JP2005044626A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2005044626A
JP2005044626A JP2003277558A JP2003277558A JP2005044626A JP 2005044626 A JP2005044626 A JP 2005044626A JP 2003277558 A JP2003277558 A JP 2003277558A JP 2003277558 A JP2003277558 A JP 2003277558A JP 2005044626 A JP2005044626 A JP 2005044626A
Authority
JP
Japan
Prior art keywords
battery
plate
negative
temperature characteristic
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003277558A
Other languages
Japanese (ja)
Inventor
Yukio Tokuhara
幸夫 得原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo GS Soft Energy Co Ltd filed Critical Sanyo GS Soft Energy Co Ltd
Priority to JP2003277558A priority Critical patent/JP2005044626A/en
Publication of JP2005044626A publication Critical patent/JP2005044626A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery capable of preventing overcharging or the like by constituting an external insulating plate 7 with a negative temperature characteristic member such as NTC thermistor, without externally fitting an element component of the negative temperature characteristic member outside the battery nor housing it inside a battery vessel for connection. <P>SOLUTION: A part of or the entire external insulating plate 7 for insulating a negative electrode terminal 8 from a lid plate 2 which is a positive electrode terminal, is made of the negative temperature characteristic member such as the NTC thermistor whose resistance value decreases as a temperature rises, so that at over charging, the external insulating plate 7 shorts the positive electrode terminal and the negative electrode terminal 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、過充電等による温度上昇を防止する電池に関するものである。   The present invention relates to a battery that prevents a temperature rise due to overcharging or the like.

二次電池の充電器は、この二次電池の端子電圧が満充電電圧を超えると充電電流を遮断し充電を自動的に終了するものが多い。しかし、このような満充電を検出する機能のない充電器で充電したり、充電器の満充電検出機能が故障したり、その電池用のものではない充電器を誤って使用したような場合に、二次電池が過充電になるおそれがある。そして、二次電池がこのように過充電されると、活物質や電解質の分解反応が生じ、電池内部が異常な高温や高圧になるおそれがあり、特に非水電解質二次電池では、この温度や圧力の上昇が著しくなる場合がある。   Many chargers for secondary batteries cut off the charging current and automatically terminate charging when the terminal voltage of the secondary battery exceeds the full charge voltage. However, when charging with a charger that does not have a function to detect such full charge, when the full charge detection function of the charger is broken, or when a charger that is not for the battery is used incorrectly The secondary battery may be overcharged. If the secondary battery is overcharged in this manner, the decomposition reaction of the active material and the electrolyte may occur, and the inside of the battery may become abnormally high temperature or high pressure. Especially in the case of a non-aqueous electrolyte secondary battery, this temperature Or pressure increase may be significant.

そこで、従来から、電池の端子間に並列にNTCサーミスタを接続することにより過充電による障害を防止する発明がなされている(例えば特許文献1参照)。NTCサーミスタは、温度の上昇に伴って抵抗値が減少するNTC(Negative Temperature Coefficient)、即ち負温度特性を備えた半導体セラミックスからなる負温度特性素子であり、この温度上昇に伴う抵抗値の減少の程度が特に大きい素子が用いられる。従って、電池が過充電となってこの電池の温度が異常に上昇すると、端子間に接続されたNTCサーミスタの抵抗値が減少することにより充電電流をバイパスさせるので、この過剰な充電電流を電池本体に流入させないようにすることができる。また、この特許文献1では、NTCサーミスタに代えて、熱収縮性樹脂等に導電粒子を分散させた負温度特性素子を用いることにより、温度上昇時の抵抗値をさらに急激に減少させると共に、その後温度が低下した場合にも抵抗値が上昇して元に戻るようなことがないようにした過充電保護の発明が提案されている。   Therefore, conventionally, an invention has been made in which a failure due to overcharging is prevented by connecting an NTC thermistor in parallel between the terminals of the battery (see, for example, Patent Document 1). NTC thermistors are NTC (Negative Temperature Coefficient) whose resistance value decreases as temperature rises, that is, a negative temperature characteristic element made of semiconductor ceramics with negative temperature characteristics. The resistance value decreases as this temperature rises. Elements with a particularly large degree are used. Therefore, if the battery is overcharged and the temperature of the battery rises abnormally, the resistance value of the NTC thermistor connected between the terminals is reduced to bypass the charging current. Can be prevented from flowing into. Moreover, in this patent document 1, instead of the NTC thermistor, by using a negative temperature characteristic element in which conductive particles are dispersed in a heat-shrinkable resin or the like, the resistance value at the time of temperature rise is further rapidly reduced, and thereafter There has been proposed an overcharge protection invention in which the resistance value does not increase and return even when the temperature decreases.

上記負温度特性素子となる半導体セラミックスや樹脂等は、パッケージに収納した素子部品として電池に接続されていた。即ち、従来は、電池の外部に保護回路としてこの負温度特性素子の素子部品を接続する場合と、電池の電池容器内部にこの負温度特性素子の素子部品を収納して内部で接続する場合とがあった。   Semiconductor ceramics, resins, and the like that are the negative temperature characteristic elements are connected to the battery as element parts housed in a package. That is, conventionally, the case where the element part of the negative temperature characteristic element is connected to the outside of the battery as a protection circuit, and the case where the element part of the negative temperature characteristic element is stored inside the battery container of the battery and connected internally. was there.

