JP2003077457A - Flat non-aqueous electrolyte secondary battery - Google Patents

Flat non-aqueous electrolyte secondary battery

Info

Publication number
JP2003077457A
JP2003077457A JP2001269076A JP2001269076A JP2003077457A JP 2003077457 A JP2003077457 A JP 2003077457A JP 2001269076 A JP2001269076 A JP 2001269076A JP 2001269076 A JP2001269076 A JP 2001269076A JP 2003077457 A JP2003077457 A JP 2003077457A
Authority
JP
Japan
Prior art keywords
electrode
flat
aqueous electrolyte
battery
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001269076A
Other languages
Japanese (ja)
Inventor
Masami Suzuki
正美 鈴木
Munehito Hayami
宗人 早見
Kazuo Udagawa
和男 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001269076A priority Critical patent/JP2003077457A/en
Publication of JP2003077457A publication Critical patent/JP2003077457A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a flat non-aqueous electrolyte secondary battery that has an excellent heavy-load discharge characteristics and a large discharge capacity. SOLUTION: In the flat non-aqueous electrolyte secondary battery, the negative electrode case 5 and the positive electrode case 1 are engaged through an insulation gasket 6 and either one of the case has a sealing structure processed by caulking, and a group of electrodes, which encloses a generating element containing a positive electrode 2, a separator 3 and a negative electrode 4 and a non-aqueous electrolyte and comprises at least three faces of opposing faces of the positive and negative electrodes that opposes via the separator in the cross section in the vertical direction to the flat surface of the battery, is housed, and an electrode composition material having conductivity is exposed at the outside in the horizontal direction of the flat surface of the battery, and the exposed part is connected to the battery case. Since the group of electrodes is constructed by turning back alternately the positive electrode and the negative electrode that are arranged in a state of crossing each other via the separator, a flat non-aqueous electrolyte secondary battery having an excellent heavy-load discharge characteristics, low internal resistance and a large discharge capacity can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は扁平形非水電解質二
次電池に係り、特に重負荷特性に優れ、かつ放電容量の
大きい扁平形非水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat type non-aqueous electrolyte secondary battery, and more particularly to a flat type non-aqueous electrolyte secondary battery having excellent heavy load characteristics and large discharge capacity.

【0002】[0002]

【従来の技術】正極作用物質にコバルト酸リチウム、ニ
ッケル酸リチウム、マンガン酸リチウムなどのリチウム
含有酸化物を用い、負極にリチウムを吸蔵、放出可能な
炭素質材料、あるいはリチウム含有錫酸化物、リチウム
含有珪素酸化物、チタン酸リチウムのようなリチウム含
有酸化物を用い、電解質にプロピレンカーボネート、エ
チレンカーボネート、ブチレンカーボネート、ジエチル
カーボネート、ジメチルカーボネート、メチルエチルカ
ーボネート、ジメトキシエタン、γ−ブチルラクトンな
どの非水溶媒に、LiClO4、LiPF6、LiB
4、LiCF3SO3、LiN(CF3SO22、LiN
(C2F5SO22などの支持塩を溶解した非水電解質を
用いたリチウムイオン二次電池は既に実用化されてお
り、携帯電話やノート型PCの主電源として広く一般に
使用されている。
2. Description of the Related Art A lithium-containing oxide such as lithium cobalt oxide, lithium nickel oxide, or lithium manganate is used as a positive electrode active material, and a carbonaceous material capable of absorbing and releasing lithium in the negative electrode, or a lithium-containing tin oxide, lithium. Containing silicon oxide, lithium-containing oxide such as lithium titanate, non-aqueous electrolyte such as propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyl lactone. LiClO 4 , LiPF 6 , LiB in the solvent
F 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN
(C2F 5 SO 2) is a lithium ion secondary battery using a nonaqueous electrolyte obtained by dissolving a supporting salt such as 2 have already been put to practical use, mobile phones and notebook PC has been used widely as the main power source.

