JP2012054099A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2012054099A
JP2012054099A JP2010195822A JP2010195822A JP2012054099A JP 2012054099 A JP2012054099 A JP 2012054099A JP 2010195822 A JP2010195822 A JP 2010195822A JP 2010195822 A JP2010195822 A JP 2010195822A JP 2012054099 A JP2012054099 A JP 2012054099A
Authority
JP
Japan
Prior art keywords
battery
ptc thermistor
case
metal hydride
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010195822A
Other languages
Japanese (ja)
Other versions
JP2012054099A5 (en
Inventor
Koji Izumi
康士 泉
Tatsuya Nagai
達也 長井
Seiji Wada
聖司 和田
Takayuki Yano
尊之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
FDK Twicell Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Twicell Co Ltd filed Critical FDK Twicell Co Ltd
Priority to JP2010195822A priority Critical patent/JP2012054099A/en
Priority to ES11178853.5T priority patent/ES2532968T3/en
Priority to EP11178853.5A priority patent/EP2426759B1/en
Priority to US13/217,976 priority patent/US20120052344A1/en
Priority to CN201110266730.2A priority patent/CN102386370B/en
Publication of JP2012054099A publication Critical patent/JP2012054099A/en
Publication of JP2012054099A5 publication Critical patent/JP2012054099A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery which has improved safety by suppressing heat generation during an external short circuit without reducing performance in normal use.SOLUTION: A nickel-hydrogen battery has an internal resistance of 70 mΩ or less and comprises a PTC thermistor 20 which is so configured that a temperature rise during an external short circuit of the battery at an ambient temperature of 23±2°C does not exceed 45°C. Since a surface of the PTC thermistor 20 is provided with a flexible protective film 25, the PTC thermistor 20 is protected from an oxygen component and an alkaline component filling a battery case.

Description

本発明は、電池に係り、詳しくは市場にて広く使用される単三型電池等の小型電池に関する。   The present invention relates to a battery, and more particularly to a small battery such as an AA battery widely used in the market.

近年、電化製品や玩具等の市場において、単三型電池の小型電池が極めて広く使用されている。このような小型電池としては、例えばマンガン乾電池、アルカリマンガン乾電池、ニッケル乾電池、ニッケル水素電池等のアルカリ蓄電池が有る。
ところで、このような小型電池では、電池が外部短絡するようなことがあると、電池内部において過剰電流が流れ、発熱することが知られている。
そこで、電池が外部短絡した場合であっても、抵抗素子によって過剰電流を防止でき、発熱を抑えるようにした電池が種々開発されている(特許文献1〜3参照)。
In recent years, small batteries of AA size batteries have been very widely used in the market of electrical appliances and toys. Examples of such small batteries include alkaline storage batteries such as manganese dry batteries, alkaline manganese dry batteries, nickel dry batteries, and nickel metal hydride batteries.
By the way, it is known that in such a small battery, if the battery is externally short-circuited, excessive current flows inside the battery and heat is generated.
Therefore, even when the battery is short-circuited externally, various batteries have been developed that can prevent excessive current by using a resistance element and suppress heat generation (see Patent Documents 1 to 3).

特開昭58−188066号公報Japanese Patent Laid-Open No. 58-188066 特開平10−275612号公報Japanese Patent Laid-Open No. 10-275612 特開2002−110137号公報JP 2002-110137 A

しかしながら、上記特許文献1〜3に開示されるような電池では、抵抗素子の抵抗値が高い場合には電池の通常の使用性能が低下するという問題がある。
また、上記特許文献2に開示されるような電池では、電池外部に抵抗素子を配設するような構造になることから、抵抗素子による電池外部での発熱が大きく、好ましいことではない。
また、抵抗素子としてのPTC(positive temperature coefficient)サーミスタを他の硬質な部材に沿わせて組み込むようにしているが、かかる構成では、PTCサーミスタにおける絶縁性ポリマーの膨張変化が妨げられ、過剰電流を十分に防止できず、やはり発熱を十分に抑制することができないという問題がある。
However, the batteries as disclosed in Patent Documents 1 to 3 have a problem that the normal use performance of the battery is lowered when the resistance value of the resistance element is high.
In addition, the battery disclosed in Patent Document 2 has a structure in which a resistance element is disposed outside the battery, and thus heat generation outside the battery by the resistance element is large, which is not preferable.
In addition, a PTC (positive temperature coefficient) thermistor as a resistance element is incorporated along with another hard member. However, in this configuration, the expansion change of the insulating polymer in the PTC thermistor is hindered, and an excess current is generated. There is a problem that it cannot be sufficiently prevented and heat generation cannot be sufficiently suppressed.

また、上記特許文献3に開示されるような、電極郡にPTCサーミスタが配置される構造の電池では、電池の充放電による発熱がPTC物性に影響を与える懸念がある。即ち、極板部にPTCサーミスタが配置されることで、PTCサーミスタは逆に発熱体に近くなり、電池の充放電による温度影響を受ける。このため、PTCサーミスタは、通常の充放電でTrip(抵抗上昇)に近くなる。こうなると、PTCサーミスタは、初期時の抵抗が使用中に緩やかに上昇する傾向を受け、Trip後の抵抗回復が悪化するという問題がある。
本発明は上述の事情に基づきなされたもので、その目的とするところは、通常の使用性能を低下させることなく、外部短絡時における発熱を抑制して安全性の向上を図った電池を提供することにある。
In addition, in a battery having a structure in which a PTC thermistor is disposed in an electrode group as disclosed in Patent Document 3, there is a concern that heat generated by charging and discharging of the battery may affect PTC physical properties. That is, by arranging the PTC thermistor on the electrode plate portion, the PTC thermistor becomes close to a heating element, and is affected by temperature due to charging / discharging of the battery. For this reason, the PTC thermistor becomes close to Trip (resistance increase) by normal charging and discharging. In this case, the PTC thermistor has a problem that the resistance at the initial stage tends to gradually increase during use, and the resistance recovery after Trip deteriorates.
The present invention has been made on the basis of the above-mentioned circumstances, and an object of the present invention is to provide a battery that improves safety by suppressing heat generation during an external short circuit without deteriorating normal use performance. There is.

