithium ions and the concentration of quaternary onium ions is 2 to 4 mol / L, and the amount of lithium ions is mol relative to the amount of quaternary onium ions. The electrochemical capacitor according to [9], which has a ratio of 0.5 to 1.
[11] The electrochemical capacitor according to any one of [1] to [10], wherein the capacity of the negative electrode layer is 1.1 to 1.5 in a ratio to the capacity of the positive electrode layer.
〔12〕リチウム含有遷移金属酸化物と繊維状炭素と導電性助剤と結晶性活性炭とバインダーとを含有する電気化学キャパシタ用の正極層。
〔13〕導電性助剤の量がリチウム含有遷移金属酸化物の量に対して20〜75質量%で且つ繊維状炭素の量がリチウム含有遷移金属酸化物の量に対して2〜40質量%である、前記〔12〕に記載の電気化学キャパシタ用の正極層。
〔14〕リチウム含有遷移金属酸化物の量が、結晶性活性炭とリチウム含有遷移金属酸化物との合計量に対して10〜50質量%である、前記〔12〕または〔13〕に記載の電気化学キャパシタ用の正極層。
〔15〕リチウム含有遷移金属酸化物の二次粒子表面に繊維状炭素および導電性助剤が付着したものが含まれている、前記〔12〕〜〔14〕のいずれか1項に記載の電気化学キャパシタ用の正極層。
〔16〕リチウム含有遷移金属酸化物と繊維状炭素と導電性助剤とを混合し、 前記混合で得られたものと結晶性活性炭とバインダーとを混合して合剤を得、 次いで該合剤を成形することを含む前記〔12〕〜〔15〕のいずれか1項に記載の正極層の製法。
[12] A positive electrode layer for an electrochemical capacitor containing a lithium-containing transition metal oxide, fibrous carbon, a conductive auxiliary, crystalline activated carbon, and a binder.
[13] The amount of the conductive auxiliary is 20 to 75% by mass with respect to the amount of the lithium-containing transition metal oxide, and the amount of fibrous carbon is 2 to 40% by mass with respect to the amount of the lithium-containing transition metal oxide. The positive electrode layer for an electrochemical capacitor as described in [12] above.
[14] The electricity according to [12] or [13], wherein the amount of the lithium-containing transition metal oxide is 10 to 50% by mass with respect to the total amount of the crystalline activated carbon and the lithium-containing transition metal oxide. Positive electrode layer for chemical capacitors.
[15] The electricity according to any one of [12] to [14], wherein the surface of the secondary particles of the lithium-containing transition metal oxide includes fibrous carbon and a conductive auxiliary agent attached thereto. Positive electrode layer for chemical capacitors.
[16] A lithium-containing transition metal oxide, fibrous carbon, and a conductive auxiliary agent are mixed, and a mixture obtained by mixing the crystalline activated carbon and a binder is obtained, and then the mixture The manufacturing method of the positive electrode layer of any one of said [12]-[15] including shape | molding.
〔17〕リチウムイオンを吸蔵および脱離しうる炭素材料と繊維状炭素と導電性助剤と結晶性活性炭とバインダーとを含有する負極層。
〔18〕導電性助剤の量がリチウムイオンを吸蔵および脱離しうる炭素材料の量に対して20〜75質量%で且つ繊維状炭素の量がリチウムイオンを吸蔵および脱離しうる炭素材料の量に対して2〜40質量%である、前記〔17〕に記載の電気化学キャパシタ用の負極層。
〔19〕リチウムイオンを吸蔵および脱離しうる炭素材料の量が、結晶性活性炭とリチウムイオンを吸蔵および脱離しうる炭素材料との合計量に対して10〜60質量%である、前記〔17〕または〔18〕に記載の電気化学キャパシタ用の負極層。
〔20〕リチウムイオンを吸蔵および脱離しうる炭素材料の二次粒子表面に繊維状炭素および導電性助剤が付着したものが含まれている、前記〔17〕〜〔19〕のいずれか1項に記載の電気化学キャパシタ用の負極層。
[17] A negative electrode layer containing a carbon material capable of inserting and extracting lithium ions, fibrous carbon, a conductive auxiliary agent, crystalline activated carbon, and a binder.
[18] The amount of the carbon material capable of inserting and extracting lithium ions when the amount of the conductive auxiliary agent is 20 to 75% by mass with respect to the amount of the carbon material capable of inserting and extracting lithium ions. The negative electrode layer for an electrochemical capacitor according to [17], which is 2 to 40% by mass based on the total amount.
[19] The above [17], wherein the amount of the carbon material capable of inserting and extracting lithium ions is 10 to 60% by mass with respect to the total amount of the crystalline activated carbon and the carbon material capable of inserting and extracting lithium ions. Or the negative electrode layer for electrochemical capacitors as described in [18].
[20] Any one of [17] to [19] above, wherein the surface of secondary particles of a carbon material capable of occluding and desorbing lithium ions includes fibrous carbon and a conductive auxiliary agent attached thereto. A negative electrode layer for an electrochemical capacitor as described in 1.
〔21〕リチウムイオンを吸蔵および脱離しうる炭素材料と繊維状炭素と導電性助剤とを混合し、前記混合で得られたものと結晶性活性炭とバインダーとを混合して合剤を得、次いで該合剤を成形することを含む前記〔17〕〜〔20〕のいずれか1項に記載の負極層の製法。 [21] A carbon material capable of occluding and desorbing lithium ions, fibrous carbon, and a conductive auxiliary agent are mixed, and a mixture obtained by mixing the obtained carbonaceous material with crystalline activated carbon and a binder is obtained, Next, the method for producing a negative electrode layer according to any one of [17] to [20], comprising forming the mixture.
〔22〕前記〔1〕〜〔11〕のいずれか1項に記載の電気化学キャパシタを有する自動車(電気自動車、ハイブリッド電気自動車(HEV)、アイドリングストップ機能を備えたマイクロハイブリッド自動車、電力エネルギー回生やブレーキ回生機能を備えたストロングハイブリッド自動車、プラグインハイブリッド自動車、燃料電池自動車など)。
〔23〕前記〔1〕〜〔11〕のいずれか1項に記載の電気化学キャパシタを有する発電システム(太陽光発電システム、風力発電システムなど)。
〔24〕前記〔1〕〜〔11〕のいずれか1項に記載の電気化学キャパシタを備えた運輸機関(鉄道、船舶、航空機など)。
[22] An automobile having the electrochemical capacitor according to any one of [1] to [11] (an electric vehicle, a hybrid electric vehicle (HEV), a micro hybrid vehicle having an idling stop function, a power energy regeneration, Strong hybrid vehicles with brake regeneration, plug-in hybrid vehicles, fuel cell vehicles, etc.).
[23] A power generation system (solar power generation system, wind power generation system, etc.) having the electrochemical capacitor according to any one of [1] to [11].
[24] A transport engine (railway, ship, aircraft, etc.) provided with the electrochemical capacitor according to any one of [1] to [11].
本発明の電気化学キャパシタは、耐電圧が高く且つ容量が大きいので、30Wh/L以上の高いエネルギー密度を得ることができる。また、本発明の電気化学キャパシタでは、急速充放電においては活性炭が主に関与する。リチウム含有遷移金属酸化物は低電流による充放電を行ったときに関与する程度で、急速充放電時には実質的に関与しない。その結果、本発明の電気化学キャパシタは、充放電サイクル耐久性が優れている。
本発明の電気化学キャパシタでは、負極炭素材料へのリチウムドープを行わなくても、十分な耐電圧を得ることができるので、負極層の製造効率が高く、工業的な大量生産に適している。
Since the electrochemical capacitor of the present invention has a high withstand voltage and a large capacity, a high energy density of 30 Wh / L or more can be obtained. In the electrochemical capacitor of the present invention, activated carbon is mainly involved in rapid charge / discharge. The lithium-containing transition metal oxide is involved only when charging / discharging at a low current, and is not substantially involved during rapid charging / discharging. As a result, the electrochemical capacitor of the present invention has excellent charge / discharge cycle durability.
In the electrochemical capacitor of the present invention, a sufficient withstand voltage can be obtained without performing lithium doping on the negative electrode carbon material. Therefore, the production efficiency of the negative electrode layer is high and suitable for industrial mass production.
本発明の電気化学キャパシタは、リチウム含有遷移金属酸化物と導電性助剤と繊維状炭素と結晶性活性炭とを含有する正極層、リチウムイオンを吸蔵および脱離しうる炭素材料と導電性助剤と繊維状炭素と結晶性活性炭とを含有する負極層、およびリチウム塩と第四級オニウム塩とを含有する有機電解液を有するものである。 The electrochemical capacitor of the present invention includes a positive electrode layer containing a lithium-containing transition metal oxide, a conductive auxiliary, fibrous carbon, and crystalline activated carbon, a carbon material capable of inserting and extracting lithium ions, and a conductive auxiliary. It has a negative electrode layer containing fibrous carbon and crystalline activated carbon, and an organic electrolyte solution containing a lithium salt and a quaternary onium salt.
(結晶性活性炭)
正極層及び負極層に使用される結晶性活性炭は、比表面積が好ましくは800〜2200m2/g、より好ましくは850〜1100m2/gである。結晶性活性炭の比表面積が小さすぎると、質量当たりの容量(F/g)が不足しがちになる。逆に比表面積が大きすぎると質量当たりの容量(F/g)が大きくなるが電極密度(g/ml)が小さくなるため結果として体積当たりの容量(F/ml)が低下してしまう。
本発明に用いられる結晶性活性炭は、N2吸着等温線からBJH法解析により求められた対数微分細孔容積分布において細孔径1.0〜1.5nmの範囲に細孔容積の最大値を示すピークAがあり、そのピークAのピーク値が0.012〜0.05ml/gの範囲にあり且つ全細孔容積の2〜32%の大きさであることが好ましい。
本発明に用いられる結晶性活性炭は、その製造方法によって限定されず、公知の製法で得られた活性炭の中から上記特性を有するものを選択することができる。活性炭の原料としては、椰子殻、ピッチ、石炭コークス、石油コークス、合成樹脂(例えば塩化ビニルなど)が使用可能である。賦活方法としては水蒸気賦活法、アルカリ賦活法等が挙げられる。特に好ましいのは石炭コークスを原料としてアルカリ賦活して得られる活性炭である。
(Crystalline activated carbon)
The crystalline activated carbon used for the positive electrode layer and the negative electrode layer preferably has a specific surface area of 800 to 2200 m 2 / g, more preferably 850 to 1100 m 2 / g. If the specific surface area of the crystalline activated carbon is too small, the capacity per mass (F / g) tends to be insufficient. Conversely, if the specific surface area is too large, the capacity per mass (F / g) increases, but the electrode density (g / ml) decreases, resulting in a decrease in capacity per volume (F / ml).
The crystalline activated carbon used in the present invention shows the maximum value of the pore volume in the range of the pore diameter of 1.0 to 1.5 nm in the logarithmic differential pore volume distribution obtained by the BJH method analysis from the N 2 adsorption isotherm. There is a peak A, and the peak value of the peak A is preferably in the range of 0.012 to 0.05 ml / g and is preferably 2 to 32% of the total pore volume.
The crystalline activated carbon used for this invention is not limited by the manufacturing method, What has the said characteristic can be selected from the activated carbon obtained by the well-known manufacturing method. As a raw material of activated carbon, coconut shell, pitch, coal coke, petroleum coke, and synthetic resin (for example, vinyl chloride) can be used. Examples of the activation method include a steam activation method and an alkali activation method. Particularly preferred is activated carbon obtained by alkali activation using coal coke as a raw material.