【0003】近年、使用機器の小型化に伴い、上述の二
次電池に関してもより小型化を進めることが要求されて
おり、これに応えるべく、本発明者等は特願平11−2409
64号や特願平11−241290号で開示した如く、負極端子を
兼ねる金属製の負極ケースと、正極端子を兼ねる金属製
の正極ケースが、絶縁ガスケットを介して嵌合され、さ
らに正極ケースまたは負極ケースが加締め加工により加
締められた封口構造を有する扁平形非水電解質二次電池
に、複数の薄形電極の通電部を溶接し一体化した積層電
極群や、帯状の電極を捲回した捲回電極群を電池ケース
の集電構造に工夫を凝らすことにより効率よく収納し、
従来のコイン形電池の如く小型で、かつ円筒形や角形な
どのリチウムイオン二次電池並みに重負荷特性の優れた
扁平形非水電解質二次電池を提供した。
In recent years, with the miniaturization of the equipment used, further miniaturization of the above-mentioned secondary battery has been required, and in order to meet this demand, the inventors of the present invention have applied for Japanese Patent Application No. 11-2409.
As disclosed in Japanese Patent Application No. 64 and Japanese Patent Application No. 11-241290, a metal negative electrode case also serving as a negative electrode terminal and a metal positive electrode case also serving as a positive electrode terminal are fitted with each other through an insulating gasket. A flat non-aqueous electrolyte secondary battery with a sealed structure in which the negative electrode case is crimped and swaged to form a laminated electrode group in which the current-carrying parts of multiple thin electrodes are welded together, or a strip-shaped electrode is wound. Efficiently store the wound electrode group by devising the current collection structure of the battery case,
Provided is a flat type non-aqueous electrolyte secondary battery that is as small as a conventional coin-shaped battery and has excellent heavy load characteristics comparable to a lithium ion secondary battery such as a cylinder or a prism.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記扁平形
非水電解質二次電池は電池サイズの小さな扁平形二次電
池において、初めからタブレット状の電極を用いた従来
のコイン形電池に対し、容積当たりの放電容量を可能な
限り減少させることなく、重負荷特性を飛躍的に向上さ
せることに主眼をおいたものである。これによりコイン
形電池としては非常に優れた電池が得られ、重負荷特性
は飛躍的に向上した。しかしながら、放電容量に関して
は従来の円筒形や角形のリチウムイオン二次電池に比べ
ると、電池が非常に小型である故、絶対量が小さいとい
う欠点があることは否めなかった。
By the way, the above-mentioned flat non-aqueous electrolyte secondary battery is a flat type secondary battery having a small battery size, which is larger than a conventional coin type battery using a tablet-shaped electrode from the beginning. The aim is to dramatically improve heavy load characteristics without reducing the discharge capacity per hit as much as possible. As a result, a very good coin type battery was obtained, and the heavy load characteristics were dramatically improved. However, with respect to the discharge capacity, it is undeniable that there is a drawback that the absolute amount is small because the battery is very small as compared with the conventional cylindrical or prismatic lithium ion secondary battery.

【0005】本発明は上記状況に鑑みてなされたもの
で、その解決すべき課題は、小型サイズを維持したまま
極限まで放電容量を増加させ、小型で重負荷特性に優
れ、かつ、放電容量の大きな扁平形非水電解質二次電池
を提供することである。
The present invention has been made in view of the above situation, and the problem to be solved is to increase the discharge capacity to the limit while maintaining the small size, to be small in size and to have excellent heavy load characteristics, and to improve the discharge capacity. It is to provide a large flat non-aqueous electrolyte secondary battery.

【0006】[0006]