上記目的を達成するため、請求項1の電池は、内部抵抗が70mΩ以下であり、周辺温度23±2℃での電池の外部短絡時の温度上昇が45℃を越えないことを特徴とする。
また、請求項2の電池は、請求項1において、単三型電池であることを特徴とする。
また、請求項3の電池は、請求項1または2において、ニッケル水素電池であることを特徴とする。
In order to achieve the above object, the battery of claim 1 is characterized in that the internal resistance is 70 mΩ or less and the temperature rise at the time of external short-circuiting of the battery at an ambient temperature of 23 ± 2 ° C. does not exceed 45 ° C.
A battery according to claim 2 is an AA battery according to claim 1.
A battery according to claim 3 is a nickel-metal hydride battery according to claim 1 or 2.

また、請求項4の電池は、請求項3において、前記ニッケル水素電池であって、外面部に正極端子、負極端子を備えたケースを有し、同ケースの内部に正極板、負極板およびセパレータが収容され、少なくとも一方の端子と当該端子に対応する極板との間が前記ケース内に配置された導電部材で導通されてなり、前記導電部材は、ケース空間に露出する部分にPTCサーミスタが介在され、前記PTCサーミスタは、前記ケース空間を満たすガス雰囲気に含まれる酸素成分とアルカリ成分から保護する柔軟性をもつ保護層で被膜されることを特徴とする。   A battery according to claim 4 is the nickel hydride battery according to claim 3, further comprising a case having a positive electrode terminal and a negative electrode terminal on an outer surface portion, and a positive electrode plate, a negative electrode plate, and a separator inside the case. And at least one of the terminals and the electrode plate corresponding to the terminal are electrically connected by a conductive member disposed in the case, and the conductive member has a PTC thermistor in a portion exposed to the case space. The PTC thermistor is interposed, and is coated with a protective layer having flexibility to protect from oxygen components and alkali components contained in the gas atmosphere filling the case space.

請求項1の電池によれば、電池の内部抵抗を70mΩ以下に抑えることにより、通常の電池使用時における740mA放電時の作動電圧を1.20V以上確保して通常の使用性能を低下させないようにできるとともに、周辺温度23±2℃での電池の外部短絡時の温度上昇が45℃を越えないよう抑えることにより、安全性の高い電池を実現することができる。
請求項2の電池によれば、電池は単三型電池であるので、単三型電池は、電化製品や玩具等の市場において極めて広く使用されているが、このように極めて広く使用されている電池に本発明を好適に適用することができる。
請求項3の電池によれば、電池はニッケル水素電池であるので、ニッケル水素電池は、電化製品や玩具等の市場において極めて広く使用されているが、このように極めて広く使用されている電池に本発明を好適に適用することができる。
According to the battery of claim 1, by suppressing the internal resistance of the battery to 70 mΩ or less, the operating voltage at the time of 740 mA discharge during normal battery use is ensured to be 1.20 V or more so as not to deteriorate the normal use performance. In addition, a battery with high safety can be realized by suppressing the temperature rise at the time of external short-circuiting of the battery at an ambient temperature of 23 ± 2 ° C. from exceeding 45 ° C.
According to the battery of claim 2, since the battery is an AA type battery, the AA type battery is very widely used in the market of electrical appliances, toys, etc., and is thus very widely used. The present invention can be suitably applied to a battery.
According to the battery of claim 3, since the battery is a nickel metal hydride battery, the nickel metal hydride battery is very widely used in the market of electrical appliances and toys. The present invention can be preferably applied.

請求項4の電池によれば、電池がニッケル水素電池である場合において、膨張変化がしやすいケース空間にPTCサーミスタを配置する構造と柔軟性の保護層で被膜させる構造との組み合わせにより、抵抗値の増大をもたらすPTCサーミスタの膨張変化を妨げることなく、ガス雰囲気に含まれる酸素成分、アルカリ成分を要因としたPTCサーミスタの劣化をも防ぐことができる。
このように、ニッケル水素電池のケース空間に柔軟性の保護層で被膜させたPTCサーミスタを配設することで、通常の使用性能を低下させることなく、且つ、外部短絡時における発熱を抑制しつつ、安全性の高い電池を実現することができる。
According to the battery of claim 4, when the battery is a nickel metal hydride battery, the resistance value is obtained by combining the structure in which the PTC thermistor is disposed in the case space where the expansion change easily occurs and the structure in which the flexible protective layer is coated. The deterioration of the PTC thermistor due to the oxygen component and the alkali component contained in the gas atmosphere can also be prevented without hindering the expansion change of the PTC thermistor that causes an increase in the temperature.
In this way, by disposing a PTC thermistor coated with a flexible protective layer in the case space of the nickel metal hydride battery, while suppressing the heat generation during an external short circuit without deteriorating normal use performance. A highly safe battery can be realized.

本発明の一実施形態に係るニッケル水素電池の全体構造を示す部分切欠き斜視図。1 is a partially cutaway perspective view showing an overall structure of a nickel metal hydride battery according to an embodiment of the present invention. 同ニッケル水素電池の正極タブに介在させたPTCサーミスタを示す断面図。Sectional drawing which shows the PTC thermistor interposed in the positive electrode tab of the nickel hydride battery. 同PTCサーミスタの保護構造を示す斜視図。The perspective view which shows the protection structure of the PTC thermistor.