ところが、負温度特性素子の素子部品を電池の外部に接続する場合には、ユーザーがこの電池の機器への装着時に素子部品の接続作業を行う必要が生じるという問題があった。また、電池製造時にこの素子部品を接続する場合には、電池の装着時に邪魔になったり、不用意に取り外されるおそれもあるので、この素子部品を電池と共に樹脂パッケージ等に収納してパック電池とする必要が生じるという問題もあった。これに対して、電池の電池容器内部に負温度特性素子の素子部品を収納する場合には、電池が単体で過充電保護機能を有するので、取り扱いが便利で汎用性の高いものとなる。しかしながら、この場合にも、電解液に耐性を有する素子部品を使用する必要があり、しかも、狭い電池容器内にこの素子部品の収納スペースを確保するために容量密度が低下したり、溶接やカシメ等の接続作業が細かい面倒な作業になるという問題があった。さらに、電池の温度上昇時に負温度特性素子の抵抗が減少して大きな電流が流れると、この素子部品がジュール熱によって発熱するために電池内部がさらに高温になるという問題もあった。
特開2002−43104号公報
However, in the case where the element part of the negative temperature characteristic element is connected to the outside of the battery, there is a problem that it is necessary for the user to connect the element part when the battery is mounted on the device. In addition, when this element component is connected during battery manufacture, there is a risk that it will be in the way when the battery is installed, or it may be removed carelessly. There was also a problem that it was necessary to do. On the other hand, when the element part of the negative temperature characteristic element is housed inside the battery container of the battery, the battery has a function of overcharge protection alone, so that it is easy to handle and highly versatile. However, even in this case, it is necessary to use an element component that is resistant to the electrolyte, and the capacity density is reduced in order to secure a storage space for the element component in a narrow battery container, and welding or caulking is performed. There has been a problem that the connection work such as the above becomes a fine and troublesome work. Further, when the resistance of the negative temperature characteristic element decreases and a large current flows when the temperature of the battery rises, there is a problem that the temperature of the inside of the battery further increases because this element component generates heat due to Joule heat.
JP 2002-43104 A

本発明は、NTCサーミスタ等の負温度特性素子を電池に並列に接続する場合に、このNTCサーミスタ等の素子部品を電池の外部に外付けするか、電池容器内部に収納して接続する他なかったという問題を解決しようとするものである。   In the present invention, when a negative temperature characteristic element such as an NTC thermistor is connected in parallel to the battery, the element parts such as the NTC thermistor are externally attached to the outside of the battery or are housed and connected inside the battery container. It tries to solve the problem.

請求項1の電池は、正負極間の絶縁を行う絶縁部材の全部又は一部を、温度が上昇すると抵抗値が減少する負温度特性部材で構成したことを特徴とする。   The battery according to claim 1 is characterized in that all or a part of the insulating member that insulates between the positive and negative electrodes is composed of a negative temperature characteristic member that decreases in resistance value when the temperature rises.

請求項1の発明によれば、絶縁部材に負温度特性素子が用いられるため、過充電等により電池の温度が異常に上昇すると、この負温度特性素子の抵抗値が低下して短絡電流が流れるようになる。そして、これにより充電電流が負温度特性素子にバイパスされるので、過剰な電流が電池本体に流れ込んで活物質や電解質の分解反応が生じ、電池内部が異常な高温や高圧になるのを防止することができるようになる。   According to the first aspect of the present invention, since the negative temperature characteristic element is used as the insulating member, if the battery temperature rises abnormally due to overcharging or the like, the resistance value of the negative temperature characteristic element decreases and a short circuit current flows. It becomes like this. Then, the charging current is bypassed to the negative temperature characteristic element, thereby preventing an excessive current from flowing into the battery body and causing a decomposition reaction of the active material or the electrolyte, thereby preventing the battery from becoming an abnormally high temperature or high pressure. Will be able to.

しかも、負温度特性素子は、元々正負極間の絶縁を行うために用いられている絶縁部材の全部又は一部となるので、電池の外部に別途負温度特性素子を接続する必要がなくなり、この電池と一体化することにより取り扱いが便利で汎用性も高いものとなる。特に、絶縁部材が部材間の封止も行う絶縁封止部材である場合には、正極側の部材と負極側の部材との間で圧迫されて配置されるので、負温度特性素子の電極となる部分を正極側と負極側に露出させておくだけで、この負温度特性素子を確実に正負極間に接続することができる。   Moreover, since the negative temperature characteristic element is all or part of the insulating member originally used for insulation between the positive and negative electrodes, there is no need to separately connect the negative temperature characteristic element to the outside of the battery. By being integrated with the battery, it is easy to handle and highly versatile. In particular, when the insulating member is an insulating sealing member that also seals between the members, since the insulating member is pressed and disposed between the positive electrode side member and the negative electrode side member, The negative temperature characteristic element can be reliably connected between the positive and negative electrodes only by exposing the portions to the positive electrode side and the negative electrode side.

また、電池容器内部に別途負温度特性素子の素子部品を収納して接続する必要もなくなるので、この素子部品の収納スペースにより容量密度が減少するようなことがなくなり、この素子部品を接続するための面倒な作業も不要になる。さらに、絶縁部材が電池容器の内側に配置されている場合には、電池内部の温度上昇を迅速に検出し確実な動作を行うことができるようになる。   In addition, since it is not necessary to separately store and connect the element part of the negative temperature characteristic element inside the battery container, the capacity density is not reduced by the storage space of the element part, and this element part is connected. The troublesome work is no longer necessary. Furthermore, when the insulating member is disposed inside the battery container, a temperature increase inside the battery can be quickly detected and a reliable operation can be performed.

以下、本発明の最良の実施形態について説明する。   Hereinafter, the best embodiment of the present invention will be described.

