JP2011204906A - Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same - Google Patents

Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same Download PDF

Info

Publication number
JP2011204906A
JP2011204906A JP2010070671A JP2010070671A JP2011204906A JP 2011204906 A JP2011204906 A JP 2011204906A JP 2010070671 A JP2010070671 A JP 2010070671A JP 2010070671 A JP2010070671 A JP 2010070671A JP 2011204906 A JP2011204906 A JP 2011204906A
Authority
JP
Japan
Prior art keywords
negative electrode
storage element
power storage
composite porous
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010070671A
Other languages
Japanese (ja)
Other versions
JP5759677B2 (en
Inventor
Nobuhiro Okada
宣宏 岡田
Toshio Tsubata
敏男 津端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2010070671A priority Critical patent/JP5759677B2/en
Publication of JP2011204906A publication Critical patent/JP2011204906A/en
Application granted granted Critical
Publication of JP5759677B2 publication Critical patent/JP5759677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for nonaqueous lithium type power storage elements, which has high energy density, high power, and superior durability, and to provide a nonaqueous lithium type power storage element using the negative electrode material.SOLUTION: The negative electrode material for nonaqueous lithium type power storage elements is a composite porous material, where a carbonaceous material is deposited on a surface of active carbon. For the negative electrode materials for nonaqueous lithium type power storage elements, in a differential thermal analysis (DTA) under atmospheric gas flow of the composite porous material, temperature of the highest temperature peak should be ≥650°C and ≤730°C in three kinds of heat generation decomposition peaks observed in measurement, where temperature rises at 5°C/min for changing into a carbon dioxide gas, within a platinum cell.

Description

本発明は、非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子に関する。   The present invention relates to a negative electrode material for a non-aqueous lithium storage element and a non-aqueous lithium storage element using the same.

近年、地球環境の保全および省資源を目指したエネルギーの有効利用の観点から、風力発電の電力平滑化システム若しくは深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、及び電気自動車用の蓄電システムなどが注目を集めている。   In recent years, from the viewpoint of effective use of energy aimed at conservation and resource conservation of the global environment, wind power generation smoothing system or midnight power storage system, home-use distributed storage system based on solar power generation technology, and electric vehicle The energy storage system is attracting attention.

これらの蓄電システムにおける第一の要求事項は、用いられる電池のエネルギー密度が高いことである。この様な要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。   The first requirement in these power storage systems is that the battery used has a high energy density. As a promising candidate for a high energy density battery capable of meeting such demands, development of a lithium ion battery has been vigorously advanced.

第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。   The second requirement is high output characteristics. For example, in a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle), high output discharge characteristics in the power storage system are required during acceleration. Yes.

現在、高出力蓄電デバイスとしては、電極に活性炭を用いた電気二重層キャパシタが開発されており、耐久性(サイクル特性、高温保存特性)が高く、0.5〜1kW/L程度の出力特性を有する。これら電気二重層キャパシタは、上記高出力が要求される分野で最適のデバイスと考えられてきたが、そのエネルギー密度は、1〜5Wh/L程度に過ぎず、実用化には出力持続時間が足枷となっている。   At present, electric double layer capacitors using activated carbon as electrodes have been developed as high-power storage devices, have high durability (cycle characteristics, high-temperature storage characteristics), and have output characteristics of about 0.5 to 1 kW / L. Have. These electric double layer capacitors have been considered to be optimal devices in the field where the above high output is required, but the energy density is only about 1 to 5 Wh / L, and the output duration is not enough for practical use. It has become.

一方、現在ハイブリッド電気自動車で採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を実現し、かつ160Wh/L程度のエネルギー密度を有している。しかしながら、そのエネルギー密度、出力をより一層高めるとともに、高温での安定性をさらに改善し、耐久性を高めるための研究が精力的に進められている。   On the other hand, nickel-metal hydride batteries currently used in hybrid electric vehicles realize high output equivalent to electric double layer capacitors and have an energy density of about 160 Wh / L. However, research is underway energetically to further increase the energy density and output, further improve the stability at high temperatures, and enhance the durability.

また、リチウムイオン電池においても、高出力化に向けての研究が進められている。例えば、放電深度(素子の放電容量の何%を放電した状態かを示す値)50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されているが、そのエネルギー密度は、100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっている。また、その耐久性(サイクル特性、高温保存特性)については電気ニ重層キャパシタに比べ劣る。そのため、実用的な耐久性を持たせるためには放電深度が0〜100%の範囲よりも狭い範囲でしか使用することができない。そのため実際に使用できる容量はさらに小さくなり、耐久性をより一層向上させるための研究が精力的に進められている。   In addition, research for higher output is also being conducted in lithium ion batteries. For example, a lithium ion battery has been developed that can obtain a high output exceeding 3 kW / L at a discharge depth (a value indicating what percentage of the device discharge capacity is discharged) 50%, and its energy density is 100 Wh. / L or less, and a design that dares to suppress the high energy density, which is the greatest feature of the lithium ion battery. Further, its durability (cycle characteristics, high temperature storage characteristics) is inferior to that of an electric double layer capacitor. Therefore, in order to give practical durability, the depth of discharge can be used only in a range narrower than the range of 0 to 100%. For this reason, the capacity that can be actually used is further reduced, and research for further improving the durability is being actively pursued.

上記の様に高エネルギー密度、高出力、耐久性を兼ね備えた蓄電素子の実用化が強く求められているが、上述した既存の蓄電素子には一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められており、開発が盛んに行われている。   As described above, there is a strong demand for practical use of a power storage element having high energy density, high output, and durability. However, the existing power storage element described above has advantages and disadvantages. For this reason, new power storage elements that satisfy these technical requirements have been demanded and are being actively developed.

キャパシタのエネルギーは1/2・C・V(ここで、Cは静電容量、Vは耐電圧)で表される。電気二重層キャパシタの耐電圧Vは2〜3V程度であり、電解液にリチウム塩を含む非水系電解液を用い耐電圧を向上させようとする試みがある。正極、負極の活性炭を用い、電解液にリチウム塩を含む非水系電解液を用いるキャパシタが開示されているが、負極活性炭のリチウムイオンに対する充放電効率が悪いため、サイクル特性に問題を残していた(特許文献1〜3参照)。 The energy of the capacitor is represented by 1/2 · C · V 2 (where C is a capacitance and V is a withstand voltage). The withstand voltage V of the electric double layer capacitor is about 2 to 3 V, and there is an attempt to improve the withstand voltage by using a non-aqueous electrolyte containing a lithium salt as the electrolyte. Capacitors using positive and negative electrode activated carbon and a non-aqueous electrolyte containing a lithium salt in the electrolyte have been disclosed, but the charge and discharge efficiency of the negative electrode activated carbon with respect to lithium ions was poor, leaving problems in cycle characteristics (See Patent Documents 1 to 3).

また、正極に活性炭、負極に黒鉛などの炭素材料を用いる検討がされているが、負極の黒鉛などの炭素材料は活性炭に比べ、出力特性が劣るため、キャパシタの特性である出力特性が十分に得られないという問題が残されていた(特許文献4〜6参照)。   In addition, carbon materials such as activated carbon for the positive electrode and graphite for the negative electrode have been studied. However, carbon materials such as graphite for the negative electrode are inferior to activated carbon in terms of output characteristics. The problem that it was not obtained remained (refer patent documents 4-6).

一方、BET法による比表面積が20〜1000m/gである炭素系材料からなり、初期効率30%、4000mA/gの速度での放電において300mAh/g以上の容量を有するリチウム系二次電池負極材料が開示されている。該負極材料はリチウムイオンに対する充放電効率が高く、出力特性に優れた材料である(特許文献7参照)。 On the other hand, a lithium secondary battery negative electrode made of a carbon-based material having a specific surface area of 20 to 1000 m 2 / g according to the BET method and having an initial efficiency of 30% and a capacity of 300 mAh / g or more when discharged at a rate of 4000 mA / g A material is disclosed. The negative electrode material is a material having high charge / discharge efficiency for lithium ions and excellent output characteristics (see Patent Document 7).

特開平11−121285号公報Japanese Patent Laid-Open No. 11-121285 特開平11−297578号公報JP-A-11-297578 特開2000−124081号公報JP 2000-124081 A 特開昭60−182670号公報JP 60-182670 A 特開平8−107048号公報Japanese Patent Laid-Open No. 8-1007048 特開平10−27733号公報Japanese Patent Laid-Open No. 10-27733 特開2001−229926号公報JP 2001-229926 A

本発明が解決しようとする課題は、高エネルギー密度かつ高出力を発現し、さらに耐久性に優れた非水系リチウム型蓄電素子用負極、及び該負極を用いた非水系リチウム型蓄電素子を提供することである。   The problem to be solved by the present invention is to provide a negative electrode for a non-aqueous lithium storage element that exhibits high energy density and high output, and is excellent in durability, and a non-aqueous lithium storage element using the negative electrode That is.

本発明者らは、前記課題を解決すべく研究を進めた結果、上述の特許文献7に記載された材料では、高エネルギー密度、高出力、高耐久性を兼ね備えた蓄電素子を提供することができないため、複合多孔性材料の結晶構造を特定の範囲に制御することで、高エネルギー密度、高出力、高耐久性を兼ね備えた非水系リチウム型蓄電素子用負極材料が得られることを見出し、本発明を完成させた。   As a result of advancing research to solve the above problems, the inventors of the present invention can provide a power storage device that combines high energy density, high output, and high durability with the material described in Patent Document 7 described above. Therefore, by controlling the crystal structure of the composite porous material within a specific range, it has been found that a negative electrode material for non-aqueous lithium storage elements having high energy density, high output, and high durability can be obtained. Completed the invention.

すなわち、本発明は、以下のとおりのものである。
[1] 活性炭の表面に炭素質材料を被着させた複合多孔性材料であって、該複合多孔性材料の大気ガスフロー下での示差熱分析(DTA)において、白金セル内、5℃/min.で昇温し二酸化炭素ガス化する測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度が、650℃以上730℃以下を満たすことを特徴とする非水系リチウム型蓄電素子用負極材料。
That is, the present invention is as follows.
[1] A composite porous material obtained by depositing a carbonaceous material on the surface of activated carbon, and in the differential thermal analysis (DTA) under atmospheric gas flow of the composite porous material, 5 ° C / min. Among the three types of exothermic decomposition peaks observed in the measurement of gasification and carbon dioxide gasification, the temperature of the highest temperature peak satisfies 650 ° C. or higher and 730 ° C. or lower. Negative electrode material.

[2] 上記[1]に記載の非水系リチウム型蓄電素子用負極材料を負極活物質とする負極活物質層と負極集電体とを含む非水系リチウム型蓄電素子用負極。   [2] A negative electrode for a non-aqueous lithium storage element, comprising a negative electrode active material layer using the negative electrode material for a non-aqueous lithium storage element according to [1] as a negative electrode active material and a negative electrode current collector.

[3] 上記[2]に記載の非水系リチウム型蓄電素子用負極、正極、及びセパレータから成る電極体、並びにリチウム塩を含む非水系電解液が外装体に収納されて成る非水系リチウム型蓄電素子(図1を参照)。   [3] A non-aqueous lithium-type electricity storage comprising a non-aqueous lithium-type electricity storage element negative electrode, a positive electrode, and a separator as described in [2] above, and a non-aqueous electrolyte solution containing a lithium salt housed in an exterior body Element (see FIG. 1).

本発明の非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子は、高エネルギー密度かつ高出力を発現し、さらに耐久性に優れるという効果を奏する。   The negative electrode material for a non-aqueous lithium storage element of the present invention and the non-aqueous lithium storage element using the non-aqueous lithium storage element exhibit high energy density, high output, and excellent durability.

図1(a)は非水系リチウム型蓄電素子の電極面と平行な方向における断面模式図であり、図1(b)は非水系リチウム型蓄電素子の電極面と垂直な方向における断面模式図である。FIG. 1A is a schematic cross-sectional view in a direction parallel to the electrode surface of the non-aqueous lithium storage element, and FIG. 1B is a schematic cross-sectional view in a direction perpendicular to the electrode surface of the non-aqueous lithium storage element. is there.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の非水系リチウム型蓄電素子用負極材料は、活性炭の表面に炭素質材料を被着させた複合多孔性材料であって、該複合多孔性材料の大気ガスフロー下での示差熱分析(DTA)において、白金セル内、5℃/min.で昇温し二酸化炭素ガス化する測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度が、650℃以上730℃以下を満たすことを特徴とする。   The negative electrode material for a non-aqueous lithium storage element of the present invention is a composite porous material in which a carbonaceous material is deposited on the surface of activated carbon, and the differential thermal analysis of the composite porous material under an atmospheric gas flow ( DTA), 5 ° C./min. Among the three types of exothermic decomposition peaks observed in the measurement in which the temperature is raised and carbon dioxide gasified, the temperature of the highest temperature peak satisfies 650 ° C. or higher and 730 ° C. or lower.