以下、本発明を図1乃至図3に示す一実施形態に基づいて説明する。
図1は本発明に適用される電池、例えば単三型アルカリ蓄電池の一つである単三型ニッケル水素電池の部分切欠き斜視図を示し、図2は同ニッケル水素電池の正極側の構造を拡大した断面図を示している。ここに、単三型ニッケル水素電池の寸法は、高さ49.2〜50.5mm、外径13.5〜14.5mmである。同図中1はニッケル水素電池の円筒型のケースである。
図1,2に示されるようにケース1は、導電性の円筒形の外装缶2と、外装缶2の開口部を塞ぐように設けた導電性を有する円盤形の封口モジュール4(各種部材4を組合わせたもの)と、外装缶2の開口縁と封口モジュール4の外周部間を絶縁する環状の絶縁部材3で形成される。ケース1は密閉化してある。
Hereinafter, the present invention will be described based on an embodiment shown in FIGS.
FIG. 1 shows a partially cutaway perspective view of a battery applied to the present invention, for example, an AA nickel metal hydride battery which is one of the AA alkaline storage batteries, and FIG. 2 shows the structure of the positive electrode side of the nickel hydrogen battery. An enlarged cross-sectional view is shown. Here, the size of the AA nickel metal hydride battery is 49.2 to 50.5 mm in height and 13.5 to 14.5 mm in outer diameter. In the figure, reference numeral 1 denotes a cylindrical case of a nickel metal hydride battery.
As shown in FIGS. 1 and 2, the case 1 includes a conductive cylindrical outer can 2, and a conductive disc-shaped sealing module 4 provided to close the opening of the outer can 2 (various members 4 ) And an annular insulating member 3 that insulates the opening edge of the outer can 2 from the outer peripheral portion of the sealing module 4. Case 1 is sealed.

ケース1を構成する外装缶2の内部には、電極群が収められている。図1,2に示されるように電極群は、例えば水酸化ニッケル粒子が充填された帯形の正極板6、例えば水素吸蔵合金が充填された帯形の負極板7との間に、アルカリ電解液を保持した絶縁性のセパレータ8を介在させて渦巻き状に巻回した積層板9から構成される。むろん、巻回した各部は、短絡しないよう絶縁部材9aで絶縁してある。そして、負極板7の側縁部、ここでは負極板7の下側の縁部に形成される集電端子7aは、プレート状の負極集電部材10を介して外装缶2と導通している。これで、外装缶2の底面部に負極端子12を形成している。   An electrode group is housed inside the outer can 2 constituting the case 1. As shown in FIGS. 1 and 2, the electrode group includes, for example, alkaline electrolysis between a strip-shaped positive plate 6 filled with nickel hydroxide particles, for example, a strip-shaped negative plate 7 filled with a hydrogen storage alloy. It is composed of a laminated plate 9 wound in a spiral shape with an insulating separator 8 holding the liquid interposed. Of course, each wound part is insulated with an insulating member 9a so as not to be short-circuited. And the current collection terminal 7a formed in the side edge part of the negative electrode plate 7, the lower edge part of the negative electrode plate 7 here is electrically connected with the exterior can 2 via the plate-shaped negative electrode current collection member 10. . Thus, the negative electrode terminal 12 is formed on the bottom surface portion of the outer can 2.

また図1,2に示されるように正極板6の側縁部、ここでは正極板6の上側の縁部に形成される集電端子6aは、通孔13aを有するプレート状の正極集電部材13と導通している。正極集電部材13は、電極群の直上の地点に組み付けられる部品である。この正極集電部材13が、電極群と封口モジュール4との間に形成されるケース空間2a内に配置された導電部材、ここでは正極タブ15を介して、封口モジュール4と接続されている。これで、封口モジュール4の外面中央に形成してある凸部4aを正極端子5としている。この正極端子5をなす凸部4内には、電池の内圧が発生するガスで所定の圧力以上に上昇したとき、当該ガスを逃がす安全弁16が組み込んである。図中16aは同安全弁16の弁体、16bは同じくばねを示している。この安全弁16は、ばね弁式でなく、ゴム弁式などそれ以外の弁構造でもよく、ガスを逃がせる安全弁構造であればよい。   As shown in FIGS. 1 and 2, the current collecting terminal 6a formed on the side edge of the positive electrode plate 6, here the upper edge of the positive electrode plate 6, is a plate-shaped positive current collecting member having a through hole 13a. 13 is conducted. The positive electrode current collecting member 13 is a component that is assembled at a point immediately above the electrode group. The positive electrode current collecting member 13 is connected to the sealing module 4 via a conductive member, here a positive electrode tab 15, disposed in a case space 2 a formed between the electrode group and the sealing module 4. Thus, the convex portion 4 a formed at the center of the outer surface of the sealing module 4 is used as the positive electrode terminal 5. In the convex portion 4 forming the positive electrode terminal 5, there is incorporated a safety valve 16 for releasing the gas when the internal pressure of the battery is raised to a predetermined pressure or higher. In the figure, 16a indicates a valve body of the safety valve 16, and 16b also indicates a spring. The safety valve 16 is not a spring valve type but may be a valve structure other than that such as a rubber valve type, and may be a safety valve structure that allows gas to escape.

