JP6075619B2 - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP6075619B2
JP6075619B2 JP2012276677A JP2012276677A JP6075619B2 JP 6075619 B2 JP6075619 B2 JP 6075619B2 JP 2012276677 A JP2012276677 A JP 2012276677A JP 2012276677 A JP2012276677 A JP 2012276677A JP 6075619 B2 JP6075619 B2 JP 6075619B2
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
contact
electrode plate
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012276677A
Other languages
Japanese (ja)
Other versions
JP2014120427A (en
Inventor
学 金本
金本  学
児玉 充浩
充浩 児玉
忠司 掛谷
忠司 掛谷
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2012276677A priority Critical patent/JP6075619B2/en
Priority claimed from CN201310684845.2A external-priority patent/CN103887463B/en
Publication of JP2014120427A publication Critical patent/JP2014120427A/en
Application granted granted Critical
Publication of JP6075619B2 publication Critical patent/JP6075619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、円筒形電池に関するものである。   The present invention relates to a cylindrical battery.
従来の円筒形電池としては、特許文献1に示すように、円筒状をなす電池ケースに、帯状の正極板及び負極板を帯状のセパレータを介して渦巻状に巻回されてなる円柱状の電極群を収容したものがある。   As a conventional cylindrical battery, as shown in Patent Document 1, a cylindrical electrode is formed by winding a belt-like positive electrode plate and a negative electrode plate in a spiral shape through a belt-like separator around a cylindrical battery case. Some have housed groups.
しかしながら、帯状の正極板、負極板及びセパレータを渦巻き状に巻回するものでは、その巻き工程において正極板及び負極板の巻きずれが生じる。そうすると、円筒形電池において所望の電池容量を得ることができない、また、内部短絡を引き起こしてしまう等の問題が生じる。   However, when the belt-like positive electrode plate, negative electrode plate, and separator are wound in a spiral shape, the positive electrode plate and the negative electrode plate are unwound in the winding process. If it does so, problems, such as not being able to obtain a desired battery capacity in a cylindrical battery and causing an internal short circuit, will arise.
特開平11−185767号公報Japanese Patent Laid-Open No. 11-185767
そこで本願発明者は、巻きずれ及び巻きずれに伴う種々の問題点を解決すべく、積層型の電極群を円筒形電池に収容することを考えている。   Therefore, the inventor of the present application considers accommodating a stacked electrode group in a cylindrical battery in order to solve various problems associated with winding misalignment and winding misalignment.
しかしながら、円筒形電池に積層型の電極群を収容する場合には、円筒状の電池ケースに対して例えば略直方体形状をなす電極群を収容するため、電極群が電池ケースに対してがたついてしまい極板の活物質が脱落して充放電性能が劣化してしまうという問題がある。   However, when a stacked electrode group is accommodated in a cylindrical battery, for example, an electrode group having a substantially rectangular parallelepiped shape is accommodated in the cylindrical battery case. Therefore, there is a problem that the active material of the electrode plate falls off and the charge / discharge performance deteriorates.
上記の電極群のがたつきを解消すべく、本願発明者は、スペーサを用いて電極群を電池ケースに固定することを考えている。そして、本願発明者は、このスペーサとして、図12に示すように、電極群の外側面の略全面に接触する接触面を一方面に有する電極接触部と、この電極接触部の他方面から延出して電池ケースの内側周面に上下に亘って接触するケース接触部とを備えるものを考えている。   In order to eliminate the shakiness of the electrode group, the inventor of the present application considers fixing the electrode group to the battery case using a spacer. Then, as shown in FIG. 12, the inventor of the present application extends from the electrode contact portion having a contact surface on one surface that contacts substantially the entire outer surface of the electrode group, and the other surface of the electrode contact portion, as shown in FIG. A case having a case contact portion that comes out and contacts the inner peripheral surface of the battery case over the top and bottom is considered.
しかしながら、上記の構成では、電極接触部が電極群の外側面の略全面に接触して覆う構造であるため、充電中に正極から発生する酸素ガスが負極によって吸収されにくく、電池内部の内圧が上昇してしまうという問題がある。また、これにより、電池のサイクル寿命性能も低下してしまうという問題がある。   However, in the above configuration, since the electrode contact portion is configured to contact and cover substantially the entire outer surface of the electrode group, oxygen gas generated from the positive electrode during charging is difficult to be absorbed by the negative electrode, and the internal pressure inside the battery is reduced. There is a problem of rising. This also causes a problem that the cycle life performance of the battery also decreases.
そこで本発明は、上記問題点を解決すべくなされたものであり、電極群の巻きずれを考慮する必要の無い円筒形電池において、スペーサを用いて電極群を電池ケースに固定するだけでなく、充電中に発生する酸素ガスを負極に吸収させやすくして電池内部の圧力上昇を抑制することをその主たる所期課題とするものである。   Therefore, the present invention has been made to solve the above problems, and in a cylindrical battery that does not need to take into account the winding deviation of the electrode group, not only the electrode group is fixed to the battery case using a spacer, The main intended task is to suppress the pressure increase inside the battery by making the negative electrode easily absorb oxygen gas generated during charging.
すなわち本発明に係る円筒形電池は、円筒状をなす電池ケースと、前記電池ケース内に配置され、正極、負極及びセパレータから構成されており、互いに対向する一対の外側面が平面状をなし、前記外側面に負極が露出している電極群と、前記電池ケースの内側周面と前記電極群の外側面との間に設けられ、前記外側面の略全面と接触する電極接触部を有するスペーサとを備え、前記スペーサの電極接触部が、前記外側面に露出する負極の面積よりも小さいことを特徴とする。   That is, the cylindrical battery according to the present invention is formed of a cylindrical battery case and a positive electrode, a negative electrode, and a separator disposed in the battery case, and a pair of outer surfaces facing each other form a planar shape. A spacer having an electrode group in which a negative electrode is exposed on the outer surface, and an electrode contact portion provided between the inner peripheral surface of the battery case and the outer surface of the electrode group, and in contact with substantially the entire outer surface. The electrode contact portion of the spacer is smaller than the area of the negative electrode exposed on the outer surface.
このようなものであれば、正極、負極及びセパレータからなり互いに対向する一対の外側面が平面状をなす電極群を電池ケース内に収容することから、電極群の巻きずれ及び巻きずれに付随する種々の問題の無い電池を提供することができる。また、電極群をスペーサにより固定しているので、電池ケースに対する電極群のがたつきを防止することができ、極板の活物質の脱落を抑制して充放電性能の劣化を防ぐことができる。さらに、電極群の外側面に露出している負極に接触するスペーサの電極接触部が、その露出している負極の面積よりも小さいので、電極群をスペーサにより固定した状態で、負極の外側面の一部がスペーサから露出することになる。これにより、充電中に正極から発生する酸素ガスを負極によって吸収させ易くすることができる。したがって、電池のサイクル寿命性能を向上させることができる。なお、円筒状の電池ケースであることから、内部圧力の上昇に対して強度的に強くすることもできる。その他、負極の外側面の一部がスペーサから露出しているので、電解液を負極に浸透させ易くすることができる。   If it is such, since the electrode group which consists of a positive electrode, a negative electrode, and a separator and makes a pair of opposing outer surfaces form a planar shape is accommodated in the battery case, it accompanies winding deviation and winding deviation of the electrode group. A battery free from various problems can be provided. Moreover, since the electrode group is fixed by the spacer, it is possible to prevent the electrode group from rattling with respect to the battery case, and it is possible to prevent the active material from falling off the electrode plate and prevent deterioration of charge / discharge performance. . Further, since the electrode contact portion of the spacer that contacts the negative electrode exposed on the outer surface of the electrode group is smaller than the area of the exposed negative electrode, the outer surface of the negative electrode is fixed with the electrode group fixed by the spacer. A part of is exposed from the spacer. Thereby, oxygen gas generated from the positive electrode during charging can be easily absorbed by the negative electrode. Therefore, the cycle life performance of the battery can be improved. In addition, since it is a cylindrical battery case, it can be strengthened in strength against an increase in internal pressure. In addition, since a part of the outer surface of the negative electrode is exposed from the spacer, the electrolyte can be easily penetrated into the negative electrode.