本発明の複合多孔性材料は活性炭の表面に炭素質材料を被着させたものであるが、活性炭の細孔内部に炭素質材料を被着させた後の結晶構造が重要である。
該複合多孔性材料の大気ガスフロー下での示差熱分析(DTA)において、白金セル内、5℃/min.で昇温し二酸化炭素ガス化する測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度が、650℃以上730℃以下であり、好ましくは670℃以上695℃以下であり、更に好ましくは675℃以上690℃以下である。
The composite porous material of the present invention is obtained by depositing a carbonaceous material on the surface of activated carbon, and the crystal structure after depositing the carbonaceous material inside the pores of the activated carbon is important.
In the differential thermal analysis (DTA) under atmospheric gas flow of the composite porous material, 5 ° C./min. Among the three types of exothermic decomposition peaks observed in the measurement of gasification and carbon dioxide gasification, the temperature of the highest temperature peak is 650 ° C. or higher and 730 ° C. or lower, preferably 670 ° C. or higher and 695 ° C. or lower. More preferably, it is 675 degreeC or more and 690 degrees C or less.

示差熱分析(DTA)における発熱分解ピークは、炭素骨格構造の広がりを示しており、発熱分解ピークが高いものほど炭素骨格構造が発達した高結晶性炭素材料と考えられる。従って、3種の発熱分解ピークのうち、最も高温ピークの温度が650℃より小さいと、炭素骨格構造の広がりが小さく、結晶構造がアモルファスになり、リチウムイオンの吸蔵放出に対する不可逆容量が大きく充放電効率が悪いため、サイクル特性が低くなること、又は耐久性が落ちることから好ましくないと考えられる。逆に、3種の発熱分解ピークのうち、最も高温ピークの温度が730℃より大きいと、炭素骨格構造の広がりが大きく、結晶構造が発達しすぎて、リチウムイオンが構造内部に入り込んでしまい、吸蔵放出速度が遅く、その結果、高い出力特性を発現することは難しいと考えられる。   The exothermic decomposition peak in differential thermal analysis (DTA) shows the spread of the carbon skeleton structure, and the higher the exothermic decomposition peak, the higher the crystalline carbon material with the developed carbon skeleton structure. Therefore, among the three types of exothermic decomposition peaks, when the temperature of the highest temperature peak is smaller than 650 ° C., the carbon skeleton structure is less spread, the crystal structure becomes amorphous, and the irreversible capacity for the insertion and extraction of lithium ions is large. Since the efficiency is poor, it is considered undesirable because the cycle characteristics are lowered or the durability is lowered. Conversely, among the three types of exothermic decomposition peaks, when the temperature of the highest temperature peak is higher than 730 ° C., the carbon skeleton structure spreads greatly, the crystal structure develops too much, and lithium ions enter the structure, The occlusion / release rate is slow, and as a result, it is considered difficult to develop high output characteristics.

本発明の非水系リチウム型蓄電素子用負極材料は、活性炭の表面に炭素質材料を被着させた複合多孔性材料であって、該複合多孔性材料の波長532nmのレーザーを用いたラマンスペクトルにおいて測定される1360cm−1のピーク強度(Id)と1580cm−1のピーク強度(Ig)のピーク強度比(Id/Ig)が、0.90以上1.25以下を満たすものであることが好ましい。 The negative electrode material for a non-aqueous lithium-type storage element of the present invention is a composite porous material in which a carbonaceous material is deposited on the surface of activated carbon, and the Raman spectrum using a laser having a wavelength of 532 nm of the composite porous material is used. peak intensity ratio of the peak intensity of the measured 1360 cm -1 (Id) and the peak intensity of 1580cm -1 (Ig) (Id / Ig) is preferably satisfies 0.90 to 1.25.

より好ましくは、前記複合多孔性材料の波長532nmのレーザーを用いたラマンスペクトルが、結晶相に由来する1360cm−1のピークの強度(αI)、アモルファス相に由来する1360cm−1のピークの強度(βI)、結晶相に由来する1580cm−1のピークの強度(γI)、及びアモルファス相に由来する1580cm−1のピークの強度(δI)から構成されており、該各ピークをガウス関数を用いて波形近似し、さらに該各ピーク強度を順にαI、βI、γI、δIとしたとき、ピーク強度比(δI/γI)が、0.55以上1.00以下を満たすものである。 More preferably, the Raman spectrum using a laser having a wavelength of 532 nm of the composite porous material has a peak intensity (αI) of 1360 cm −1 derived from the crystalline phase, and a peak intensity of 1360 cm −1 derived from the amorphous phase ( βI), the intensity of the peak at 1580 cm −1 (γI) derived from the crystalline phase, and the intensity of the peak at 1580 cm −1 (δI) derived from the amorphous phase, and each peak is expressed using a Gaussian function. When the waveforms are approximated and the respective peak intensities are αI, βI, γI, and δI in this order, the peak intensity ratio (δI / γI) satisfies 0.55 or more and 1.00 or less.

本発明の複合多孔性材料は活性炭の表面に炭素質材料を被着させたものであるが、活性炭の細孔内部に炭素質材料を被着させた後の結晶構造が重要である。
該複合多孔性材料の波長532nmのレーザーを用いたラマンスペクトルにおいて測定される1360cm−1のピーク強度(Id)と1580cm−1のピーク強度(Ig)のピーク強度比(Id/Ig)が、0.90以上1.25以下であり、好ましくは1.00以上1.20以下、更に好ましくは1.05以上1.15以下である。
The composite porous material of the present invention is obtained by depositing a carbonaceous material on the surface of activated carbon, and the crystal structure after depositing the carbonaceous material inside the pores of the activated carbon is important.
The peak intensity ratio of the composite porous peak intensity of 1360cm peak intensity of -1 (Id) and 1580 cm -1 as measured in the Raman spectrum using laser with a wavelength 532nm of the material (Ig) (Id / Ig) is, 0 .90 or more and 1.25 or less, preferably 1.00 or more and 1.20 or less, and more preferably 1.05 or more and 1.15 or less.

ラマンスペクトルにおけるピーク強度Idは、3次元的な構造の広がりを示しており、ピーク強度Idが大きいものほど3次元的に構造が発達した炭素材料と考えられる。また、ピーク強度Igは、2次元的な構造の広がりを示しており、ピーク強度Igが大きいものほど2次元的に構造が発達した炭素材料と考えられ、例えばグラファイトのような炭素網面が発達した材料が挙げられる。従って、ピーク強度比(Id/Ig)が0.90より小さいと、グラファイトのような炭素網面が発達した構造となり、リチウムイオンが網面内部に入り込んでしまい、吸蔵放出速度が遅く、その結果、高い出力特性を発現することは難しい。逆に、ピーク強度比(Id/Ig)が1.25より大きいと、例えば活性炭のようなマイクロ孔が多量に存在するアモルファス材料となり、リチウムイオンの吸蔵放出に対する不可逆容量が大きく、充放電効率が悪いため、サイクル特性が低く好ましくない。   The peak intensity Id in the Raman spectrum shows a three-dimensional structure spread, and a higher peak intensity Id is considered to be a carbon material having a three-dimensionally developed structure. The peak intensity Ig indicates a two-dimensional structure spread, and a higher peak intensity Ig is considered to be a carbon material having a two-dimensional structure developed. For example, a carbon network surface such as graphite develops. Materials. Therefore, when the peak intensity ratio (Id / Ig) is smaller than 0.90, a carbon network surface such as graphite is developed, and lithium ions enter the network surface, resulting in a slow occlusion / release rate. It is difficult to develop high output characteristics. On the other hand, when the peak intensity ratio (Id / Ig) is greater than 1.25, the material becomes an amorphous material having a large amount of micropores such as activated carbon, and the irreversible capacity against the occlusion / release of lithium ions is large, and the charge / discharge efficiency is high. Since it is bad, the cycle characteristics are low, which is not preferable.

また、本発明の該複合多孔性材料は、結晶相に由来する1360cm−1のピークの強度(αI)、アモルファス相に由来する1360cm−1のピークの強度(βI)、結晶相に由来する1580cm−1のピークの強度(γI)、アモルファス相に由来する1580cm−1のピークの強度(δI)から構成されており、該各ピークをガウス関数を用いて波形近似し、さらに該各ピーク強度を順にαI、βI、γI、δIとしたとき、ピーク強度比(δI/γI)が、0.55以上1.00以下であり、好ましくは0.65以上0.95以下、更に好ましくは0.80以上0.95以下である。 Further, the composite porous material of the present invention has a peak intensity (αI) of 1360 cm −1 derived from the crystalline phase, a peak intensity (βI) of 1360 cm −1 derived from the amorphous phase, and 1580 cm derived from the crystalline phase. -1 peak intensity (γI) and 1580 cm −1 peak intensity (δI) derived from the amorphous phase. Each peak is approximated to a waveform using a Gaussian function. When αI, βI, γI, and δI are sequentially set, the peak intensity ratio (δI / γI) is 0.55 or more and 1.00 or less, preferably 0.65 or more and 0.95 or less, and more preferably 0.80. It is 0.95 or less.

先述のように、1580cm−1のピークは3次元的な構造の広がりを示しているが、本発明の負極材料は、この3次元的な構造におけるアモルファス相と結晶相のバランスが重要である。両者のピーク強度比(δI/γI)が0.55より小さいと3次元的な結晶構造が発達しすぎて、リチウムイオンが構造内部に入り込んでしまい、吸蔵放出速度が遅く、その結果、高い出力特性を発現することは難しいと考えられる。逆に、両者のピーク強度比(δI/γI)が1.00より大きくなると、3次元的な結晶構造がアモルファスになり、リチウムイオンの吸蔵放出に対する不可逆容量が大きく充放電効率が悪いため、サイクル特性が低くなること、又は耐久性が落ちることから好ましくないと考えられる。 As described above, the peak at 1580 cm −1 indicates the spread of the three-dimensional structure. In the negative electrode material of the present invention, the balance between the amorphous phase and the crystal phase in this three-dimensional structure is important. If the peak intensity ratio (δI / γI) of both is smaller than 0.55, a three-dimensional crystal structure develops too much, lithium ions enter the structure, and the occlusion / release rate is slow, resulting in high output. It is considered difficult to develop the characteristics. On the contrary, if the peak intensity ratio (δI / γI) of both becomes larger than 1.00, the three-dimensional crystal structure becomes amorphous, the irreversible capacity with respect to occlusion / release of lithium ions is large, and the charge / discharge efficiency is poor. It is considered undesirable because the characteristics are lowered or the durability is lowered.

本発明の複合多孔性材料は、例えば、活性炭と炭素質材料前駆体を共存させた状態で熱処理することにより得ることができる。   The composite porous material of the present invention can be obtained, for example, by heat treatment in a state where activated carbon and a carbonaceous material precursor coexist.

上記の複合多孔性材料の原料に用いる活性炭は、得られる複合多孔性材料が所望の特性を発揮する限り、活性炭とする前の原材料に特に制限はなく、石油系、石炭系、植物系、高分子系などの各種の原材料から得られた市販品を使用することができる。平均粒子径は1μm以上15μm以下の活性炭粉末を用いることが好ましい。より好ましくは、2μm以上10μm以下である。   The activated carbon used as a raw material for the composite porous material is not particularly limited as long as the raw material before activated carbon is used as long as the obtained composite porous material exhibits desired characteristics. Commercial products obtained from various raw materials such as molecular systems can be used. It is preferable to use activated carbon powder having an average particle size of 1 μm to 15 μm. More preferably, they are 2 micrometers or more and 10 micrometers or less.

本発明における平均粒子径とは、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径を50%径とし、その50%径(Median径)のことを指すものである。この平均粒子径は市販のレーザー回折式粒度分布測定装置で測定することができる。   The average particle size in the present invention is the particle size at which the cumulative curve becomes 50% when the cumulative curve is determined with the total volume being 100% when the particle size distribution is measured using a particle size distribution measuring device. % Diameter, and refers to the 50% diameter (Median diameter). This average particle diameter can be measured with a commercially available laser diffraction particle size distribution analyzer.