正極タブ15のうち、ケース空間2aに配置されるタブ部分には、図1,2に示されるように薄板状のPTC(positive temperature coefficient)サーミスタ20が介在されている。具体的には正極タブ15は、例えば中央部分から分かれている。即ち、正極タブ15は、正極集電部材13から延びる逆L形状のタブ部分15aと、封口モジュール4から延びるU形状のタブ部分15bとに分かれている。この分かれた各タブ部分15a,15bの離間対向している先端部間にPTCサーミスタ20が配置されている。そして、重なり合うPTCサーミスタ20の上・下面部(側部)と各タブ部分15a,15bの先端部とが、接着、例えば半田付けで接続され、正極タブ15中にPTCサーミスタ20を直列に介装している。特にPTCサーミスタ20の固定は、接着性を高めるために、図3(b)に示されるように各タブ部分15a,15bの先端部とPTCサーミスタ20の端子を形成する一対の金属板(図示しない)とを、ニッケル薄膜21を介して半田22で半田付けさせる固定構造が用いてある。   As shown in FIGS. 1 and 2, a thin plate-like PTC (positive temperature coefficient) thermistor 20 is interposed in a tab portion of the positive electrode tab 15 arranged in the case space 2a. Specifically, the positive electrode tab 15 is separated from the central portion, for example. That is, the positive electrode tab 15 is divided into an inverted L-shaped tab portion 15 a extending from the positive electrode current collecting member 13 and a U-shaped tab portion 15 b extending from the sealing module 4. A PTC thermistor 20 is disposed between the separated tip portions of the tab portions 15a and 15b. The upper and lower surface portions (side portions) of the overlapping PTC thermistor 20 and the tip portions of the tab portions 15a and 15b are connected by bonding, for example, soldering, and the PTC thermistor 20 is interposed in the positive electrode tab 15 in series. is doing. In particular, the PTC thermistor 20 is fixed to a pair of metal plates (not shown) that form the tips of the tab portions 15a and 15b and the terminals of the PTC thermistor 20 as shown in FIG. ) Is soldered with the solder 22 through the nickel thin film 21.

PTCサーミスタ20は、例えば導電性粒子を分散させた絶縁性ポリマーを用いている。これで、外部短絡など大電流が流れる際に生ずる発熱により、絶縁性ポリマー全体が膨張し、同膨張により導電性粒子の接触が減少して急激に抵抗値が上昇するという特性を利用して、電流の流れを抑制する。なお、絶縁性ポリマーは、発熱が解消され冷めると、収縮し、再び抵抗が小さい状態に戻る。   The PTC thermistor 20 uses, for example, an insulating polymer in which conductive particles are dispersed. Now, due to the heat generated when a large current flows, such as an external short circuit, the entire insulating polymer expands, and due to the expansion, the contact of the conductive particles decreases and the resistance value increases rapidly, Suppresses current flow. Note that the insulating polymer contracts when the heat generation is eliminated and it cools down, and returns to a state of low resistance again.

ケース空間2a内に配置されたPTCサーミスタ20は、直近に干渉をもたらすような硬質の部品や部材が無いため、膨張変化がしやすい環境となっている。さらに同PTCサーミスタ20は、PTC物性に影響を与えたり作動に影響を与えたりしにくい環境ともなっている。反面、PTCサーミスタ20は、ケース空間2aに満たされるガス雰囲気、詳しくは充放電時の化学反応で生ずる酸素成分(高圧酸素雰囲気)と、電池内の電解液(図示しない)がもたらすアルカリ成分(アルカリ雰囲気)との両方が混合したガス雰囲気に晒されるため、劣化を招くおそれがある。   The PTC thermistor 20 disposed in the case space 2a has an environment in which expansion changes easily occur because there are no hard parts or members that cause interference in the immediate vicinity. Further, the PTC thermistor 20 is also in an environment in which it is difficult to affect the physical properties of the PTC or the operation. On the other hand, the PTC thermistor 20 includes a gas atmosphere filled in the case space 2a, specifically, an oxygen component (high pressure oxygen atmosphere) generated by a chemical reaction during charging and discharging, and an alkali component (alkaline) provided by an electrolyte (not shown) in the battery. Since both are exposed to a mixed gas atmosphere, there is a risk of deterioration.

そこで、PTCサーミスタ20には、同サーミスタ20の機能を損なったり影響を与えたりせずに、PTCサーミスタ20の劣化を防ぐ手段が講じてある。この手段には、図1,2に示されるようにPTCサーミスタ20の周囲を柔軟性の有る保護層25で被膜し、PTCサーミスタ20をガス雰囲気中の酸素成分とアルカリ成分から保護する構造が用いられている。このPTCサーミスタ20の詳しい保護構造が図2および図3(a),(b)に示されている。被膜構造をわかりやすくするため、同図では、保護層25の各部は、若干、大きくして記載してある。   Therefore, the PTC thermistor 20 is provided with means for preventing the PTC thermistor 20 from deteriorating without impairing or affecting the function of the thermistor 20. For this means, as shown in FIGS. 1 and 2, a structure in which the PTC thermistor 20 is coated with a flexible protective layer 25 and the PTC thermistor 20 is protected from oxygen and alkali components in the gas atmosphere is used. It has been. A detailed protection structure of the PTC thermistor 20 is shown in FIGS. 2 and 3 (a) and 3 (b). In order to make the film structure easy to understand, each part of the protective layer 25 is shown slightly enlarged in the figure.