前記電極接触部の中心軸方向に対する幅寸法の全部又は一部が、前記負極の外側面の幅寸法よりも小さいことが望ましい。このように電極接触部の幅寸法の全部又は一部が、負極の外側面の幅寸法よりも小さいことで、スペーサの接触面積を負極の外側面の面積を小さくすることができる。これならば、負極の外側面において幅方向端部をスペーサから露出させることができ、酸素ガスを吸収させ易くすることができる。また、スペーサによる電極群の幅方向中央部分への押圧を確保することができる。   It is desirable that all or part of the width dimension of the electrode contact portion with respect to the central axis direction is smaller than the width dimension of the outer surface of the negative electrode. Thus, all or part of the width dimension of the electrode contact portion is smaller than the width dimension of the outer surface of the negative electrode, so that the contact area of the spacer can be reduced to the area of the outer surface of the negative electrode. If it is this, the edge part of the width direction can be exposed from a spacer in the outer surface of a negative electrode, and it can make oxygen gas easy to absorb. Moreover, the pressing to the center part of the width direction of the electrode group by a spacer is securable.
前記電極接触部に、貫通する1又は複数の貫通孔が形成されていることが望ましい。このように電極接触部に貫通孔を形成することにより、スペーサの接触面積を負極の外側面の面積を小さくすることができる。これならば、負極の外側面において端部以外の部分をスペーサから露出させることができ、酸素ガスを吸収させ易くすることができる。また、貫通孔を形成して接触面積を負極の外側面の面積よりも小さくすることで、スペーサの外形形状を負極の外側面の外形形状と略一致させることができ、負極活物質が脱落しやすい端部にスペーサを接触させて負極活物質の脱落を防止し、充放電性能の劣化を一層防ぐことができる。   It is desirable that one or a plurality of through-holes are formed in the electrode contact portion. Thus, by forming a through-hole in the electrode contact portion, the contact area of the spacer can be reduced to the area of the outer surface of the negative electrode. If it is this, parts other than an edge part can be exposed from a spacer in the outer surface of a negative electrode, and it can make it easy to absorb oxygen gas. In addition, by forming a through hole to make the contact area smaller than the area of the outer surface of the negative electrode, the outer shape of the spacer can be made substantially coincident with the outer shape of the outer surface of the negative electrode, and the negative electrode active material falls off. It is possible to prevent the negative electrode active material from falling off by bringing a spacer into contact with the easy end portion, thereby further preventing deterioration of charge / discharge performance.
前記電極接触部の中心軸方向に対する幅方向において対向する一対の側辺部の少なくとも一方に、幅方向内側に凹んだ1又は複数の凹部が形成されていることが望ましい。ここで、負極の幅方向端部における負極活物質の脱落を防止しつつ、負極の外側面の露出面積を増大させるためには、複数の凹部が形成されていることが望ましい。複数の凹部を形成する場合には、隣接する凹部の間に形成される中間部が負極の幅方向端部に接触するため、負極活物質の脱落を防止することができる。   It is desirable that at least one of the pair of side portions opposed in the width direction with respect to the central axis direction of the electrode contact portion is formed with one or a plurality of recesses recessed inward in the width direction. Here, in order to increase the exposed area of the outer surface of the negative electrode while preventing the negative electrode active material from falling off at the end in the width direction of the negative electrode, it is desirable that a plurality of recesses be formed. In the case of forming a plurality of recesses, the intermediate part formed between adjacent recesses contacts the end in the width direction of the negative electrode, so that the negative electrode active material can be prevented from falling off.
前記電極接触部における前記負極の外側面に対向する面に凹凸形状が形成されており、その凹部が中心軸方向に対する幅方向の少なくとも一方の端面又は中心軸方向の少なくとも一方の端面に開口していることが望ましい。このように電極接触部に凹凸形状を形成することによって、スペーサの接触面積を負極の外側面の面積を小さくすることができる。また、凹凸形状の凹部が、中心軸方向に対する幅方向の少なくとも一方の端面又は中心軸方向(幅方向に直交する高さ方向)の少なくとも一方の端面に開口しているので、正極により発生した酸素ガスを負極の外側面に到達させて吸収させることができる。さらに、電極接触部に凹凸形状を形成するだけなので、電極接触部の機械的強度の低下を防ぐことができる。   A concave-convex shape is formed on a surface of the electrode contact portion that faces the outer surface of the negative electrode, and the concave portion opens on at least one end surface in the width direction relative to the central axis direction or at least one end surface in the central axis direction. It is desirable. Thus, by forming an uneven shape in the electrode contact portion, it is possible to reduce the contact area of the spacer and the area of the outer surface of the negative electrode. In addition, since the concave and convex portions are opened on at least one end face in the width direction with respect to the central axis direction or at least one end face in the central axis direction (the height direction orthogonal to the width direction), oxygen generated by the positive electrode The gas can reach the outer surface of the negative electrode and be absorbed. Furthermore, since the uneven shape is only formed on the electrode contact portion, the mechanical strength of the electrode contact portion can be prevented from being lowered.
このように構成した本発明によれば、電極群の巻きずれを考慮する必要の無い円筒形電池において、スペーサを用いて電極群を電池ケースに固定するだけでなく、充電中に発生する酸素ガスを負極板に吸収しやすくして電池内部の圧力上昇を抑制することができる。   According to the present invention configured as described above, in the cylindrical battery that does not need to consider the winding deviation of the electrode group, not only the electrode group is fixed to the battery case using the spacer, but also the oxygen gas generated during charging. Can be easily absorbed by the negative electrode plate, and an increase in pressure inside the battery can be suppressed.
本実施形態における円筒形電池の縦断面図。The longitudinal cross-sectional view of the cylindrical battery in this embodiment. 同実施形態における円筒形電池の横断面図。The cross-sectional view of the cylindrical battery in the same embodiment. 同実施形態の正極板を示す平面図、正面図及び斜視図。The top view, front view, and perspective view which show the positive electrode plate of the embodiment. 同実施形態の負極板を示す平面図、正面図及び斜視図。The top view, front view, and perspective view which show the negative electrode plate of the embodiment. 同実施形態の電極群の縦断面図。The longitudinal cross-sectional view of the electrode group of the embodiment. 同実施形態のスペーサを示す斜視図。The perspective view which shows the spacer of the embodiment. 同実施形態のスペーサの部分拡大正面図。The partial enlarged front view of the spacer of the embodiment. 同実施形態のスペーサ及び電極群を電池ケースに収容した状態を示す図。The figure which shows the state which accommodated the spacer and electrode group of the embodiment in the battery case. 変形実施形態のスペーサを示す模式図。The schematic diagram which shows the spacer of deformation | transformation embodiment. 変形実施形態のスペーサを示す模式図。The schematic diagram which shows the spacer of deformation | transformation embodiment. 変形実施形態のスペーサを示す斜視図。The perspective view which shows the spacer of deformation | transformation embodiment. 本発明の基本構成となるスペーサの一例を示す断面図。Sectional drawing which shows an example of the spacer used as the basic composition of this invention.
以下に本発明に係る円筒形電池の一実施形態について図面を参照して説明する。   An embodiment of a cylindrical battery according to the present invention will be described below with reference to the drawings.
本実施形態に係る円筒形電池100は、例えばニッケル・カドミウム蓄電池やニッケル・水素蓄電池等のアルカリ蓄電池である。具体的には、図1及び図2に示すように、有底円筒状をなす金属製の電池ケース2と、この電池ケース2内に配置され、正極板31、負極板32及びセパレータ33からなる略直方体形状の電極群3とを有するものである。   The cylindrical battery 100 according to the present embodiment is an alkaline storage battery such as a nickel / cadmium storage battery or a nickel / hydrogen storage battery. Specifically, as shown in FIGS. 1 and 2, a metal battery case 2 having a bottomed cylindrical shape, and a positive electrode plate 31, a negative electrode plate 32, and a separator 33 are arranged in the battery case 2. The electrode group 3 has a substantially rectangular parallelepiped shape.
電池ケース2は、ニッケルめっきを施した有底円筒状をなすものであり、図1に示すように、上部開口は絶縁体4を介して封口体5により封止されている。また、封口体5の裏面には、正極板31の上端部に突出して設けられた集電端子311が例えば溶接により直接又は集電板(不図示)を介して接続されて、封口体5が正極端子となる。なお本実施形態では、後述するように、電池ケース2の底面2Bに電極群3の負極板32の集電端子321が溶接される。   The battery case 2 has a bottomed cylindrical shape with nickel plating, and the upper opening is sealed with a sealing body 5 via an insulator 4 as shown in FIG. Further, a current collecting terminal 311 provided so as to protrude from the upper end portion of the positive electrode plate 31 is connected to the back surface of the sealing body 5 by, for example, welding directly or via a current collecting plate (not shown). It becomes the positive terminal. In this embodiment, as will be described later, the current collecting terminal 321 of the negative electrode plate 32 of the electrode group 3 is welded to the bottom surface 2B of the battery case 2.