さらに、本発明に用いられる結晶性活性炭は、非晶質炭素中に黒鉛構造を有する複数の結晶子を持つものでこれら結晶子の配向組成状態や層間距離を示すパラメータが下記の(a)〜(c)のうちの少なくとも1つを満足するものであることが好ましい。
(a)X線回折測定での(10)面及び(11)面でのa軸方向の結晶子の大きさLa(六角網面の大きさ)が5.5nm以下である。
(b)レーザーラマンスペクトルによるGバンド1600cm-1のピーク強度に対する1345cm-1のピーク強度比(R値)が0.9〜1.0である。
(c)透過型電子顕微鏡の明視野像の制限視野電子回折において、黒鉛結晶質炭素部分/比晶質炭素部分の面積比が7/3〜9/1である。
結晶性活性炭のX線回折のLaが5.5nmを超える場合には、炭素化物の配向構造や層間距離が狭いため,アルカリ賦活処理において炭素化物内への溶融アルカリの浸透性が不良となり、また炭素化物外への発生ガスの排出が遅くなるため,体積あたり電気容量(F/cc)が低下傾向になる。
レーザーラマンGバンドピーク比(R値)が、1.0を超える場合には非晶質の乱層構造の割合が多くなり、体積あたりの電気容量(F/cc)が低下傾向になる。
該面積比が7/3より小さいと、高い放電容量が得られ難い。また、面積比が9/1より大きくなると黒鉛結晶が多すぎるため、細孔容積分布が最適なものになり難い。
Furthermore, the crystalline activated carbon used in the present invention has a plurality of crystallites having a graphite structure in amorphous carbon, and parameters indicating the orientation composition state and interlayer distance of these crystallites are the following (a) to (a) to It is preferable that at least one of (c) is satisfied.
(A) The crystallite size La (the size of the hexagonal network surface) in the a-axis direction on the (10) plane and the (11) plane in X-ray diffraction measurement is 5.5 nm or less.
(B) a peak intensity ratio of 1345cm -1 to the peak intensity of G-band 1600 cm -1 by laser Raman spectrum (R value) is 0.9 to 1.0.
(C) In the limited field electron diffraction of the bright field image of the transmission electron microscope, the area ratio of the graphite crystalline carbon portion / the specific crystalline carbon portion is 7/3 to 9/1.
When the La of X-ray diffraction of crystalline activated carbon exceeds 5.5 nm, the orientation structure of the carbonized material and the interlayer distance are narrow, so that the permeability of the molten alkali into the carbonized material becomes poor in the alkali activation treatment. Since the discharge of the generated gas to the outside of the carbonized product is delayed, the electric capacity (F / cc) per volume tends to decrease.
When the laser Raman G band peak ratio (R value) exceeds 1.0, the ratio of the amorphous turbulent layer structure increases, and the electric capacity (F / cc) per volume tends to decrease.
When the area ratio is smaller than 7/3, it is difficult to obtain a high discharge capacity. In addition, when the area ratio is larger than 9/1, the graphite volume is too much, so that the pore volume distribution is hardly optimized.
(導電性助剤)
正極層及び負極層に使用される導電性助剤は、正極層および負極層の抵抗を低くすることができる導電性カーボンである。該導電性助剤は、電気二重層キャパシタやリチウムイオン電池などに使用されている公知の導電性カーボンの中から選択してもよい。導電性カーボンとしては、アセチレンブラック、チャネルブラック、ファーネスブラック、ケッチェンブラックなどが挙げられる。これらの中でもケッチェンブラックが特に好ましい。
(Conductive aid)
The conductive auxiliary agent used for the positive electrode layer and the negative electrode layer is a conductive carbon capable of reducing the resistance of the positive electrode layer and the negative electrode layer. The conductive auxiliary agent may be selected from known conductive carbons used in electric double layer capacitors, lithium ion batteries and the like. Examples of the conductive carbon include acetylene black, channel black, furnace black, and ketjen black. Of these, ketjen black is particularly preferred.
本発明に用いられる導電性カーボンは、その比表面積が700〜1400m2/gであることが好ましく、800〜1000m2/gであることがより好ましい。比表面積が小さすぎると、負極層の導電性が低下傾向になる。比表面積が大きすぎるとストラクャーが乱れてしまい活性炭と混合して使用する際に電極の成形性などに問題が生じやすい。
さらに、本発明に用いられる導電性カーボンは、中空シェル構造を有するものが好ましい。中空シェル構造とは、電子顕微鏡による観察で粒子内部に空間部を有し外周部が薄いシェルで構成されるものである。該シェルは炭素六角網平面層で構成されている。
The conductive carbon used in the present invention preferably has a specific surface area of 700 to 1400 m 2 / g, and more preferably 800 to 1000 m 2 / g. If the specific surface area is too small, the conductivity of the negative electrode layer tends to decrease. If the specific surface area is too large, the structure is disturbed, and problems such as electrode formability are likely to occur when mixed with activated carbon.
Furthermore, the conductive carbon used in the present invention preferably has a hollow shell structure. The hollow shell structure is constituted by a shell having a space inside the particle and a thin outer periphery as observed with an electron microscope. The shell is composed of a carbon hexagonal plane layer.
本発明に好適に用いられる導電性カーボンは、その空隙率が55%〜85%であることが好ましく、60%〜70%であることがより好ましい。導電性カーボンの空隙率が小さすぎると、電極層の導電性が不足して出力が低下傾向になる。逆に、導電性カーボンの空隙率が大きすぎると、電極層の密度が低くなり、体積あたりの容量が低下傾向になる。
導電性カーボンの空隙率は、窒素吸着等温線から求めたBET比表面積と、電子顕微鏡写真から求めた外部比表面積とに基づき、次式に従って算出した。
空隙率 (%) =(外部比表面積/BET比表面積) × 100
このような特性を持つ市販品としては、ファーネスブラックの一種であるケッチェンブラック(ケッチェン・ブラック・インターナショナル社製)が好ましく、特にケッチェンブラックEC300JP(多孔度:66.3%;空隙率:69.1%)、ケッチェンブラックEC600JP(多孔度:81.9%;空隙率:81.6%)(いずれも、ケッチェン・ブラック・インターナショナル社製)が好ましい。
The conductive carbon suitably used in the present invention preferably has a porosity of 55% to 85%, and more preferably 60% to 70%. When the porosity of the conductive carbon is too small, the conductivity of the electrode layer is insufficient and the output tends to decrease. On the other hand, when the porosity of the conductive carbon is too large, the density of the electrode layer becomes low and the capacity per volume tends to decrease.
The porosity of the conductive carbon was calculated according to the following formula based on the BET specific surface area determined from the nitrogen adsorption isotherm and the external specific surface area determined from the electron micrograph.
Porosity (%) = (External specific surface area / BET specific surface area) × 100
As a commercial product having such characteristics, Ketjen Black (Ketjen Black International Co., Ltd.), which is a kind of furnace black, is preferable, and in particular, Ketjen Black EC300JP (porosity: 66.3%; porosity: 69) 0.1%) and Ketjen Black EC600JP (porosity: 81.9%; porosity: 81.6%) (both manufactured by Ketjen Black International).
また、本発明に用いる導電性カーボンは、その1次粒子径が20〜50nmであることが好ましく、30〜40nmであることがより好ましい。導電性カーボンの一次粒子径が小さすぎると、電極層を製造する際の混練性が低くなるので、凝集物が多くなり均一に分散し難くなる。その結果として配合量に相当する導電効果が得られないことがある。一方、導電性カーボンの粒子径が大きすぎると成形された電極の密度が低くなり、機械的特性が低下傾向になる。 Moreover, the conductive carbon used in the present invention preferably has a primary particle size of 20 to 50 nm, and more preferably 30 to 40 nm. If the primary particle diameter of the conductive carbon is too small, the kneadability at the time of producing the electrode layer is lowered, so that aggregates increase and it is difficult to uniformly disperse. As a result, the conductive effect corresponding to the blending amount may not be obtained. On the other hand, if the particle diameter of the conductive carbon is too large, the density of the molded electrode is lowered, and the mechanical properties tend to be lowered.
(繊維状炭素)
正極層及び負極層に使用される繊維状炭素は、電気二重層キャパシタやリチウムイオン電池などにおいて使用されている公知の繊維状炭素の中から選択することができる。本発明に用いられる繊維状炭素は、そのアスペクト比が、好ましくは10〜15000、より好ましくは50〜100であり;その比表面積が好ましくは10〜1000m2/g、より好ましくは50〜500m2/gであり;またその平均繊維径が好ましく1〜500nm、より好ましくは150〜200nmである。
(Fibrous carbon)
The fibrous carbon used for the positive electrode layer and the negative electrode layer can be selected from known fibrous carbons used in electric double layer capacitors, lithium ion batteries, and the like. The fibrous carbon used in the present invention has an aspect ratio of preferably 10 to 15000, more preferably 50 to 100; its specific surface area is preferably 10 to 1000 m 2 / g, more preferably 50 to 500 m 2. The average fiber diameter is preferably 1 to 500 nm, more preferably 150 to 200 nm.
本発明においては、特性の異なる少なくとも2種の炭素繊維を組み合わせて用いることが好ましい。具体的には、以下の炭素繊維Vと炭素繊維Aとを組み合わせて用いることが好ましい。
炭素繊維Vは、比表面積が10〜20m2/gで、平均繊維径が1〜500nmで且つ粉体抵抗値が0.02Ω・cm以下である。炭素繊維Vは電気伝導性に優れ電極層の導電パスを良好にする効果がある。炭素繊維Vの好ましい粉体抵抗値は0.015Ω・cm以下である。炭素繊維Vは粉体抵抗値の下限が好ましくは0.011Ω・cmである。
炭素繊維Aは、比表面積が100〜1000m2/gで、平均繊維径が1〜500nmで且つ粉体抵抗値が0.025Ω・cm以上である。炭素繊維Aは炭素繊維表面に活性炭類似の細孔構造を持っているので有機電解液が浸み込みやすく、それによって電気伝導性を良好にする効果がある。炭素繊維Aは粉体抵抗値の上限が好ましくは0.03Ω・cmである。
炭素繊維V:炭素繊維Aの質量比は、好ましくは1:2〜1:10の範囲であり、より好ましくは1:2〜1:5である。
In the present invention, it is preferable to use a combination of at least two types of carbon fibers having different characteristics. Specifically, it is preferable to use the following carbon fiber V and carbon fiber A in combination.
The carbon fiber V has a specific surface area of 10 to 20 m 2 / g, an average fiber diameter of 1 to 500 nm, and a powder resistance value of 0.02 Ω · cm or less. The carbon fiber V is excellent in electrical conductivity and has an effect of improving the conductive path of the electrode layer. A preferable powder resistance value of the carbon fiber V is 0.015 Ω · cm or less. The lower limit of the powder resistance value of the carbon fiber V is preferably 0.011 Ω · cm.
Carbon fiber A has a specific surface area of 100 to 1000 m 2 / g, an average fiber diameter of 1 to 500 nm, and a powder resistance value of 0.025 Ω · cm or more. Since the carbon fiber A has a pore structure similar to activated carbon on the surface of the carbon fiber, the organic electrolyte solution can easily permeate, thereby improving the electrical conductivity. The upper limit of the powder resistance value of the carbon fiber A is preferably 0.03 Ω · cm.
The mass ratio of carbon fiber V: carbon fiber A is preferably in the range of 1: 2 to 1:10, more preferably 1: 2 to 1: 5.
本発明に用いられる繊維状炭素は、気相法によって得られる炭素繊維またはカーボンナノチューブであることが好ましい。
気相法は、エチレンなどの炭素源を気相中で熱分解し、鉄、鉄アルミナなどの触媒粒子を核として炭素を繊維状に成長させていく方法である。
炭素繊維Vは、例えば、気相法で得られた繊維状炭素を1000〜1500℃で焼成し、次いで2500℃以上の温度で黒鉛化処理することによって得ることができる。
炭素繊維Aは、例えば、気相法で得られた繊維状炭素を1000〜1500℃で焼成し、次いで700℃以上の温度でアルカリ賦活処理することによって得ることができる。
The fibrous carbon used in the present invention is preferably a carbon fiber or carbon nanotube obtained by a gas phase method.
The gas phase method is a method in which a carbon source such as ethylene is thermally decomposed in a gas phase, and carbon is grown in a fiber shape using catalyst particles such as iron and iron alumina as nuclei.