活性炭は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.050≦V1≦0.500、0.005≦V2≦1.000、そして0.2≦V1/V2≦10.0を満たすものであることが好ましい。より好ましくは、0.050≦V1≦0.350、0.005≦V2≦0.850、そして0.22≦V1/V2≦10.0である。更に好ましくは0.100≦V1≦0.300、0.100≦V2≦0.800、そして0.25≦V1/V2≦10.0である。上限を超える場合、すなわち活性炭のメソ孔量V1が0.5より多い場合及びマイクロ孔量V2が1.0より多い場合、上記本発明の複合多孔性材料の細孔構造を得る為には多くの炭素材料を被着させる必要があり、細孔構造を制御しにくくなる。   For activated carbon, the amount of mesopores derived from pores having a diameter of 20 to 500 mm calculated by the BJH method is V1 (cc / g), and the amount of micropores derived from pores having a diameter of less than 20 mm calculated by the MP method is V2 ( cc / g), it preferably satisfies 0.050 ≦ V1 ≦ 0.500, 0.005 ≦ V2 ≦ 1.000, and 0.2 ≦ V1 / V2 ≦ 10.0. More preferably, 0.050 ≦ V1 ≦ 0.350, 0.005 ≦ V2 ≦ 0.850, and 0.22 ≦ V1 / V2 ≦ 10.0. More preferably, 0.100 ≦ V1 ≦ 0.300, 0.100 ≦ V2 ≦ 0.800, and 0.25 ≦ V1 / V2 ≦ 10.0. When the upper limit is exceeded, that is, when the mesopore volume V1 of the activated carbon is greater than 0.5 and when the micropore volume V2 is greater than 1.0, it is often necessary to obtain the pore structure of the composite porous material of the present invention. Therefore, it is difficult to control the pore structure.

一方、上記の複合多孔性材料の原料に用いる炭素質材料前駆体とは、熱処理することにより、活性炭に炭素質材料を被着させることができる固体、液体、又は溶剤に溶解可能な有機質材料で、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、フェノール樹脂などの合成樹脂などを挙げることができる。これらの炭素質材料前駆体の中でも、安価なピッチを用いることが製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。例えば、石油系ピッチとしては、原油の蒸留残査、流動性接触分解残査(デカントオイルなど)、サーマルクラッカーからのボトム油、ナフサクラッキングの際に得られるエチレンタールなどが例示される。   On the other hand, the carbonaceous material precursor used as a raw material for the composite porous material is an organic material that can be dissolved in a solid, liquid, or solvent capable of depositing the carbonaceous material on activated carbon by heat treatment. Examples thereof include synthetic resins such as pitch, mesocarbon microbeads, coke, and phenol resin. Among these carbonaceous material precursors, it is preferable in terms of production cost to use an inexpensive pitch. Pitch is roughly divided into petroleum pitch and coal pitch. Examples of petroleum pitches include crude oil distillation residue, fluid catalytic cracking residue (decant oil, etc.), bottom oil from thermal cracker, ethylene tar obtained during naphtha cracking, and the like.

上記ピッチを用いる場合、複合多孔性材料は、活性炭の表面でピッチの揮発成分又は熱分解成分を熱反応させることにより、該活性炭に炭素質材料を被着させることにより得られる。この場合、200〜500℃程度の温度において、ピッチの揮発成分又は熱分解成分の活性炭細孔内への被着が進行し、400℃以上で該被着成分が炭素質材料となる反応が進行する。熱処理時のピーク温度は得られる複合多孔性材料の特性、熱反応パターン、熱反応雰囲気などにより適宜決定されるものであるが、400℃以上であることが好ましく、より好ましくは450℃〜1000℃であり、さらに好ましくは500〜800℃程度のピーク温度である。また、熱処理時のピーク温度を維持する時間は30分間〜10時間であればよく、好ましくは1時間〜7時間、より好ましくは2時間〜5時間である。500〜800℃程度のピーク温度で2時間から5時間熱処理する場合、活性炭表面に被着している炭素質材料は多環芳香族系炭化水素になっているものと考えられる。   When the pitch is used, the composite porous material is obtained by depositing a carbonaceous material on the activated carbon by thermally reacting the volatile component or pyrolysis component of the pitch on the surface of the activated carbon. In this case, at a temperature of about 200 to 500 ° C., the deposition of pitch volatile components or pyrolysis components into the activated carbon pores proceeds, and at 400 ° C. or higher, the reaction in which the deposited components become carbonaceous materials proceeds. To do. The peak temperature during the heat treatment is appropriately determined depending on the characteristics of the composite porous material to be obtained, the thermal reaction pattern, the thermal reaction atmosphere, etc., but is preferably 400 ° C. or higher, more preferably 450 ° C. to 1000 ° C. More preferably, the peak temperature is about 500 to 800 ° C. Moreover, the time which maintains the peak temperature at the time of heat processing should just be 30 minutes-10 hours, Preferably they are 1 hour-7 hours, More preferably, they are 2 hours-5 hours. When the heat treatment is performed at a peak temperature of about 500 to 800 ° C. for 2 to 5 hours, the carbonaceous material deposited on the activated carbon surface is considered to be a polycyclic aromatic hydrocarbon.

上記の複合多孔性材料の製造方法は、例えば、炭素質材料前駆体から揮発した炭化水素ガスを含む不活性中雰囲気中で活性炭を熱処理し、気相で炭素質材料を被着させる方法が挙げられる。また、活性炭と炭素質材料前駆体を予め混合し熱処理する方法、又は溶媒に溶解させた炭素質材料前駆体を活性炭に塗布して乾燥させた後に熱処理する方法も可能である。   Examples of the method for producing the composite porous material include a method in which activated carbon is heat-treated in an inert atmosphere containing hydrocarbon gas volatilized from a carbonaceous material precursor, and the carbonaceous material is deposited in a gas phase. It is done. In addition, a method in which activated carbon and a carbonaceous material precursor are premixed and heat-treated, or a method in which a carbonaceous material precursor dissolved in a solvent is applied to activated carbon and dried is then heat-treated.

また、本発明における複合多孔性材料の製造方法は、一般の表面コーティングとは異なり、活性炭の表面に炭素質材料を被着させた後にも凝集の発生が少なく、被着前後の平均粒子径にはほとんど変化がないことを特徴とする。この特徴に加えて、実施例で明らかなように被着後にマイクロ孔量及びメソ孔量が減少していることから、本発明においては被着する炭素質材料前駆体となるピッチなどの揮発成分、あるいは熱分解成分の大部分は、活性炭細孔内に被着し、この被着成分が炭素質材料となる反応が進行したものと推測できる。   In addition, unlike the general surface coating, the method for producing a composite porous material in the present invention is less likely to cause aggregation even after the carbonaceous material is deposited on the surface of the activated carbon, and the average particle size before and after the deposition. Is characterized by little change. In addition to this feature, since the amount of micropores and the amount of mesopores are reduced after deposition as is apparent in the examples, in the present invention, volatile components such as pitch that become the carbonaceous material precursor to be deposited Alternatively, it can be presumed that most of the pyrolysis component is deposited in the activated carbon pores, and the reaction in which the deposited component becomes a carbonaceous material has progressed.

前記複合多孔性材料において、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とするとき、0.010≦Vm1≦0.250、0.001≦Vm2≦0.200を満たすものであることが好ましい。メソ孔量Vm1が上限以下(Vm1≦0.250)であれば、リチウムイオンに対する高い充放電効率が維持でき、メソ孔量Vm1及びマイクロ孔量Vm2が下限以上(0.010≦Vm1、0.001≦Vm2)であれば、高出力特性が得られる。   In the composite porous material, the amount of mesopores derived from pores having a diameter of 20 to 500 mm calculated by the BJH method is Vm1 (cc / g), and the micropores derived from pores having a diameter of less than 20 mm calculated by the MP method When the amount is Vm2 (cc / g), it is preferable to satisfy 0.010 ≦ Vm1 ≦ 0.250 and 0.001 ≦ Vm2 ≦ 0.200. If the mesopore volume Vm1 is less than or equal to the upper limit (Vm1 ≦ 0.250), high charge / discharge efficiency with respect to lithium ions can be maintained, and the mesopore volume Vm1 and the micropore volume Vm2 are equal to or greater than the lower limit (0.010 ≦ Vm1, 0. If 001 ≦ Vm2), high output characteristics can be obtained.

本発明における複合多孔性材料の平均粒子径は上述のように、被着前の活性炭とほとんど変化がないが、2μm以上10μm以下であることが好ましい。より好ましくは、2.5μm以上8μm以下である。更に好ましくは2.5μm以上5μm以下である。平均粒子径が2μm以上10μm以下であれば十分な耐久性が保たれる。   As described above, the average particle size of the composite porous material in the present invention is almost the same as that of the activated carbon before deposition, but is preferably 2 μm or more and 10 μm or less. More preferably, it is 2.5 μm or more and 8 μm or less. More preferably, it is 2.5 μm or more and 5 μm or less. If the average particle diameter is 2 μm or more and 10 μm or less, sufficient durability is maintained.

上記の複合多孔性材料において、平均細孔径は、高出力特性にする点から、28Å以上であることが好ましく、30Å以上であることがより好ましい。一方、高エネルギー密度にする点から、65Å以下であることが好ましく、60Å以下であることがより好ましい。本発明でいうところの平均細孔径とは、液体窒素温度における各相対圧力下での窒素ガスの各平衡吸着量を測定して得られる重量当たりの全細孔容積をBET比表面積で除して求めたものを意味する。   In the above composite porous material, the average pore diameter is preferably 28 mm or more, more preferably 30 mm or more from the viewpoint of achieving high output characteristics. On the other hand, from the viewpoint of achieving a high energy density, it is preferably 65 mm or less, and more preferably 60 kg or less. The average pore diameter referred to in the present invention is obtained by dividing the total pore volume per weight obtained by measuring each equilibrium adsorption amount of nitrogen gas under each relative pressure at the liquid nitrogen temperature by the BET specific surface area. It means what I asked for.

上記の複合多孔性材料において、水素原子/炭素原子の原子数比(以下、H/Cともいう。)は、0.05以上0.35以下であることが好ましく、0.05以上0.15以下であることが、より好ましい。H/Cが上限値を上回る場合には、活性炭表面に被着している炭素質材料の多環芳香族系共役構造が十分に発達していないので、容量(エネルギー密度)及び充放電効率が低くなる。一方、H/Cが下限値を下回る場合には、炭素化が過度に進行して、十分なエネルギー密度が得られない場合がある。なお、H/Cは元素分析装置により測定される。   In the above composite porous material, the atomic ratio of hydrogen atoms / carbon atoms (hereinafter also referred to as H / C) is preferably 0.05 or more and 0.35 or less, and 0.05 or more and 0.15. The following is more preferable. When H / C exceeds the upper limit value, the capacity (energy density) and charge / discharge efficiency are low because the polycyclic aromatic conjugated structure of the carbonaceous material deposited on the activated carbon surface is not sufficiently developed. Lower. On the other hand, when H / C is lower than the lower limit, carbonization may proceed excessively and a sufficient energy density may not be obtained. H / C is measured by an elemental analyzer.

上記の複合多孔性材料は、非水系リチウム型蓄電素子用負極の活物質として用いられ、公知の手法により非水系リチウム型蓄電素子用負極に成型することができる。   The composite porous material is used as an active material of a negative electrode for a non-aqueous lithium storage element, and can be molded into a negative electrode for a non-aqueous lithium storage element by a known method.