電極群3は、正極板31及び負極板32を例えばポリオレフィン製の不織布からなるセパレータ33を介して積層した略直方体形状をなすものである。なおセパレータ33には例えば水酸化カリウム等の電解液が含侵される。   The electrode group 3 has a substantially rectangular parallelepiped shape in which a positive electrode plate 31 and a negative electrode plate 32 are laminated via a separator 33 made of, for example, a nonwoven fabric made of polyolefin. The separator 33 is impregnated with an electrolytic solution such as potassium hydroxide.
正極板31は、発泡式ニッケルからなる正極集電体と、この正極集電体の中空内に水酸化ニッケル活物質及び導電材のコバルト化合物の混合物(以下、単に正極活物質という。)を充填したものである。なお、水酸化ニッケル活物質は、ニッケル・カドミウム蓄電池の場合には例えば水酸化ニッケルであり、ニッケル・水素蓄電池の場合には例えば水酸化カルシウムを添加した水酸化ニッケルである。   The positive electrode plate 31 is filled with a positive electrode current collector made of foamed nickel and a mixture of a nickel hydroxide active material and a cobalt compound of a conductive material (hereinafter simply referred to as a positive electrode active material) in the hollow of the positive electrode current collector. It is a thing. The nickel hydroxide active material is, for example, nickel hydroxide in the case of a nickel / cadmium storage battery, and nickel hydroxide to which calcium hydroxide is added in the case of a nickel / hydrogen storage battery.
具体的に正極板31は、図3に示すように、正極活物質を保持しない直線状の活物質非保持部31Aと、この活物質非保持部31Aを挟んで両側に形成され、正極活物質を保持する活物質保持部31Bとを有する。そして、正極板31は、両側の活物質保持部31Bが向き合うように活物質非保持部31Aにおいて正極集電体が略U字状(より詳細には略コの字状)に折り曲げられている。   Specifically, as shown in FIG. 3, the positive electrode plate 31 is formed on both sides of a linear active material non-holding portion 31A that does not hold a positive electrode active material and the active material non-holding portion 31A. Active material holding portion 31B. In the positive electrode plate 31, the positive electrode current collector is bent in a substantially U shape (more specifically, a substantially U shape) in the active material non-holding portion 31A so that the active material holding portions 31B on both sides face each other. .
また、正極板31は、2つの活物質保持部31Bの間に形成された折れ曲がり部である活物質非保持部31Aに例えばニッケル鋼板等からなる集電端子311が設けられている。この集電端子311は、2つの活物質保持部31Bの対向方向に直交する幅方向の一方に外側に向かって延びている。   Further, the positive electrode plate 31 is provided with a current collecting terminal 311 made of, for example, a nickel steel plate, in an active material non-holding portion 31A that is a bent portion formed between two active material holding portions 31B. The current collecting terminal 311 extends outward in one of the width directions orthogonal to the opposing direction of the two active material holding portions 31B.
負極板32は、例えばニッケルめっきを施した平板状の穿孔鋼板からなる負極集電体と、この負極集電体上に塗布された負極活物質からなる。なお負極活物質としては、ニッケル・カドミウム蓄電池の場合には、例えば酸化カドミウム粉末と金属カドミウム粉末との混合物であり、ニッケル・水素蓄電池の場合には、例えば主にAB型(希土類系)又はAB型(Laves相)の水素吸蔵合金の粉末である。 The negative electrode plate 32 is made of, for example, a negative electrode current collector made of a flat perforated steel sheet plated with nickel, and a negative electrode active material coated on the negative electrode current collector. The negative electrode active material is, for example, a mixture of cadmium oxide powder and metal cadmium powder in the case of a nickel-cadmium storage battery, and mainly in the case of a nickel-hydrogen storage battery, for example, AB type 5 (rare earth) or is a powder of hydrogen absorbing alloy of AB 2 type (Laves phase).
具体的に負極板32は、図4に示すように、負極活物質を保持しない直線状の活物質非保持部(未塗工部)32Aと、この活物質非保持部32Aを挟んで両側に形成され、負極活物質を保持する活物質保持部(塗工部)32Bとを有する。そして、負極板32は、両側の活物質保持部32Bが向き合うように活物質非保持部32Aにおいて負極集電体が略コの字状に折り曲げられている。   Specifically, as shown in FIG. 4, the negative electrode plate 32 has a linear active material non-holding portion (uncoated portion) 32A that does not hold the negative electrode active material, and both sides of the active material non-holding portion 32A. An active material holding part (coating part) 32B that is formed and holds the negative electrode active material. In the negative electrode plate 32, the negative electrode current collector is bent in a substantially U shape in the active material non-holding portion 32A so that the active material holding portions 32B on both sides face each other.
また、負極板32は、活物質非保持部32Aの一部が外側に折り曲げられることにより、電池ケース2の底面2Bに溶接接続される集電端子321が形成される。具体的には、活物質非保持部32Aの一部に、所望の集電端子形状となるように切れ込み32Cを入れて、その切れ込み32C内部を外側に折り曲げることにより集電端子321が形成される。   Further, the negative electrode plate 32 is formed with a current collecting terminal 321 welded to the bottom surface 2B of the battery case 2 by bending a part of the active material non-holding portion 32A outward. Specifically, the current collection terminal 321 is formed by making a cut 32C in a part of the active material non-holding portion 32A so as to have a desired current collection terminal shape and bending the inside of the cut 32C outward. .
そして、本実施形態の電極群3は、2つの活物質保持部31Bが互いに対向配置された略コの字状をなす正極板31と、2つの活物質保持部32Bが互いに対向配置された略コの字状をなす負極板32とが噛み合うように積層されて構成されている。なお、正極板31は、折り畳まれたセパレータ33に挟まれた状態で略コの字状に折り曲げられる。具体的には、図5に示すように、正極板31の1つの活物質保持部31Bが負極板32の2つの活物質保持部32Bの間に挟まれるとともに、負極板32の1つの活物質保持部32Bが正極板31の2つの活物質保持部31Bの間に挟まれるように積層されている。本実施形態では、正極板31の折れ曲がり部(活物質非保持部31A)と、負極板32の折れ曲がり部(活物質非保持部32A)とが互いに対向するように積層されている。なお、図1、図2、図5等においては、理解を容易のため、各極板31、32及びセパレータ33の間に間隔を挙げて図示しているが、それらは接触して積層される。   The electrode group 3 of the present embodiment has a substantially U-shaped positive electrode plate 31 in which two active material holding portions 31B are arranged to face each other, and an approximately U shape in which two active material holding portions 32B are arranged to face each other. The negative electrode plate 32 having a U-shape is laminated so as to mesh with each other. The positive electrode plate 31 is bent in a substantially U shape while being sandwiched between the folded separators 33. Specifically, as shown in FIG. 5, one active material holding part 31 </ b> B of the positive electrode plate 31 is sandwiched between two active material holding parts 32 </ b> B of the negative electrode plate 32 and one active material of the negative electrode plate 32. The holding part 32 </ b> B is stacked so as to be sandwiched between the two active material holding parts 31 </ b> B of the positive electrode plate 31. In the present embodiment, the bent portion (active material non-holding portion 31A) of the positive electrode plate 31 and the bent portion (active material non-holding portion 32A) of the negative electrode plate 32 are laminated so as to face each other. In FIG. 1, FIG. 2, FIG. 5, etc., for ease of understanding, the electrode plates 31 and 32 and the separator 33 are illustrated with an interval, but they are stacked in contact with each other. .
より詳細には、本実施形態の電極群3は、2つの負極板32及び1つの正極板31から構成されたものであり、隣接する2つの負極板32においてそれぞれの1つの活物質保持部32B(2つの負極板32において互いに隣り合う活物質保持部32B)が1つの正極板31の2つの活物質保持部31Bの間に挟まれるように積層されている。したがって、本実施形態の電極群3では、負極板32の外側面32a、32bの全体が露出して最外面を形成する。また、この電極群3は、図1及び図2に示すように、その積層方向Lが電池ケース2の中心軸方向Cと直交するように、電池ケース2内に収容される。   More specifically, the electrode group 3 of the present embodiment is composed of two negative plates 32 and one positive plate 31, and each of the two adjacent negative plates 32 has one active material holding portion 32 </ b> B. The active material holding portions 32B adjacent to each other in the two negative electrode plates 32 are stacked so as to be sandwiched between the two active material holding portions 31B of one positive electrode plate 31. Therefore, in the electrode group 3 of the present embodiment, the entire outer surfaces 32a and 32b of the negative electrode plate 32 are exposed to form the outermost surface. The electrode group 3 is housed in the battery case 2 so that the stacking direction L is orthogonal to the central axis direction C of the battery case 2 as shown in FIGS.