The carbon fiber V can be obtained, for example, by firing fibrous carbon obtained by a vapor phase method at 1000 to 1500 ° C. and then graphitizing at a temperature of 2500 ° C. or higher.
The carbon fiber A can be obtained, for example, by firing fibrous carbon obtained by a gas phase method at 1000 to 1500 ° C., and then subjecting the carbon to an alkali activation treatment at a temperature of 700 ° C. or higher.
〈正極層〉
(リチウム含有遷移金属酸化物)
正極層に含まれるリチウム含有遷移金属酸化物は遷移金属元素とリチウム元素とを含む複合酸化物である。遷移金属元素としては、Ti、V、Mn、Fe、Co、Ni、Zn及びWからなる群から選ばれる少なくとも1種の元素が好ましく、Mn、Ti及びFeからなる群から選ばれる少なくとも1種の元素がより好ましい。リチウム含有遷移金属酸化物の具体例としては、リチウムマンガン複合酸化物(例えば、LiMn2O4またはLiMnO2)、リチウムニッケル複合酸化物(例えば、LiNiO2)、リチウムコバルト複合酸化物(例えば、LiCoO4)、リチウムチタン複合酸化物(例えば、Li4Ti5O12)、オリビン構造を有するリチウムリン酸化物(例えば、LiFePO4)、リチウムバナジウム酸化物(例えば、LixV2O5)などが挙げられる。これらのうち、LixTiyO(1-y)、またはLizMn2O4 (ただし、0<x<2、0≦y≦1、0<z<2)が特に好ましい。
<Positive electrode layer>
(Lithium-containing transition metal oxide)
The lithium-containing transition metal oxide contained in the positive electrode layer is a composite oxide containing a transition metal element and a lithium element. The transition metal element is preferably at least one element selected from the group consisting of Ti, V, Mn, Fe, Co, Ni, Zn and W, and at least one element selected from the group consisting of Mn, Ti and Fe. Elements are more preferred. Specific examples of the lithium-containing transition metal oxide include lithium manganese composite oxide (for example, LiMn 2 O 4 or LiMnO 2 ), lithium nickel composite oxide (for example, LiNiO 2 ), lithium cobalt composite oxide (for example, LiCoO). 4 ), lithium titanium composite oxide (for example, Li 4 Ti 5 O 12 ), lithium phosphorus oxide having an olivine structure (for example, LiFePO 4 ), lithium vanadium oxide (for example, Li x V 2 O 5 ), etc. Can be mentioned. Of these, Li x Ti y O (1-y) or Li z Mn 2 O 4 (where 0 <x <2, 0 ≦ y ≦ 1, 0 <z <2) is particularly preferable.
正極層中のリチウム含有遷移金属酸化物の量は、大容量化、充放電サイクルにおける容量減少を小さくし耐久性を高めるという観点から、10〜60質量%が好ましく、10〜40質量%がより好ましく、10〜20質量%がさらに好ましい。リチウム含有遷移金属酸化物の量が少なすぎると、初めの充電において脱離されるリチウムイオンの量が負極が吸蔵できるリチウムイオンの量に対して不足し、耐電圧が低めになりやすい。リチウム含有遷移金属酸化物の量が多すぎると、正極層中の活性炭の量が相対的に少なくなるため、充放電サイクルにおける容量減少が大きめになりやすい。 The amount of the lithium-containing transition metal oxide in the positive electrode layer is preferably 10 to 60% by mass, more preferably 10 to 40% by mass, from the viewpoint of increasing the capacity, reducing the capacity decrease in the charge / discharge cycle, and increasing the durability. Preferably, 10 to 20% by mass is more preferable. If the amount of the lithium-containing transition metal oxide is too small, the amount of lithium ions desorbed in the first charge is insufficient relative to the amount of lithium ions that can be occluded by the negative electrode, and the withstand voltage tends to be lowered. When the amount of the lithium-containing transition metal oxide is too large, the amount of activated carbon in the positive electrode layer is relatively small, so that the capacity reduction in the charge / discharge cycle tends to be large.
正極層における導電性助剤の量は、リチウム含有遷移金属酸化物に対して、好ましくは20〜75質量%、より好ましくは20〜40質量%である。導電性助剤の量が少なすぎると、正極層の導電性が不足しハイレート特性が低下傾向になる。また導電性助剤が多すぎるとリチウム含有遷移金属酸化物の配合量が相対的に低下してしまうため高い容量を得難くなる。 The amount of the conductive auxiliary in the positive electrode layer is preferably 20 to 75% by mass, more preferably 20 to 40% by mass with respect to the lithium-containing transition metal oxide. When the amount of the conductive auxiliary agent is too small, the conductivity of the positive electrode layer is insufficient and the high rate characteristic tends to be lowered. Moreover, when there are too many electroconductive auxiliary agents, since the compounding quantity of a lithium containing transition metal oxide will fall relatively, it will become difficult to obtain a high capacity | capacitance.
正極層における繊維状炭素の量は、リチウム含有遷移金属酸化物に対して、好ましくは2〜40質量%、より好ましくは3〜8質量%である。
繊維状炭素の量が少なすぎると正極層の導電性が低下傾向になる。繊維状炭素の量が多すぎると電極密度が低下するため体積当たり容量(F/ml)が低下傾向になる。
The amount of fibrous carbon in the positive electrode layer is preferably 2 to 40% by mass, more preferably 3 to 8% by mass with respect to the lithium-containing transition metal oxide.
If the amount of fibrous carbon is too small, the conductivity of the positive electrode layer tends to decrease. If the amount of fibrous carbon is too large, the electrode density decreases and the volume per volume (F / ml) tends to decrease.
正極層中の結晶性活性炭の量は、結晶性活性炭とリチウム含有遷移金属酸化物との合計量に対して、好ましくは50〜90質量%、より好ましくは75〜90質量%である。正極層中の結晶性活性炭の量が少なすぎるとエネルギー密度が低下する傾向がある。正極層中の結晶性活性炭の量が多すぎると耐電圧が低下する傾向がある。 The amount of the crystalline activated carbon in the positive electrode layer is preferably 50 to 90% by mass, more preferably 75 to 90% by mass with respect to the total amount of the crystalline activated carbon and the lithium-containing transition metal oxide. If the amount of crystalline activated carbon in the positive electrode layer is too small, the energy density tends to decrease. If the amount of crystalline activated carbon in the positive electrode layer is too large, the withstand voltage tends to decrease.
正極層では、リチウム含有遷移金属酸化物の二次粒子表面に繊維状炭素および導電性助剤が付着したものが含まれていることが好ましい。
正極層に、リチウム含有遷移金属酸化物の二次粒子表面に繊維状炭素および導電性助剤が付着したものが含まれるようにする方法は特に制限されないが、次のような方法で正極層を製造すると上記のようなものが得られやすい。
先ず、リチウム含有遷移金属酸化物と繊維状炭素と導電性助剤とを混合する。該混合で得られたものと結晶性活性炭とバインダーとを混合して正極用合剤を得る。次いで該合剤を所定の大きさの正極層となるように成形する。上記のように、正極用合材調製において2段階の混合を行うことによって、正極層に、リチウム含有遷移金属酸化物の二次粒子表面に繊維状炭素および導電性助剤が付着したものを含ませることができる。
In the positive electrode layer, it is preferable that the surface of the secondary particles of the lithium-containing transition metal oxide contains fibrous carbon and a conductive auxiliary agent attached thereto.
There are no particular restrictions on the method for allowing the positive electrode layer to include the surface of the secondary particles of the lithium-containing transition metal oxide to which the fibrous carbon and the conductive auxiliary agent are attached, but the positive electrode layer is formed by the following method. When manufactured, the above can be easily obtained.
First, a lithium-containing transition metal oxide, fibrous carbon, and a conductive aid are mixed. What was obtained by the mixing, crystalline activated carbon and a binder are mixed to obtain a positive electrode mixture. Next, the mixture is formed into a positive electrode layer having a predetermined size. As described above, by carrying out two-stage mixing in the preparation of the positive electrode mixture, the positive electrode layer includes a lithium particle-containing transition metal oxide secondary particle surface to which fibrous carbon and a conductive auxiliary agent are attached. Can be made.
リチウム含有遷移金属酸化物と導電性助剤と繊維状炭素との混合(一次混合)の手段は、特に制限されない。例えば、ボールミル、振動ミル、サンドミル、ビーズミル、顔料分散機、超音波分散機、ホモジナイザー、プラネタリーミキサー、サンプルミルなどの混合機が挙げられる。一次混合は、通常、20〜30℃の温度範囲で、20秒間〜5分間行うことができる。尚、リチウム含有遷移金属酸化物としては、一次粒子が凝集してなるもの、すなわち二次粒子になっているものを用いることが好ましい。
一次混合をメカノケミカル処理によって行っても良い。メカノケミカル処理とは、固体に圧縮力や摩擦力などの機械的エネルギーを加えることによって該固体を構成する物質の構造・結合状態を変化させ、また周囲の物質との相互作用を変化させる処理法である。メカノケミカル処理の手法としては、ハイブリダイゼーション法、メカノフュージョン法、シータコンポサ法、メカノミル法などが挙げられる。
この一次混合によって、リチウム含有遷移金属酸化物の二次粒子表面に繊維状炭素および導電性助剤が付着したものが得られる。図1はチタン酸リチウム15と導電性助剤17と繊維状炭素16との一次混合によって得られたものの走査型電子顕微鏡写真観察像を示す図である。
The means for mixing (primary mixing) of the lithium-containing transition metal oxide, the conductive auxiliary agent and the fibrous carbon is not particularly limited. Examples thereof include a mixer such as a ball mill, a vibration mill, a sand mill, a bead mill, a pigment disperser, an ultrasonic disperser, a homogenizer, a planetary mixer, and a sample mill. The primary mixing can usually be performed in a temperature range of 20 to 30 ° C. for 20 seconds to 5 minutes. In addition, as a lithium containing transition metal oxide, it is preferable to use what a primary particle aggregates, ie, what is a secondary particle.
Primary mixing may be performed by mechanochemical treatment. Mechanochemical treatment is a treatment method that changes the structure / bonding state of substances constituting the solid by applying mechanical energy such as compressive force or frictional force to the solid, and changes the interaction with surrounding substances. It is. Examples of the mechanochemical treatment method include a hybridization method, a mechanofusion method, a theta composa method, and a mechanomill method.
By this primary mixing, what has fibrous carbon and a conductive support agent adhered to the secondary particle surface of the lithium-containing transition metal oxide is obtained. FIG. 1 is a view showing a scanning electron micrograph observation image of what was obtained by primary mixing of
次に、前記一次混合で得られたものと結晶性活性炭とバインダーとを混合(二次混合)して正極用合剤を得る。一次混合で導電性助剤および/または繊維状炭素の一部だけを使用した場合は、それらの残部を一緒に二次混合する。該一次混合物と結晶性活性炭とバインダーとの混合(二次混合)の手段は、特に制限されず、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどの混合機器が挙げられる。該二次混合は、通常、20〜30℃の温度範囲で、通常、20秒間〜5分間行うことができる。。
バインダーは、電気二重層キャパシタやリチウム二次電池等に用いられている公知のバインダーの中から選択することができる。例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ポリアミドイミド、ポリイミド、アクリレート系ゴム、ブタジエン系ゴムなどが挙げられる。正極層中に含まれるバインダーの量は、正極体の強度と容量等の特性とのバランスの観点から1〜20質量%であることが好ましい。
Next, what was obtained by the said primary mixing, crystalline activated carbon, and a binder are mixed (secondary mixing), and the positive mix is obtained. If only a portion of the conductive aid and / or fibrous carbon is used in the primary mixing, the remainder is secondary mixed together. The means for mixing (secondary mixing) of the primary mixture, crystalline activated carbon and binder is not particularly limited, and examples thereof include a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, and a planetar. Mixing equipment such as a Lee mixer may be mentioned. The secondary mixing is usually performed in a temperature range of 20 to 30 ° C., usually for 20 seconds to 5 minutes. .