【課題を解決するための手段】扁平形電池の高容量化を
図るために、本発明者らは電池の電極群以外の占める空
間部分を極力なくし、容積を有効に活用することを試み
た。例えば、扁平形電池の扁平面に垂直な方向の断面を
見た場合、特願平11−240964号で提案した複数の薄形電
極の通電部を溶接により一体化して積層電極群を作製し
たものは、各薄形電極の通電部の占める容積が大きく、
電池内の空間を有効に利用できなかった。特に放電容量
の大きな電池を得るため電池総高を厚くした場合は、複
数の電極同士を繋ぐ通電部を長くとらざるを得ず、電池
内の空間を有効に利用することは困難であった。
SUMMARY OF THE INVENTION In order to increase the capacity of a flat battery, the present inventors have tried to minimize the space other than the electrode group of the battery and utilize the volume effectively. For example, when looking at the cross section of the flat battery in the direction perpendicular to the flat surface, a laminated electrode group was prepared by welding the current-carrying parts of a plurality of thin electrodes proposed in Japanese Patent Application No. 11-240964 into one unit. Is a large volume occupied by the current-carrying part of each thin electrode,
The space inside the battery could not be used effectively. In particular, when the total height of the battery is increased in order to obtain a battery having a large discharge capacity, the current-carrying part connecting the plurality of electrodes has to be long, and it is difficult to effectively use the space in the battery.

【0007】電極群の形状を特願平11−241290号に示す
如く、捲回電極群とすることで電極の通電部も作用物質
層の塗布された電極で占めることができ、多少の容量の
増加は図ることができたが、捲回電極群でも電極群側面
のR部の上下には空間が生じる。この点に着目し、捲回
の仕方に工夫を凝らして、電極群断面が長円形ではなく
長方形となるように捲回を実施すれば、放電容量をさら
に増加させることが理論的には可能である。しかしなが
ら、このように長方形に捲回を行うことは、厚さが薄く
電極面積の小さな扁平形二次電池用の電極では実質的に
は困難であった。
When the shape of the electrode group is a wound electrode group as shown in Japanese Patent Application No. 11-241290, the current-carrying part of the electrode can be occupied by the electrode coated with the active substance layer, so that a certain amount of capacitance is required. Although it was possible to increase the number, a space is formed above and below the R portion on the side surface of the electrode group even in the wound electrode group. It is theoretically possible to further increase the discharge capacity by paying attention to this point, and devising the winding method so that the electrode group has a rectangular cross section instead of an oval shape. is there. However, such rectangular winding has been practically difficult for an electrode for a flat secondary battery having a small thickness and a small electrode area.

【0008】本発明者らは、これらの問題を解決する手
段としてシート状の正極と負極を、セパレータを介して
交差するように配置し、上方の電極上にさらにセパレー
タを重ね、その後、正負極を、セパレータを介して交互
に折り返して形成した電極群を扁平形電池の容器に収納
することが有効であることを見出した。この方法によれ
ば、形成された電極群は直方体となり、かつ、電極群を
構成する正負極電極はそれぞれ1つの電極からなってい
るため、複数の電極を多層積層して電極群を形成した電
極群とは異なり、複数の電極同士を繋ぐ通電部を有しな
いため形状を小さくでき、電池内の空間を有効利用する
ことができ、放電容量の大きな電池が得られる。
As a means for solving these problems, the present inventors arranged a sheet-like positive electrode and a negative electrode so as to intersect with each other with a separator interposed therebetween, further stacking the separator on the upper electrode, and then forming the positive and negative electrodes. It has been found that it is effective to store the electrode groups formed by alternately folding back through the separator in the container of the flat battery. According to this method, the formed electrode group is a rectangular parallelepiped, and the positive and negative electrodes forming the electrode group are each composed of one electrode, so that an electrode group is formed by stacking a plurality of electrodes in multiple layers. Unlike the group, it does not have a current-carrying part that connects a plurality of electrodes to each other, so that the shape can be reduced, the space in the battery can be effectively used, and a battery having a large discharge capacity can be obtained.