保護構造を説明すると、図2および図3(a)に示されるように保護層25は、PTCサーミスタ20の周囲を覆うように設けた、ガス雰囲気中の酸素成分に耐える耐酸素保護層27と、同耐酸素保護層27の周りを覆うように設けた、ガス雰囲気中のアルカリ成分に耐える耐アルカリ保護層29との複層構造で形成されている。さらに述べれば、耐酸素保護層27は、重なるタブ部分を含むPTCサーミスタ20の周りに、例えば柔軟性の有るエポキシ樹脂部材27a[図3(b)のみ図示]を塗布した構造が用いられる。つまり、耐酸素保護層27は、タブ部分を含んだPTCサーミスタ20の全体を覆ったエポキシ樹脂部材27aのコートで形成してある。むろん、柔軟性をもち酸素成分に耐える特性をもつ合成樹脂部材であれば、エポキシ樹脂部材27a以外の他の合成樹脂部材でも構わない。   Explaining the protective structure, as shown in FIG. 2 and FIG. 3A, the protective layer 25 includes an oxygen resistant protective layer 27 that covers the periphery of the PTC thermistor 20 and withstands oxygen components in the gas atmosphere. The multi-layer structure is formed with an alkali-resistant protective layer 29 that is provided so as to cover the oxygen-resistant protective layer 27 and can withstand an alkali component in a gas atmosphere. More specifically, the oxygen-resistant protective layer 27 has a structure in which, for example, a flexible epoxy resin member 27a [shown only in FIG. 3B] is applied around the PTC thermistor 20 including the overlapping tab portions. That is, the oxygen-resistant protective layer 27 is formed by a coat of an epoxy resin member 27a that covers the entire PTC thermistor 20 including the tab portion. Of course, other synthetic resin members other than the epoxy resin member 27a may be used as long as they are flexible and have a characteristic to withstand oxygen components.

耐アルカリ保護層29は、例えば柔軟なポリプロピレン製の薄膜のテープ30、ここでは2枚のポリプロピレン製のテープ30[図3(b)に図示]を用い、エポキシ樹脂部材27aのコート層を上下から挟み込むように張り合わせて、エポキシ樹脂部材27aのコート層の周囲全体を覆う構造が用いられている。つまり、耐アルカリ保護層29は、ポリプロピレンのテープ層で形成してある。むろん、テープ30でなくポリプロピレンのコートでも、他の、柔軟性をもちアルカリ成分に耐える部材、例えばナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン6T,ナイロン9T、ナイロンM5T、ナイロン612などナイロン系部材や、ポリアミド系樹脂、耐アルカリ性ゴム、鉱物合成樹脂(アスファルト)などで形成しても構わない。   The alkali-resistant protective layer 29 is made of, for example, a flexible polypropylene thin film tape 30, here two polypropylene tapes 30 [shown in FIG. 3 (b)], and the coating layer of the epoxy resin member 27 a from above and below. A structure is used in which the entire periphery of the coat layer of the epoxy resin member 27a is covered by being sandwiched. That is, the alkali resistant protective layer 29 is formed of a polypropylene tape layer. Needless to say, other than the tape 30 but also a polypropylene coat, other flexible and alkali-resistant members such as nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 6T, nylon 9T, nylon M5T, nylon You may form with nylon-type members, such as 612, a polyamide-type resin, alkali-resistant rubber, a mineral synthetic resin (asphalt), etc.

このように構成されたニッケル水素電池は、例えば外部短絡(または過度の大電流充放電)が生じたとする。すると、PTCサーミスタ20は、その短絡時の大電流が流れる際に生ずる発熱により、絶縁性ポリマー全体が膨張し、導電性粒子の接触を減少させ、急激に抵抗値を上昇させる。ここで、絶縁性ポリマーの膨張は、周囲に干渉する硬質の部材の無いケース空間2aで行われるから、速やかに、要求される抵抗値まで上昇する。これにより、電流の流れは抑制され、電池の発熱が防止される。なお、電流が正常に回復(または電池の放電が終了)すれば、PTCサーミスタ20の抵抗値は再び小さい状態に戻る。   It is assumed that the nickel-metal hydride battery configured in this way has undergone an external short circuit (or excessive large current charge / discharge), for example. Then, the PTC thermistor 20 expands the entire insulating polymer due to heat generated when a large current flows at the time of the short circuit, reduces the contact of the conductive particles, and rapidly increases the resistance value. Here, since the expansion of the insulating polymer is performed in the case space 2a where there is no hard member that interferes with the surroundings, it quickly rises to the required resistance value. Thereby, the flow of current is suppressed and heat generation of the battery is prevented. If the current recovers normally (or the battery discharge ends), the resistance value of the PTC thermistor 20 returns to a small state again.

このとき、ケース空間2a内は、充放電時の化学反応で生ずる酸素成分(高圧酸素雰囲気)と、電池内の電解液がもたらすアルカリ成分(アルカリ雰囲気)との両方が混合したガス雰囲気で満たされるため、PTCサーミスタ20自身(樹脂)やPTCサーミスタ20の接着部(半田付け部)が当該成分により侵食されることが懸念される。   At this time, the inside of the case space 2a is filled with a gas atmosphere in which both an oxygen component (high-pressure oxygen atmosphere) generated by a chemical reaction during charging and discharging and an alkali component (alkaline atmosphere) provided by the electrolyte in the battery are mixed. Therefore, there is a concern that the PTC thermistor 20 itself (resin) and the adhesion part (soldering part) of the PTC thermistor 20 are eroded by the component.

ここで、PTCサーミスタ20全体は、図2および図3(a),(b)に示されるように耐酸素保護層27で覆われているから、PTCサーミスタ自身の酸素成分による侵食は防御される。また耐酸素保護層27の周囲は、耐アルカリ保護層29で覆われているから、耐酸素保護層27はアルカリ成分による侵食から保護され、PTCサーミスタ20とタブ部分とを接着している半田付け部の侵食を防御する。   Here, since the entire PTC thermistor 20 is covered with the oxygen-resistant protective layer 27 as shown in FIGS. 2 and 3A and 3B, erosion by the oxygen component of the PTC thermistor itself is prevented. . Further, since the periphery of the oxygen-resistant protective layer 27 is covered with the alkali-resistant protective layer 29, the oxygen-resistant protective layer 27 is protected from erosion by an alkaline component, and is soldered to bond the PTC thermistor 20 and the tab portion. Protect the erosion of the department.