The binder can be selected from known binders used in electric double layer capacitors, lithium secondary batteries and the like. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride, polyamideimide, polyimide, acrylate rubber, butadiene rubber, and the like can be given. The amount of the binder contained in the positive electrode layer is preferably 1 to 20% by mass from the viewpoint of a balance between the strength of the positive electrode body and characteristics such as capacity.
合剤を得るために溶剤を適宜用いることができる。溶剤としては、N−メチルピロリドン;トルエン、キシレン、ベンゼンなどの炭化水素類;アセトン、メチルエチルケトン、ブチルメチルケトンなどのケトン類;メタノール、エタノール、ブタノールなどのアルコール類;酢酸エチル、酢酸ブチルなどのエステル類;などの有機溶剤が挙げられる。 In order to obtain a mixture, a solvent can be appropriately used. Solvents include N-methylpyrrolidone; hydrocarbons such as toluene, xylene and benzene; ketones such as acetone, methyl ethyl ketone and butyl methyl ketone; alcohols such as methanol, ethanol and butanol; esters such as ethyl acetate and butyl acetate And organic solvents such as
次に、前記の正極用合材を成形する。成形は、従来の電気二重層キャパシタやリチウム二次電池の電極層の成形方法と同じ方法で行うことができる。例えば、押出成形法、圧縮成形法、キャスト成形法などが挙げられる。得られた正極層と集電体とを接合して一体化させたものを正極体という。 Next, the positive electrode mixture is formed. The forming can be performed by the same method as the forming method of the electrode layer of the conventional electric double layer capacitor or lithium secondary battery. Examples thereof include an extrusion molding method, a compression molding method, and a cast molding method. The obtained positive electrode layer and current collector joined together are called a positive electrode body.
正極用の集電体には、アルミニウム、ステンレス、チタン、タンタル、ニオブなどを使用することができる。正極用集電体として特に好ましいものはアルミニウム製のものである。集電体の厚さは、5〜30μmであることが好ましく、5〜10μmであることがより好ましい。集電体が薄すぎると機械的強度や耐熱性等が不足し電極層や端子部分の破断などを引き起こしやすい。集電体が厚すぎると電気化学キャパシタの体積当たり容量が低下傾向になる。
正極層と集電体との間には導電性接着剤の層を介在させることが好ましい。導電性接着剤の層によって、正極層と集電体との間の接触抵抗を低減できる。導電性接着剤は特に限定されないが、例えば、ポリアミドイミド、ポリイミド又はこれらの前駆体を溶剤に溶解して得られるワニス、またはこのワニスに導電性カーボン粒子、銀、銅などの導電材を分散させたものなどが挙げられる。例えば、導電性接着剤を集電体の表面にドクターブレード法等で塗工し、塗膜を乾燥して接着層を形成し、その上に正極層を形成することで正極体を得ることができる。
Aluminum, stainless steel, titanium, tantalum, niobium, etc. can be used for the current collector for the positive electrode. A particularly preferable positive electrode current collector is made of aluminum. The thickness of the current collector is preferably 5 to 30 μm, and more preferably 5 to 10 μm. If the current collector is too thin, mechanical strength, heat resistance and the like are insufficient, and the electrode layer and terminal portion are liable to break. If the current collector is too thick, the capacity per volume of the electrochemical capacitor tends to decrease.
It is preferable to interpose a conductive adhesive layer between the positive electrode layer and the current collector. The contact resistance between the positive electrode layer and the current collector can be reduced by the conductive adhesive layer. The conductive adhesive is not particularly limited. For example, a varnish obtained by dissolving polyamideimide, polyimide or a precursor thereof in a solvent, or a conductive material such as conductive carbon particles, silver, or copper is dispersed in the varnish. Etc. For example, it is possible to obtain a positive electrode body by applying a conductive adhesive to the surface of a current collector by a doctor blade method or the like, drying the coating film to form an adhesive layer, and forming a positive electrode layer thereon. it can.
〈負極層〉
(リチウムイオンを吸蔵および脱離しうる炭素材料)
負極層に用いられるリチウムイオンを吸蔵および脱離しうる炭素材料は、リチウム二次電池の負極層に用いられている公知の炭素材料の中から適宜選択することができる。一般にリチウムイオンを吸蔵および脱離しうる炭素材料としては、結晶性が比較的に高いものが用いられ、具体的には、石油コークス、メソフェーズピッチ系炭素材料又は気相成長炭素繊維を800〜2000℃以下で熱処理した材料、天然黒鉛、人造黒鉛、難黒鉛化性炭素材料(ハードカーボン)、易黒鉛化性炭素材料(ソフトカーボン)等が挙げられる。本発明ではこれらの中でも人造黒鉛が好ましい。
リチウムイオンを吸蔵および脱離しうる炭素材料は、液相置換法による真密度が1.45〜1.6g/cm3であることが好ましい。真密度が小さすぎる炭素材料は結晶構造が不発達であるため、Liイオンをインターカレーションする吸蔵能力が不足し容量が低下傾向になる。一方、真密度が大きすぎる炭素材料は黒鉛構造が発達しているため、該黒鉛層間にLiイオンが挿入し難く、耐久性・信頼性が低下傾向になる。
<Negative electrode layer>
(Carbon material capable of inserting and extracting lithium ions)
The carbon material that can occlude and desorb lithium ions used for the negative electrode layer can be appropriately selected from known carbon materials used for the negative electrode layer of the lithium secondary battery. In general, as a carbon material capable of inserting and extracting lithium ions, those having relatively high crystallinity are used. Specifically, petroleum coke, mesophase pitch-based carbon material or vapor-grown carbon fiber is used at 800 to 2000 ° C. Examples of the heat-treated material include natural graphite, artificial graphite, non-graphitizable carbon material (hard carbon), and graphitizable carbon material (soft carbon). Among these, artificial graphite is preferable in the present invention.
The carbon material that can occlude and desorb lithium ions preferably has a true density of 1.45 to 1.6 g / cm 3 by a liquid phase substitution method. Since the carbon material with too low true density has an undeveloped crystal structure, the capacity to intercalate Li ions is insufficient and the capacity tends to decrease. On the other hand, a carbon material having a too high true density has a graphite structure developed, so that it is difficult for Li ions to be inserted between the graphite layers, and the durability and reliability tend to decrease.
リチウムイオンを吸蔵および脱離しうる炭素材料は、負極層中に10〜60質量%含まれていることが好ましく、20〜40質量%含まれていることがより好ましい。リチウムイオンを吸蔵および脱離しうる炭素材料の量が少なすぎると負極電位が下がらず高電圧充放電でガスが発生しやすく信頼性が低下する傾向がある。リチウムイオンを吸蔵および脱離しうる炭素材料の量が多すぎるとセル容量が低下傾向になり、結果としてエネルギー密度や出力密度が低下する傾向がある。 The carbon material capable of inserting and extracting lithium ions is preferably contained in the negative electrode layer in an amount of 10 to 60% by mass, and more preferably 20 to 40% by mass. If the amount of the carbon material that can occlude and desorb lithium ions is too small, the negative electrode potential does not decrease and gas tends to be generated during high-voltage charge / discharge, and the reliability tends to decrease. When the amount of the carbon material capable of inserting and extracting lithium ions is too large, the cell capacity tends to decrease, and as a result, the energy density and output density tend to decrease.
負極層における導電性助剤の量は、リチウムイオンを吸蔵および脱離しうる炭素材料の量に対して、好ましくは20〜75質量%、より好ましくは20〜40質量%である。
導電性助剤の量が少なすぎると、出力が低下する傾向がある。また導電性助剤が多すぎると、容量が低下する傾向がある。
The amount of the conductive auxiliary in the negative electrode layer is preferably 20 to 75% by mass, more preferably 20 to 40% by mass, based on the amount of the carbon material capable of inserting and extracting lithium ions.
If the amount of the conductive auxiliary is too small, the output tends to decrease. Moreover, when there is too much conductive auxiliary agent, there exists a tendency for a capacity | capacitance to fall.
負極層における繊維状炭素の量は、リチウムイオンを吸蔵および脱離しうる炭素材料の量に対して、好ましくは2〜40質量%、より好ましくは3〜8質量%である。
繊維状炭素の量が少なすぎると負極層の導電性が低下傾向になる。繊維状炭素の量が多すぎると電極密度が低下するため体積当たり容量(F/ml)が低下傾向になる。
The amount of fibrous carbon in the negative electrode layer is preferably 2 to 40% by mass, more preferably 3 to 8% by mass, based on the amount of carbon material capable of inserting and extracting lithium ions.
If the amount of fibrous carbon is too small, the conductivity of the negative electrode layer tends to decrease. If the amount of fibrous carbon is too large, the electrode density decreases and the volume per volume (F / ml) tends to decrease.
また、負極層中の結晶性活性炭の量は、結晶性活性炭とリチウムイオンを吸蔵および脱離しうる炭素材料との合計量に対して、好ましくは40〜90質量%、より好ましくは75〜90質量%である。負極層中の結晶性活性炭の量が少なすぎると、エネルギー密度が低下する傾向があり、多すぎると、負極電位が下がらず高電圧充放電によってガスが発生しやすく信頼性が低下する傾向がある。 The amount of the crystalline activated carbon in the negative electrode layer is preferably 40 to 90% by mass, more preferably 75 to 90% by mass with respect to the total amount of the crystalline activated carbon and the carbon material capable of inserting and extracting lithium ions. %. If the amount of crystalline activated carbon in the negative electrode layer is too small, the energy density tends to decrease, and if it is too large, the negative electrode potential does not decrease and gas tends to be generated by high-voltage charge / discharge, and the reliability tends to decrease. .
負極層では、リチウムイオンを吸蔵および脱離しうる炭素材料の二次粒子表面に繊維状炭素および導電性助剤が付着したものが含まれていることが好ましい。
負極層に、リチウムイオンを吸蔵および脱離しうる炭素材料の二次粒子表面に繊維状炭素および導電性助剤が付着したものが含まれるようにする方法は特に制限されないが、次のような方法で負極層を製造すると上記のようなものが得られやすい。
先ず、リチウムイオンを吸蔵および脱離しうる炭素材料と繊維状炭素と導電性助剤とを混合する。該混合で得られたものと結晶性活性炭とバインダーとを混合して負極用合剤を得る。次いで該合剤を所定の大きさの負極層となるように成形する。上記のように、負極用合材調製において2段階の混合を行うことによって、負極層に、リチウムイオンを吸蔵および脱離しうる炭素材料の二次粒子表面に繊維状炭素および導電性助剤が付着したものを含ませることができる。
In the negative electrode layer, it is preferable that a carbon material capable of occluding and desorbing lithium ions has a fibrous particle and a conductive auxiliary agent attached to the surface of secondary particles.
The method for allowing the negative electrode layer to include a carbon particle secondary particle surface capable of occluding and desorbing lithium ions attached to fibrous carbon and a conductive auxiliary agent is not particularly limited. When the negative electrode layer is manufactured with the above, the above can be easily obtained.
First, a carbon material capable of inserting and extracting lithium ions, fibrous carbon, and a conductive aid are mixed. What was obtained by this mixing, crystalline activated carbon, and a binder are mixed, and the mixture for negative electrodes is obtained. Next, the mixture is formed into a negative electrode layer having a predetermined size. As described above, fibrous carbon and a conductive auxiliary agent adhere to the secondary particle surface of the carbon material capable of inserting and extracting lithium ions in the negative electrode layer by performing two-stage mixing in the preparation of the negative electrode mixture. Can be included.