【0009】また、本発明に関わる電池は電池ケースと
電極群を接触させるだけで電極群と電池ケースとの集電
をとる構造を有しているが、本発明の電池の電極群は交
互に折り返した電極の反発作用により扁平形電池の水平
面に対し垂直方向に弾力をもつ電極群となる。そのた
め、従来の複数電極を多層積層した電極群や帯状の電極
を捲回した電極群を用いた電池に比べ、電極群と電池ケ
ースの密着性が高まり、より円滑に集電を行うことがで
きる。その結果、内部抵抗の低い電池が得られ、電池内
に収納できる作用物質量が増えたことと併せ、一層大電
流放電時に放電容量の大きな電池が得られる。
Further, the battery according to the present invention has a structure in which the electrode group and the battery case collect current simply by bringing the electrode case and the electrode group into contact with each other. However, the electrode groups of the battery of the present invention are alternately arranged. Due to the repulsive action of the folded electrodes, an electrode group having elasticity in the direction perpendicular to the horizontal plane of the flat battery is formed. Therefore, as compared with a battery using a conventional electrode group in which a plurality of electrodes are laminated in multiple layers or an electrode group in which band-shaped electrodes are wound, the adhesion between the electrode group and the battery case is increased, and current can be collected more smoothly. . As a result, a battery having a low internal resistance can be obtained, and the amount of the active substance that can be stored in the battery can be increased. In addition, a battery having a large discharge capacity at the time of discharging a large current can be obtained.

【0010】そして、これらの電極群を実際に製作する
場合には、正負極どちらか一方または両方の電極を予め
セパレータで包み込み、他極の電極をそれと交差するよ
うに配置し、セパレータで包み込まれた電極と他極の電
極を交互に折り返して電極群を製作すればよい。この方
法によれば、正負極の電極とセパレータを個別に配置し
折り返して電極を製作するよりも、より簡便に製作する
ことができる。
When these electrode groups are actually manufactured, either one or both of the positive and negative electrodes are wrapped in a separator in advance, the electrodes of the other electrodes are arranged so as to intersect with them, and the electrodes are wrapped in a separator. The electrode group may be manufactured by alternately folding back the electrode having the other electrode and the electrode having the other electrode. According to this method, the positive and negative electrodes and the separator can be manufactured more easily than the case where the electrodes are separately arranged and folded back to manufacture the electrodes.

【0011】次に、本発明者らは上記の折り返しにより
形成した電極郡を用いた扁平形電池の放電容量をさらに
増加させるべく、扁平形電池の水平面方向に電極群の占
める容積を拡大する方法を検討した。
Next, the present inventors expanded the volume occupied by the electrode group in the horizontal direction of the flat battery in order to further increase the discharge capacity of the flat battery using the electrode group formed by the above folding. It was investigated.

【0012】これまで開発された扁平形電池では、帯状
の正負極電極を用い、これらを直交させた後、電極を折
り返し扁平形電池の電極群を形成していたため、扁平形
電池の扁平面に対し水平面方向の断面を見た場合に、電
極の形状は正方形あるいは長方形であった。コイン形な
どの扁平形電池の断面は円形であるため、円形ガスケッ
トと方形電極との間には多大な空間が生じていた。
In the flat battery developed so far, strip-shaped positive and negative electrodes are used, and after making them orthogonal to each other, the electrodes are folded back to form an electrode group of the flat battery. On the other hand, when the cross section in the horizontal direction was seen, the shape of the electrode was square or rectangular. Since a flat battery such as a coin-shaped battery has a circular cross section, a large space is generated between the circular gasket and the rectangular electrode.

【0013】そこで、本発明者らは、電池ケースならび
にガスケットの形状に適合する形状を有した電極群を上
記の折り返し法にて製作するべく、さらに鋭意研究を重
ねた。その結果、電極が単位面を複数個連ねた形状を有
し、電極内の隣り合う単位面が、電極群を製作する際に
電極を折り返す折り返し線を中心に対称形を成していれ
ば、電極形状が帯状を成していなくとも上記の折り返し
法により電極を製作できることを見出した。
Therefore, the present inventors have further earnestly studied to manufacture an electrode group having a shape that matches the shape of the battery case and the gasket by the above folding method. As a result, if the electrode has a shape in which a plurality of unit surfaces are connected and adjacent unit surfaces in the electrode are symmetrical with respect to a folding line that folds back the electrode when manufacturing the electrode group, It has been found that an electrode can be manufactured by the above folding method even if the electrode does not have a strip shape.

【0014】この方法によれば、扁平形電池の水平面方
向の断面を見た場合にも、方形ではなく、断面がより円
形に近い多角形などのより複雑な形状の電極群を形成す
ることが可能となり、さらに放電容量の大きな扁平形二
次電池を得ることができる。
According to this method, even when the cross section of the flat battery in the horizontal direction is viewed, it is possible to form an electrode group having a more complicated shape such as a polygon whose cross section is closer to a circle than a square. This makes it possible to obtain a flat secondary battery having a large discharge capacity.