上記の非水系リチウム型蓄電素子用負極は、負極集電体の片面又は両面に負極活物質層が形成されて成るものである。負極集電体の材質は、蓄電素子にした際、溶出又は反応などの劣化が起こらない材質であれば特に制限はなく、例えば、銅、鉄、ステンレス等が挙げられる。上記の非水系リチウム型蓄電素子用負極においては、銅を負極集電体とすることが好ましい。負極集電体の形状は、金属箔又は金属の隙間に電極が形成可能である構造体を用いることができ、金属箔は貫通孔を持たない通常の金属箔でもよいし、エキスパンドメタル、パンチングメタル等の貫通孔を有する金属箔でも構わない。また、負極集電体の厚みは負極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。   The negative electrode for a non-aqueous lithium storage element is formed by forming a negative electrode active material layer on one side or both sides of a negative electrode current collector. The material of the negative electrode current collector is not particularly limited as long as it does not cause degradation such as elution or reaction when the power storage element is formed, and examples thereof include copper, iron, and stainless steel. In the negative electrode for a nonaqueous lithium storage element, copper is preferably used as the negative electrode current collector. As the shape of the negative electrode current collector, a metal foil or a structure in which an electrode can be formed in a gap between metals can be used, and the metal foil may be a normal metal foil having no through hole, expanded metal, punching metal A metal foil having through-holes such as these may be used. Further, the thickness of the negative electrode current collector is not particularly limited as long as the shape and strength of the negative electrode can be sufficiently maintained, but for example, 1 to 100 μm is preferable.

上記の非水系リチウム型蓄電素子用負極の負極活物質層には、必要に応じて、負極活物質の他に導電性フィラー、結着剤を添加することができる。導電性フィラーの種類は特に制限されるものではないが、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維が例示される。導電性フィラーの添加量は、例えば、負極活物質に対して0〜30質量%が好ましい。また、結着剤としては、特に制限されるものではないが、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、スチレン−ブタジエン共重合体などを用いることができる。結着剤の添加量は、例えば、負極活物質に対して3〜20質量%の範囲が好ましい。   In addition to the negative electrode active material, a conductive filler and a binder can be added to the negative electrode active material layer of the negative electrode for a non-aqueous lithium storage element, if necessary. The type of the conductive filler is not particularly limited, and examples thereof include acetylene black, ketjen black, and vapor grown carbon fiber. For example, the addition amount of the conductive filler is preferably 0 to 30% by mass with respect to the negative electrode active material. The binder is not particularly limited, and PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), styrene-butadiene copolymer, and the like can be used. The amount of the binder added is preferably, for example, in the range of 3 to 20% by mass with respect to the negative electrode active material.

上記の非水系リチウム型蓄電素子用負極は、負極活物質層を集電体の片面のみに形成したものでもよいし、両面に形成したものでも構わない。該負極活物質層の厚みは、例えば、片面当り20μm以上100μm以下が好ましい。   The negative electrode for a non-aqueous lithium storage element described above may have a negative electrode active material layer formed on only one side of a current collector, or may be formed on both sides. The thickness of the negative electrode active material layer is preferably 20 μm or more and 100 μm or less per side, for example.

上記の非水系リチウム型蓄電素子用負極は、公知のリチウムイオン電池、電気二重層キャパシタ等の電極成型手法により製造することが可能であり、例えば、負極活物質、導電性フィラー、結着剤を溶媒に分散させ、スラリー状にし、活物質層を集電体上に塗布して乾燥し、必要に応じてプレスすることにより得られる。また、溶媒を使用せずに、乾式で混合し、活物質をプレス成型した後、導電性接着剤等を用いて集電体に貼り付けることも可能である。   The negative electrode for a non-aqueous lithium storage element can be produced by a known electrode forming technique such as a lithium ion battery or an electric double layer capacitor. For example, a negative electrode active material, a conductive filler, and a binder can be used. It is obtained by dispersing in a solvent, forming a slurry, applying an active material layer on a current collector, drying, and pressing as necessary. In addition, it is possible to dry-mix without using a solvent and press-mold the active material, and then affix it to the current collector using a conductive adhesive or the like.

上記の非水系リチウム型蓄電素子用負極にはリチウムイオンを予めドープすることが好ましい。このドープ量は負極活物質である上記の複合多孔性材料の単位重量当り700mAh/gを超える量であり、750mAh/g以上であることが好ましい。上限については、1,500mAh/g以下であり、1,300mAh/g以下であることが好ましい。   The negative electrode for a non-aqueous lithium storage element is preferably doped with lithium ions in advance. This dope amount exceeds 700 mAh / g, preferably 750 mAh / g or more, per unit weight of the composite porous material as the negative electrode active material. About an upper limit, it is 1,500 mAh / g or less, and it is preferable that it is 1,300 mAh / g or less.

リチウムイオンを予めドープすることで、負極電位が低くなり、正極と組み合わせたときにセル電圧が高くなるとともに、正極の利用容量が大きくなるため高容量となり、高いエネルギー密度が得られる。本発明の非水系リチウム型蓄電素子用負極においては、該ドープ量が700mAh/gを超える量であれば、負極電位が十分に下がり、負極材料におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが十分にドープされるため、高い耐久性(サイクル特性、フロート特性など)、出力特性、及びエネルギー密度が得られるものと考えられる。また、該ドープ量が多いほど負極電位が下がり、耐久性及びエネルギー密度は向上するが、1,500mAh/g以下であればリチウム金属の析出等の副作用が発生する恐れが少ない。   Pre-doping with lithium ions lowers the negative electrode potential, increases the cell voltage when combined with the positive electrode, and increases the utilization capacity of the positive electrode, resulting in higher capacity and higher energy density. In the negative electrode for a non-aqueous lithium storage element of the present invention, if the doping amount exceeds 700 mAh / g, the negative electrode potential is sufficiently lowered, and is irreversible that cannot be desorbed once lithium ions in the negative electrode material are inserted. Since the site is also sufficiently doped with lithium ions, high durability (cycle characteristics, float characteristics, etc.), output characteristics, and energy density are considered to be obtained. In addition, as the doping amount increases, the negative electrode potential decreases and the durability and energy density improve, but if it is 1,500 mAh / g or less, there is little risk of side effects such as precipitation of lithium metal.

上記の非水系リチウム型蓄電素子用負極にリチウムイオンを予めドープする方法は、本発明では特に制限しないが、公知の方法を用いることができる。例えば、負極活物質を電極に成型した後、該負極電極を作用極、金属リチウムを対極に使用し、非水系電解液を組み合わせた電気化学セルを作製し、電気化学的にリチウムイオンをドープする方法が挙げられる。また、該負極電極に金属リチウム箔を圧着し、非水系電解液に入れることで負極にリチウムイオンをドープすることも可能である。   The method for doping lithium ions into the negative electrode for a non-aqueous lithium storage element in advance is not particularly limited in the present invention, but a known method can be used. For example, after forming a negative electrode active material into an electrode, using the negative electrode as a working electrode and metallic lithium as a counter electrode, an electrochemical cell combining non-aqueous electrolyte is produced, and lithium ions are doped electrochemically A method is mentioned. It is also possible to dope lithium ions into the negative electrode by pressing a metal lithium foil on the negative electrode and placing it in a non-aqueous electrolyte.

上述の非水系リチウム型蓄電素子用負極は、正極、及びセパレータを積層して成る電極体として、リチウム塩を含む非水系電解液とともに外装体に収納して、非水系リチウム型蓄電素子とすることができる。本発明の非水系リチウム型蓄電素子は、図1(a)及び(b)の断面模式図を用いて説明される。例えば、非水系リチウム型蓄電素子は、正極集電体5に正極活物質層6を積層した正極、及び負極集電体8に負極活物質層9を積層した負極を、正極活物質層6と負極活物質層9とがセパレータ7をはさんで対向するように、交互に積層して電極体4を形成し、正極端子1を正極集電体5に接続し、かつ負極端子2を負極集電体8に接続し、電極体4を外装体3に収納し、非水系電解液(図示せず)を外装体3内に注入し、そして正極端子1と負極端子2の端部を外装体3の外部に引き出した状態で外装体3の周縁部を封口して成る。   The negative electrode for a non-aqueous lithium storage element is a non-aqueous lithium storage element that is housed in an exterior body together with a non-aqueous electrolyte containing a lithium salt as an electrode body formed by laminating a positive electrode and a separator. Can do. The non-aqueous lithium storage element of the present invention will be described with reference to schematic cross-sectional views in FIGS. For example, the non-aqueous lithium storage element includes a positive electrode in which a positive electrode active material layer 6 is stacked on a positive electrode current collector 5, and a negative electrode in which a negative electrode current collector 8 is stacked on a negative electrode active material layer 9. The electrode body 4 is formed by alternately laminating so that the negative electrode active material layer 9 faces the separator 7, the positive electrode terminal 1 is connected to the positive electrode current collector 5, and the negative electrode terminal 2 is connected to the negative electrode current collector. Connected to the electric body 8, the electrode body 4 is accommodated in the outer body 3, a non-aqueous electrolyte (not shown) is injected into the outer body 3, and the ends of the positive electrode terminal 1 and the negative electrode terminal 2 are connected to the outer body. 3 is formed by sealing the peripheral edge of the exterior body 3 in a state of being pulled out to the outside.

上述の正極における正極活物質としては、炭素質材料又は結晶性が低くアモルファス状態のMnOなどの遷移金属酸化物、LiCoOなどのリチウム含有遷移金属酸化物などが挙げられる。好ましくは、炭素質材料の中でも、細孔を有する活性炭である。好ましくは、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)と、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8かつ0.5≦V2≦1.0が満たされる活性炭である。ここで言う正極活物質のメソ孔量及びマイクロ孔量の算出方法は、上述の負極活物質のメソ孔量及びマイクロ孔量の算出方法と同様の方法である。 Examples of the positive electrode active material in the positive electrode include carbonaceous materials, transition metal oxides such as MnO 2 having low crystallinity and an amorphous state, and lithium-containing transition metal oxides such as LiCoO 2 . Among the carbonaceous materials, activated carbon having pores is preferable. Preferably, the amount of mesopores derived from pores having a diameter of 20 to 500 mm calculated by the BJH method is V1 (cc / g), and the amount of micropores derived from pores having a diameter of less than 20 mm calculated by the MP method is V2. (Cc / g), the activated carbon satisfies 0.3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0. The calculation method of the mesopore amount and the micropore amount of the positive electrode active material here is the same method as the calculation method of the mesopore amount and the micropore amount of the negative electrode active material described above.

上記の正極活物質として用いられる活性炭において、蓄電素子に組み込んだときの出力特性を大きくする点で、メソ孔量V1が0.3cc/gより大きい値であることが好ましく、一方、蓄電素子の容量の低下を抑える点から、0.8cc/g以下であることが好ましく、より好ましくは0.35cc/g以上0.7cc/g以下、さらに好ましくは0.4cc/g以上0.6cc/g以下である。   In the activated carbon used as the positive electrode active material, the mesopore amount V1 is preferably a value larger than 0.3 cc / g in terms of increasing the output characteristics when incorporated in the energy storage device. From the viewpoint of suppressing a decrease in capacity, it is preferably 0.8 cc / g or less, more preferably 0.35 cc / g or more and 0.7 cc / g or less, and further preferably 0.4 cc / g or more and 0.6 cc / g. It is as follows.

また、マイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cc/g以上であることが好ましく、一方、活性炭の嵩を抑え、電極としての密度を増加し、単位体積当たりの容量を増加させるという点から、1.0cc/g以下であることが好ましく、より好ましくは0.6cc/g以上1.0cc/g以下、さらに好ましくは0.8cc/g以上1.0cc/g以下である。   Further, the micropore amount V2 is preferably 0.5 cc / g or more in order to increase the specific surface area of the activated carbon and increase the capacity, while suppressing the bulk of the activated carbon and increasing the density as an electrode. From the viewpoint of increasing the capacity per unit volume, it is preferably 1.0 cc / g or less, more preferably 0.6 cc / g or more and 1.0 cc / g or less, further preferably 0.8 cc / g or more. 1.0 cc / g or less.

メソ孔量V1とマイクロ孔量V2は、0.3≦V1/V2≦0.9の範囲にあることが好ましい。マイクロ孔量に比べてメソ孔量が多く、容量を得ながら、出力特性の低下を抑えるという点から、V1/V2が0.3以上であることが好ましく、一方、メソ孔量に比べてマイクロ孔量が多く、出力特性を得ながら、容量の低下を抑えるという点から、V1/V2は0.9以下であることが好ましく、より好ましい範囲は0.4≦V1/V2≦0.7であり、さらに好ましい範囲は0.55≦V1/V2≦0.7である。   The mesopore volume V1 and the micropore volume V2 are preferably in the range of 0.3 ≦ V1 / V2 ≦ 0.9. V1 / V2 is preferably 0.3 or more from the viewpoint that the amount of mesopores is larger than the amount of micropores, and the decrease in output characteristics is suppressed while obtaining the capacity. V1 / V2 is preferably 0.9 or less, and more preferably in a range of 0.4 ≦ V1 / V2 ≦ 0.7 from the viewpoint of suppressing the decrease in capacity while obtaining a large amount of pores and obtaining output characteristics. There is a more preferable range of 0.55 ≦ V1 / V2 ≦ 0.7.