リチウムイオンを吸蔵および脱離しうる炭素材料と導電性助剤と繊維状炭素との混合(一次混合)および該一次混合物と結晶性活性炭とバインダーとの混合(二次混合)の手段や手法は、特に制限されず、正極用合材の調製方法における手段や手法と同じものを挙げることができる。負極用合材の調製における一次混合は通常、20〜30℃の温度範囲で、20秒間〜5分間行うことができ、また二次混合は通常、20〜30℃の温度範囲で、20秒間〜5分間で行うことができる。尚、リチウムイオンを吸蔵および脱離しうる炭素材料の一次粒子が凝集してなるものは、二次粒子を用いることが好ましい。 Means and methods for mixing (primary mixing) a carbon material capable of occluding and desorbing lithium ions, a conductive additive and fibrous carbon (primary mixing), and mixing (secondary mixing) the primary mixture, crystalline activated carbon and binder, It does not restrict | limit in particular, The same thing as the means and method in the preparation method of the positive electrode compound material can be mentioned. The primary mixing in the preparation of the negative electrode mixture can be usually performed at a temperature range of 20 to 30 ° C. for 20 seconds to 5 minutes, and the secondary mixing is usually performed at a temperature range of 20 to 30 ° C. for 20 seconds to Can be done in 5 minutes. In addition, it is preferable to use secondary particles in which the primary particles of the carbon material capable of inserting and extracting lithium ions are aggregated.
次に、前記の負極用合材を成形する。成形は、前述の正極層における方法と同じ方法で行うことができる。得られた負極層と集電体とを接合して一体化させたものを負極体という。
負極用の集電体には、銅、ニッケル、ステンレス、及びこれらの合金などを使用することができる。負極用集電体として特に好ましいものは銅製のものである。集電体の厚さは、5〜30μmであることが好ましく、5〜10μmであることがより好ましい。集電体が薄すぎると機械的強度や耐熱性等が不足し電極層や端子部分の破断などを引き起こしやすい。集電体が厚すぎると電気化学キャパシタの体積当たり容量が低下傾向になる。負極層と集電体との間には導電性接着剤の層を介在させることが好ましい。導電性接着剤の層によって、負極層と集電体との間の接触抵抗を低減できる。導電性接着剤は、その種類において、特に限定されず、正極層で使用したものと同じものが挙げられる。
Next, the negative electrode mixture is formed. Molding can be performed by the same method as that for the positive electrode layer described above. The obtained negative electrode layer and the current collector are joined and integrated together is referred to as a negative electrode body.
For the current collector for the negative electrode, copper, nickel, stainless steel, and alloys thereof can be used. A particularly preferable negative electrode current collector is made of copper. The thickness of the current collector is preferably 5 to 30 μm, and more preferably 5 to 10 μm. If the current collector is too thin, mechanical strength, heat resistance and the like are insufficient, and the electrode layer and terminal portion are liable to break. If the current collector is too thick, the capacity per volume of the electrochemical capacitor tends to decrease. It is preferable to interpose a conductive adhesive layer between the negative electrode layer and the current collector. The contact resistance between the negative electrode layer and the current collector can be reduced by the conductive adhesive layer. The type of the conductive adhesive is not particularly limited, and examples thereof include the same ones used in the positive electrode layer.
(有機電解液)
本発明に用いられる有機電解液は、第四級オニウム塩およびリチウム塩を含むものである。電解液に含まれるリチウム塩は、LiPF6、LiBF4、LiClO4、LiN(SO2CF3)2、CF3SO3Li、LiC(SO2CF3)3、LiAsF6及びLiSbF6からなる群から選ばれる1種以上の化合物が好ましい。
電解液に含まれる第四級オニウム塩は、(C2H5)4PBF4、(C3H7)4PBF4、(CH3)(C2H5)3NBF4、(C2H5)4NBF4、(C2H5)4PPF6、(C2H5)4PCF3SO4、および(C2H5)4NPF6からなる群から選ばれる1種以上の化合物が好ましい。
第四級オニウム塩およびリチウム塩を溶解させるための溶媒は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン及びジメトキシエタンからなる群から選ばれる1種以上の溶媒を含むことが好ましい。
(Organic electrolyte)
The organic electrolytic solution used in the present invention contains a quaternary onium salt and a lithium salt. Lithium salt contained in the electrolyte, LiPF 6, LiBF 4, LiClO 4, LiN (SO 2 CF 3) 2,
The quaternary onium salts contained in the electrolytic solution are (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , (CH 3 ) (C 2 H 5 ) 3 NBF 4 , (C 2 H 5 ) one or more compounds selected from the group consisting of 4 NBF 4 , (C 2 H 5 ) 4 PPF 6 , (C 2 H 5 ) 4 PCF 3 SO 4 , and (C 2 H 5 ) 4 NPF 6 preferable.
The solvent for dissolving the quaternary onium salt and the lithium salt is at least one solvent selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, and dimethoxyethane. It is preferable to contain.
電解液中におけるリチウムイオン/第四級オニウムイオンのモル比は0.5〜1であることが好ましい。
有機電解液中のリチウムイオン濃度と第四級オニウムイオンの濃度の合計は2〜4mol/Lが好ましく、2.5〜3.6mol/Lがより好ましい。
The molar ratio of lithium ions / quaternary onium ions in the electrolytic solution is preferably 0.5-1.
The total concentration of lithium ions and quaternary onium ions in the organic electrolyte is preferably 2 to 4 mol / L, more preferably 2.5 to 3.6 mol / L.
負極層の過充電を防ぐためには正極層の容量より負極層の容量を大きく設定することが好ましい。負極層と正極層の容量比(負極層の容量/正極層の容量)は、1.1〜1.5の範囲にすることがより好ましい。上記容量比が小さすぎると、大電流充電時に負極層内のリチウムイオンの拡散が電流に追いつかなくなり、負極層近傍の電位が低下し、電解液の分解を引起しやすくなる。一方、容量比が大きすぎると、電気化学キャパシタ全体のエネルギー密度が低下しやすい。 In order to prevent overcharge of the negative electrode layer, it is preferable to set the capacity of the negative electrode layer larger than the capacity of the positive electrode layer. The capacity ratio of the negative electrode layer to the positive electrode layer (the capacity of the negative electrode layer / the capacity of the positive electrode layer) is more preferably in the range of 1.1 to 1.5. If the capacity ratio is too small, the diffusion of lithium ions in the negative electrode layer cannot catch up with the current when charging with a large current, the potential in the vicinity of the negative electrode layer is lowered, and the electrolytic solution is likely to be decomposed. On the other hand, if the capacity ratio is too large, the energy density of the entire electrochemical capacitor tends to decrease.
本発明の電気化学キャパシタは、正極層と負極層とを有機電解液に浸すことによって構成される。正極層と負極層との間にはセパレータを介在させることができる。本発明の電気化学キャパシタでは、正極層、負極層およびセパレータを交互に複数重ね合わせること(積層型)ができ、また正極層、負極層およびセパレータを巻回させること(巻回型)ができる。該電気化学キャパシタは、セル内に1対の正極層及び負極層からなっているものに限定されず、セル内に2対以上が並列に接続されているものであっても良い。また、該電気化学キャパシタのセルが複数、並列接続及び/または直列接続されているものであっても良い。
正極層、負極層および有機電解液を収納するための容器は、その形状や材質によって特に制限されないが、放熱性が高いなどの観点から、アルミニウムラミネートケースや金属ケースが好ましい。
The electrochemical capacitor of the present invention is configured by immersing a positive electrode layer and a negative electrode layer in an organic electrolyte. A separator can be interposed between the positive electrode layer and the negative electrode layer. In the electrochemical capacitor of the present invention, a plurality of positive electrode layers, negative electrode layers, and separators can be alternately stacked (stacked type), and the positive electrode layer, negative electrode layer, and separator can be wound (winding type). The electrochemical capacitor is not limited to one having a pair of positive electrode layer and negative electrode layer in the cell, and two or more pairs in the cell may be connected in parallel. Further, a plurality of cells of the electrochemical capacitor may be connected in parallel and / or in series.
The container for housing the positive electrode layer, the negative electrode layer, and the organic electrolyte is not particularly limited by the shape and material thereof, but an aluminum laminate case or a metal case is preferable from the viewpoint of high heat dissipation.
(Liイオンドープと負極電位を下げる手段)
従来のハイブリットキャパシタは、正極層にリチウム含有遷移金属酸化物を含まず活性炭を主体とするものであったので、負極層の炭素材料に吸蔵されるリチウムイオンは、電解液中のリチウム塩に由来するものだけであった。負極層の炭素材料に吸蔵させるリチウムイオンが不足する。そのため、従来のハイブリットキャパシタでは、負極層にリチウムイオンドープを行う必要があった。
一方、本発明の電気化学キャパシタでは、充電時に正極層においてリチウム塩のアニオンの活性炭への吸着が起き、加えてリチウム含有遷移金属酸化物からのリチウムイオンの脱離が起きる。負極層においてリチウムイオンを吸蔵および脱離しうる炭素材料にリチウムイオンが吸蔵される。負極層の炭素材料に吸蔵されるリチウムイオンは、電解液中のリチウム塩に由来するものとリチウム含有遷移金属酸化物からの脱離に由来するものの両方である。したがって、本発明の電気化学キャパシタは、負極層にリチウムイオンドープを行わなくても、充電を行うだけで負極に充分な量のリチウムイオンを吸蔵させることができる。そして負極の電位は卑になり、電気化学キャパシタの正極の電解液の酸化分解電圧を高くでき、負極の電解液の還元分解電圧を低くできるので使用電圧範囲を広くできる。
(Li ion doping and means to lower the negative electrode potential)
Since the conventional hybrid capacitor is mainly composed of activated carbon without the lithium-containing transition metal oxide in the positive electrode layer, the lithium ions occluded in the carbon material of the negative electrode layer are derived from the lithium salt in the electrolyte. It was only what to do. Lithium ions stored in the carbon material of the negative electrode layer are insufficient. Therefore, in the conventional hybrid capacitor, it was necessary to dope lithium ions into the negative electrode layer.
On the other hand, in the electrochemical capacitor of the present invention, the lithium salt anion is adsorbed on the activated carbon in the positive electrode layer during charging, and lithium ions are desorbed from the lithium-containing transition metal oxide. Lithium ions are occluded in a carbon material that can occlude and desorb lithium ions in the negative electrode layer. The lithium ions occluded by the carbon material of the negative electrode layer are both derived from lithium salts in the electrolyte and derived from desorption from lithium-containing transition metal oxides. Therefore, the electrochemical capacitor of the present invention can store a sufficient amount of lithium ions in the negative electrode only by charging without performing lithium ion doping in the negative electrode layer. The potential of the negative electrode becomes base, and the oxidative decomposition voltage of the electrolyte solution of the positive electrode of the electrochemical capacitor can be increased, and the reductive decomposition voltage of the electrolyte solution of the negative electrode can be decreased, so that the operating voltage range can be widened.
リチウム含有遷移金属酸化物のみを主体とする正極層と、リチウムイオンを吸蔵および脱離しうる炭素材料のみを主体とする負極層を有する、従来のリチウムイオン二次電池では、急速充放電サイクルを行うと、緩やかな充放電サイクルを行った場合に比べて劣化が著しい。この主な原因は、充放電時に行われるリチウム含有遷移金属酸化物の酸化還元反応にともなう劣化である。
これに対して、本発明の電気化学キャパシタでは、大電流での急速充放電時には正極層の活性炭が関与し、比較的小さい電流の充放電時には正極層のリチウム含有遷移金属酸化物が関与する。このような充放電のメカニズムの結果、正極層のリチウム含有遷移金属酸化物の負担が小さくなり、充放電サイクルによる劣化を抑えることができ、高電圧、高容量かつ充放電サイクルの寿命が長い電気化学キャパシタが可能になる。
A conventional lithium ion secondary battery having a positive electrode layer mainly composed only of a lithium-containing transition metal oxide and a negative electrode layer mainly composed of a carbon material capable of occluding and desorbing lithium ions performs a rapid charge / discharge cycle. And deterioration is remarkable compared with the case where a gentle charging / discharging cycle is performed. The main cause is deterioration due to the oxidation-reduction reaction of the lithium-containing transition metal oxide performed at the time of charging / discharging.