【0015】この場合に用いる電極の詳細な形状に関し
ては、単位面を複数個連ねていればよく、一例として五
角形や六角形、八角形などの多角形を複数個連ねた形状
を有する電極が挙げられる。円に内接する正方形の電極
面積を1とした場合に、内接正五角形で約1.2倍、ま
た内接正六角形では約1.3倍、さらに内接正八角形で
は約1.4倍となり、電極面積を拡大することができ
る。
Regarding the detailed shape of the electrode used in this case, it suffices that a plurality of unit surfaces be connected, and an example is an electrode having a shape in which a plurality of polygons such as a pentagon, a hexagon and an octagon are connected. To be When the area of a square electrode inscribed in a circle is 1, it is about 1.2 times for an inscribed regular pentagon, about 1.3 times for an inscribed regular hexagon, and about 1.4 times for an inscribed regular octagon. The electrode area can be expanded.

【0016】また、単位面は直線から構成される多角形
のみならず、円または楕円の周囲を少なくとも4個の辺
ができるように除去した面形状を用いてもよい。円また
は楕円の四方を直線で切除した面形状を複数個連ねた形
状の電極とした場合は、上記の内接正八角形よりもさら
に電極面積を拡大することができ、より好ましい。ま
た、この電極単位面の4辺を円弧で繋ぐ代りに自由曲線
や曲線と直線を併用して繋いでもよい。なお、電極を構
成する単位面の形状は必ずしも正多角形や正円を変形し
たものである必要はなく、小判形などの特殊形状を有す
る扁平形電池に対しては電池形状に合わせ、長辺と短辺
を有するような単位面形状をもつ電極を用いることが好
ましい。
Further, the unit surface is not limited to a polygon composed of straight lines, and a surface shape obtained by removing at least four sides around a circle or an ellipse may be used. It is more preferable to use an electrode having a shape in which a plurality of surface shapes obtained by cutting out four sides of a circle or an ellipse with straight lines are connected, because the electrode area can be further enlarged as compared with the above inscribed regular octagon. Further, instead of connecting the four sides of the electrode unit surface with a circular arc, a free curve or a curve and a straight line may be used in combination. The shape of the unit surface that constitutes the electrode does not necessarily have to be a deformed regular polygon or a perfect circle, and for flat batteries with a special shape such as an oval shape, the long side should be adjusted to match the battery shape. It is preferable to use an electrode having a unit surface shape having short sides.

【0017】一方、これらの電極において、電極を構成
する単位面を複数個連ねる際には、単位面同士を直接複
数個連結してもよいが、隣接する単位面間に極短い短冊
状の中間領域を設け連結部とすると、その後、電極板を
折り返して電極群を製作する場合に、電極を容易に折り
返すことができる。また、短冊状の連結部が折り返し部
になるため、電極の単位面には折り返しによるストレス
が加わらず、単位面を容易に平面状に保つことができ、
より好ましい。
On the other hand, in these electrodes, when a plurality of unit surfaces constituting the electrodes are connected, the plurality of unit surfaces may be directly connected to each other, but an extremely short strip-shaped intermediate portion between adjacent unit surfaces. When the region is provided and used as the connecting portion, the electrodes can be easily folded back when the electrode plate is folded back to manufacture the electrode group. Further, since the strip-shaped connecting portion serves as a folded portion, stress due to folding is not applied to the unit surface of the electrode, and the unit surface can be easily kept flat.
More preferable.