本実施形態は、図2に示すように、小型角形の非水電解質二次電池について説明する。この非水電解質二次電池は、携帯電話機等の電源として用いるものであり、薄い箱型容器状のアルミニウム製の電池缶1の開口部にアルミニウム板からなる蓋板2を嵌め込み溶接で封止することにより電池容器が構成されている。電池缶1の内部には、発電要素3が収納され、非水電解液が充填される。発電要素3は、正極3aと負極3bをセパレータ3cを介して長円筒形に巻回したものである。この発電要素3は、最外周に巻回された正極3aと負極3bの集電体基材であるアルミニウム箔と銅箔が、互いに重なり合わないように逆方向に幅を狭めて両端部側からリードとして引き出されている。   In the present embodiment, as shown in FIG. 2, a small square nonaqueous electrolyte secondary battery will be described. This non-aqueous electrolyte secondary battery is used as a power source for a mobile phone or the like, and a lid plate 2 made of an aluminum plate is fitted into an opening of a thin box-shaped aluminum battery can 1 and sealed by welding. Thus, the battery container is configured. Inside the battery can 1, the power generation element 3 is accommodated and filled with a non-aqueous electrolyte. The power generation element 3 is obtained by winding a positive electrode 3a and a negative electrode 3b into a long cylindrical shape via a separator 3c. The power generating element 3 is formed by narrowing the width in the opposite direction so that the current collector base material of the positive electrode 3a and the negative electrode 3b wound on the outermost periphery is not overlapped with each other from both ends. Has been pulled out as a lead.

蓋板2は、図1及び図2に示すように、電池缶1の内側を向く裏面の一端側に正極集電接続板4が接続固定されると共に、この裏面の他端側に、内部絶縁板5を介して負極集電接続板6が配置される。正極集電接続板4は、アルミニウム板を断面L字形に折り曲げたものであり、折り曲げた一方の板片が溶接により蓋板2の裏面に直接接続固定される。負極集電接続板6は、銅板を断面L字形に折り曲げたものであり、折り曲げた一方の板片が内部絶縁板5を介して蓋板2の裏面に配置される。また、図1に示すように、この蓋板2の表面の中央部には、外部絶縁板7を介して負極端子8が配置されている。負極端子8は、蓋板2よりも十分に小さい方形厚板状の鉄材の本体の裏面中央部から接続突起8aを突設したものである。そして、この負極端子8は、接続突起8aを外部絶縁板7と蓋板2と内部絶縁板5の貫通孔に通し、さらに負極集電接続板6の貫通孔にも通して、ここでかしめることにより、これら外部絶縁板7と内部絶縁板5と負極集電接続板6と共に蓋板2に固定される。ただし、内部絶縁板5には、表面からスリーブ5aが突設されていて、このスリーブ5aが蓋板2と外部絶縁板7の貫通孔に嵌入する。また、負極端子8の接続突起8aは、このスリーブ5aの貫通孔に嵌入するようになっている。従って、この負極端子8は、裏面が外部絶縁板7の表面に圧接されるが、接続突起8aは、内部絶縁板5のスリーブ5aの貫通孔の内面に接触するだけで、負極集電接続板6にかしめられて接続固定される。   As shown in FIGS. 1 and 2, the lid plate 2 has a positive current collector connection plate 4 connected and fixed to one end of the back surface facing the inside of the battery can 1, and an internal insulation on the other end side of the back surface. A negative electrode current collector connection plate 6 is disposed through the plate 5. The positive electrode current collector connection plate 4 is formed by bending an aluminum plate into an L-shaped cross section, and one bent piece is directly connected and fixed to the back surface of the lid plate 2 by welding. The negative electrode current collector connection plate 6 is formed by bending a copper plate into an L-shaped cross section, and one bent plate piece is disposed on the back surface of the lid plate 2 via the internal insulating plate 5. Further, as shown in FIG. 1, a negative electrode terminal 8 is disposed at the center of the surface of the lid plate 2 via an external insulating plate 7. The negative electrode terminal 8 has a connection projection 8 a protruding from the center of the back surface of a main body of a rectangular thick plate-shaped iron material that is sufficiently smaller than the cover plate 2. The negative electrode terminal 8 is caulked by passing the connection protrusion 8a through the through holes of the external insulating plate 7, the cover plate 2 and the internal insulating plate 5 and further through the through holes of the negative current collector connecting plate 6. Thus, the outer insulating plate 7, the inner insulating plate 5, and the negative electrode current collector connection plate 6 are fixed to the cover plate 2 together. However, a sleeve 5 a is projected from the surface of the inner insulating plate 5, and this sleeve 5 a is fitted into the through hole of the cover plate 2 and the outer insulating plate 7. Further, the connection protrusion 8a of the negative terminal 8 is fitted into the through hole of the sleeve 5a. Therefore, the back surface of the negative electrode terminal 8 is pressed against the surface of the external insulating plate 7, but the connection protrusion 8 a is only in contact with the inner surface of the through-hole of the sleeve 5 a of the internal insulating plate 5. 6 is connected and fixed.

外部絶縁板7は、負極端子8よりも僅かに大きい方形板状のNTCサーミスタからなり、表面に負極端子8を嵌め込むための凹部が形成されると共に、中央部に貫通孔が形成されている。NTCサーミスタは、ニッケルやコバルト、マンガン等の酸化物からなる半導体セラミックスであり、原料を貫通孔を形成した方形板状に成形して焼成することにより、外部絶縁板7そのものを構成することができる。この外部絶縁板7のNTCサーミスタは、温度が上昇するに従って方形板状の表裏面間の抵抗値が指数関数的に減少する負温度特性素子である。内部絶縁板5は、絶縁性の樹脂を方形板状に成形したものであり、この成形時にスリーブ5aと貫通孔が形成される。   The external insulating plate 7 is formed of a rectangular plate-shaped NTC thermistor that is slightly larger than the negative electrode terminal 8. A concave portion for fitting the negative electrode terminal 8 is formed on the surface, and a through hole is formed in the central portion. . The NTC thermistor is a semiconductor ceramic made of an oxide such as nickel, cobalt, or manganese, and the external insulating plate 7 itself can be formed by forming and firing the raw material into a square plate having through holes. . The NTC thermistor of the external insulating plate 7 is a negative temperature characteristic element in which the resistance value between the front and back sides of the rectangular plate shape decreases exponentially as the temperature rises. The internal insulating plate 5 is formed by molding an insulating resin into a square plate shape, and a sleeve 5a and a through hole are formed during this molding.