また、上記の正極活物質として用いられる活性炭において平均細孔径は、出力を最大にする点から、17Å以上であることが好ましく、18Å以上であることがより好ましく、20Å以上であることがさらに好ましく、一方、容量を最大にする点から、25Å以下であることが好ましい。本発明でいうところの平均細孔径とは、液体窒素温度における各相対圧力下での窒素ガスの各平衡吸着量を測定して得られる重量当たりの全細孔容積をBET比表面積で除して求めたものを意味する。   Further, in the activated carbon used as the positive electrode active material, the average pore diameter is preferably 17 mm or more, more preferably 18 mm or more, and further preferably 20 mm or more from the viewpoint of maximizing the output. On the other hand, from the viewpoint of maximizing the capacity, it is preferably 25 mm or less. The average pore diameter referred to in the present invention is obtained by dividing the total pore volume per weight obtained by measuring each equilibrium adsorption amount of nitrogen gas under each relative pressure at the liquid nitrogen temperature by the BET specific surface area. It means what I asked for.

さらに、上記の正極活物質として使用される活性炭は、そのBET比表面積が1,500m/g以上3,000m/g以下が好ましく、より好ましくは1,500m/g以上2,500m/g以下である。BET比表面積が1,500m/g以上の場合には、エネルギー密度が高く、一方、BET比表面積が3,000m/g以下の場合には、バインダーを多量に入れずとも十分な電極の強度を保つことができ、体積当りの性能が維持できる。 Furthermore, the activated carbon used as the positive electrode active material preferably has a BET specific surface area of 1,500 m 2 / g or more and 3,000 m 2 / g or less, more preferably 1,500 m 2 / g or more and 2,500 m 2. / G or less. When the BET specific surface area is 1,500 m 2 / g or more, the energy density is high. On the other hand, when the BET specific surface area is 3,000 m 2 / g or less, a sufficient electrode can be obtained without adding a large amount of binder. Strength can be maintained and performance per volume can be maintained.

上記の正極活物質に用いられる活性炭の原料として用いられる炭素質材料としては、通常活性炭原料として用いられる炭素源であれば特に限定されるものではなく、例えば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バガス、廃糖蜜などの植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタールなどの化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂などの各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレンなどの合成ゴム;その他合成木材、合成パルプなど、あるいはそれらの炭化物が挙げられる。これらの原料の中でも、ヤシ殻、木粉などの植物系原料、又はそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。   The carbonaceous material used as a raw material for activated carbon used in the positive electrode active material is not particularly limited as long as it is a carbon source that is usually used as a raw material for activated carbon. For example, wood, wood powder, coconut shell, pulp Plant raw materials such as by-products, bagasse and molasses during production; peat, lignite, lignite, bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, coal tar, and other fossil raw materials; phenol resin, vinyl chloride resin, Various synthetic resins such as vinyl acetate resin, melamine resin, urea resin, resorcinol resin, celluloid, epoxy resin, polyurethane resin, polyester resin, polyamide resin; synthetic rubber such as polybutylene, polybutadiene, polychloroprene; other synthetic wood, synthetic pulp, etc. Or their carbides. Among these raw materials, plant raw materials such as coconut shells and wood flour, or carbides thereof are preferable, and coconut shell carbides are particularly preferable.

これらの原料を上記活性炭とするための炭化、賦活方式としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式などの公知の方式が挙げられる。   Examples of the carbonization and activation methods for using these raw materials as the activated carbon include known methods such as a fixed bed method, a moving bed method, a fluidized bed method, a slurry method, and a rotary kiln method.

これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガスなどの不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、400〜700℃(特に450〜600℃)程度で30分〜10時間程度焼成する方法が挙げられる。   As a carbonization method of these raw materials, nitrogen, carbon dioxide, helium, argon, xenon, neon, carbon monoxide, an exhaust gas such as combustion exhaust gas, or other gases mainly composed of these inert gases. The method of baking for about 30 minutes to about 10 hours at about 400-700 degreeC (especially 450-600 degreeC) using mixed gas is mentioned.

上記炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素などの賦活ガスを用いて焼成するガス賦活法が挙げられ、このうち、賦活ガスとしては、水蒸気又は二酸化炭素を使用することが好ましい。   Examples of the activation method of the carbide obtained by the carbonization method include a gas activation method in which firing is performed using an activation gas such as water vapor, carbon dioxide, oxygen, etc. Among these, water vapor or carbon dioxide is used as the activation gas. It is preferable to do.

この賦活方法では、賦活ガスを0.5〜3.0kg/h(特に0.7〜2.0kg/h)の割合で供給しながら、上記炭化物を3〜12時間(好ましくは5〜11時間、より好ましくは6〜10時間)かけて800〜1,000℃まで昇温して賦活するのが好ましい。   In this activation method, the carbide is supplied for 3 to 12 hours (preferably 5 to 11 hours) while supplying the activation gas at a rate of 0.5 to 3.0 kg / h (particularly 0.7 to 2.0 kg / h). The temperature is preferably increased to 800 to 1,000 ° C. over 6 to 10 hours).

さらに、上記炭化物の賦活処理に先立ち、上記炭化物を予め1次賦活してもよい。この1次賦活では、通常、炭素質材料を水蒸気、二酸化炭素、酸素などの賦活ガスを用いて、900℃未満の温度で焼成してガス賦活すればよい。   Furthermore, prior to the activation treatment of the carbide, the carbide may be activated in advance. In this primary activation, the carbonaceous material is usually fired at a temperature of less than 900 ° C. using an activation gas such as water vapor, carbon dioxide, oxygen, etc. to activate the gas.

本発明における正極は、上記の正極活物質を、上述の負極と同様に公知の手法により電極に成型することができる。   In the positive electrode of the present invention, the above positive electrode active material can be formed into an electrode by a known method in the same manner as the above negative electrode.

本発明における正極は正極集電体の片面又は両面に正極活物質層が形成されて成るものである。正極集電体の材質は、蓄電素子にした際、溶出又は反応などの劣化が起こらない材質であれば特に制限はなく、例えば、アルミニウム等が挙げられる。正極集電体の形状は、金属箔又は金属の隙間に電極が形成可能である構造体を用いることができ、金属箔は貫通孔を持たない通常の金属箔でもよいし、エキスパンドメタル、パンチングメタル等の貫通孔を有する金属箔でも構わない。また、正極集電体の厚みは正極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。   The positive electrode in the present invention is formed by forming a positive electrode active material layer on one side or both sides of a positive electrode current collector. The material of the positive electrode current collector is not particularly limited as long as it is a material that does not cause degradation such as elution or reaction when it is used as a power storage element, and examples thereof include aluminum. As the shape of the positive electrode current collector, a metal foil or a structure in which an electrode can be formed in a gap between metals can be used, and the metal foil may be a normal metal foil having no through hole, expanded metal, punching metal A metal foil having through-holes such as these may be used. The thickness of the positive electrode current collector is not particularly limited as long as the shape and strength of the positive electrode can be sufficiently maintained, but for example, 1 to 100 μm is preferable.

本発明における正極の正極活物質層には必要に応じて、上記の正極活物質の他に導電性フィラー、結着剤を添加することができる。導電性フィラーの種類は特に制限されるものではないが、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維が例示される。導電性フィラーの添加量は、例えば、正極活物質に対して0〜30質量%程度が好ましい。また、結着剤としては、特に制限されるものではないが、PVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、フッ素ゴム、スチレン−ブタジエン共重合体などを用いることができる。結着剤の添加量は、例えば、正極活物質に対して3〜20質量%の範囲が好ましい。   If necessary, a conductive filler and a binder can be added to the positive electrode active material layer of the positive electrode in the present invention in addition to the positive electrode active material. The type of the conductive filler is not particularly limited, and examples thereof include acetylene black, ketjen black, and vapor grown carbon fiber. For example, the addition amount of the conductive filler is preferably about 0 to 30% by mass with respect to the positive electrode active material. The binder is not particularly limited, and PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), fluororubber, styrene-butadiene copolymer, and the like can be used. The amount of the binder added is preferably, for example, in the range of 3 to 20% by mass with respect to the positive electrode active material.

本発明における正極は正極活物質層を集電体の片面のみに形成したものでもよいし、両面に形成したものでも構わない。該正極活物質層の厚みは、例えば、片面あたり30μm以上200μm以下が好ましい。   The positive electrode in the present invention may have a positive electrode active material layer formed on only one side of the current collector or may be formed on both sides. The thickness of the positive electrode active material layer is preferably, for example, 30 μm to 200 μm per side.

本発明における正極は、上記の負極と同様に、公知のリチウムイオン電池、電気二重層キャパシタ等の電極成型手法により製造することが可能であり、例えば、正極活物質、導電性フィラー、結着剤を溶媒に分散させ、スラリー状にし、活物質層を集電体上に塗布して乾燥し、必要に応じてプレスすることにより得られる。また、溶媒を使用せずに、乾式で混合し、活物質をプレス成型した後、導電性接着剤等を用いて集電体に貼り付けることも可能である。   The positive electrode in the present invention can be produced by an electrode molding method such as a known lithium ion battery or an electric double layer capacitor in the same manner as the above negative electrode. For example, the positive electrode active material, conductive filler, binder Is dispersed in a solvent to form a slurry, and the active material layer is applied onto a current collector, dried, and pressed as necessary. In addition, it is possible to dry-mix without using a solvent and press-mold the active material, and then affix it to the current collector using a conductive adhesive or the like.

本発明において、上記のようにして成型された正極及び負極は、セパレータを介して積層又は捲廻積層された電極体として、金属缶又はラミネートフィルムから形成された外装体に挿入される。   In the present invention, the positive electrode and the negative electrode molded as described above are inserted into an exterior body formed of a metal can or a laminate film as an electrode body laminated or wound around via a separator.

セパレータとしては、リチウムイオン二次電池に用いられるポリエチレン製の微多孔膜若しくはポリプロピレン製の微多孔膜、又は電気二重層コンデンサで用いられるセルロース製の不織紙などを用いることができる。   As the separator, a polyethylene microporous film or a polypropylene microporous film used in a lithium ion secondary battery, a cellulose nonwoven paper used in an electric double layer capacitor, or the like can be used.

セパレータの厚みは、10μm以上50μm以下であることが好ましい。厚みが10μm以上であれば、内部のマイクロショートによる自己放電を抑制することができ、一方、厚みが50μm以下であれば、蓄電素子のエネルギー密度及び出力特性に優れる。   The thickness of the separator is preferably 10 μm or more and 50 μm or less. If the thickness is 10 μm or more, self-discharge due to an internal micro short circuit can be suppressed. On the other hand, if the thickness is 50 μm or less, the energy density and output characteristics of the electricity storage device are excellent.

上記の外装体に使用される金属缶としては、アルミニウム製のものが好ましい。また、外装体に使用されるラミネートフィルムは、金属箔と樹脂フィルムを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムから成る3層構成のものが例示される。外層樹脂フィルムは接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分又はガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内装樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィンが好適に使用できる。   As a metal can used for said exterior body, the thing made from aluminum is preferable. Moreover, the laminate film used for the exterior body is preferably a film in which a metal foil and a resin film are laminated, and an example of a three-layer structure comprising an outer layer resin film / metal foil / interior resin film is exemplified. The outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used. The metal foil is for preventing the permeation of moisture or gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used. The interior resin film protects the metal foil from the electrolyte contained therein and melts and seals it during heat sealing, and polyolefins and acid-modified polyolefins can be suitably used.

本発明において、蓄電素子に用いられる非水系電解液の溶媒としては、炭酸エチレン(EC)、炭酸プロピレン(PC)に代表される環状炭酸エステル、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)に代表される鎖状炭酸エステル、γ−ブチロラクトン(γBL)などのラクトン類、又はこれらの混合溶媒を用いることができる。   In the present invention, the solvent of the non-aqueous electrolyte solution used for the power storage element includes cyclic carbonates represented by ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), carbonic acid A chain carbonate represented by ethylmethyl (MEC), a lactone such as γ-butyrolactone (γBL), or a mixed solvent thereof can be used.