このことは、保護層25により、PTCサーミスタ20自身(樹脂)やPTCサーミスタ20の半田付け部は、ガス雰囲気に含まれる酸素成分、アルカリ成分から保護される。しかも、保護層25は、柔軟性を有しているから、PTCサーミスタ20の膨張変化を妨げずにすむ。
それ故、PTCサーミスタ20は、膨張変化がしやすく、PTC物性に影響を与えたり抵抗回復に影響を与えたりせずにすむケース空間2aでの配置と、柔軟性の保護層25による被膜との組み合わせより、ケース空間2aを満たすガス雰囲気に含まれる酸素成分、アルカリ成分に影響されずに、さらにはPTC物性や作動に支障を与えずに、大電流を抑制する性能を十分に発揮させることができ、ニッケル水素電池の発熱を抑制することができる。
したがって、PTCサーミスタ20を用いて、ニッケル水素電池の安全性を十分に確保することができる。
This is because the protective layer 25 protects the PTC thermistor 20 itself (resin) and the soldered portion of the PTC thermistor 20 from oxygen components and alkali components contained in the gas atmosphere. Moreover, since the protective layer 25 has flexibility, it is not necessary to prevent the expansion change of the PTC thermistor 20.
Therefore, the PTC thermistor 20 is easy to change in expansion, and is arranged between the case space 2a which does not affect the PTC physical properties and does not affect the resistance recovery, and the coating by the flexible protective layer 25. From the combination, it is possible to sufficiently exhibit the performance of suppressing a large current without being affected by oxygen components and alkali components contained in the gas atmosphere that fills the case space 2a, and further without affecting PTC physical properties and operation. The heat generation of the nickel metal hydride battery can be suppressed.
Therefore, the safety of the nickel metal hydride battery can be sufficiently ensured by using the PTC thermistor 20.

以下に上記本発明に係る電池の実施例を挙げる。併せて比較例として従来の各種電池を挙げる。
ここでは、下記表1、表2に示すように、電池の種類、内部抵抗、PTCサーミスタの有無、結線短絡抵抗を変えて、740mA放電時の作動電圧、周辺温度23±2℃での電池外部の充電状態短絡時温度上昇、短絡後漏液の有無、短絡後の再使用の可否について調査を行った。表1は結線短絡抵抗が2.5mΩの場合を示し、表2は結線短絡抵抗が100mΩの場合を示す。
Examples of the battery according to the present invention will be given below. In addition, various conventional batteries are listed as comparative examples.
Here, as shown in Table 1 and Table 2 below, change the battery type, internal resistance, presence / absence of PTC thermistor, connection short circuit resistance, operating voltage at 740mA discharge, battery external at ambient temperature 23 ± 2 ° C We investigated the temperature rise at the time of short circuit in the battery, the presence or absence of leakage after the short circuit, and the possibility of reuse after the short circuit. Table 1 shows the case where the connection short circuit resistance is 2.5 mΩ, and Table 2 shows the case where the connection short circuit resistance is 100 mΩ.

<実施例1>
上記構成のニッケル水素電池であって、内部抵抗が25mΩのものを準備した。
<実施例2>
上記構成のニッケル水素電池であって、内部抵抗が70mΩのものを準備した。
<比較例1>
ニッケル水素電池であって、PTCサーミスタを有し、内部抵抗が80mΩのものを準備した。
<比較例2>
ニッケル水素電池であって、PTCサーミスタを有し、内部抵抗が130mΩのものを準備した。
<Example 1>
A nickel metal hydride battery having the above-described configuration and having an internal resistance of 25 mΩ was prepared.
<Example 2>
A nickel metal hydride battery having the above-described configuration and having an internal resistance of 70 mΩ was prepared.
<Comparative Example 1>
A nickel-metal hydride battery having a PTC thermistor and an internal resistance of 80 mΩ was prepared.
<Comparative example 2>
A nickel-metal hydride battery having a PTC thermistor and an internal resistance of 130 mΩ was prepared.

<比較例3>
ニッケル水素電池であって、PTCサーミスタが無く、内部抵抗が23mΩのものを準備した。
<比較例4>
アルカリマンガン乾電池であって、PTCサーミスタが無く、内部抵抗が110mΩのものを準備した。
<比較例5>
マンガン乾電池であって、PTCサーミスタが無く、内部抵抗が400mΩのものを準備した。
<比較例6>
ニッケル乾電池であって、PTCサーミスタが無く、内部抵抗が100mΩのものを準備した。
<Comparative Example 3>
A nickel-metal hydride battery having no PTC thermistor and an internal resistance of 23 mΩ was prepared.
<Comparative example 4>
An alkaline manganese battery having no PTC thermistor and an internal resistance of 110 mΩ was prepared.
<Comparative Example 5>
A manganese battery having no PTC thermistor and an internal resistance of 400 mΩ was prepared.
<Comparative Example 6>
A nickel battery having no PTC thermistor and an internal resistance of 100 mΩ was prepared.

Figure 2012054099
Figure 2012054099

Figure 2012054099
Figure 2012054099

このように、上記本発明に係る電池の実施例1、2によれば、内部抵抗を25mΩ或いは70mΩとしたことで、即ち内部抵抗を70mΩ以下としたことで、通常の電池使用時における740mA放電時の作動電圧を1.20V以上確保することができ、且つ、結線短絡抵抗が2.5mΩの場合であっても100mΩの場合であっても、PTCサーミスタの機能により、周辺温度23±2℃での外部短絡時における温度上昇が45℃を越えないようにでき、公的基準値(例えば、日本玩具協会のST基準)を充分に満たすことができる。
また、上記本発明に係る電池の実施例1、2によれば、短絡後漏液も無く、短絡後の再使用についても何ら問題なく可能である。
As described above, according to the first and second embodiments of the battery according to the present invention, the internal resistance was set to 25 mΩ or 70 mΩ, that is, the internal resistance was set to 70 mΩ or less, so that 740 mA discharge during normal battery use was achieved. Operating voltage of 1.20V or more, and the PTC thermistor function enables the ambient temperature to be 23 ± 2 ° C regardless of whether the short circuit resistance is 2.5 mΩ or 100 mΩ. The temperature rise at the time of the external short circuit in can be prevented from exceeding 45 ° C., and the official standard value (for example, ST standard of the Japan Toy Association) can be sufficiently satisfied.
Moreover, according to Examples 1 and 2 of the battery according to the present invention, there is no leakage after short circuit, and re-use after short circuit is possible without any problem.