上記蓋板2は、正極集電接続板4を接続固定すると共に、負極端子8と負極集電接続板6を外部絶縁板7と内部絶縁板5を介して絶縁固定しておき、図2に示すように、発電要素3から引き出された正極3aのアルミニウム箔を正極集電接続板4に溶接すると共に、この発電要素3から引き出された負極3bの銅箔を負極集電接続板6に溶接する。そして、電池缶1に開口部から発電要素3を挿入し、この開口部に蓋板2を嵌め込んで周縁部を溶接することにより封止する。なお、非水電解液は、電池缶1や蓋板2に形成された図示しない注液口から注入し、この注液口は注液後に封口される。   The lid plate 2 connects and fixes the positive electrode current collector connection plate 4, and insulates and fixes the negative electrode terminal 8 and the negative electrode current collector connection plate 6 via the external insulating plate 7 and the internal insulating plate 5. As shown, the aluminum foil of the positive electrode 3 a drawn out from the power generation element 3 is welded to the positive electrode current collector connection plate 4, and the copper foil of the negative electrode 3 b drawn from this power generation element 3 is welded to the negative electrode current collector connection plate 6. To do. Then, the power generation element 3 is inserted into the battery can 1 from the opening, and the lid plate 2 is fitted into the opening and the periphery is welded to seal the battery can 1. The non-aqueous electrolyte is injected from a liquid injection port (not shown) formed in the battery can 1 and the cover plate 2, and the liquid injection port is sealed after the liquid injection.

上記構成の非水電解質二次電池は、発電要素3の正極3aが正極集電接続板4を介して蓋板2と電池缶1に接続されるので、これらの蓋板2と電池缶1が正極端子となる。また、負極3bは、負極集電接続板6を介して負極端子8に接続される。この際、負極集電接続板6や負極端子8の接続突起8aは、内部絶縁板5によって蓋板2との間が絶縁されている。また、外部絶縁板7は、表面に負極端子8の裏面が圧接されると共に、裏面に正極端子となる蓋板2の表面が圧接されるので、負極端子8と正極端子である蓋板2との間に接続された構成となる。   In the non-aqueous electrolyte secondary battery having the above-described configuration, the positive electrode 3a of the power generation element 3 is connected to the cover plate 2 and the battery can 1 via the positive current collecting connection plate 4, and thus the cover plate 2 and the battery can 1 are connected to each other. It becomes the positive terminal. The negative electrode 3 b is connected to the negative electrode terminal 8 through the negative electrode current collector connection plate 6. At this time, the negative current collector connection plate 6 and the connection protrusion 8 a of the negative electrode terminal 8 are insulated from the lid plate 2 by the internal insulating plate 5. Further, since the outer insulating plate 7 is pressed against the back surface of the negative electrode terminal 8 on the front surface and the front surface of the lid plate 2 serving as the positive electrode terminal is pressed against the back surface, the negative electrode terminal 8 and the lid plate 2 serving as the positive electrode terminal It becomes the structure connected between.

ここで、非水電解質二次電池が正常に充放電を繰り返して使用されていれば、蓋板2に密着した外部絶縁板7の温度が異常に上昇するようなことはないので、この外部絶縁板7は高抵抗の絶縁体として機能する。しかしながら、過充電により発電要素3等が異常に温度上昇すると、蓋板2や負極端子8を介して外部絶縁板7も異常な高温になるので、この外部絶縁板7は、抵抗値が急激に減少して導電体として機能する。従って、過充電が発生すると、正極端子である電池缶1や蓋板2から流入する充電電流は、外部絶縁板7で短絡されて負極端子8から流出するので、発電要素3にそれ以上過剰に供給されて、電池容器内部がさらに異常な高温や高圧になるのを防止することができる。なお、この過充電時には、充電電流が外部絶縁板7に短絡電流となって流れるので、この外部絶縁板7でも発熱が生じる。しかしながら、この外部絶縁板7は、蓋板2の表面、即ち電池容器の外側に配置されているので、発生した熱を円滑に外部に放出することができる。   Here, if the non-aqueous electrolyte secondary battery is normally repeatedly charged and discharged, the temperature of the external insulating plate 7 in close contact with the cover plate 2 will not rise abnormally. The plate 7 functions as a high resistance insulator. However, when the temperature of the power generating element 3 or the like rises abnormally due to overcharging, the external insulating plate 7 also becomes an abnormally high temperature via the cover plate 2 or the negative electrode terminal 8. It decreases and functions as a conductor. Therefore, when overcharge occurs, the charging current flowing from the battery can 1 or the cover plate 2 that is the positive electrode terminal is short-circuited by the external insulating plate 7 and flows out from the negative electrode terminal 8. By being supplied, it is possible to prevent the inside of the battery container from becoming abnormally high temperature or high pressure. In addition, since the charging current flows as a short-circuit current in the external insulating plate 7 during this overcharge, the external insulating plate 7 also generates heat. However, since the external insulating plate 7 is disposed on the surface of the lid plate 2, that is, outside the battery container, the generated heat can be smoothly released to the outside.