これらの溶媒に溶解する電解質は、リチウム塩である必要があり、好ましいリチウム塩としては、LiBF、LiPF、LiN(SO、LiN(SOCF)(SO)、LiN(SOCF)(SOH)又はこれらの混合塩を挙げることができる。非水系電解液中の電解質濃度は、0.5〜2.0mol/Lの範囲が好ましい。0.5mol/L以上であれば、陰イオンの供給が不足せず、蓄電素子の容量が高くなる。一方、2.0mol/L以下であれば、未溶解の塩が該電解液中に析出したり、該電解液の粘度が高くなり過ぎたりすることによって、逆に伝導度が低下して出力特性が低下する恐れが少ない。 The electrolyte dissolved in these solvents needs to be a lithium salt, and preferred lithium salts include LiBF 4 , LiPF 6 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 2 F 5 ), LiN (SO 2 CF 3 ) (SO 2 C 2 F 4 H), or a mixed salt thereof can be given. The electrolyte concentration in the non-aqueous electrolyte is preferably in the range of 0.5 to 2.0 mol / L. If it is 0.5 mol / L or more, the supply of anions will not be insufficient, and the capacity of the electricity storage element will increase. On the other hand, if it is 2.0 mol / L or less, the undissolved salt precipitates in the electrolyte solution, or the viscosity of the electrolyte solution becomes too high. There is little fear of decline.

以下、実施例、比較例を示し、本発明の特徴とするところを更に明確にするが、本発明は実施例により何ら限定されるものではない。
<実施例1>
(負極の作製)
市販のヤシ殻活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、窒素を吸着質として細孔分布を測定した。比表面積はBET1点法により求めた。また、上述したように、脱着側の等温線を用いて、メソ孔量はBJH法により、マイクロ孔量はMP法によりそれぞれ求めた。その結果、BET比表面積が1,780m/g、メソ孔量(V1)が0.198cc/g、マイクロ孔量(V2)が0.695cc/g、V1/V2=0.29、平均細孔径が21.2Åであった。このヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、600℃まで8時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料1を得た。
Hereinafter, examples and comparative examples will be shown to further clarify the features of the present invention, but the present invention is not limited to the examples.
<Example 1>
(Preparation of negative electrode)
The pore distribution of a commercially available coconut shell activated carbon was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics, using nitrogen as an adsorbate. The specific surface area was determined by the BET single point method. Further, as described above, using the isotherm on the desorption side, the mesopore amount was determined by the BJH method, and the micropore amount was determined by the MP method. As a result, the BET specific surface area was 1,780 m 2 / g, the mesopore volume (V1) was 0.198 cc / g, the micropore volume (V2) was 0.695 cc / g, V1 / V2 = 0.29, the average fineness. The pore diameter was 21.2 mm. 150 g of this coconut shell activated carbon is placed in a stainless steel mesh jar and placed on a stainless steel bat containing 270 g of a coal-based pitch (softening point: 50 ° C.). It installed in and performed the heat reaction. The heat treatment is performed in a nitrogen atmosphere for 8 hours up to 600 ° C., held at the same temperature for 4 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 1 serving as a negative electrode material. Got.

得られた複合多孔性材料1を、日本分光製レーザーラマン分光測定装置(NRS−3200)にて、励起波長532nmで測定した結果、1360cm−1のピーク強度(Id)と1580cm−1のピーク強度(Ig)のピーク強度比(Id/Ig)は1.09であった。さらに、該励起波長532nmで測定したラマンスペクトルが、結晶相に由来する1360cm−1のピークの強度、アモルファス相に由来する1360cm−1のピークの強度、結晶相に由来する1580cm−1のピークの強度、アモルファス相に由来する1580cm−1のピークの強度から構成されると解し、該各ピークをガウス関数を用いて波形近似し、該各ピーク強度を順にαI、βI、γI、δIとした際、ピーク強度比(δI/γI)は0.93であった。 The resulting composite porous material 1 at Nippon Bunko laser Raman spectrometer (NRS-3200), the peak intensity of the excitation wavelength results measured at 532 nm, the peak intensity of 1360 cm -1 (Id) and 1580 cm -1 The peak intensity ratio (Id / Ig) of (Ig) was 1.09. Further, the Raman spectrum measured at excitation wavelength 532nm is the peak intensity at 1360 cm -1 derived from the crystalline phase, the intensity of the peak of 1360 cm -1 derived from amorphous phase, the peak of 1580 cm -1 derived from a crystalline phase It is understood that the intensity is composed of 1580 cm −1 peak intensity derived from the amorphous phase, each peak is approximated to a waveform using a Gaussian function, and each peak intensity is αI, βI, γI, and δI in order. At that time, the peak intensity ratio (δI / γI) was 0.93.

また、得られた複合多孔性材料1を、リガク製差動型示差熱天秤(TG8120)にて、大気ガスフロー下、白金セル内、5℃/min.で昇温し、二酸化炭素ガス化する示差熱分析(DTA)測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度を測定した結果、676℃であった。   Further, the obtained composite porous material 1 was subjected to 5 ° C./min. In a platinum cell under an atmospheric gas flow using a differential differential thermal balance (TG8120) manufactured by Rigaku. As a result of measuring the temperature of the highest temperature peak among the three types of exothermic decomposition peaks observed in the differential thermal analysis (DTA) measurement in which the temperature was raised and carbon dioxide gasified, it was 676 ° C.

また、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で複合多孔性材料1のBET比表面積を測定した結果、262m/gであり、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて複合多孔性材料1の平均粒子径を測定した結果、2.88μmであった。 Moreover, as a result of measuring the BET specific surface area of the composite porous material 1 with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics Co., Ltd., it was 262 m 2 / g, which was a laser diffraction manufactured by Shimadzu Corporation. It was 2.88 micrometers as a result of measuring the average particle diameter of the composite porous material 1 using the type | formula particle size distribution measuring apparatus (SALD-2000J).

次いで、上記で得た複合多孔性材料1を83.4重量部、アセチレンブラックを8.3重量部およびPVDF(ポリフッ化ビニリデン)を8.3重量部とNMP(N−メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーを厚さ14μmの銅箔の片面に塗布し、乾燥し、プレスして、厚さ60μmの負極を得た。   Next, 83.4 parts by weight of the composite porous material 1 obtained above, 8.3 parts by weight of acetylene black, 8.3 parts by weight of PVDF (polyvinylidene fluoride) and NMP (N-methylpyrrolidone) were mixed. To obtain a slurry. Next, the obtained slurry was applied to one side of a copper foil having a thickness of 14 μm, dried, and pressed to obtain a negative electrode having a thickness of 60 μm.

上記で得られた負極を3cmになるように切り取り、作用極として使用し、金属リチウムを対極および参照極として使用し、エチレンカーボネートとメチルエチルカーボネートを1:4重量比で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を電解液として使用し、アルゴンドライボックス中で電気化学セルを作製した。この電気化学セルを東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、まずリチウム電位に対して1mVになるまで複合多孔性材料1の重量に対して85mA/gの速度で定電流充電し、その後1mVで定電圧充電を行い、複合多孔性材料1の重量に対して合計750mAh/gのリチウムイオンを予めドープした。 The negative electrode obtained above was cut out to 3 cm 2 , used as a working electrode, metallic lithium as a counter electrode and a reference electrode, and 1 mol in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a weight ratio of 1: 4. An electrochemical cell was prepared in an argon dry box using a solution of LiPF 6 dissolved in a concentration of 1 / l as an electrolyte. Using this electrochemical cell, a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., constant current at a rate of 85 mA / g with respect to the weight of the composite porous material 1 until it reaches 1 mV with respect to the lithium potential. After charging, constant voltage charging was performed at 1 mV, and a total of 750 mAh / g of lithium ions was previously doped with respect to the weight of the composite porous material 1.

(正極の作製)
破砕されたヤシ殻炭化品を小型炭化炉において窒素雰囲気中、500℃で炭化した。その後、窒素の代わりに1kg/hの水蒸気を予熱炉で加温した状態で炉内へ投入し、900℃まで8時間をかけて昇温した後に取り出し、窒素雰囲気下で冷却して賦活化された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行い、正極材料となる活性炭を得た。
(Preparation of positive electrode)
The crushed palm shell carbonized product was carbonized at 500 ° C. in a nitrogen atmosphere in a small carbonization furnace. Then, instead of nitrogen, 1 kg / h of steam was heated into the preheated furnace and taken out after heating up to 900 ° C. over 8 hours, and cooled and activated in a nitrogen atmosphere. Activated carbon was obtained. The obtained activated carbon was washed with water for 10 hours and then drained. Then, after drying for 10 hours in an electric dryer maintained at 115 ° C., pulverization was performed for 1 hour with a ball mill to obtain activated carbon as a positive electrode material.

本活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、細孔分布を測定した。その結果、BET比表面積が2360m/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59、平均細孔径が22.9Åであった。この活性炭を正極活物質に用い、活性炭83.4重量部、アセチレンブラック8.3重量部およびPVDF(ポリフッ化ビニリデン)8.3重量部とNMP(N−メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーを厚さ15μmのアルミニウム箔の片面に塗布し、乾燥し、プレスして、厚さ60μmの正極を得た。 The pore distribution of this activated carbon was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 2360 m 2 / g, the mesopore volume (V1) was 0.52 cc / g, the micropore volume (V2) was 0.88 cc / g, V1 / V2 = 0.59, and the average pore diameter was It was 22.9 kg. Using this activated carbon as a positive electrode active material, 83.4 parts by weight of activated carbon, 8.3 parts by weight of acetylene black, 8.3 parts by weight of PVDF (polyvinylidene fluoride) and NMP (N-methylpyrrolidone) are mixed, Obtained. Next, the obtained slurry was applied to one side of an aluminum foil having a thickness of 15 μm, dried, and pressed to obtain a positive electrode having a thickness of 60 μm.

(蓄電素子の組立と性能評価)
上記で得られた正極を3cmになるように切り取り、この正極と、上記のリチウムを予めドープした負極を、厚み30μmのセルロース製不織布セパレータを挟んで対向させ、ポリプロピレンとアルミニウムとナイロンとを積層したラミネートフィルムから成る外装体に封入し、非水系リチウム型蓄電素子を組立てた。この時、電解液としてエチレンカーボネートとメチルエチルカーボネートを1:4(重量比)で混合した溶媒に1mol/Lの濃度にLiPFを溶解した溶液を使用した。
(Assembly and performance evaluation of storage element)
The positive electrode obtained above was cut out to 3 cm 2 , and this positive electrode and the negative electrode previously doped with lithium were opposed to each other with a 30 μm-thick cellulose non-woven separator, and polypropylene, aluminum and nylon were laminated. The non-aqueous lithium storage element was assembled by enclosing it in an outer package made of the laminated film. At this time, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a weight ratio of 1: 4 was used as an electrolytic solution.

作製した蓄電素子をアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.410mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.289mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は70.5%であった。   Using the charge / discharge device (ACD-01) manufactured by Asuka Electronics, the produced storage element was charged to 4.0 V at a current of 1 mA, and then a constant current and constant voltage charge for applying a constant voltage of 4.0 V for 2 hours. I did it. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.410 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.289 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 70.5%.

更に、耐久性試験として、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。試験開始時(0hとする)と、1,000h経過後における容量維持率と、抵抗倍率を測定した。ここでいう容量維持率とは、{(1,000h経過後における放電容量)/(0hでの放電容量)}×100で表される数値とし、抵抗倍率とは、(1000h経過後における0.1Hzでの交流抵抗値)/(0hでの0.1Hzでの交流抵抗値)で表される数値とする。1,000h経過後、容量維持率は97.6%、抵抗倍率は1.95倍であった。   Further, as a durability test, the produced storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. The capacity retention rate and resistance magnification after the start of the test (0 h), after 1,000 hours had elapsed, were measured. The capacity maintenance rate here is a numerical value represented by {(discharge capacity after elapse of 1,000 h) / (discharge capacity at 0 h)} × 100, and the resistance magnification is (0.00% after elapse of 1000 h). It is a numerical value represented by (AC resistance value at 1 Hz) / (AC resistance value at 0.1 Hz at 0 h). After 1,000 hours, the capacity retention rate was 97.6%, and the resistance magnification was 1.95 times.