従って、本発明の電池によれば、通常の使用性能を低下させることなく、且つ、外部短絡時における発熱を抑制しつつ、安全性の高い電池を実現することができる。
また、ニッケル水素電池、単三型電池、特に単三型ニッケル水素電池は、電化製品や玩具等の市場において広く使用されていることから、このように広く使用されている電池に本発明を好適に適用することができる。
以上で本発明に係る電池の説明を終えるが、本発明は上記実施形態に限られるものではない。
例えば、上記実施形態では、電池がニッケル水素電池である場合について説明しているが、ニッケル水素電池と同様の効果が得られれば、電池はニッケル水素電池に限られるものではない。
Therefore, according to the battery of the present invention, a highly safe battery can be realized without deteriorating normal use performance and suppressing heat generation during an external short circuit.
In addition, nickel metal hydride batteries, AA batteries, and particularly AA nickel metal hydride batteries are widely used in the market of electrical appliances and toys. Therefore, the present invention is suitable for such widely used batteries. Can be applied to.
This is the end of the description of the battery according to the present invention, but the present invention is not limited to the above embodiment.
For example, although the case where the battery is a nickel metal hydride battery has been described in the above embodiment, the battery is not limited to the nickel metal hydride battery as long as the same effect as the nickel metal hydride battery can be obtained.

1 ケース
2a ケース空間
5 正極端子
6 正極板
7 負極板
8 セパレータ
12 負極端子
15 正極タブ(導電部材)
20 PTCサーミスタ
25 保護層
27 耐酸素保護層
29 耐アルカリ保護層
DESCRIPTION OF SYMBOLS 1 Case 2a Case space 5 Positive electrode terminal 6 Positive electrode plate 7 Negative electrode plate 8 Separator 12 Negative electrode terminal 15 Positive electrode tab (conductive member)
20 PTC thermistor 25 Protective layer 27 Oxygen resistant protective layer 29 Alkali resistant protective layer

Claims (4)

内部抵抗が70mΩ以下であり、周辺温度23±2℃での外部短絡時の温度上昇が45℃を越えないことを特徴とする電池。   A battery characterized in that the internal resistance is 70 mΩ or less, and the temperature rise during external short-circuiting at an ambient temperature of 23 ± 2 ° C. does not exceed 45 ° C. 単三型電池であることを特徴とする、請求項1記載の電池。   The battery according to claim 1, wherein the battery is an AA size battery. ニッケル水素電池であることを特徴とする、請求項1または2記載の電池。   The battery according to claim 1, wherein the battery is a nickel metal hydride battery. 前記ニッケル水素電池であって、外面部に正極端子、負極端子を備えたケースを有し、同ケースの内部に正極板、負極板およびセパレータが収容され、少なくとも一方の端子と当該端子に対応する極板との間が前記ケース内に配置された導電部材で導通されてなり、
前記導電部材は、ケース空間に露出する部分にPTCサーミスタが介在され、
前記PTCサーミスタは、前記ケース空間を満たすガス雰囲気に含まれる酸素成分とアルカリ成分から保護する柔軟性をもつ保護層で被膜されることを特徴とする、請求項3記載の電池。
The nickel-metal hydride battery has a case with a positive electrode terminal and a negative electrode terminal on the outer surface, and a positive electrode plate, a negative electrode plate, and a separator are accommodated in the case, and corresponds to at least one terminal and the terminal Conducted between the electrode plates by a conductive member disposed in the case,
The conductive member has a PTC thermistor interposed in a portion exposed to the case space,
4. The battery according to claim 3, wherein the PTC thermistor is coated with a protective layer having flexibility to protect from oxygen components and alkali components contained in a gas atmosphere filling the case space.
JP2010195822A 2010-09-01 2010-09-01 Battery Pending JP2012054099A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010195822A JP2012054099A (en) 2010-09-01 2010-09-01 Battery
ES11178853.5T ES2532968T3 (en) 2010-09-01 2011-08-25 Battery
EP11178853.5A EP2426759B1 (en) 2010-09-01 2011-08-25 Battery
US13/217,976 US20120052344A1 (en) 2010-09-01 2011-08-25 Battery
CN201110266730.2A CN102386370B (en) 2010-09-01 2011-08-31 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195822A JP2012054099A (en) 2010-09-01 2010-09-01 Battery

Publications (2)

Publication Number Publication Date
JP2012054099A true JP2012054099A (en) 2012-03-15
JP2012054099A5 JP2012054099A5 (en) 2013-10-10

Family

ID=45907206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195822A Pending JP2012054099A (en) 2010-09-01 2010-09-01 Battery

Country Status (1)