そして本実施形態の円筒形電池100は、図1及び図2に示すように、電極群3を固定するためのスペーサ6を有する。このスペーサ6は、電池ケース2の内側周面2Aと電極群3の外側面との間に介在して設けられ、電極群3を電池ケース2に固定する一対のスペーサ61、62である。この一対のスペーサ61、62は、電池ケース2の内側周面2Aと電極群3の外側面との間の空間に配置されて、電極群3をその積層方向Lから挟むように設けられている。なお、積層方向Lは、各極板31、32の活物質保持部31B、32Bの対向方向に一致する。   And the cylindrical battery 100 of this embodiment has the spacer 6 for fixing the electrode group 3, as shown in FIG.1 and FIG.2. The spacer 6 is a pair of spacers 61 and 62 that are provided between the inner peripheral surface 2 A of the battery case 2 and the outer surface of the electrode group 3 and fix the electrode group 3 to the battery case 2. The pair of spacers 61 and 62 are disposed in a space between the inner peripheral surface 2A of the battery case 2 and the outer surface of the electrode group 3 so as to sandwich the electrode group 3 from the stacking direction L. . Note that the stacking direction L coincides with the facing direction of the active material holding portions 31B and 32B of the electrode plates 31 and 32, respectively.
一対のスペーサ61、62は、アクリル樹脂やポリプロピレン樹脂、ナイロン樹脂等の樹脂製又はステンレス鋼等の金属製で、互いに同一形状をなすものである。   The pair of spacers 61 and 62 are made of resin such as acrylic resin, polypropylene resin, nylon resin, or metal such as stainless steel, and have the same shape.
各スペーサ61、62は、図1、図2及び図6に示すように、電極群3の積層方向Lの最外面(具体的には負極板32の外側面32a、32b)に接触する接触面を一方面6aに有する矩形平板状の電極接触部6Aと、この電極接触部6Aの他方面6bから延出して電池ケース2の内側周面2Aに接触する2つのケース接触部6Bとを有する。   As shown in FIGS. 1, 2, and 6, each spacer 61, 62 is a contact surface that contacts the outermost surface in the stacking direction L of the electrode group 3 (specifically, the outer surfaces 32 a, 32 b of the negative electrode plate 32). A rectangular flat plate electrode contact portion 6A on one surface 6a, and two case contact portions 6B extending from the other surface 6b of the electrode contact portion 6A and contacting the inner peripheral surface 2A of the battery case 2.
電極接触部6Aは、電極群3の積層方向Lの最外面である負極板32の外側面32a、32bに沿った形状をなすものである。この電極接触部6Aの軸方向一端部である上部には、図1、図6〜図8に示すように、電極群3の上面に対向する突起片6Tが形成されている。この突起片6Tは、電極接触部6Aの上端中央部において当該電極接触部6Aから略垂直に延びている。この突起片6Tは、電極群3の上面から上部に延出する集電端子311に接触して、集電端子311の位置ずれを防止するとともに、集電端子311の溶接箇所が破断して剥がれてしまうことを防止するものである。   6 A of electrode contact parts make the shape along the outer surface 32a, 32b of the negative electrode plate 32 which is the outermost surface of the lamination direction L of the electrode group 3. As shown in FIG. As shown in FIGS. 1 and 6 to 8, a protruding piece 6 </ b> T facing the upper surface of the electrode group 3 is formed on the upper portion, which is one axial end portion of the electrode contact portion 6 </ b> A. The protruding piece 6T extends substantially vertically from the electrode contact portion 6A at the center of the upper end of the electrode contact portion 6A. The projecting piece 6T contacts the current collecting terminal 311 extending upward from the upper surface of the electrode group 3 to prevent the current collecting terminal 311 from being displaced and the welded portion of the current collecting terminal 311 is broken and peeled off. It is intended to prevent this.
また、電極接触部6Aの上部の角部には、図6〜図8に示すように、電極群3の上角部を囲む囲み壁部6Pが形成されている。この囲み壁部6Pは、電極群3の上面に対向する上壁6P1と、電極群3の左右側面に対向する側壁6P2とを有する(図7参照)。この囲み壁部6Pは、電池ケース2と正極板31との接触を防止するとともに、正極板31の集電端子311と負極板32との接触を防止するものである。また、この囲み壁部6Pにより、電極群3における正極板31及び負極板32のずれを防止することもできる。その上、囲み壁部6Pを設けることで、従来必須とされていた上部絶縁板を配置する必要が無くなり、製造工程を簡略化できるとともに材料コストを削減することができる。   Moreover, the surrounding wall part 6P which surrounds the upper corner | angular part of the electrode group 3 is formed in the corner | angular part of the upper part of 6 A of electrode contact parts as shown in FIGS. The surrounding wall portion 6P includes an upper wall 6P1 that faces the upper surface of the electrode group 3 and a side wall 6P2 that faces the left and right side surfaces of the electrode group 3 (see FIG. 7). The surrounding wall 6P prevents contact between the battery case 2 and the positive electrode plate 31 and prevents contact between the current collecting terminal 311 of the positive electrode plate 31 and the negative electrode plate 32. Further, the surrounding wall portion 6P can prevent the positive electrode plate 31 and the negative electrode plate 32 from being displaced in the electrode group 3. In addition, by providing the surrounding wall portion 6P, it is not necessary to dispose an upper insulating plate, which has been essential in the past, so that the manufacturing process can be simplified and the material cost can be reduced.
2つのケース接触部6Bは、電極接触部6Aの他方面6bにおいて中心軸方向Cに沿って互いに並列に形成されている。具体的には、電池ケース2に収容された状態において電池ケース2の中心軸を挟むように対称に形成されている。さらに、ケース接触部6Bにおける電池ケース2の内側周面2Aとの接触部分(自由端辺部の先端面)は、電池ケース2の内側周面2Aの曲面と略同一の曲面を有する。これにより、ケース接触部6Bと電池ケース2とが面接触するように構成している(図2及び図8等参照)。   The two case contact portions 6B are formed in parallel with each other along the central axis direction C on the other surface 6b of the electrode contact portion 6A. Specifically, the battery case 2 is formed symmetrically so as to sandwich the central axis of the battery case 2 in a state of being accommodated in the battery case 2. Furthermore, the contact portion (tip surface of the free end side portion) of the case contact portion 6B with the inner peripheral surface 2A of the battery case 2 has a curved surface that is substantially the same as the curved surface of the inner peripheral surface 2A of the battery case 2. Thus, the case contact portion 6B and the battery case 2 are configured to be in surface contact (see FIGS. 2 and 8).
このようなスペーサ6を用いて電極群3を挟むように電池ケース2に配置すると、図8に示すように、2つのスペーサ6の突起片6Tにより、正極板31の集電端子311が接触又は押圧される。なお、集電端子311において突起片6Tに接触する部分よりも自由端部側が折り曲げられて封口体5に溶接される。ここで、集電端子311の立ち上がり位置は、突起片6T近傍となる。また、2つのスペーサ6の囲み壁部6Pにより、正極板31及び負極板32の上角部が収容されることになる。さらに、電極接触部6Aとケース接触部6Bとの間に形成される凹部が溶接スペースとなり、当該溶接スペースにより負極板32の集電端子321を電池ケース2の底面2Bに溶接することができる。   When such a spacer 6 is used to place the electrode group 3 in the battery case 2, the current collecting terminal 311 of the positive electrode plate 31 is contacted or projected by the protruding pieces 6T of the two spacers 6 as shown in FIG. Pressed. It should be noted that the free end portion side of the current collecting terminal 311 is bent with respect to the protruding piece 6T and welded to the sealing body 5. Here, the rising position of the current collecting terminal 311 is in the vicinity of the protruding piece 6T. Further, the upper corner portions of the positive electrode plate 31 and the negative electrode plate 32 are accommodated by the surrounding wall portions 6P of the two spacers 6. Further, a recess formed between the electrode contact portion 6A and the case contact portion 6B becomes a welding space, and the current collecting terminal 321 of the negative electrode plate 32 can be welded to the bottom surface 2B of the battery case 2 by the welding space.