この結果、本実施形態の非水電解質二次電池は、もともと負極端子8と正極端子である蓋板2との間の絶縁を行うための外部絶縁板7をNTCサーミスタで構成することにより、外部でこの非水電解質二次電池にNTCサーミスタの素子部品を接続する必要がなくなり、ユーザーが接続作業を行う手間をなくしたり、不用意にこの素子部品が取り外されるようなおそれがなくなる。また、外部に接続したNTCサーミスタの素子部品と共に非水電解質二次電池を樹脂パッケージ等に収納してパック電池とする必要もなくなる。さらに、このNTCサーミスタの素子部品を電池容器の内部に収納して接続する必要もなくなるので、この素子部品の収納スペースに占拠されて電池容量が減少するようなことがなくなり、この素子部品を内部で正極3aや負極3bに接続するための面倒な作業も不要になる。   As a result, the non-aqueous electrolyte secondary battery of the present embodiment is configured such that the external insulating plate 7 for originally performing insulation between the negative electrode terminal 8 and the cover plate 2 that is the positive electrode terminal is configured by an NTC thermistor. Thus, there is no need to connect the NTC thermistor element part to the non-aqueous electrolyte secondary battery, and there is no risk that the user will not have to perform connection work or that the element part will be inadvertently removed. In addition, it is not necessary to store the nonaqueous electrolyte secondary battery in a resin package or the like together with the element parts of the NTC thermistor connected to the outside to form a battery pack. Further, since it is not necessary to house and connect the element parts of the NTC thermistor inside the battery container, the battery capacity is not reduced by being occupied by the storage space of the element parts. Thus, the troublesome work for connecting to the positive electrode 3a and the negative electrode 3b is not required.

なお、上記実施形態では、非水電解質二次電池が正常に充放電を行って使用されている場合には外部絶縁板7のNTCサーミスタが絶縁体として機能し、過充電により異常な高温になると導電体として機能する場合を示した。ただし、ここでいう絶縁体とは、実用上十分に高抵抗なものであればよく、例えば非水電解質二次電池の保護回路ICが常時消費する数μA程度の電流が流れるようなものであってもよい。また、ここでいう導電体とは、実用上十分に低抵抗なものであればよく、例えば電池容量の3倍(3ItA)以上の電流が流れればよい。さらに、この絶縁体の状態と導電体の状態は、特定の温度を境に急激に変化するのが理想であるが、実際には温度の上昇に伴って抵抗値が例えば指数関数的に減少するにすぎない。従って、この抵抗値の減少率ができるだけ大きいNTCサーミスタを用いることにより、非水電解質二次電池の正常時には外部絶縁板7での無駄な電力消費が少なくなり、過充電時には外部絶縁板7にできるだけ大きな短絡電流が流れるようにすることが好ましい。   In the above embodiment, when the non-aqueous electrolyte secondary battery is normally charged and discharged and used, the NTC thermistor of the external insulating plate 7 functions as an insulator, and becomes abnormally hot due to overcharging. The case of functioning as a conductor is shown. However, the insulator here may be any material that has a sufficiently high resistance in practical use. For example, a current of about several μA that is always consumed by the protection circuit IC of the nonaqueous electrolyte secondary battery flows. May be. Moreover, the conductor here should just have a low resistance practically enough, for example, should just flow the electric current more than 3 times (3 ItA) of battery capacity. Furthermore, it is ideal that the state of the insulator and the state of the conductor change suddenly at a specific temperature, but actually, the resistance value decreases exponentially as the temperature rises. Only. Therefore, by using an NTC thermistor with a resistance reduction rate as large as possible, wasteful power consumption in the external insulating plate 7 is reduced when the nonaqueous electrolyte secondary battery is normal, and the external insulating plate 7 can be used as much as possible when overcharging. It is preferable that a large short-circuit current flows.

また、上記実施形態では、外部絶縁板7をNTCサーミスタで構成する場合を示したが、温度が上昇すると抵抗値が減少する負温度特性素子であれば、他のものを用いることもできる。このような負温度特性素子としては、例えばCTR(Critical Temperature Resistance)がある。このCTRは、特定の温度以上に上昇すると、極めて急峻に抵抗値が減少する優れた特性を有する負温度特性素子であるが、現状の技術では十分な実用化が図れていない。   Moreover, although the case where the external insulating plate 7 is composed of an NTC thermistor has been described in the above embodiment, any other element can be used as long as it is a negative temperature characteristic element whose resistance value decreases as the temperature rises. An example of such a negative temperature characteristic element is CTR (Critical Temperature Resistance). This CTR is a negative temperature characteristic element having an excellent characteristic that its resistance value decreases abruptly when it rises above a specific temperature. However, the CTR is not sufficiently put into practical use by the current technology.

また、上記のような負温度特性素子としては、熱収縮性を有する樹脂等の内部に、金属線やカーボン等の導電材を分散させたようなものを用いることもできる。この素子は、通常時には導電材が樹脂等により引き離されて絶縁材となるが、温度が異常に上昇すると熱収縮性の樹脂等が収縮するので、内部の導電材が圧迫されて互いに接触することにより、素子全体が導電性を有するようになるものである。従って、この素子も、抵抗値の減少が極めて急峻な優れた負温度特性を有することとなる。しかも、一旦温度が異常に上昇すると、その後温度が低下しても導電性が保たれるので、この負温度特性素子によってバイパスされた充電電流が再び発電要素3に供給されるのを防ぐこともできる。   In addition, as the negative temperature characteristic element as described above, it is possible to use a device in which a conductive material such as a metal wire or carbon is dispersed inside a resin having heat shrinkability. In this element, the conductive material is normally separated by resin etc. to become an insulating material, but when the temperature rises abnormally, the heat shrinkable resin etc. contracts, so the internal conductive material is pressed and brought into contact with each other As a result, the entire device becomes conductive. Therefore, this element also has an excellent negative temperature characteristic in which the resistance value decreases extremely rapidly. Moreover, once the temperature rises abnormally, the conductivity is maintained even if the temperature is lowered thereafter, so that the charging current bypassed by the negative temperature characteristic element can be prevented from being supplied to the power generation element 3 again. it can.