On the other hand, in the electrochemical capacitor of the present invention, activated carbon in the positive electrode layer is involved during rapid charge / discharge at a large current, and lithium-containing transition metal oxide in the positive electrode layer is involved during charge / discharge at a relatively small current. As a result of such a charge / discharge mechanism, the burden on the lithium-containing transition metal oxide of the positive electrode layer is reduced, deterioration due to the charge / discharge cycle can be suppressed, high voltage, high capacity, and long life of the charge / discharge cycle. Chemical capacitors are possible.
本発明の電気化学キャパシタは、ハイブリット車、プラグインハイブリット車、電気自動車、アイドリングストップ機構を備えた各種自動車、電力エネルギー回生やブレーキエネルギー回生機能を備えたマイルドハイブリット車、燃料電池車などに用いられる蓄電装置に好適である。また、本発明の電気化学キャパシタは、リチウム二次電池などの二次電池と組み合わせて用いることが好ましい。
本発明の電気化学キャパシタは、鉄道などの車両電源システム、船舶用電源システム、航空機用電源システムなどに用いられ、また太陽光発電電源システム、風力発電電源システムなどの再生可能自然エネルギーを利用した電源システムに用いられる。さらに、本発明の電気化学キャパシタは、ロボット、おもちゃ、医療機器、センサー、産業機器、通信機器、非接触充電式蓄電装置に用いられる。
The electrochemical capacitor of the present invention is used in hybrid vehicles, plug-in hybrid vehicles, electric vehicles, various vehicles equipped with an idling stop mechanism, mild hybrid vehicles equipped with power energy regeneration and brake energy regeneration functions, fuel cell vehicles, and the like. Suitable for power storage devices. The electrochemical capacitor of the present invention is preferably used in combination with a secondary battery such as a lithium secondary battery.
The electrochemical capacitor of the present invention is used in a vehicle power supply system for railways, a ship power supply system, an aircraft power supply system, and the like, and also uses a renewable natural energy such as a solar power generation power system and a wind power generation power system. Used in the system. Furthermore, the electrochemical capacitor of the present invention is used in robots, toys, medical equipment, sensors, industrial equipment, communication equipment, and non-contact rechargeable power storage devices.
以下に実施例及び比較例を挙げて、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、セルの作製はすべて露点−40℃以下のアルゴングローブボックス内で行った。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. The cells were all produced in an argon glove box with a dew point of −40 ° C. or lower.
本実施例及び比較例では下記の方法で特性値を求めた。
〔比表面積〕
Quantachrome社製、NOVA1200を使用して、液体窒素温度(77.4K)における窒素の吸着等温線を求め、それに基づいてBET法を用いて比表面積を算出した。
〔二次粒子径〕
Honeywell社製、MICROTRAC HRC MODEL 9320−X100を使用して、光散乱法よって粒度分布を求め、それから体積基準の平均値を算出し、それを二次粒子径とした。
〔一次粒子径〕
電子顕微鏡観察によって粒度分布を求め、そのメジアン径を一次粒子径とした。
In this example and the comparative example, characteristic values were obtained by the following method.
〔Specific surface area〕
Using NOVA1200, manufactured by Quantachrome, an adsorption isotherm of nitrogen at a liquid nitrogen temperature (77.4 K) was determined, and based on this, the specific surface area was calculated using the BET method.
[Secondary particle size]
Using MICROTRAC HRC MODEL 9320-X100 manufactured by Honeywell, the particle size distribution was obtained by the light scattering method, and the volume-based average value was calculated therefrom, which was used as the secondary particle size.
[Primary particle size]
The particle size distribution was obtained by observation with an electron microscope, and the median diameter was defined as the primary particle diameter.
〔多孔度〕
式: (全細孔容積/見かけの体積)×100 〔%〕 から算出した。全細孔容積はオートソーブ(Quantachrome社製)を用いて測定し、カーボンの真比重1.9を計算に使用した。見かけの体積は全細孔容積とカーボン体積との合計値である。
〔空隙率〕
電子顕微鏡観察で外部比表面積を算出した。上述の窒素吸着等温線に基づくBET比表面積と該外部比表面積とに基づいて、式: (外部比表面積/BET比表面積)×100 〔%〕 で求めた。
[Porosity]
Calculated from the formula: (total pore volume / apparent volume) × 100 [%]. The total pore volume was measured using an autosorb (manufactured by Quantachrome), and the true specific gravity of carbon 1.9 was used for the calculation. The apparent volume is the sum of the total pore volume and the carbon volume.
[Porosity]
The external specific surface area was calculated by electron microscope observation. Based on the BET specific surface area based on the above-mentioned nitrogen adsorption isotherm and the external specific surface area, it was determined by the formula: (external specific surface area / BET specific surface area) × 100 [%].
〔真密度〕
真密度はブタノール液相置換法(ピクノメーター法)JIS Z2601に準じた方法で測定して求めた。
〔粉体抵抗〕
図2に示すような、10mm×50mm角で深さ100mmのセル4と、押し込みのための圧縮ロッド2と、受け器3とからなる測定セルに一定量の粉体を入れ、上部から圧縮ロッド2に圧力をかけ粉体を圧縮していく。そして、圧力と体積を測定しながら、順次加圧方向と垂直の方向に設置された電極1から電流100mAを流し、10mm間隔で設置された二つの測定端子6の間の電圧差(E)Vを測定し、次式から抵抗値(R)Ω・cmを算出した。
R = E / 100
粉体抵抗は密度によって異なるので、その評価は一定密度の値で比較する。本発明における粉体抵抗は粉体密度が0.8g/cm3の時の値である。
[True density]
The true density was determined by measuring the butanol liquid phase replacement method (pycnometer method) according to JIS Z2601.
[Powder resistance]
As shown in FIG. 2, a fixed amount of powder is put into a measuring cell consisting of a cell 4 of 10 mm × 50 mm square and a depth of 100 mm, a
R = E / 100
Since the powder resistance varies depending on the density, the evaluation is made with a constant density value. The powder resistance in the present invention is a value when the powder density is 0.8 g / cm 3 .
本実施例及び比較例では下記の物質を使用した。
炭素繊維A:比表面積226m2/g、平均繊維径150nm、アスペクト比=60、粉体抵抗0.025Ω・cm、レーザーラマンGバンドピーク比(R値)1.32、N2吸着等温線からBJH法解析により求めた対数微分細孔容積分布において細孔径1〜2nmに細孔容積のピークが無い。
炭素繊維V:比表面積13m2/g、繊維径150nm、アスペクト比=60、粉体抵抗0.012Ω・cm、レーザーラマンGバンドピーク比(R値)1.32、N2吸着等温線からBJH法解析により求めた対数微分細孔容積分布において細孔径1〜2nmに細孔容積のピークが無い。
In the examples and comparative examples, the following substances were used.
Carbon fiber A: specific surface area 226 m 2 / g, average fiber diameter 150 nm, aspect ratio = 60, powder resistance 0.025 Ω · cm, laser Raman G band peak ratio (R value) 1.32, from N 2 adsorption isotherm In the logarithmic differential pore volume distribution obtained by BJH analysis, there is no pore volume peak at a pore diameter of 1 to 2 nm.
Carbon fiber V: specific surface area 13 m 2 / g, fiber diameter 150 nm, aspect ratio = 60, powder resistance 0.012 Ω · cm, laser Raman G band peak ratio (R value) 1.32, N 2 adsorption isotherm from BJH In the logarithmic differential pore volume distribution obtained by the method analysis, there is no pore volume peak at a pore diameter of 1 to 2 nm.
導電性助剤(ケッチェンブラックEC300JP;ケッチェン・ブラック・インターナショナル社製):一次粒子径=39.5nm、比表面積828m2/g、DBP吸油量360ml/100g、多孔度66.3%、空隙率69.1%、体積抵抗率3.9Ω・cm(10質量%ポリカーボネート) Conductive auxiliary agent (Ketjen Black EC300JP; manufactured by Ketjen Black International): Primary particle diameter = 39.5 nm, specific surface area 828 m 2 / g, DBP oil absorption 360 ml / 100 g, porosity 66.3%, porosity 69.1%, volume resistivity 3.9Ω · cm (10% by weight polycarbonate)
〔リチウム含有遷移金属酸化物〕
チタン酸リチウム(Li4Ti5O12 〔XA105〕石原産業製):二次粒子径5.8μm、比表面積3.1m2/g、タップ密度(200回)1.4g/cm3
マンガン酸リチウム(LiMn2O4):Yunan Yuxihuilong Techonology社製; 二次粒子径11.8μm、比表面積0.6m2/g、タップ密度2.03g/cm3
コバルト酸リチウム(LiCoO2):日本化学工業社製;セルシードC−10、二次粒子径23.3μm、比表面積0.241m2/g、タップ密度2.23g/cm3
[Lithium-containing transition metal oxide]
Lithium titanate (Li 4 Ti 5 O 12 [XA105] manufactured by Ishihara Sangyo): secondary particle size 5.8 μm, specific surface area 3.1 m 2 / g, tap density (200 times) 1.4 g / cm 3
Lithium manganate (LiMn 2 O 4 ): manufactured by Yunan Yuxihuilong Techonology; secondary particle size 11.8 μm, specific surface area 0.6 m 2 / g, tap density 2.03 g / cm 3
Lithium cobaltate (LiCoO 2 ): manufactured by Nippon Chemical Industry Co., Ltd .; Cell seed C-10, secondary particle diameter 23.3 μm, specific surface area 0.241 m 2 / g, tap density 2.23 g / cm 3
〔リチウムイオンを吸蔵および脱離しうる炭素材料〕
SCMG―AR(4RF):昭和電工社試作品;二次粒子径15.5μm、比表面積1.4m2/g、真密度1.59g/cm3;石炭コークス系炭素材料を1000℃で熱処理して得たもの
SCMG−AR:昭和電工社製;二次粒子径15.5μm、比表面積1.39m2/g、真密度2.2g/cm3、タップ密度(400回)1.28g/cm3;石炭コークス系炭素材料を3000℃以上で熱処理して得たもの
[Carbon material capable of inserting and extracting lithium ions]
SCMG-AR (4RF): Showa Denko Prototype; secondary particle size of 15.5 μm, specific surface area of 1.4 m 2 / g, true density of 1.59 g / cm 3 ; heat treatment of coal coke carbon material at 1000 ° C. SCMG-AR: manufactured by Showa Denko KK; secondary particle size 15.5 μm, specific surface area 1.39 m 2 / g, true density 2.2 g / cm 3 , tap density (400 times) 1.28 g / cm 3 : Obtained by heat treatment of coal coke carbon material at 3000 ℃ or higher
結晶性活性炭:昭和電工社試作品;二次粒子径=9.7μm、比表面積=802m2/g、N2吸着等温線からBJH法解析により求めた対数微分細孔容積分布において細孔径1.0〜1.5nmの範囲に細孔容積の最大値を示すピークAがあり、該ピークAのピーク値は0.012〜0.05ml/gの範囲であり且つ全細孔容積の2%の大きさである。レーザーラマンGバンドピーク比(R値)=0.92、X線回折測定での(10)面および(11)面でのa軸方向の結晶子の大きさLa(六角網面の大きさ)がそれぞれ5.095nmおよび4.555nm
フェノール樹脂・水蒸気賦活活性炭 RP20:クラレケミカル社製;二次粒子径=6.4μm、比表面積=1724m2/g、N2吸着等温線からBJH法解析により求めた対数微分細孔容積分布において細孔径1.0〜1.5nmの範囲に細孔容積の最大値を示すピークAはない。
石炭コークス・アルカリ賦活活性炭 SK331:クラレケミカル社製;二次粒子径=10.6μm、比表面積=1161m2/g、N2吸着等温線からBJH法解析により求めた対数微分細孔容積分布において細孔径1.0〜1.5nmの範囲に細孔容積の最大値を示すピークAはない。
Crystalline activated carbon: Showa Denko Prototype; secondary particle size = 9.7 μm, specific surface area = 802 m 2 / g, with a pore size of 1. in the logarithmic differential pore volume distribution determined by BJH analysis from the N 2 adsorption isotherm. There is a peak A showing the maximum value of the pore volume in the range of 0 to 1.5 nm, the peak value of the peak A is in the range of 0.012 to 0.05 ml / g and 2% of the total pore volume. It is a size. Laser Raman G band peak ratio (R value) = 0.92, X-ray diffraction measurement (10) plane and (11) plane crystallite size La (hexagonal network size) Are 5.095 nm and 4.555 nm, respectively.