しかして本実施形態のスペーサ61、62は、負極板32の外側面32a、32bに接触する接触面の面積(以下、接触面積という。)が負極板32の外側面32a、32bの面積よりも小さくなるように構成されている。   Thus, in the spacers 61 and 62 of the present embodiment, the area of the contact surface that contacts the outer surfaces 32a and 32b of the negative electrode plate 32 (hereinafter referred to as contact area) is larger than the area of the outer surfaces 32a and 32b of the negative electrode plate 32. It is comprised so that it may become small.
具体的には、図1、図2及び図6に示すように、電極接触部6Aに厚み方向に貫通する複数の貫通孔6Hを形成することによって、電極接触部6Aの一方面6aの接触面積を、負極板32の外側面32a、32bの面積よりも小さくしている。このように貫通孔6Hにより接触面積を小さくしているので、一方面6aの平面視における外形形状と、負極板32の外側面32a、32bの平面視における外形形状とが略一致させることができ、負極板32の端部における負極活物質の脱落を防止することができる。   Specifically, as shown in FIGS. 1, 2, and 6, the contact area of the one surface 6 a of the electrode contact portion 6 </ b> A is formed by forming a plurality of through holes 6 </ b> H penetrating in the thickness direction in the electrode contact portion 6 </ b> A. Is smaller than the area of the outer side surfaces 32a and 32b of the negative electrode plate 32. As described above, since the contact area is reduced by the through hole 6H, the outer shape in plan view of the one surface 6a and the outer shape in plan view of the outer surfaces 32a and 32b of the negative electrode plate 32 can be substantially matched. Further, it is possible to prevent the negative electrode active material from dropping off at the end of the negative electrode plate 32.
複数の貫通孔6Hは、電極接触部6Aにおいてケース接触部6Bの両側それぞれに形成されている(図6及び図7等参照)。このようにケース接触部6Bの両側に形成されることによって、ケース接触部6Bにより仕切られたそれぞれの空間内の酸素ガスを貫通孔6Hを介して負極板32に吸収させることができるとともに、その空間内の電解液を貫通孔6Hを介して負極板32に浸透させることができる。   The plurality of through holes 6H are formed on both sides of the case contact portion 6B in the electrode contact portion 6A (see FIGS. 6 and 7). By being formed on both sides of the case contact portion 6B in this way, oxygen gas in each space partitioned by the case contact portion 6B can be absorbed by the negative electrode plate 32 through the through-hole 6H, and the The electrolytic solution in the space can be infiltrated into the negative electrode plate 32 through the through hole 6H.
次にこのように構成した円筒形電池100の製造方法について簡単に説明する。   Next, a method for manufacturing the cylindrical battery 100 configured as described above will be briefly described.
上述した電極群3を積層方向Lから一対のスペーサ61、62で挟み込む。このように形成された構造体を電池ケース2内に配置する。なお、配置した状態で負極板32の集電端子321が、一対のスペーサ61、62の2つのケース接触部6Bの間に位置するとともに、スペーサ61、62のケース接触部6Bの下面が集電端子321の一部を電池ケース2の底面2Bに押さえた状態となる。なお、電極群3を電池ケース2内に収容した後に、一対のスペーサ61、62を電極群3を挟むように収容しても良い。   The electrode group 3 described above is sandwiched between the pair of spacers 61 and 62 from the stacking direction L. The structure thus formed is placed in the battery case 2. In addition, the collector terminal 321 of the negative electrode plate 32 is positioned between the two case contact portions 6B of the pair of spacers 61 and 62 while the lower surface of the case contact portion 6B of the spacers 61 and 62 is the current collector. A part of the terminal 321 is pressed against the bottom surface 2 </ b> B of the battery case 2. In addition, after accommodating the electrode group 3 in the battery case 2, the pair of spacers 61 and 62 may be accommodated so as to sandwich the electrode group 3.
そして、電極群3が電池ケース2に固定された状態で、スペーサ61、62のケース接触部6B及び電池ケース2の内側周面2Aの間に形成される空間に溶接棒を挿入して負極板32の集電端子321を電池ケース2の底面2Bに溶接して接続する。その後、電池ケース2内に電解液を注液する。そして注液後、正極板31の集電端子311を直接又は集電板(不図示)を介して封口体5の裏面に接続するとともに、当該封口体5を絶縁体4を介して電池ケース2の上部開口にかしめ等により固定する。   Then, with the electrode group 3 fixed to the battery case 2, a welding rod is inserted into the space formed between the case contact portion 6B of the spacers 61 and 62 and the inner peripheral surface 2A of the battery case 2, and the negative electrode plate 32 current collecting terminals 321 are connected to the bottom surface 2B of the battery case 2 by welding. Thereafter, an electrolytic solution is injected into the battery case 2. And after pouring, while the current collection terminal 311 of the positive electrode plate 31 is connected to the back surface of the sealing body 5 directly or through a current collection board (not shown), the said sealing body 5 is connected to the battery case 2 via the insulator 4. It is fixed to the upper opening of the door by caulking or the like.
<本実施形態の効果>
このように構成した本実施形態に係る円筒形電池100によれば、正極板31及び負極板32をセパレータ33を介して積層した電極群3を電池ケース2内に収容することから、電極群3の巻きずれ及び巻きずれに付随する種々の問題の無い電池を提供することができる。
<Effect of this embodiment>
According to the cylindrical battery 100 according to the present embodiment configured as described above, the electrode group 3 in which the positive electrode plate 31 and the negative electrode plate 32 are stacked via the separator 33 is accommodated in the battery case 2, so that the electrode group 3 It is possible to provide a battery that is free from various problems associated with winding misalignment and winding misalignment.
また、スペーサ61、62を用いて電極群3を電池ケース2内で押圧して固定しているので、電池ケース2に対する電極群3のがたつきを防止することができ、極板31、32の活物質の脱落を抑制して充放電性能の劣化を防ぐだけでなく、充放電性能を向上させることができる。   Further, since the electrode group 3 is pressed and fixed in the battery case 2 using the spacers 61 and 62, rattling of the electrode group 3 with respect to the battery case 2 can be prevented, and the electrode plates 31 and 32 can be prevented. In addition to preventing the active material from falling off and preventing the deterioration of the charge / discharge performance, the charge / discharge performance can be improved.
特に、電極群3の平面状をなす外側面が負極板32の外側面32a、32bであり、この負極板32の外側面32a、32bに接触するスペーサ61、62の接触面積が負極板32の外側面32a、32bの面積よりも小さいので、電極群3をスペーサ61、62により固定した状態で、負極板32の外側面32a、32bの一部がスペーサ61、62から露出することになる。これにより、充電中に正極板31から発生する酸素ガスを負極板32によって吸収させ易くすることができる。したがって、円筒形電池100のサイクル寿命性能を向上させることができる。なお、円筒状の電池ケース2であることから、内部圧力の上昇に対して強度的に強くすることもできる。その他、負極板32の外側面32a、32bの一部がスペーサ61、62から露出しているので、電解液を負極板32に浸透させ易くすることができる。   In particular, the planar outer surface of the electrode group 3 is the outer surfaces 32 a and 32 b of the negative electrode plate 32, and the contact areas of the spacers 61 and 62 that contact the outer surfaces 32 a and 32 b of the negative electrode plate 32 are the same as those of the negative electrode plate 32. Since the area of the outer side surfaces 32 a and 32 b is smaller, a part of the outer side surfaces 32 a and 32 b of the negative electrode plate 32 is exposed from the spacers 61 and 62 in a state where the electrode group 3 is fixed by the spacers 61 and 62. Thereby, the oxygen gas generated from the positive electrode plate 31 during charging can be easily absorbed by the negative electrode plate 32. Therefore, the cycle life performance of the cylindrical battery 100 can be improved. In addition, since it is the cylindrical battery case 2, it can also strengthen in strength with respect to the raise of an internal pressure. In addition, since part of the outer surfaces 32 a and 32 b of the negative electrode plate 32 are exposed from the spacers 61 and 62, the electrolyte can be easily penetrated into the negative electrode plate 32.