さらに、上記のような負温度特性素子に限らず、温度が上昇すると抵抗値が減少する負温度特性部材であればよいので、図3に示すような機械構造を持ったバイメタルスイッチ9を用いることもできる。バイメタルスイッチ9は、温度が異常に上昇するとバイメタル9aが変位反転して可動接点9bが固定接点9cに圧接されることにより回路を閉じるスイッチである。従来の電池の過充電保護回路に用いるバイメタルスイッチは、温度が異常に上昇するとバイメタルが変位して接点が開くことにより充電電流を遮断するものであるため、充電電流が遮断されて温度が低下すると再び接点が閉じてON/OFFを繰り返すので、接点が劣化するおそれがある。しかしながら、図3に示すようなバイメタルスイッチ9を用いれば、接点9b,9cが閉じてバイメタル9aに充電電流が流れることにより発熱するので、短絡状態を保持することができる。このようなバイメタルスイッチ9は、例えば可動接点9bが蓋板2と接続され固定接点9cが負極端子8と接続されるように端子を配置することにより外部絶縁板7を構成することができる。また、バイメタルスイッチ9に代えて感温リードスイッチを用いることもできる。感温リードスイッチは、磁性体がキュリー点温度以上になると磁性を失うことにより磁石で接点を閉じるようにしたスイッチである。   Furthermore, the present invention is not limited to the negative temperature characteristic element as described above, and any negative temperature characteristic member whose resistance value decreases as the temperature rises may be used. Therefore, the bimetal switch 9 having a mechanical structure as shown in FIG. 3 is used. You can also. The bimetal switch 9 is a switch that closes the circuit when the temperature rises abnormally and the bimetal 9a is displaced and reversed and the movable contact 9b is pressed against the fixed contact 9c. The conventional bimetal switch used for the overcharge protection circuit of a battery shuts off the charging current when the temperature rises abnormally and the bimetal displaces and the contact opens, so the charging current is cut off and the temperature drops. Since the contact closes again and repeats ON / OFF, the contact may be deteriorated. However, when the bimetal switch 9 as shown in FIG. 3 is used, the contacts 9b and 9c are closed and the charging current flows through the bimetal 9a, so that heat is generated, so that the short circuit state can be maintained. In such a bimetal switch 9, for example, the external insulating plate 7 can be configured by arranging the terminals such that the movable contact 9 b is connected to the cover plate 2 and the fixed contact 9 c is connected to the negative terminal 8. Further, a temperature-sensitive reed switch can be used in place of the bimetal switch 9. The temperature-sensitive reed switch is a switch that closes the contact point with a magnet by losing magnetism when the magnetic material reaches or exceeds the Curie point temperature.

また、上記実施形態では、外部絶縁板7の全部をNTCサーミスタ等の負温度特性部材で構成する場合を示したが、この外部絶縁板7の一部を負温度特性部材で構成することもできる。例えば樹脂やゴム等の絶縁体の一部に負温度特性部材を埋め込んで外部絶縁板7とすることができる。また、このように外部絶縁板7の一部に埋め込んだ負温度特性部材には、適宜電極となる導電体を接続してもよい。   Moreover, although the case where all the external insulating plates 7 were comprised with negative temperature characteristic members, such as NTC thermistor, was shown in the said embodiment, a part of this external insulating plate 7 can also be comprised with a negative temperature characteristic member. . For example, a negative temperature characteristic member may be embedded in a part of an insulator such as resin or rubber to form the external insulating plate 7. In addition, a conductor serving as an electrode may be appropriately connected to the negative temperature characteristic member embedded in a part of the external insulating plate 7 as described above.

また、上記実施形態では、外部絶縁板7の全部又は一部をNTCサーミスタ等の負温度特性部材で構成する場合を示したが、内部絶縁板5の全部又は一部を負温度特性部材で構成することもできる。さらに、このような絶縁板ではなく、例えば発電要素3のセパレータ3c等のように正負極間の絶縁を行う絶縁部材の全部又は一部を負温度特性部材で構成することもできる。特に、柔軟性を有するシート状の負温度特性素子が作製可能となれば、任意の絶縁部材に用いることができるようになる。しかも、内部絶縁板5やセパレータ3c等のように電池容器の内部に配置される絶縁部材に用いた場合には、過充電時に発生した熱によって直ちに負温度特性部材の温度が上昇するので、温度検出が迅速となり確実な動作を行うことができるようになる。   Moreover, in the said embodiment, although the case where all or one part of the external insulating board 7 was comprised with negative temperature characteristic members, such as NTC thermistor, was shown, all or one part of the internal insulating board 5 is comprised with a negative temperature characteristic member. You can also Furthermore, instead of such an insulating plate, for example, all or a part of an insulating member that insulates between positive and negative electrodes, such as the separator 3c of the power generation element 3, may be configured by a negative temperature characteristic member. In particular, if a flexible sheet-like negative temperature characteristic element can be produced, it can be used for any insulating member. In addition, when used for an insulating member disposed inside the battery container, such as the internal insulating plate 5 or the separator 3c, the temperature of the negative temperature characteristic member immediately increases due to heat generated during overcharge. Detection is quick and reliable operation can be performed.