<実施例2>
(負極の作製)
市販のヤシ殻活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、実施例1と同様の方法で細孔分布を測定した。その結果、BET比表面積が1,780m/g、メソ孔量(V1)が0.198cc/g、マイクロ孔量(V2)が0.695cc/g、V1/V2=0.29、平均細孔径が21.2Åであった。この活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)450gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、600℃まで8時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料2を得た。
<Example 2>
(Preparation of negative electrode)
The pore distribution of a commercially available coconut shell activated carbon was measured by the same method as in Example 1 with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 1,780 m 2 / g, the mesopore volume (V1) was 0.198 cc / g, the micropore volume (V2) was 0.695 cc / g, V1 / V2 = 0.29, the average fineness. The pore diameter was 21.2 mm. 150 g of this activated carbon is placed in a stainless steel mesh basket, placed on a stainless steel bat containing 450 g of coal-based pitch (softening point: 50 ° C.), and placed in an electric furnace (effective size in the furnace 300 mm × 300 mm × 300 mm). It was installed and a thermal reaction was performed. The heat treatment is performed in a nitrogen atmosphere for 8 hours up to 600 ° C., held at the same temperature for 4 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 2 serving as a negative electrode material. Got.

得られた複合多孔性材料2を、実施例1と同様に測定したところ、ピーク強度比Id/Igは1.03、ピーク強度比δI/γIは0.85であった。また、示差熱分析(DTA)測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度をした結果、683℃であった。さらに、BET比表面積が48m/g、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、2.93μmであった。
以降、実施例1と同様な手順にて、負極を作製した。
The obtained composite porous material 2 was measured in the same manner as in Example 1. As a result, the peak intensity ratio Id / Ig was 1.03, and the peak intensity ratio δI / γI was 0.85. In addition, among the three types of exothermic decomposition peaks observed in the differential thermal analysis (DTA) measurement, the temperature of the highest temperature peak was 683 ° C. Further, the BET specific surface area was 48 m 2 / g, and the average particle size was measured using a laser diffraction particle size distribution analyzer (SALD-2000J) manufactured by Shimadzu Corporation. As a result, it was 2.93 μm.
Thereafter, a negative electrode was produced in the same procedure as in Example 1.

(正極の作製)
実施例1と同様な手順にて、正極を作製した。
(Preparation of positive electrode)
A positive electrode was produced in the same procedure as in Example 1.

(蓄電素子の組立と性能評価)
実施例1と同様な手順にて、組立及び性能評価を行った。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.409mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.313mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は76.6%であった。
(Assembly and performance evaluation of storage element)
Assembly and performance evaluation were performed in the same procedure as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.409 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.313 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 76.6%.

更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は98.5%、抵抗倍率は1.78倍であった。   Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 98.5%, and the resistance magnification was 1.78 times.

<実施例3>
(負極の作製)
市販のヤシ殻活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、実施例1と同様の方法で細孔分布を測定した。その結果、BET比表面積が1,780m/g、メソ孔量(V1)が0.198cc/g、マイクロ孔量(V2)が0.695cc/g、V1/V2=0.29、平均細孔径が21.2Åであった。この活性炭450gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)950gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、580℃まで8時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料3を得た。
<Example 3>
(Preparation of negative electrode)
The pore distribution of a commercially available coconut shell activated carbon was measured by the same method as in Example 1 with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 1,780 m 2 / g, the mesopore volume (V1) was 0.198 cc / g, the micropore volume (V2) was 0.695 cc / g, V1 / V2 = 0.29, the average fineness. The pore diameter was 21.2 mm. 450 g of this activated carbon is placed in a stainless steel mesh jar, placed on a stainless steel bat containing 950 g of coal-based pitch (softening point: 50 ° C.), and placed in an electric furnace (effective size in the furnace 300 mm × 300 mm × 300 mm). It was installed and a thermal reaction was performed. The heat treatment is performed in a nitrogen atmosphere for 8 hours up to 580 ° C., held at the same temperature for 4 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 3 serving as a negative electrode material. Got.

得られた複合多孔性材料3を、実施例1と同様に測定したところ、ピーク強度比Id/Igは1.17、ピーク強度比δI/γIは0.65であった。また、示差熱分析(DTA)測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度をした結果、698℃であった。さらに、BET比表面積が205m/g、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、2.55μmであった。
以降、実施例1と同様な手順にて、負極を作製した。
The obtained composite porous material 3 was measured in the same manner as in Example 1. As a result, the peak intensity ratio Id / Ig was 1.17, and the peak intensity ratio δI / γI was 0.65. In addition, among the three types of exothermic decomposition peaks observed in the differential thermal analysis (DTA) measurement, the temperature of the highest temperature peak was 698 ° C. Furthermore, the BET specific surface area was 205 m 2 / g, and the average particle size was measured using a laser diffraction particle size distribution analyzer (SALD-2000J) manufactured by Shimadzu Corporation. As a result, it was 2.55 μm.
Thereafter, a negative electrode was produced in the same procedure as in Example 1.

(正極の作製)
実施例1と同様な手順にて、正極を作製した。
(Preparation of positive electrode)
A positive electrode was produced in the same procedure as in Example 1.

(蓄電素子の組立と性能評価)
実施例1と同様な手順にて、組立及び性能評価を行った。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.418mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.297mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は71.1%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は97.3%、抵抗倍率は1.90倍であった。
(Assembly and performance evaluation of storage element)
Assembly and performance evaluation were performed in the same procedure as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.418 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.297 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 71.1%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 97.3%, and the resistance magnification was 1.90 times.

<実施例4>
(負極の作製)
市販のヤシ殻活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、実施例1と同様の方法で細孔分布を測定した。その結果、BET比表面積が1,780m/g、メソ孔量(V1)が0.198cc/g、マイクロ孔量(V2)が0.695cc/g、V1/V2=0.29、平均細孔径が21.2Åであった。この活性炭450gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)850gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、550℃まで8時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料4を得た。
<Example 4>
(Preparation of negative electrode)
The pore distribution of a commercially available coconut shell activated carbon was measured by the same method as in Example 1 with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 1,780 m 2 / g, the mesopore volume (V1) was 0.198 cc / g, the micropore volume (V2) was 0.695 cc / g, V1 / V2 = 0.29, the average fineness. The pore diameter was 21.2 mm. 450 g of this activated carbon is placed in a stainless steel mesh cage, placed on a stainless steel bat containing 850 g of coal-based pitch (softening point: 50 ° C.), and placed in an electric furnace (effective size in the furnace 300 mm × 300 mm × 300 mm). It was installed and a thermal reaction was performed. In the heat treatment, the temperature is raised to 550 ° C. in 8 hours in a nitrogen atmosphere, maintained at the same temperature for 4 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 4 that becomes a negative electrode material. Got.

得られた複合多孔性材料4を、実施例1と同様に測定したところ、ピーク強度比Id/Igは1.10、ピーク強度比δI/γIは0.95であった。また、示差熱分析(DTA)測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度をした結果、688℃であった。さらに、BET比表面積が249m/g、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、2.62μmであった。
以降、実施例1と同様な手順にて、負極を作製した。
The obtained composite porous material 4 was measured in the same manner as in Example 1. As a result, the peak intensity ratio Id / Ig was 1.10, and the peak intensity ratio δI / γI was 0.95. In addition, among the three types of exothermic decomposition peaks observed in the differential thermal analysis (DTA) measurement, the temperature of the highest temperature peak was 688 ° C. Furthermore, the BET specific surface area was 249 m 2 / g, and the average particle diameter was measured using a laser diffraction particle size distribution analyzer (SALD-2000J) manufactured by Shimadzu Corporation. As a result, it was 2.62 μm.
Thereafter, a negative electrode was produced in the same procedure as in Example 1.

(正極の作製)
実施例1と同様な手順にて、正極を作製した。
(Preparation of positive electrode)
A positive electrode was produced in the same procedure as in Example 1.

(蓄電素子の組立と性能評価)
実施例1と同様な手順にて、組立及び性能評価を行った。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.424mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.303mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は71.5%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は96.9%、抵抗倍率は1.99倍であった。
(Assembly and performance evaluation of storage element)
Assembly and performance evaluation were performed in the same procedure as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.424 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.303 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 71.5%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 96.9%, and the resistance magnification was 1.99 times.

<比較例1>
(負極の作製)
市販のヤシ殻活性炭450gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:110℃)225gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、600℃まで4時間で昇温し、同温度で5時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料5を得た。
<Comparative Example 1>
(Preparation of negative electrode)
450 g of commercially available coconut shell activated carbon is placed in a stainless steel mesh basket and placed on a stainless steel bat containing 225 g of coal-based pitch (softening point: 110 ° C.). ) Was installed and the thermal reaction was carried out. The heat treatment is performed in a nitrogen atmosphere for 4 hours up to 600 ° C., held at the same temperature for 5 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 5 that becomes a negative electrode material. Got.

得られた複合多孔性材料4を、実施例1と同様に測定したところ、ピーク強度比Id/Igは1.30、ピーク強度比δI/γIは1.10であった。また、示差熱分析(DTA)測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度をした結果、648℃であった。さらに、BET比表面積が1030m/g、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、7.00μmであった。
以降、実施例1と同様な手順にて、負極を作製した。
The obtained composite porous material 4 was measured in the same manner as in Example 1. As a result, the peak intensity ratio Id / Ig was 1.30, and the peak intensity ratio δI / γI was 1.10. In addition, among the three types of exothermic decomposition peaks observed in the differential thermal analysis (DTA) measurement, the temperature of the highest temperature peak was 648 ° C. Further, the BET specific surface area was 1030 m 2 / g, and the average particle size was measured using a laser diffraction particle size distribution analyzer (SALD-2000J) manufactured by Shimadzu Corporation. As a result, it was 7.00 μm.
Thereafter, a negative electrode was produced in the same procedure as in Example 1.

(正極の作製)
実施例1と同様な手順にて、正極を作製した。
(Preparation of positive electrode)
A positive electrode was produced in the same procedure as in Example 1.

(蓄電素子の組立と性能評価)
実施例1と同様な手順にて、組立及び性能評価を行った。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.415mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.232mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は55.9%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は88.9%、抵抗倍率は2.98倍であった。
(Assembly and performance evaluation of storage element)
Assembly and performance evaluation were performed in the same procedure as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.415 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.232 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 55.9%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 88.9%, and the resistance magnification was 2.98 times.

<比較例2>
(負極の作製)
市販のヤシ殻活性炭450gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:110℃)135gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、600℃まで4時間で昇温し、同温度で5時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料6を得た。
<Comparative example 2>
(Preparation of negative electrode)
450 g of commercially available coconut shell activated carbon is placed in a stainless steel mesh jar and placed on a stainless steel bat containing 135 g of coal-based pitch (softening point: 110 ° C.). ) Was installed and the thermal reaction was carried out. The heat treatment is performed in a nitrogen atmosphere for 4 hours up to 600 ° C., held at the same temperature for 5 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace to be a composite porous material 6 serving as a negative electrode material. Got.

得られた複合多孔性材料6を、実施例1と同様に測定したところ、ピーク強度比Id/Igは1.35、ピーク強度比δI/γIは1.15であった。また、示差熱分析(DTA)測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度をした結果、640℃であった。さらに、BET比表面積が1330m/g、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、6.94μmであった。
以降、実施例1と同様な手順にて、負極を作製した。
The obtained composite porous material 6 was measured in the same manner as in Example 1. As a result, the peak intensity ratio Id / Ig was 1.35, and the peak intensity ratio δI / γI was 1.15. Moreover, it was 640 degreeC as a result of making the temperature of the highest temperature peak among the three types of exothermic decomposition peaks observed in a differential thermal analysis (DTA) measurement. Furthermore, the BET specific surface area was 1330 m 2 / g, and the average particle diameter was measured using a laser diffraction particle size distribution analyzer (SALD-2000J) manufactured by Shimadzu Corporation. As a result, it was 6.94 μm.
Thereafter, a negative electrode was produced in the same procedure as in Example 1.

(正極の作製)
実施例1と同様な手順にて、正極を作製した。
(Preparation of positive electrode)
A positive electrode was produced in the same procedure as in Example 1.

(蓄電素子の組立と性能評価)
実施例1と同様な手順にて、組立及び性能評価を行った。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.411mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.144mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は35.0%であった。
更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は72.2%、抵抗倍率は3.68倍であった。
(Assembly and performance evaluation of storage element)
Assembly and performance evaluation were performed in the same procedure as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.411 mAh. Next, when the same charge was performed and the battery was discharged at 250 mA to 2.0 V, a capacity of 0.144 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 35.0%.
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 72.2%, and the resistance magnification was 3.68 times.