さらに本実施形態では、電極接触部6Aに貫通孔6Hを形成してスペーサ61、62の接触面積を負極板32の外側面32a、32bよりも小さくするとともに、電極接触部6Aの外形形状を負極板32の外側面32a、32bの外形形状と略一致させているので、負極活物質が脱落しやすい端部に電極接触部6Aを接触させて負極活物質の脱落を防止し、充放電性能の劣化を一層防ぐことができる。   Furthermore, in the present embodiment, through holes 6H are formed in the electrode contact portion 6A so that the contact areas of the spacers 61 and 62 are smaller than the outer surfaces 32a and 32b of the negative electrode plate 32, and the outer shape of the electrode contact portion 6A is the negative electrode. Since the outer shape of the outer surfaces 32a and 32b of the plate 32 is substantially the same, the electrode contact portion 6A is brought into contact with the end portion where the negative electrode active material is likely to fall off, thereby preventing the negative electrode active material from falling off and charging / discharging performance. Deterioration can be further prevented.
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.
例えば、スペーサ61、62の接触面積を、負極板32の外側面32a、32bの面積よりも小さくする態様としては、前記実施形態に限られず、図9に示すように、一方面6aの一部の幅寸法を負極板32の外側面32a、32bの幅寸法よりも小さくするように構成しても良い。   For example, a mode in which the contact areas of the spacers 61 and 62 are made smaller than the areas of the outer surfaces 32a and 32b of the negative electrode plate 32 is not limited to the above-described embodiment, and as shown in FIG. The width dimension may be made smaller than the width dimension of the outer surfaces 32a and 32b of the negative electrode plate 32.
図9に示すスペーサ61、62は、電極接触部6Aの中心軸方向に対する幅方向において対向する一対の側辺部それぞれに、幅方向内側に凹んだ複数の凹部6Kを形成することによって、スペーサ61、62における負極板32の外側面32a、32bへの接触面積を、負極板32の外側面32a、32bの面積よりも小さくしている。つまり、電極接触部6Aの平面視における外形形状において、負極板32の外側面32a、32bよりも内側に凹んだ凹部6Kが形成されるように構成している。このように複数の凹部6Kを形成することで、負極板32の外側面32a、32bの露出面積を増大させることができる。また、隣接する凹部6Kの間に形成される中間部6K1が負極板32の幅方向端部に接触するため、負極活物質の脱落を防止することができる。なお、図9に示す凹部6Kは、平面視における形状がV字形状をなすものであるが、これに限られず、例えば、コの字形状をなすものであっても良いし、半円状等の部分円状をなすものであっても良いし、U字形状をなすものであっても良い。   The spacers 61 and 62 shown in FIG. 9 are formed by forming a plurality of recesses 6 </ b> K that are recessed inward in the width direction on each of a pair of side sides facing each other in the width direction with respect to the central axis direction of the electrode contact portion 6 </ b> A. 62, the area of contact of the negative electrode plate 32 with the outer surfaces 32a and 32b is smaller than the area of the outer surfaces 32a and 32b of the negative electrode plate 32. In other words, in the outer shape of the electrode contact portion 6A in plan view, the concave portion 6K that is recessed inward from the outer surfaces 32a and 32b of the negative electrode plate 32 is formed. By forming the plurality of recesses 6K in this manner, the exposed areas of the outer surfaces 32a and 32b of the negative electrode plate 32 can be increased. Moreover, since the intermediate part 6K1 formed between the adjacent recessed parts 6K contacts the edge part of the negative electrode plate 32 in the width direction, the negative electrode active material can be prevented from falling off. Note that the recess 6K shown in FIG. 9 has a V-shape in plan view, but is not limited thereto, and may be, for example, a U-shape or a semicircular shape. A partial circle shape or a U-shape may be used.
ここで、図12に示すような負極板の外側面の面積と同一の接触面積を有するスペーサ(比較例)と、前記図6に示す前記実施形態のスペーサ(本発明A)と、図9に示すスペーサ(本発明B)とを備える電池を作製し、ガスの吸収性能の評価を行った。評価試験を以下の表に示す。   Here, a spacer having the same contact area as the outer surface of the negative electrode plate as shown in FIG. 12 (comparative example), the spacer of the embodiment shown in FIG. 6 (present invention A), and FIG. A battery including the spacer shown in the present invention (present invention B) was prepared, and the gas absorption performance was evaluated. The evaluation test is shown in the following table.
各スペーサを備える電池は次のとおりに作製した。正極活物質には亜鉛3質量%,コバルト0.6質量%を固溶状態で含有する水酸化ニッケル表面に、7質量%のコバルト水酸化物を被覆したものを18M水酸化ナトリウム溶液を用いて110℃で1時間空気酸化処理を行ったものを用いた。この正極活物質に、増粘剤(カルボキシメチルセルロース)を溶解させた水溶液を加えて、ペーストを作製した。このペーストを、基材面密度が500g/mの発泡ニッケルに充填し、乾燥させた後、所定の厚さにプレスすることによって1000mAhの正極板とした。
負極活物質には、平均粒径50μmに粉砕したMmNi3.8Co0.8Mn0.3Al0.3組成の水素吸蔵合金を用いた。前記合金粉末100質量部に増粘剤(メチルセルロース)を溶解した水溶液を加え、さらに、結着剤(スチレンブタジエンゴム)を1質量部加えてペースト状にしたものを厚さ45μmの穿孔鋼板の両面に塗布した。これを所定の厚さにプレスして、1枚あたり600mAh、合計1200mAhの負極板とした。なお、平均粒径とは、体積標準の粒度分布における累積度50%の粒径であり、レーザー回折・散乱法を用いた測定装置(マイクロトラック社製MT3000)にて測定されたものである。
上記で作製した正極板と負極板とを、スルフォン化処理を施したセパレータを介して図5のように積層して電極群とし、スペーサと組み合わせて円筒状の金属ケースに収納した。つぎに、4M KOH+3M NaOH+0.8M LiOH組成の電解液を1.45g注液し、安全弁を備えた金属製蓋体で封口して、AAサイズ1000mAhのニッケル水素蓄電池を作製した。
The battery provided with each spacer was produced as follows. For the positive electrode active material, a nickel hydroxide surface containing 3% by mass of zinc and 0.6% by mass of cobalt in a solid solution state coated with 7% by mass of cobalt hydroxide was used with an 18M sodium hydroxide solution. What performed the air oxidation process at 110 degreeC for 1 hour was used. An aqueous solution in which a thickener (carboxymethylcellulose) was dissolved was added to this positive electrode active material to prepare a paste. The paste was filled in foamed nickel having a substrate surface density of 500 g / m 2 , dried, and then pressed to a predetermined thickness to obtain a 1000 mAh positive electrode plate.
As the negative electrode active material, a hydrogen storage alloy having a composition of MmNi 3.8 Co 0.8 Mn 0.3 Al 0.3 pulverized to an average particle diameter of 50 μm was used. An aqueous solution in which a thickener (methylcellulose) is dissolved is added to 100 parts by mass of the alloy powder, and further 1 part by mass of a binder (styrene butadiene rubber) is added to form a paste. It was applied to. This was pressed to a predetermined thickness to obtain a negative electrode plate of 600 mAh per sheet, totaling 1200 mAh. The average particle diameter is a particle diameter having a cumulative degree of 50% in the volume standard particle size distribution, and is measured with a measuring apparatus (MT3000 manufactured by Microtrac) using a laser diffraction / scattering method.
The positive electrode plate and the negative electrode plate produced as described above were laminated as shown in FIG. 5 through a separator subjected to sulfonation treatment to form an electrode group, and were combined with a spacer and stored in a cylindrical metal case. Next, 1.45 g of an electrolyte solution of 4M KOH + 3M NaOH + 0.8M LiOH composition was injected and sealed with a metal lid provided with a safety valve to produce an AA size 1000 mAh nickel-metal hydride storage battery.
組み立て後の各電池を、次の条件で初期化成を行い、完成させた。20℃で、100mAで12時間の条件で定電流充電し、次いで200mAで1Vとなるまで定電流放電を行った。これを2サイクル繰り返した。その後、40℃で48時間保存した。20℃で、100mAで12時間の条件で定電流充電し、次いで200mAで1Vとなるまで定電流放電を行った。これを2サイクル繰り返し、初期化成を完了した。   Each assembled battery was initialized and completed under the following conditions. A constant current charge was performed at 20 ° C. under a condition of 100 mA for 12 hours, and then a constant current discharge was performed until the voltage became 1 V at 200 mA. This was repeated for 2 cycles. Thereafter, it was stored at 40 ° C. for 48 hours. A constant current charge was performed at 20 ° C. under a condition of 100 mA for 12 hours, and then a constant current discharge was performed until the voltage became 1 V at 200 mA. This was repeated for 2 cycles to complete the initialization.