また、上記実施形態では、蓋板2が正極端子となり、ここに内部絶縁板5や外部絶縁板7を介して負極端子8を取り付ける端子構造の非水電解質二次電池について説明したが、この端子構造は任意である。さらに、上記実施形態では、非水電解質二次電池について説明したが、他の二次電池でも本発明を実施可能であり、一次電池の場合にも、誤って充電を行う危険を防止するために、同様に実施可能である。   Moreover, in the said embodiment, although the cover plate 2 became a positive electrode terminal and the non-aqueous electrolyte secondary battery of the terminal structure which attaches the negative electrode terminal 8 via the internal insulating board 5 or the external insulating board 7 here was demonstrated, this terminal The structure is arbitrary. Furthermore, in the above embodiment, the non-aqueous electrolyte secondary battery has been described. However, the present invention can also be implemented with other secondary batteries, and in order to prevent the risk of erroneous charging even in the case of a primary battery. Can be implemented as well.

正負極間の絶縁を行う絶縁部材の全部又は一部をNTCサーミスタ等の負温度特性部材で構成することにより、過充電等を防止することができる電池に適用できる。   By constituting all or part of the insulating member for insulating between the positive and negative electrodes with a negative temperature characteristic member such as an NTC thermistor, the present invention can be applied to a battery that can prevent overcharge and the like.

本発明の一実施形態を示すものであって、非水電解質二次電池の蓋板部分の構成を示す組み立て斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an assembled perspective view showing a configuration of a lid plate portion of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 本発明の一実施形態を示すものであって、非水電解質二次電池の構造を説明するための組み立て斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an assembled perspective view for illustrating a structure of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 本発明の一実施形態を示すものであって、非水電解質二次電池の外部絶縁板にNTCサーミスタを用いた場合の等価回路を示す回路図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram illustrating an equivalent circuit when an NTC thermistor is used as an external insulating plate of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

符号の説明Explanation of symbols

2 蓋板
3 発電要素
3a 正極
3b 負極
3c セパレータ
4 正極集電接続板
5 内部絶縁板
6 負極集電接続板
7 外部絶縁板
8 負極端子
2 Lid plate 3 Power generation element 3a Positive electrode 3b Negative electrode 3c Separator 4 Positive current collector connection plate 5 Internal insulation plate 6 Negative current collection connection plate 7 External insulation plate 8 Negative electrode terminal

Claims (1)

正負極間の絶縁を行う絶縁部材の全部又は一部を、温度が上昇すると抵抗値が減少する負温度特性部材で構成したことを特徴とする電池。   A battery characterized in that all or part of an insulating member that insulates between positive and negative electrodes is composed of a negative temperature characteristic member whose resistance value decreases as the temperature rises.
JP2003277558A 2003-07-22 2003-07-22 Battery Pending JP2005044626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277558A JP2005044626A (en) 2003-07-22 2003-07-22 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277558A JP2005044626A (en) 2003-07-22 2003-07-22 Battery

Publications (1)

Publication Number Publication Date
JP2005044626A true JP2005044626A (en) 2005-02-17

Family

ID=34264253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277558A Pending JP2005044626A (en) 2003-07-22 2003-07-22 Battery

Country Status (1)