Phenol resin / steam activated activated carbon RP20: manufactured by Kuraray Chemical Co., Ltd .; secondary particle size = 6.4 μm, specific surface area = 1724 m 2 / g, fine in logarithmic differential pore volume distribution determined by BJH method analysis from N 2 adsorption isotherm There is no peak A indicating the maximum value of the pore volume in the pore diameter range of 1.0 to 1.5 nm.
Coal coke / alkali activated activated carbon SK331: manufactured by Kuraray Chemical Co., Ltd .; secondary particle size = 10.6 μm, specific surface area = 1116 m 2 / g, fine in logarithmic differential pore volume distribution determined by BJH method analysis from N 2 adsorption isotherm There is no peak A indicating the maximum value of the pore volume in the pore diameter range of 1.0 to 1.5 nm.
[実施例1]
(正極層の作製方法)
チタン酸リチウム40質量部、炭素繊維A 1質量部 およびケッチェンブラック1質量部を小型粉砕機(サンプルミル SK−M2;協立理工社製)に入れ、15000rpmで20秒間混合した(1次混合)。
この一次混合物42質量部に結晶性活性炭40質量部、炭素繊維V 0.5質量部、ケッチェンブラック7.5質量部、及びバインダーとしてポリテトラフルオロエチレン(PTFE)10質量部を添加し、この混合物にエタノールを加えて、加圧ニーダー(ニシヤマ社製)で0.6MPaで混練した(二次混合)。
次にロール圧延成形機(大東製作所社製)で2ton/cm2の圧延成形をして厚さ300±10μmのシートを作製した。該シートを200℃で12時間真空乾燥して正極層用の電極シートを得た。このシートを打ち抜いて直径20mmの円盤を得、該円盤を200℃、0.1Mpa以下で15時間真空乾燥した後、質量、厚さおよび直径を測定し、電極密度=質量/体積(g/cm3)を求めた。電極密度は、1.07g/cm3であった。該電極シートをアルミニウム箔からなる集電体に導電性接着剤を用いて接合し、正極体を得た。
[Example 1]
(Method for producing positive electrode layer)
40 parts by mass of lithium titanate, 1 part by mass of carbon fiber A and 1 part by mass of ketjen black were put into a small pulverizer (sample mill SK-M2; manufactured by Kyoritsu Riko Co., Ltd.) and mixed at 15000 rpm for 20 seconds (primary mixing) ).
To 42 parts by mass of this primary mixture, 40 parts by mass of crystalline activated carbon, 0.5 parts by mass of carbon fiber V, 7.5 parts by mass of ketjen black, and 10 parts by mass of polytetrafluoroethylene (PTFE) as a binder are added. Ethanol was added to the mixture and kneaded at a pressure kneader (manufactured by Nishiyama) at 0.6 MPa (secondary mixing).
Next, the sheet was rolled to 2 ton / cm 2 with a roll rolling machine (manufactured by Daito Seisakusho) to produce a sheet having a thickness of 300 ± 10 μm. The sheet was vacuum-dried at 200 ° C. for 12 hours to obtain an electrode sheet for the positive electrode layer. This sheet was punched out to obtain a disk having a diameter of 20 mm. The disk was vacuum dried at 200 ° C. and 0.1 Mpa or less for 15 hours, and then the mass, thickness and diameter were measured. Electrode density = mass / volume (g / cm 3 ). The electrode density was 1.07 g / cm 3 . The electrode sheet was bonded to a current collector made of aluminum foil using a conductive adhesive to obtain a positive electrode body.
(負極層の作製方法)
リチウムイオンを吸蔵および脱離しうる炭素材料SCMG―AR(4RF) 40質量部、炭素繊維A 1質量部 およびケッチェンブラック1質量部を小型粉砕機(サンプルミル SK−M2;協立理工社製)に入れ、15000rpmで20秒間混合した(1次混合)。
この一次混合物42質量部に結晶性活性炭40質量部、炭素繊維V 0.5質量部、ケッチェンブラック7.5質量部、及びバインダー(PTFE)10質量部を添加し、この混合物にエタノールを加えて、加圧ニーダー(ニシヤマ社製)で0.6MPaで混練した(二次混合)。
次にロール圧延成形機(大東製作所社製)で2ton/cm2の圧延成形をして厚さ300±10μmのシートを作製した。該シートを200℃で12時間真空乾燥して負極層用の電極シートを得た。このシートを打ち抜いて直径20mmの円盤を得、該円盤を200℃、0.1Mpa以下で15時間真空乾燥した後、質量、厚みおよび直径を測定することにより、電極密度=質量/体積(g/cm3)を求めた。電極密度は、1.00g/cm3であった。該電極シートを銅箔からなる集電体に導電性接着剤を用いて接合し、負極体を得た。
(Method for producing negative electrode layer)
40 parts by mass of carbon material SCMG-AR (4RF) capable of inserting and extracting lithium ions, 1 part by mass of carbon fiber A and 1 part by mass of Ketjen black (sample mill SK-M2; manufactured by Kyoritsu Riko) And mixed for 20 seconds at 15000 rpm (primary mixing).
To 42 parts by mass of this primary mixture, 40 parts by mass of crystalline activated carbon, 0.5 parts by mass of carbon fiber V, 7.5 parts by mass of ketjen black, and 10 parts by mass of binder (PTFE) are added, and ethanol is added to this mixture. The mixture was kneaded at a pressure kneader (Nishiyama Co., Ltd.) at 0.6 MPa (secondary mixing).
Next, the sheet was rolled to 2 ton / cm 2 with a roll rolling machine (manufactured by Daito Seisakusho) to produce a sheet having a thickness of 300 ± 10 μm. The sheet was vacuum dried at 200 ° C. for 12 hours to obtain an electrode sheet for the negative electrode layer. This sheet was punched out to obtain a disk having a diameter of 20 mm. The disk was vacuum-dried at 200 ° C. and 0.1 Mpa or less for 15 hours, and then the mass, thickness and diameter were measured, whereby electrode density = mass / volume (g / cm 3 ) was determined. The electrode density was 1.00 g / cm 3 . The electrode sheet was joined to a current collector made of copper foil using a conductive adhesive to obtain a negative electrode body.
(電気化学キャパシタのセル組立て)
上記で得られた正極体と負極体との間にポリエチレン製セパレータ(065E−2 日本板硝子製)を挟み、正極層および負極層が対向するように重ね合わせた。これをアルミニウムラミネートフィルムに内包させてセルを作製した。
プロピレンカーボネートにLiPF6を1.5mol/Lの濃度で、(CH3)(C2H5)3NBF4を1.8mol/Lの濃度で溶解した電解液を調製した。該電解液に前記電極層を充分に浸させた。3.8V〜1.5Vの範囲で初期容量(F/セル)を測定した。
(Electrochemical capacitor cell assembly)
A polyethylene separator (065E-2 made by Nippon Sheet Glass) was sandwiched between the positive electrode body and the negative electrode body obtained above, and they were overlapped so that the positive electrode layer and the negative electrode layer were opposed to each other. This was encapsulated in an aluminum laminate film to produce a cell.
An electrolyte solution was prepared by dissolving LiPF 6 in propylene carbonate at a concentration of 1.5 mol / L and (CH 3 ) (C 2 H 5 ) 3 NBF 4 at a concentration of 1.8 mol / L. The electrode layer was sufficiently immersed in the electrolytic solution. The initial capacity (F / cell) was measured in the range of 3.8V to 1.5V.
〔サイクル特性・ガス発生性〕
電流密度0.4mA/cm2にて、3.8V〜1.5Vの範囲で充放電を25℃で100回繰り返した。
第3回目充放電時の容量に対する第100回目充放電時の容量に対する割合(すなわち、容量保持率)を算出した。
また、ラミネートセルの、充放電前の体積に対する100回充放電を行った後の体積の割合(すなわち、体積膨張率)を算出した。ラミネートセルの体積膨張率からガス発生量を推算した。ガス発生性について、1ml/サイクル以下を○(Good)、1ml/サイクル超を×(Bad)として表した。結果を表1に示す。
[Cycle characteristics and gas generation]
Charging / discharging was repeated 100 times at 25 ° C. in the range of 3.8 V to 1.5 V at a current density of 0.4 mA / cm 2 .
The ratio (namely, capacity | capacitance retention) with respect to the capacity | capacitance at the time of the 100th charge / discharge with respect to the capacity | capacitance at the time of the 3rd charge / discharge was computed.
Moreover, the ratio (namely, volume expansion coefficient) after performing 100 times charging / discharging with respect to the volume before charging / discharging of a laminate cell was computed. The amount of gas generation was estimated from the volume expansion coefficient of the laminate cell. With respect to gas generation, 1 ml / cycle or less was represented as ◯ (Good), and 1 ml / cycle or more as x (Bad). The results are shown in Table 1.
[実施例2〜5、比較例1〜6]
正極層、負極層および電解液の配合処方を表1に示すものに変えた以外は実施例1と同じ手法にて電気化学キャパシタのセルを得、その特性値を測定した。それらの結果を表1に示す。
[Examples 2 to 5, Comparative Examples 1 to 6]
An electrochemical capacitor cell was obtained in the same manner as in Example 1 except that the formulation of the positive electrode layer, the negative electrode layer, and the electrolytic solution was changed to that shown in Table 1, and the characteristic values thereof were measured. The results are shown in Table 1.
1 電極
2 圧縮ロッド
3 受け器
4 セル
5 測定物質
6 測定端子
1
Claims (24)
リチウムイオンを吸蔵および脱離しうる炭素材料と導電性助剤と繊維状炭素と結晶性活性炭とを含有する負極層、および
リチウム塩と第四級オニウム塩とを含有する有機電解液、
を有する電気化学キャパシタ。 A positive electrode layer containing a lithium-containing transition metal oxide, a conductive auxiliary, fibrous carbon, and crystalline activated carbon;
A negative electrode layer containing a carbon material capable of inserting and extracting lithium ions, a conductive auxiliary, fibrous carbon, and crystalline activated carbon, and an organic electrolyte containing a lithium salt and a quaternary onium salt,
An electrochemical capacitor.