完成後の各電池について、次の方法で評価試験を行った。すなわち、電池を20度にて、0.5CでSOC120%まで充電を行い、電池の内圧を測定した。また、本発明Aの開口率は2.5%であり、本発明Bの開口率は9%である。なお、ここで開口率とは、比較例の接触面積に対する貫通孔又は凹部の平面視における開口面積の割合である。   Each battery after completion was evaluated by the following method. That is, the battery was charged at 20 ° C. with 0.5 C to SOC 120%, and the internal pressure of the battery was measured. The aperture ratio of the present invention A is 2.5%, and the aperture ratio of the present invention B is 9%. Here, the aperture ratio is the ratio of the opening area in plan view of the through hole or the recess to the contact area of the comparative example.
表1から分かるように、比較例を用いた円筒形電池では、過充電後の内圧が1.04[MPa]であったのに対して、本発明A及び本発明Bを用いた円筒形電池では、過充電後の内圧が何れも比較例よりも低下している。これは、比較例に対して本発明A及び本発明Bが、充電中に発生した酸素ガスを負極板32に吸収させ易くしていることを示している。また、本発明A及び本発明Bを比較すると、開口率が大きい方が酸素ガスの吸収が多いことが分かる。なお、スペーサにおける貫通孔又は凹部の開口率は大きくすればするほど、ガスの吸収性能が向上するが、活物質の脱落を防止するためには、開口率を例えば20%以下とすることが好ましい。   As can be seen from Table 1, in the cylindrical battery using the comparative example, the internal pressure after overcharging was 1.04 [MPa], whereas the cylindrical battery using the present invention A and the present invention B was used. Then, all the internal pressures after overcharging are lower than in the comparative example. This shows that the present invention A and the present invention B make it easier for the negative electrode plate 32 to absorb the oxygen gas generated during the charging compared to the comparative example. Further, comparing the present invention A and the present invention B, it can be seen that the larger the aperture ratio, the more oxygen gas is absorbed. Note that the larger the aperture ratio of the through hole or the recess in the spacer, the better the gas absorption performance. However, in order to prevent the active material from falling off, the aperture ratio is preferably 20% or less, for example. .
また、図10に示すように、一方面6aの全部の幅寸法を負極板32の外側面32a、32bの幅寸法よりも小さくするように構成しても良い。   Further, as shown in FIG. 10, the entire width dimension of the one surface 6 a may be made smaller than the width dimension of the outer surfaces 32 a and 32 b of the negative electrode plate 32.
図10に示すスペーサ61、62は、電極接触部6Aの略全体の幅寸法(W)を負極板32の外側面32a、32bの幅寸法(W)よりも小さくすることで、スペーサ61、62における負極板32の外側面32a、32bへの接触面積を、負極板32の外側面32a、32bの面積よりも小さくしている。これならば、負極板32の外側面32a、32bにおいて幅方向端部をスペーサ61、62から露出させることができ、酸素ガスを吸収させ易くすることができる。また、スペーサ61、62による電極群3の幅方向中央部分への押圧を確保することができる。 The spacers 61 and 62 shown in FIG. 10 have a substantially entire width dimension (W 2 ) of the electrode contact portion 6A smaller than the width dimension (W 1 ) of the outer surfaces 32a and 32b of the negative electrode plate 32. 62, the area of contact of the negative electrode plate 32 with the outer surfaces 32a and 32b is smaller than the area of the outer surfaces 32a and 32b of the negative electrode plate 32. If it is this, the width direction edge part can be exposed from the spacers 61 and 62 in the outer surface 32a, 32b of the negative electrode plate 32, and it can make oxygen gas easy to absorb. Further, it is possible to ensure the pressing of the spacers 61 and 62 to the central portion in the width direction of the electrode group 3.
さらに、図11に示すように、電極接触部6Aの一方面6aに凹凸形状を形成し、その凹部が幅方向の少なくとも一方の端面又は幅方向に直交する高さ方向の少なくとも一方の端面に開口するように構成しても良い。   Furthermore, as shown in FIG. 11, an uneven shape is formed on one surface 6a of the electrode contact portion 6A, and the concave portion is opened on at least one end surface in the width direction or at least one end surface in the height direction orthogonal to the width direction. You may comprise so that it may do.
図11に示すスペーサ61、62は、電極接触部6Aの一方面6aにおいて、幅方向の両端面に開口する複数の横溝6Saと、幅方向に直交する縦方向の両端面に開口する複数の縦溝6Sbとからなる凹凸形状が形成されている。このように形成された凹凸形状における凸部の頂面が、負極板32の外側面32a、32bと接触する接触面となり、スペーサ61、62における負極板32の外側面32a、32bへの接触面積が、負極板32の外側面32a、32bの面積よりも小さくなる。また、凹凸形状が、横溝6Sa及び縦溝6Sbから構成されているので、正極板31により発生した酸素ガスを負極板32の外側面32a、32bの中央部に到達させて吸収させることができる。さらに、一方面6aに凹凸形状を形成するだけなので、電極接触部6Aの機械的強度の低下を防ぐことができる。   The spacers 61 and 62 shown in FIG. 11 have a plurality of horizontal grooves 6Sa opened on both end faces in the width direction and a plurality of vertical openings opened on both end faces in the vertical direction perpendicular to the width direction on one surface 6a of the electrode contact portion 6A. An uneven shape including the groove 6Sb is formed. The top surfaces of the protrusions in the concavo-convex shape thus formed become contact surfaces that come into contact with the outer surfaces 32 a and 32 b of the negative electrode plate 32, and the contact areas of the spacers 61 and 62 with the outer surfaces 32 a and 32 b of the negative electrode plate 32. However, it is smaller than the area of the outer surfaces 32a and 32b of the negative electrode plate 32. Further, since the uneven shape is composed of the horizontal grooves 6Sa and the vertical grooves 6Sb, the oxygen gas generated by the positive electrode plate 31 can reach the central portions of the outer surfaces 32a and 32b of the negative electrode plate 32 and be absorbed. Furthermore, since only the irregular shape is formed on the one surface 6a, it is possible to prevent the mechanical strength of the electrode contact portion 6A from being lowered.
なお、前記凹凸形状としては、1又は複数の横溝6Saのみからなるものであっても良いし、1又は複数の縦溝6Sbからなるものであっても良い。また、各横溝6Saは幅方向における一端面にのみ開口するものであっても良く、縦溝6Sbは、高さ方向における一端面にのみ開口するものであっても良い。その他、凹凸形状は、一方面6aにエンボス加工を施すことにより形成しても良い。   In addition, as said uneven | corrugated shape, it may consist only of 1 or several horizontal groove 6Sa, and may consist of 1 or several vertical groove 6Sb. Each horizontal groove 6Sa may be opened only on one end face in the width direction, and the vertical groove 6Sb may be opened only on one end face in the height direction. In addition, the uneven shape may be formed by embossing the one surface 6a.
また、スペーサ61、62の電極接触部6Aは、上述した形状を組み合わせたものであっても良い。例えば、スペーサ61、62の電極接触部6Aが、前記貫通孔6H及び前記凹部6Kの両方を有するものであっても良いし、前記貫通孔6H及び前記凹凸形状を有するものであっても良い。   Further, the electrode contact portions 6A of the spacers 61 and 62 may be a combination of the shapes described above. For example, the electrode contact portion 6A of the spacers 61 and 62 may have both the through hole 6H and the recess 6K, or may have the through hole 6H and the uneven shape.
また、前記実施形態では電極群の対向する2つの側面を1対のスペーサで挟むようにして電池ケースに固定するものであったが、電極群の対向する2つの側面を3つ以上のスペーサで挟むようにしても良いし、電極群の4つの側面と電池ケースの内側周面との間にそれぞれスペーサを設けるようにしても良い。あるいは、各スペーサが連結部により連結された一体をなすものであっても良い。   In the above embodiment, the two opposite side surfaces of the electrode group are fixed to the battery case so as to be sandwiched between a pair of spacers. However, the two opposite side surfaces of the electrode group are sandwiched between three or more spacers. Alternatively, spacers may be provided between the four side surfaces of the electrode group and the inner peripheral surface of the battery case. Alternatively, each spacer may be integrated by a connecting portion.
また、前記実施形態の電極群は、その積層方向が電池ケースの中心軸方向と直交するように、電池ケース内に配置されるものであったが、積層方向が電池ケースの中心軸方向と同一となるように配置するものであっても良い。   Further, the electrode group of the embodiment is arranged in the battery case so that the stacking direction is orthogonal to the central axis direction of the battery case, but the stacking direction is the same as the central axis direction of the battery case. It may be arranged so that
さらに、電極群は前記実施形態の構成に限られず、負極板又は正極板の少なくとも一方を平板状極板としても良い。   Furthermore, an electrode group is not restricted to the structure of the said embodiment, It is good also considering at least one of a negative electrode plate or a positive electrode plate as a flat electrode plate.