Country Link
JP (1) JP2005044626A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533074A (en) * 2004-05-19 2007-11-15 エルジー・ケム・リミテッド Battery safety element and battery equipped with the same
JP2009087753A (en) * 2007-09-28 2009-04-23 Toshiba Corp Square nonaqueous electrolyte battery
JP2010086875A (en) * 2008-10-01 2010-04-15 Nissan Motor Co Ltd Bipolar battery, battery pack using the same, and vehicle
CN101887986A (en) * 2009-05-14 2010-11-17 Sb锂摩托有限公司 Rechargeable battery
JP2012119303A (en) * 2010-12-02 2012-06-21 Sb Limotive Co Ltd Secondary battery
KR20130106649A (en) * 2012-03-20 2013-09-30 삼성에스디아이 주식회사 Rechargeable battery
JP2013235832A (en) * 2012-05-04 2013-11-21 Samsung Sdi Co Ltd Rechargeable battery
US20140154534A1 (en) * 2012-11-30 2014-06-05 Ningde Amperex Technology Limited Power battery safety head cover
JP2014138001A (en) * 2013-01-18 2014-07-28 Samsung Sdi Co Ltd Secondary battery
US8835031B2 (en) 2012-09-04 2014-09-16 Samsung Sdi Co., Ltd. Rechargeable battery
US8877362B2 (en) 2011-12-02 2014-11-04 Samsung Sdi Co., Ltd. Rechargeable battery pack
US8877361B2 (en) 2009-09-01 2014-11-04 Samsung Sdi Co., Ltd. Rechargeable battery
US9012050B2 (en) 2011-07-26 2015-04-21 Samsung Sdi Co., Ltd. Rechargeable battery
US9054371B2 (en) 2011-11-17 2015-06-09 Samsung Sdi Co., Ltd. Rechargeable battery
US9634299B2 (en) 2011-09-06 2017-04-25 Samsung Sdi Co., Ltd. Rechargeable battery
JP2017157274A (en) * 2016-02-29 2017-09-07 日立オートモティブシステムズ株式会社 Lithium ion battery module
JP2020136428A (en) * 2019-02-18 2020-08-31 株式会社指月電機製作所 Capacitor
CN113270694A (en) * 2021-05-27 2021-08-17 珠海冠宇电池股份有限公司 Utmost point ear subassembly and electric core
US11837736B2 (en) 2019-10-15 2023-12-05 Contemporary Amperex Technology Co., Limited Secondary battery, battery module, battery pack, device, and manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423727A (en) * 1987-07-01 1989-01-26 Asea Brown Boveri By-pass device for battery cell protection
JPH10255757A (en) * 1997-03-12 1998-09-25 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JPH10326610A (en) * 1997-05-27 1998-12-08 Hitachi Ltd Non-aqueous electrolyte secondary battery
JPH11191436A (en) * 1997-12-26 1999-07-13 Hitachi Ltd Capacitor protector
JP2000294226A (en) * 1999-04-06 2000-10-20 Toyota Central Res & Dev Lab Inc Sealed secondary battery
JP2003308887A (en) * 2002-04-12 2003-10-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423727A (en) * 1987-07-01 1989-01-26 Asea Brown Boveri By-pass device for battery cell protection
JPH10255757A (en) * 1997-03-12 1998-09-25 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JPH10326610A (en) * 1997-05-27 1998-12-08 Hitachi Ltd Non-aqueous electrolyte secondary battery
JPH11191436A (en) * 1997-12-26 1999-07-13 Hitachi Ltd Capacitor protector
JP2000294226A (en) * 1999-04-06 2000-10-20 Toyota Central Res & Dev Lab Inc Sealed secondary battery
JP2003308887A (en) * 2002-04-12 2003-10-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533074A (en) * 2004-05-19 2007-11-15 エルジー・ケム・リミテッド Battery safety element and battery equipped with the same
JP2009087753A (en) * 2007-09-28 2009-04-23 Toshiba Corp Square nonaqueous electrolyte battery
JP2010086875A (en) * 2008-10-01 2010-04-15 Nissan Motor Co Ltd Bipolar battery, battery pack using the same, and vehicle
CN101887986A (en) * 2009-05-14 2010-11-17 Sb锂摩托有限公司 Rechargeable battery
US8323813B2 (en) 2009-05-14 2012-12-04 Sb Limotive Co., Ltd. Rechargeable battery including an extensible member
US9306197B2 (en) 2009-05-14 2016-04-05 Samsung Sdi Co., Ltd. Rechargeable battery including an extensible member
US8877361B2 (en) 2009-09-01 2014-11-04 Samsung Sdi Co., Ltd. Rechargeable battery
JP2012119303A (en) * 2010-12-02 2012-06-21 Sb Limotive Co Ltd Secondary battery
US9478774B2 (en) 2010-12-02 2016-10-25 Samsung Sdi Co., Ltd. Rechargeable battery
US9012050B2 (en) 2011-07-26 2015-04-21 Samsung Sdi Co., Ltd. Rechargeable battery
US9634299B2 (en) 2011-09-06 2017-04-25 Samsung Sdi Co., Ltd. Rechargeable battery
US9054371B2 (en) 2011-11-17 2015-06-09 Samsung Sdi Co., Ltd. Rechargeable battery
US8877362B2 (en) 2011-12-02 2014-11-04 Samsung Sdi Co., Ltd. Rechargeable battery pack
KR101666870B1 (en) 2012-03-20 2016-10-17 삼성에스디아이 주식회사 Rechargeable battery including resistance member
KR20130106649A (en) * 2012-03-20 2013-09-30 삼성에스디아이 주식회사 Rechargeable battery
JP2013235832A (en) * 2012-05-04 2013-11-21 Samsung Sdi Co Ltd Rechargeable battery
US8835031B2 (en) 2012-09-04 2014-09-16 Samsung Sdi Co., Ltd. Rechargeable battery
US20140154534A1 (en) * 2012-11-30 2014-06-05 Ningde Amperex Technology Limited Power battery safety head cover
JP2014138001A (en) * 2013-01-18 2014-07-28 Samsung Sdi Co Ltd Secondary battery
US10367186B2 (en) 2013-01-18 2019-07-30 Samsung Sdi Co., Ltd. Secondary battery including an insulating member
JP2017157274A (en) * 2016-02-29 2017-09-07 日立オートモティブシステムズ株式会社 Lithium ion battery module
WO2017150052A1 (en) * 2016-02-29 2017-09-08 日立オートモティブシステムズ株式会社 Lithium-ion cell module
JP2020136428A (en) * 2019-02-18 2020-08-31 株式会社指月電機製作所 Capacitor
JP7217939B2 (en) 2019-02-18 2023-02-06 株式会社指月電機製作所 capacitor
US11837736B2 (en) 2019-10-15 2023-12-05 Contemporary Amperex Technology Co., Limited Secondary battery, battery module, battery pack, device, and manufacturing method
CN113270694A (en) * 2021-05-27 2021-08-17 珠海冠宇电池股份有限公司 Utmost point ear subassembly and electric core

Similar Documents

Publication Publication Date Title
JP2005044626A (en) Battery
KR100591432B1 (en) Secondary battery
KR100922474B1 (en) Rechageable battery
JP4579880B2 (en) Secondary battery
US8709621B2 (en) Rechargeable battery
KR100729106B1 (en) Safety device for preventing overcharge and secondary battery therewith
KR100816218B1 (en) Secondary battery
JP2007035622A (en) Secondary battery provided with ptc element
CN110120557B (en) Protection device and battery
JP2006149177A (en) Protective part, protection device, battery pack and portable electronic device
KR101318531B1 (en) Secondary battery
JP2989313B2 (en) Battery device having protection element
US7638978B2 (en) Battery protection device and battery having the same
JP5023411B2 (en) Battery device
JP2001283926A (en) Lithium secondary battery having safety mechanism
KR100760751B1 (en) Secondary battery
JP4751500B2 (en) Electrode wound type secondary battery
JP5073204B2 (en) Polymer PTC element
JP2009059630A (en) Battery pack
KR100502354B1 (en) Pouched-type lithium secondary battery
JP2005038702A (en) Battery
KR100889770B1 (en) PTC Device and Lithium Secondary Battery with the Same
KR100577489B1 (en) Secondary battery including electrode terminal having ptc-characteristics
JP2004071346A (en) Battery device and its manufacturing method
JP2012054099A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100908