<比較例3>
(負極の作製)
フェノール樹脂硬化体をステンレス製皿に入れ、熱反応させた。熱反応は、窒素雰囲気下で行い、炉内が630℃になるまで昇温し、同温度で4時間保持した後、自然冷却した。得られた材料を遊星型ボールミルを用いて粉砕することで、負極材料となる難黒鉛化性炭素材料を得た。
<Comparative Example 3>
(Preparation of negative electrode)
The cured phenol resin was placed in a stainless steel dish and allowed to react by heat. The thermal reaction was performed in a nitrogen atmosphere, the temperature was raised until the inside of the furnace reached 630 ° C., kept at the same temperature for 4 hours, and then naturally cooled. The obtained material was pulverized using a planetary ball mill to obtain a non-graphitizable carbon material serving as a negative electrode material.

得られた難黒鉛化性炭素材料を、実施例1と同様に測定したところ、ピーク強度比Id/Igは0.80、ピーク強度比δI/γIは0.50であった。また、示差熱分析(DTA)測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度をした結果、733℃であった。さらに、BET比表面積が390m/g、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、4.20μmであった。 When the obtained non-graphitizable carbon material was measured in the same manner as in Example 1, the peak intensity ratio Id / Ig was 0.80 and the peak intensity ratio δI / γI was 0.50. In addition, among the three types of exothermic decomposition peaks observed in the differential thermal analysis (DTA) measurement, the temperature of the highest temperature peak was 733 ° C. Furthermore, the BET specific surface area was 390 m 2 / g, and the average particle diameter was measured using a laser diffraction particle size distribution analyzer (SALD-2000J) manufactured by Shimadzu Corporation. As a result, it was 4.20 μm.

以降、実施例1と同様な手順にて、負極を作製した。但し、上記で得られた負極に、難黒鉛化性炭素材料の重量に対して合計400mAh/gのリチウムイオンを、リチウム金属箔を用いて電気化学的にドーピングした。   Thereafter, a negative electrode was produced in the same procedure as in Example 1. However, the negative electrode obtained above was electrochemically doped with 400 mAh / g of lithium ions with respect to the weight of the non-graphitizable carbon material using a lithium metal foil.

(正極の作製)
実施例1と同様な手順にて、正極を作製した。
(Preparation of positive electrode)
A positive electrode was produced in the same procedure as in Example 1.

(蓄電素子の組立と性能評価)
実施例1と同様な手順にて、組立及び性能評価を行った。
作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1mAの定電流で2.0Vまで放電した。放電容量は、0.409mAhであった。次に同様の充電を行い250mAで2.0Vまで放電したところ、0.266mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比は65.0%であった。
(Assembly and performance evaluation of storage element)
Assembly and performance evaluation were performed in the same procedure as in Example 1.
The produced power storage element was charged to 4.0 V with a current of 1 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.0 V with a constant current of 1 mA. The discharge capacity was 0.409 mAh. Next, when the same charge was performed and the battery was discharged to 2.0 V at 250 mA, a capacity of 0.266 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA was 65.0%.

更に、作製した蓄電素子を、60℃、3.8V印加においてフロート充電試験を行った。1000h経過後、容量維持率は95.1%、抵抗倍率は1.92倍であった。
以上の結果を以下の表1にまとめて示す。
Furthermore, the produced electric storage element was subjected to a float charge test at 60 ° C. and 3.8 V applied. After 1000 hours, the capacity retention rate was 95.1%, and the resistance magnification was 1.92 times.
The above results are summarized in Table 1 below.

Figure 2011204906
Figure 2011204906

表1に示す結果において、難黒鉛化性炭素材料を用いた比較例3を除いて、実施例1〜4と比較例1及び2を対比すると、実施例1〜4の容量維持率の平均値(%)が97.575%であるのに対して、比較例1及び2の容量維持率の平均値(%)が80.55%である。両者の差は約17%であるから有意である。また、実施例1〜4の抵抗倍率の平均値(倍)が1.905倍であるのに対して、比較例1及び2の抵抗倍率の平均値(倍)が3.33倍である。つまり、実施例1〜4の抵抗倍率の平均値は、比較例1及び2の抵抗倍率の平均値より約43%低い。従って、本発明の負極材料を用いた蓄電素子が、高エネルギー密度かつ高出力を保ちつつ、高耐久性を発現できることは明らかである。   In the results shown in Table 1, when Examples 1 to 4 are compared with Comparative Examples 1 and 2 except for Comparative Example 3 using a non-graphitizable carbon material, the average capacity retention rate of Examples 1 to 4 Whereas (%) is 97.575%, the average value (%) of the capacity retention rate of Comparative Examples 1 and 2 is 80.55%. The difference between the two is significant because it is about 17%. The average value (times) of the resistance magnifications of Examples 1 to 4 is 1.905 times, whereas the average value (times) of the resistance magnifications of Comparative Examples 1 and 2 is 3.33 times. That is, the average value of the resistance magnification of Examples 1 to 4 is about 43% lower than the average value of the resistance magnification of Comparative Examples 1 and 2. Therefore, it is clear that the electricity storage device using the negative electrode material of the present invention can exhibit high durability while maintaining high energy density and high output.

本発明の蓄電素子用負極材料を用いた蓄電素子は、自動車において、内燃機関又は燃料電池、モーター、及び蓄電素子を組み合わせたハイブリット駆動システムの分野、さらには瞬間電力ピークのアシスト用途などで好適に利用できる。   The power storage element using the negative electrode material for a power storage element of the present invention is suitable for automobiles, in the field of hybrid drive systems combining an internal combustion engine or a fuel cell, a motor, and a power storage element, and for assisting instantaneous power peak. Available.

1 正極端子
2 負極端子
3 外装体
4 電極体
5 正極集電体
6 正極活物質層
7 セパレータ
8 負極集電体
9 負極活物質層
DESCRIPTION OF SYMBOLS 1 Positive electrode terminal 2 Negative electrode terminal 3 Exterior body 4 Electrode body 5 Positive electrode collector 6 Positive electrode active material layer 7 Separator 8 Negative electrode collector 9 Negative electrode active material layer

Claims (3)

活性炭の表面に炭素質材料を被着させた複合多孔性材料であって、該複合多孔性材料の大気ガスフロー下での示差熱分析(DTA)において、白金セル内、5℃/min.で昇温し二酸化炭素ガス化する測定において観測される3種の発熱分解ピークのうち、最も高温ピークの温度が、650℃以上730℃以下を満たすことを特徴とする非水系リチウム型蓄電素子用負極材料。   A composite porous material in which a carbonaceous material is deposited on the surface of activated carbon, and in the differential thermal analysis (DTA) under atmospheric gas flow of the composite porous material, 5 ° C / min. Among the three types of exothermic decomposition peaks observed in the measurement of gasification and carbon dioxide gasification, the temperature of the highest temperature peak satisfies 650 ° C. or higher and 730 ° C. or lower. Negative electrode material. 請求項1に記載の非水系リチウム型蓄電素子用負極材料を負極活物質とする負極活物質層と負極集電体とを含む非水系リチウム型蓄電素子用負極。   A negative electrode for a non-aqueous lithium storage element, comprising a negative electrode active material layer using the negative electrode material for a non-aqueous lithium storage element according to claim 1 as a negative electrode active material and a negative electrode current collector. 請求項2に記載の非水系リチウム型蓄電素子用負極、正極、及びセパレータからなる電極体、並びにリチウム塩を含む非水系電解液が外装体に収納されてなる非水系リチウム型蓄電素子。   A non-aqueous lithium storage element comprising: a negative electrode for a non-aqueous lithium storage element according to claim 2, a positive electrode, a separator, and a non-aqueous electrolyte containing a lithium salt housed in an exterior body.
JP2010070671A 2010-03-25 2010-03-25 Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same Active JP5759677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070671A JP5759677B2 (en) 2010-03-25 2010-03-25 Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070671A JP5759677B2 (en) 2010-03-25 2010-03-25 Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same

Publications (2)

Publication Number Publication Date
JP2011204906A true JP2011204906A (en) 2011-10-13
JP5759677B2 JP5759677B2 (en) 2015-08-05

Family

ID=44881253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070671A Active JP5759677B2 (en) 2010-03-25 2010-03-25 Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same

Country Status (1)

Country Link
JP (1) JP5759677B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059892A1 (en) * 2013-10-21 2015-04-30 株式会社クラレ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries
JP2018059202A (en) * 2016-10-03 2018-04-12 長春石油化學股▲分▼有限公司 Copper foil with uniform thickness and production method thereof
CN110600738A (en) * 2019-10-24 2019-12-20 扬州华达新能源有限公司 Method for preparing low-temperature lithium ion battery hard carbon negative electrode material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354122A (en) * 1998-05-21 1999-12-24 Samsung Display Devices Co Ltd Lithium secondary battery negative electrode active material and lithium secondary battery
JP2000156230A (en) * 1998-11-18 2000-06-06 Samsung Sdi Co Ltd Carbonic active material for lithium ion secondary battery
WO2007040007A1 (en) * 2005-09-09 2007-04-12 Kureha Corporation Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
WO2009091002A1 (en) * 2008-01-17 2009-07-23 Showa Denko K.K. Electric double layer capacitor
JP2009272454A (en) * 2008-05-08 2009-11-19 Showa Denko Kk Electric double layer capacitor
JP2011029408A (en) * 2009-07-24 2011-02-10 Showa Denko Kk Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354122A (en) * 1998-05-21 1999-12-24 Samsung Display Devices Co Ltd Lithium secondary battery negative electrode active material and lithium secondary battery
JP2000156230A (en) * 1998-11-18 2000-06-06 Samsung Sdi Co Ltd Carbonic active material for lithium ion secondary battery
WO2007040007A1 (en) * 2005-09-09 2007-04-12 Kureha Corporation Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
WO2009091002A1 (en) * 2008-01-17 2009-07-23 Showa Denko K.K. Electric double layer capacitor
JP2009272454A (en) * 2008-05-08 2009-11-19 Showa Denko Kk Electric double layer capacitor
JP2011029408A (en) * 2009-07-24 2011-02-10 Showa Denko Kk Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059892A1 (en) * 2013-10-21 2015-04-30 株式会社クラレ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries
CN105940536A (en) * 2013-10-21 2016-09-14 株式会社可乐丽 Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries
JPWO2015059892A1 (en) * 2013-10-21 2017-03-09 株式会社クラレ Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
US10381637B2 (en) 2013-10-21 2019-08-13 Kuraray Co., Ltd. Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries
JP2018059202A (en) * 2016-10-03 2018-04-12 長春石油化學股▲分▼有限公司 Copper foil with uniform thickness and production method thereof
CN110600738A (en) * 2019-10-24 2019-12-20 扬州华达新能源有限公司 Method for preparing low-temperature lithium ion battery hard carbon negative electrode material
CN110600738B (en) * 2019-10-24 2022-05-03 扬州华达新能源有限公司 Method for preparing low-temperature lithium ion battery hard carbon negative electrode material

Also Published As

Publication number Publication date
JP5759677B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5255569B2 (en) Non-aqueous lithium storage element
JP5463144B2 (en) Cathode material for non-aqueous lithium storage element
JP5654820B2 (en) Positive electrode material, method for producing the same, and power storage device
JP5479969B2 (en) Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP5554932B2 (en) Non-aqueous lithium storage element
JP6262432B2 (en) Method for manufacturing lithium ion capacitor
JP2010267875A (en) Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same
JP5654742B2 (en) Non-aqueous lithium storage element
JP6410417B2 (en) Non-aqueous lithium storage element
JP6675146B2 (en) Non-aqueous lithium storage element
JP2013219152A (en) Positive electrode material, manufacturing method thereof, and power storage element
JP2015225876A (en) Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
JP2010205846A (en) Nonaqueous lithium type electricity storage element
JP5827085B2 (en) Non-aqueous lithium storage element
JP2016042502A (en) Negative electrode for nonaqueous lithium type power storage device
JP6453560B2 (en) Negative electrode for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP5759677B2 (en) Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP5785014B2 (en) Non-aqueous lithium storage element
JP5706017B2 (en) Non-aqueous lithium storage element
JP6292833B2 (en) Non-aqueous lithium storage element
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP6665033B2 (en) Non-aqueous lithium storage element
JP2014017286A (en) Nonaqueous lithium type storage element
JP5894725B2 (en) Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP2020036050A (en) Nonaqueous lithium-type power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350