また、前記実施形態の負極板の集電端子は電池ケースの底面に溶接されるものであったが、その他、電池ケースの内側周面に溶接するものであっても良い。   Moreover, although the current collection terminal of the negative electrode plate of the said embodiment was welded to the bottom face of a battery case, it may be welded to the inner peripheral surface of a battery case.
その上、前記実施形態の正極板及び負極板を逆の構成としても良い。つまり、正極板の集電端子を電池ケースの内面に溶接するように構成しても良い。   In addition, the positive electrode plate and the negative electrode plate of the embodiment may be reversed. That is, you may comprise so that the current collection terminal of a positive electrode plate may be welded to the inner surface of a battery case.
本発明は、アルカリ蓄電池の他、リチウムイオン二次電池等の二次電池に適用することも可能であり、又は一次電池に適用しても良い。   The present invention can be applied to secondary batteries such as lithium ion secondary batteries in addition to alkaline storage batteries, or may be applied to primary batteries.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
100・・・円筒形電池
2・・・電池ケース
2A・・・電池ケースの内側周面
3・・・電極群
L・・・積層方向
31・・・正極板
32・・・負極板
32a・・・外側面
32b・・・外側面
33・・・セパレータ
6・・・スペーサ
6a・・・一方面(接触面)
6b・・・他方面
6A・・・電極接触部
6B・・・ケース接触部
DESCRIPTION OF SYMBOLS 100 ... Cylindrical battery 2 ... Battery case 2A ... Inner peripheral surface 3 of battery case ... Electrode group L ... Stacking direction 31 ... Positive electrode plate 32 ... Negative electrode plate 32a ... -Outer surface 32b ... Outer surface 33 ... Separator 6 ... Spacer 6a ... One surface (contact surface)
6b ... the other side 6A ... electrode contact part 6B ... case contact part

Claims (5)

  1. 円筒状をなす電池ケースと、
    前記電池ケース内に配置され、正極、負極及びセパレータから構成されており、互いに対向する一対の外側面が平面状をなし、前記外側面に負極が露出している電極群と、
    前記電池ケースの内側周面と前記電極群の外側面との間に設けられ、前記外側面の略全面と接触する電極接触部及び当該電極接触部から延出して前記電池ケースの内側周面に接触するケース接触部を有するスペーサとを備え、
    前記スペーサの電極接触部が、前記外側面に露出する負極の面積よりも小さいことを特徴とする円筒形電池。
    A cylindrical battery case;
    An electrode group that is arranged in the battery case and is composed of a positive electrode, a negative electrode, and a separator, a pair of outer surfaces facing each other is planar, and the negative electrode is exposed on the outer surface;
    An electrode contact portion that is provided between the inner peripheral surface of the battery case and the outer surface of the electrode group, contacts the substantially entire surface of the outer surface, and extends from the electrode contact portion to the inner peripheral surface of the battery case. A spacer having a case contact portion to contact ,
    The cylindrical battery, wherein an electrode contact portion of the spacer is smaller than an area of the negative electrode exposed on the outer surface.
  2. 前記電極接触部の中心軸方向に対する幅寸法の全部又は一部が、前記負極の外側面の中心軸方向に対する幅寸法よりも小さいことを特徴とする請求項1記載の円筒形電池。   2. The cylindrical battery according to claim 1, wherein all or part of the width dimension of the electrode contact portion with respect to the central axis direction is smaller than the width dimension of the outer surface of the negative electrode with respect to the central axis direction.
  3. 前記電極接触部に、貫通する1又は複数の貫通孔が形成されていることを特徴とする請求項1又は2記載の円筒形電池。   The cylindrical battery according to claim 1, wherein one or a plurality of through holes penetrating the electrode contact portion are formed.
  4. 前記電極接触部の中心軸方向に対する幅方向において対向する一対の側辺部の少なくとも一方に、幅方向内側に凹んだ1又は複数の凹部が形成されていることを特徴とする請求項2記載の円筒形電池。   3. The one or more recesses recessed inward in the width direction are formed in at least one of the pair of side portions facing in the width direction with respect to the central axis direction of the electrode contact portion. Cylindrical battery.
  5. 前記電極接触部における前記負極の外側面に対向する面に凹凸形状が形成されており、その凹部が中心軸方向に対する幅方向の少なくとも一方の端面又は中心軸方向の少なくとも一方の端面に開口している請求項1乃至4の何れかに記載の円筒形電池。   A concave-convex shape is formed on a surface of the electrode contact portion that faces the outer surface of the negative electrode, and the concave portion opens on at least one end surface in the width direction relative to the central axis direction or at least one end surface in the central axis direction. The cylindrical battery according to any one of claims 1 to 4.
JP2012276677A 2012-12-19 2012-12-19 Cylindrical battery Active JP6075619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276677A JP6075619B2 (en) 2012-12-19 2012-12-19 Cylindrical battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012276677A JP6075619B2 (en) 2012-12-19 2012-12-19 Cylindrical battery
CN201310684845.2A CN103887463B (en) 2012-12-19 2013-12-13 Cylindrical battery
US14/107,041 US9209430B2 (en) 2012-12-19 2013-12-16 Cylindrical battery
EP13197927.0A EP2747185B1 (en) 2012-12-19 2013-12-18 Cylindrical battery

Publications (2)

Publication Number Publication Date
JP2014120427A JP2014120427A (en) 2014-06-30
JP6075619B2 true JP6075619B2 (en) 2017-02-08

Family

ID=51175078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276677A Active JP6075619B2 (en) 2012-12-19 2012-12-19 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP6075619B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018006700T5 (en) * 2017-12-27 2020-09-10 Gs Yuasa International Ltd. ENERGY STORAGE DEVICE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414301A (en) * 1981-12-10 1983-11-08 Allied Corporation Formed separator set for lead acid batteries
SE9400946L (en) * 1994-03-22 1995-10-09 Erik Sundberg Lead batteries with electrodes under constant pressure
JP2001257004A (en) * 2000-03-13 2001-09-21 Japan Storage Battery Co Ltd Battery
JP4107468B2 (en) * 2000-12-06 2008-06-25 株式会社ジーエス・ユアサコーポレーション battery
JP2003077457A (en) * 2001-09-05 2003-03-14 Toshiba Battery Co Ltd Flat non-aqueous electrolyte secondary battery
JP2007019165A (en) * 2005-07-06 2007-01-25 Sanyo Electric Co Ltd Accumulator device
JP2010034002A (en) * 2008-07-31 2010-02-12 Idemitsu Kosan Co Ltd Lithium battery and lithium battery mounting device
JP5216068B2 (en) * 2010-10-29 2013-06-19 三菱重工業株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2014120427A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP4532448B2 (en) Rectangular battery electrode unit, rectangular battery, and method of manufacturing rectangular battery electrode unit
JP6020442B2 (en) Cylindrical battery and battery electrode structure
US20020094478A1 (en) Electrode with flag-shaped tab
US20140170471A1 (en) Electrode plate, layered electrode group, battery, and cylindrical battery
JP6075619B2 (en) Cylindrical battery
EP1062707B1 (en) Prismatic electrochemical cell
US20150093619A1 (en) Battery and method for manufacturing battery
JP6086207B2 (en) Electrode plate, stacked electrode group, battery, and cylindrical battery
JP4836351B2 (en) Electrode plate for alkaline storage battery and alkaline storage battery using the same
US6653023B1 (en) Rectangular battery
JP6142521B2 (en) Cylindrical battery
JP2015008094A (en) Battery
JP2018085215A (en) Power storage element
US9209430B2 (en) Cylindrical battery
JPH10223183A (en) Cylindrical battery
JP4152084B2 (en) Square alkaline storage battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP5110889B2 (en) Nickel metal hydride secondary battery
WO2018173345A1 (en) Nickel hydrogen cell and method for manufacturing same
JP2020068172A (en) Secondary battery
JP3625731B2 (en) Square battery
JP5979441B2 (en) Electrode plate, stacked electrode group, battery, and cylindrical battery
KR101373229B1 (en) Stacked secondary battery
JP2004119133A (en) Square battery
JP2002025548A (en) Square alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6075619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150