比表面積が100〜1000m2/gで、平均繊維径が1〜500nmで且つ粉体抵抗値が0.025Ω・cm以上である炭素繊維Aとを、
質量比で1:2〜1:10の範囲で混合したものである、請求項1または2に記載の電気化学キャパシタ。 The fibrous carbon contained in the positive electrode layer and / or the negative electrode layer has a specific surface area of 10 to 20 m 2 / g, an average fiber diameter of 1 to 500 nm, and a powder resistance value of 0.02 Ω · cm or less. A carbon fiber V,
Carbon fiber A having a specific surface area of 100 to 1000 m 2 / g, an average fiber diameter of 1 to 500 nm, and a powder resistance value of 0.025 Ω · cm or more,
The electrochemical capacitor according to claim 1 or 2, which is mixed in a mass ratio of 1: 2 to 1:10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009173602A JP2011029408A (en) | 2009-07-24 | 2009-07-24 | Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009173602A JP2011029408A (en) | 2009-07-24 | 2009-07-24 | Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011029408A true JP2011029408A (en) | 2011-02-10 |
Family
ID=43637817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009173602A Pending JP2011029408A (en) | 2009-07-24 | 2009-07-24 | Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011029408A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011204901A (en) * | 2010-03-25 | 2011-10-13 | Asahi Kasei Corp | Negative electrode material for nonaqueous lithium type energy storage element, and nonaqueous lithium type energy storage element using the same |
JP2011204906A (en) * | 2010-03-25 | 2011-10-13 | Asahi Kasei Corp | Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same |
KR20120125799A (en) * | 2011-05-09 | 2012-11-19 | 전자부품연구원 | Cathode active materials for lithium ion capacitor |
JP2013041697A (en) * | 2011-08-12 | 2013-02-28 | National Institute Of Advanced Industrial & Technology | Electrode for lithium ion secondary battery |
JP2013157158A (en) * | 2012-01-29 | 2013-08-15 | Institute Of Energy Engineering Inc | Layer-built battery and layer-built battery system |
WO2014024525A1 (en) * | 2012-08-06 | 2014-02-13 | トヨタ自動車株式会社 | Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and method for manufacturing nonaqueous electrolyte secondary battery |
WO2014077375A2 (en) * | 2012-11-19 | 2014-05-22 | 近藤耀子 | Nanocarbon rechargeable battery |
JPWO2013118757A1 (en) * | 2012-02-06 | 2015-05-11 | 株式会社クレハ | Carbonaceous materials for non-aqueous electrolyte secondary batteries |
WO2015083262A1 (en) * | 2013-12-05 | 2015-06-11 | 株式会社日立製作所 | Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery |
KR20150093451A (en) * | 2014-02-07 | 2015-08-18 | 삼성에스디아이 주식회사 | Positive electrode active material for rechargeable lithium battery, manufacturing method of the same, and rechargeable lithium battery including the same |
US9356283B2 (en) | 2012-12-21 | 2016-05-31 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery and rechargeable lithium battery |
JP2016157517A (en) * | 2015-02-23 | 2016-09-01 | セイコーインスツル株式会社 | Methods for manufacturing negative electrode mixture, negative electrode and electrochemical cell |
JP2016213205A (en) * | 2011-07-13 | 2016-12-15 | エルジー・ケム・リミテッド | High-energy lithium secondary battery improved in energy density characteristic |
JP2017027947A (en) * | 2011-05-23 | 2017-02-02 | エルジー ケム. エルティーディ. | High output lithium secondary battery with enhanced output density characteristics |
EP3038120A4 (en) * | 2013-08-19 | 2017-11-08 | Nippon Chemi-Con Corporation | Electrochemical capacitor |
CN108461858A (en) * | 2018-03-23 | 2018-08-28 | 上海应用技术大学 | A kind of screening technique that lithium titanate battery echelon utilizes |
JP2018534747A (en) * | 2015-10-28 | 2018-11-22 | エルジー・ケム・リミテッド | Conductive material dispersion and lithium secondary battery produced using the same |
JP2019188631A (en) * | 2018-04-19 | 2019-10-31 | 東洋インキScホールディングス株式会社 | Laminate and method for manufacturing the laminate |
JP2020013798A (en) * | 2015-06-30 | 2020-01-23 | 株式会社村田製作所 | Negative electrode, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system |
CN115050965A (en) * | 2022-07-14 | 2022-09-13 | 蜻蜓实验室(深圳)有限公司 | Ion conductive agent, electrode plate group and lithium ion battery |
JP7224562B1 (en) * | 2021-08-17 | 2023-02-17 | Jfeケミカル株式会社 | Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
JP7224563B1 (en) * | 2021-08-17 | 2023-02-17 | Jfeケミカル株式会社 | Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
WO2023021959A1 (en) * | 2021-08-17 | 2023-02-23 | Jfeケミカル株式会社 | Carbonaceous material-coated graphite particles, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery |
WO2023021957A1 (en) * | 2021-08-17 | 2023-02-23 | Jfeケミカル株式会社 | Carbon-coated graphite particles, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
JP2023517975A (en) * | 2021-01-27 | 2023-04-27 | エルジー エナジー ソリューション リミテッド | FREE-STANDING FILM FOR DRY ELECTRODE, MANUFACTURING METHOD THEREOF, DRY ELECTRODE CONTAINING THE SAME, AND SECONDARY BATTERY |
-
2009
- 2009-07-24 JP JP2009173602A patent/JP2011029408A/en active Pending
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011204906A (en) * | 2010-03-25 | 2011-10-13 | Asahi Kasei Corp | Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same |
JP2011204901A (en) * | 2010-03-25 | 2011-10-13 | Asahi Kasei Corp | Negative electrode material for nonaqueous lithium type energy storage element, and nonaqueous lithium type energy storage element using the same |
KR20120125799A (en) * | 2011-05-09 | 2012-11-19 | 전자부품연구원 | Cathode active materials for lithium ion capacitor |
KR102046418B1 (en) * | 2011-05-09 | 2019-12-06 | 전자부품연구원 | Cathode active materials for lithium ion capacitor |
JP2017027947A (en) * | 2011-05-23 | 2017-02-02 | エルジー ケム. エルティーディ. | High output lithium secondary battery with enhanced output density characteristics |
JP2016213205A (en) * | 2011-07-13 | 2016-12-15 | エルジー・ケム・リミテッド | High-energy lithium secondary battery improved in energy density characteristic |
JP2013041697A (en) * | 2011-08-12 | 2013-02-28 | National Institute Of Advanced Industrial & Technology | Electrode for lithium ion secondary battery |
JP2013157158A (en) * | 2012-01-29 | 2013-08-15 | Institute Of Energy Engineering Inc | Layer-built battery and layer-built battery system |
JPWO2013118757A1 (en) * | 2012-02-06 | 2015-05-11 | 株式会社クレハ | Carbonaceous materials for non-aqueous electrolyte secondary batteries |
JP2014032923A (en) * | 2012-08-06 | 2014-02-20 | Toyota Motor Corp | Negative electrode of nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing them |
WO2014024525A1 (en) * | 2012-08-06 | 2014-02-13 | トヨタ自動車株式会社 | Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and method for manufacturing nonaqueous electrolyte secondary battery |
WO2014077375A3 (en) * | 2012-11-19 | 2014-07-10 | 近藤耀子 | Nanocarbon rechargeable battery |
WO2014077375A2 (en) * | 2012-11-19 | 2014-05-22 | 近藤耀子 | Nanocarbon rechargeable battery |
US9356283B2 (en) | 2012-12-21 | 2016-05-31 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery and rechargeable lithium battery |
EP3038120A4 (en) * | 2013-08-19 | 2017-11-08 | Nippon Chemi-Con Corporation | Electrochemical capacitor |
WO2015083262A1 (en) * | 2013-12-05 | 2015-06-11 | 株式会社日立製作所 | Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery |
JP6051318B2 (en) * | 2013-12-05 | 2016-12-27 | 株式会社日立製作所 | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery |
KR20150093451A (en) * | 2014-02-07 | 2015-08-18 | 삼성에스디아이 주식회사 | Positive electrode active material for rechargeable lithium battery, manufacturing method of the same, and rechargeable lithium battery including the same |
KR102204701B1 (en) * | 2014-02-07 | 2021-01-18 | 삼성에스디아이 주식회사 | Positive electrode active material for rechargeable lithium battery, manufacturing method of the same, and rechargeable lithium battery including the same |
JP2016157517A (en) * | 2015-02-23 | 2016-09-01 | セイコーインスツル株式会社 | Methods for manufacturing negative electrode mixture, negative electrode and electrochemical cell |
JP2020013798A (en) * | 2015-06-30 | 2020-01-23 | 株式会社村田製作所 | Negative electrode, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system |
JP2018534747A (en) * | 2015-10-28 | 2018-11-22 | エルジー・ケム・リミテッド | Conductive material dispersion and lithium secondary battery produced using the same |
US11050061B2 (en) | 2015-10-28 | 2021-06-29 | Lg Chem, Ltd. | Conductive material dispersed liquid and lithium secondary battery manufactured using the same |
CN108461858A (en) * | 2018-03-23 | 2018-08-28 | 上海应用技术大学 | A kind of screening technique that lithium titanate battery echelon utilizes |
CN108461858B (en) * | 2018-03-23 | 2020-07-28 | 上海应用技术大学 | Screening method for echelon utilization of lithium titanate battery |
JP2019188631A (en) * | 2018-04-19 | 2019-10-31 | 東洋インキScホールディングス株式会社 | Laminate and method for manufacturing the laminate |
JP7067231B2 (en) | 2018-04-19 | 2022-05-16 | 東洋インキScホールディングス株式会社 | Laminated body and method for manufacturing the laminated body |
JP2023517975A (en) * | 2021-01-27 | 2023-04-27 | エルジー エナジー ソリューション リミテッド | FREE-STANDING FILM FOR DRY ELECTRODE, MANUFACTURING METHOD THEREOF, DRY ELECTRODE CONTAINING THE SAME, AND SECONDARY BATTERY |
JP7551208B2 (en) | 2021-01-27 | 2024-09-17 | エルジー エナジー ソリューション リミテッド | Freestanding film for dry electrode, its manufacturing method, dry electrode including same, and secondary battery |
KR20230059841A (en) * | 2021-08-17 | 2023-05-03 | 제이에프이 케미칼 가부시키가이샤 | Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
WO2023021959A1 (en) * | 2021-08-17 | 2023-02-23 | Jfeケミカル株式会社 | Carbonaceous material-coated graphite particles, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery |
WO2023021957A1 (en) * | 2021-08-17 | 2023-02-23 | Jfeケミカル株式会社 | Carbon-coated graphite particles, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
JP7224563B1 (en) * | 2021-08-17 | 2023-02-17 | Jfeケミカル株式会社 | Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
JP7224562B1 (en) * | 2021-08-17 | 2023-02-17 | Jfeケミカル株式会社 | Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
US11804594B2 (en) | 2021-08-17 | 2023-10-31 | Jfe Chemical Corporation | Carbonaceous substance-coated graphite particles, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
US11804593B2 (en) | 2021-08-17 | 2023-10-31 | Jfe Chemical Corporation | Carbonaceous substance-coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
KR102640642B1 (en) | 2021-08-17 | 2024-02-26 | 제이에프이 케미칼 가부시키가이샤 | Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
CN115050965A (en) * | 2022-07-14 | 2022-09-13 | 蜻蜓实验室(深圳)有限公司 | Ion conductive agent, electrode plate group and lithium ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011029408A (en) | Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer | |
EP2894703B1 (en) | Nonaqueous electrolyte secondary battery | |
JP6765997B2 (en) | Negative electrode material, manufacturing method of the negative electrode material, and mixed negative electrode material | |
JP6320809B2 (en) | Positive electrode active material, non-aqueous electrolyte battery and battery pack | |
JP6098878B2 (en) | Non-aqueous electrolyte secondary battery | |
WO2016203696A1 (en) | Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries | |
JP5994571B2 (en) | Negative electrode material for lithium ion secondary battery and lithium ion secondary battery | |
WO2017061073A1 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery | |
JP5858295B2 (en) | Nonaqueous electrolyte secondary battery | |
KR102679366B1 (en) | Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, manufacturing method of negative electrode active material, and manufacturing method of lithium ion secondary battery | |
JP6867821B2 (en) | Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, negative electrode manufacturing method, and lithium ion secondary Battery manufacturing method | |
JP6965745B2 (en) | Lithium ion secondary battery | |
JP6312211B2 (en) | Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery negative electrode material | |
JP6445956B2 (en) | Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery | |
JP7078346B2 (en) | Method for manufacturing negative electrode active material and lithium ion secondary battery | |
WO2011046000A1 (en) | Nonaqueous electrolyte solution type lithium ion secondary battery | |
TWI705604B (en) | Anode active material, mixed anode active material material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for manufacturing negative electrode active material, and method for manufacturing lithium ion secondary battery | |
JP6460960B2 (en) | Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery | |
TWI586024B (en) | A negative electrode active material for lithium secondary battery, and a lithium secondary battery | |
JP2015060824A (en) | Nonaqueous electrolyte battery and battery pack | |
JP6862091B2 (en) | Method for manufacturing negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and negative electrode active material | |
JP6862090B2 (en) | Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, and lithium ion secondary battery manufacturing method | |
JP6746526B2 (en) | Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material | |
JP7071701B2 (en) | Non-aqueous lithium-ion secondary battery |