Country Link
JP (1) JP2012054099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024915A1 (en) * 2012-08-10 2014-02-13 Fdkトワイセル株式会社 Alkaline storage cell
WO2014084203A1 (en) * 2012-11-30 2014-06-05 Fdkトワイセル株式会社 Positive electrode lead and alkaline secondary battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325942A (en) * 1992-05-19 1993-12-10 Matsushita Electric Ind Co Ltd Ptc device and composition cell equipped with same device
JPH06243856A (en) * 1993-02-15 1994-09-02 Japan Storage Battery Co Ltd Electricity accumulating element
JP2003187785A (en) * 2001-12-18 2003-07-04 Sanyo Gs Soft Energy Co Ltd Secondary battery
WO2004068625A1 (en) * 2003-01-31 2004-08-12 Yuasa Corporation Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
JP2006121049A (en) * 2004-09-03 2006-05-11 Tyco Electronics Corp Electrical device having oxygen barrier coating
WO2007052790A1 (en) * 2005-11-07 2007-05-10 Tyco Electronics Raychem K.K. Ptc device
JP2007180382A (en) * 2005-12-28 2007-07-12 Tdk Corp Ptc element
JP2007227549A (en) * 2006-02-22 2007-09-06 Tdk Corp Ptc element
JP2007234486A (en) * 2006-03-03 2007-09-13 Gs Yuasa Corporation:Kk Battery
JP2007305870A (en) * 2006-05-12 2007-11-22 Tdk Corp Ptc element
JP2008053652A (en) * 2006-08-28 2008-03-06 Tdk Corp Ptc element, and battery protection system
JP2009135008A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Gasket for alkaline cell, and alkaline cell
WO2011138959A1 (en) * 2010-05-06 2011-11-10 タイコエレクトロニクスジャパン合同会社 Ptc device and secondary battery equipped with same
WO2012002523A1 (en) * 2010-07-02 2012-01-05 タイコエレクトロニクスジャパン合同会社 Ptc device and secondary battery having same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325942A (en) * 1992-05-19 1993-12-10 Matsushita Electric Ind Co Ltd Ptc device and composition cell equipped with same device
JPH06243856A (en) * 1993-02-15 1994-09-02 Japan Storage Battery Co Ltd Electricity accumulating element
JP2003187785A (en) * 2001-12-18 2003-07-04 Sanyo Gs Soft Energy Co Ltd Secondary battery
WO2004068625A1 (en) * 2003-01-31 2004-08-12 Yuasa Corporation Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
JP2006121049A (en) * 2004-09-03 2006-05-11 Tyco Electronics Corp Electrical device having oxygen barrier coating
WO2007052790A1 (en) * 2005-11-07 2007-05-10 Tyco Electronics Raychem K.K. Ptc device
JP2007180382A (en) * 2005-12-28 2007-07-12 Tdk Corp Ptc element
JP2007227549A (en) * 2006-02-22 2007-09-06 Tdk Corp Ptc element
JP2007234486A (en) * 2006-03-03 2007-09-13 Gs Yuasa Corporation:Kk Battery
JP2007305870A (en) * 2006-05-12 2007-11-22 Tdk Corp Ptc element
JP2008053652A (en) * 2006-08-28 2008-03-06 Tdk Corp Ptc element, and battery protection system
JP2009135008A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Gasket for alkaline cell, and alkaline cell
WO2011138959A1 (en) * 2010-05-06 2011-11-10 タイコエレクトロニクスジャパン合同会社 Ptc device and secondary battery equipped with same
WO2012002523A1 (en) * 2010-07-02 2012-01-05 タイコエレクトロニクスジャパン合同会社 Ptc device and secondary battery having same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024915A1 (en) * 2012-08-10 2014-02-13 Fdkトワイセル株式会社 Alkaline storage cell
JP2014035991A (en) * 2012-08-10 2014-02-24 Fdk Twicell Co Ltd Alkali storage battery
US9728764B2 (en) 2012-08-10 2017-08-08 Fdk Corporation Alkaline storage battery
WO2014084203A1 (en) * 2012-11-30 2014-06-05 Fdkトワイセル株式会社 Positive electrode lead and alkaline secondary battery
CN104838521A (en) * 2012-11-30 2015-08-12 Fdk株式会社 Positive electrode lead and alkaline secondary battery
JPWO2014084203A1 (en) * 2012-11-30 2017-01-05 Fdk株式会社 Positive electrode lead, alkaline secondary battery
CN104838521B (en) * 2012-11-30 2017-04-12 Fdk株式会社 Positive electrode lead and alkaline secondary battery
US9935307B2 (en) 2012-11-30 2018-04-03 Fdk Corporation Positive electrode lead and alkaline secondary battery

Similar Documents

Publication Publication Date Title
KR100922474B1 (en) Rechageable battery
US8057928B2 (en) Cell cap assembly with recessed terminal and enlarged insulating gasket
JP5319596B2 (en) Current interruption element and secondary battery provided with the same
JP5186514B2 (en) Secondary battery
KR100938896B1 (en) Battery pack
JP5606426B2 (en) Secondary battery including a cap assembly to which components are bonded
US8088511B2 (en) Cell cap assembly with recessed terminal and enlarged insulating gasket
JPH05251076A (en) Organic electrolyte battery
JP2011108626A (en) Lithium polymer secondary battery
JP2006049312A (en) Can type secondary cell
JP2013502048A (en) Cap assembly and secondary battery using the same
JP2005044626A (en) Battery
KR20190136202A (en) Cylindrical Secondary Battery for Preventing Overcharge
JP5973277B2 (en) Alkaline storage battery
CN102386370B (en) Battery
KR20130091533A (en) Secondary battery
KR100814879B1 (en) Non-aqueous liquid electrolyte secondary cell
JP5579544B2 (en) Alkaline storage battery
KR101511302B1 (en) Secondary battery
KR100591430B1 (en) Secondary battery
JP2012054099A (en) Battery
WO2015079672A1 (en) Cylindrical battery
KR20160000173A (en) Secondary battery
KR101563680B1 (en) Secondary battery
JP4749013B2 (en) battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140723