【0018】なお、本発明の電極群は上記した如く、負
極端子を兼ねる金属製の負極ケースと、正極端子を兼ね
る金属製の正極ケースが、絶縁ガスケットを介し嵌合さ
れ、さらに前記正極ケースまたは負極ケースが加締め加
工により加締められた封口構造を有する扁平形非水電解
質二次電池の性能向上に関して発明されたものである
が、電極群の適用範囲についてはこの限りではなく、金
属ケースにレーザー溶接を施し封口を行った角形の非水
電解質二次電池やラミネートフィルムを使用した扁平形
の非水電解質二次電池についても適用可能である。
As described above, in the electrode group of the present invention, the metal negative electrode case also serving as the negative electrode terminal and the metal positive electrode case also serving as the positive electrode terminal are fitted through the insulating gasket, and the positive electrode case or The negative electrode case was invented with respect to the performance improvement of the flat type non-aqueous electrolyte secondary battery having a sealing structure that has been crimped by crimping, but the scope of application of the electrode group is not limited to this, and it is not limited to the metal case. The present invention is also applicable to a rectangular non-aqueous electrolyte secondary battery that is laser-welded and sealed, and a flat non-aqueous electrolyte secondary battery that uses a laminate film.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施例及び比較例
について詳細に説明する。 (実施例1)図1は本発明の電池の扁平面に垂直方向の
断面図、図2は図1の実施例1の電池の扁平面に水平方
向の断面図である。図1及び図2の扁平形非水電解質二
次電池において、1は正極ケース、2は正極板、3はセ
パレータ、4は負極板、5は負極ケース、6は絶縁ガス
ケット、7は電極群である。
BEST MODE FOR CARRYING OUT THE INVENTION Examples and comparative examples of the present invention will be described in detail below. (Embodiment 1) FIG. 1 is a sectional view of the battery of the present invention in a direction perpendicular to the flat surface, and FIG. 2 is a sectional view of the battery of Embodiment 1 in FIG. In the flat non-aqueous electrolyte secondary battery of FIGS. 1 and 2, 1 is a positive electrode case, 2 is a positive electrode plate, 3 is a separator, 4 is a negative electrode plate, 5 is a negative electrode case, 6 is an insulating gasket, and 7 is an electrode group. is there.

【0020】以下本実施例1の電池の製造方法を説明す
る。まず、LiCoO2100質量部に対し導電剤とし
てアセチレンブラック5質量部と黒鉛粉末5質量部を加
え、結着剤としてポリフッ化ビニリデンを5質量部加
え、N−メチルピロリドンで希釈、混合し、スラリー状
の正極合剤を得た。次に、この正極合剤を、正極集電体
である厚さ0.02mmのアルミ箔の両面にドクターブ
レード法により塗工し、乾燥後、電極厚さが0.12m
mとなるように圧延処理を行い、続いて、片面の電極端
から13.8mmの部分まで、塗工した作用物質含有層
を除去し、アルミ層を剥き出し集電部とした。得られた
電極をさらに幅13mm、長さ192mmの帯状に切り
出し正極板2とした。なお、この正極板2の作用物質含
有層の塗布された面積は表裏両面を合わせ48.1cm
2である。
The method of manufacturing the battery of Example 1 will be described below. First, 5 parts by mass of acetylene black and 5 parts by mass of graphite powder as a conductive agent were added to 100 parts by mass of LiCoO 2 , 5 parts by mass of polyvinylidene fluoride as a binder was added, and diluted and mixed with N-methylpyrrolidone to prepare a slurry. A positive electrode mixture in the form of a strip was obtained. Next, this positive electrode mixture was applied to both sides of a 0.02 mm-thick aluminum foil, which is a positive electrode current collector, by a doctor blade method, and after drying, the electrode thickness was 0.12 m.
A rolling treatment was performed so that the thickness became m, and subsequently, the coated active substance-containing layer was removed from the electrode end on one surface to a portion 13.8 mm, and the aluminum layer was exposed to form a current collector. The obtained electrode was further cut into a strip having a width of 13 mm and a length of 192 mm to obtain a positive electrode plate 2. The area of the positive electrode plate 2 coated with the active substance-containing layer was 48.1 cm on both front and back surfaces.
Is 2 .

【0021】次に、黒鉛化メソフェーズピッチ炭素繊維
粉末100質量部に結着剤としてスチレンブタジエンゴ
ム(SBR)とカルボキシメチルセルロース(CMC)
をそれぞれ2.5質量部を添加し、イオン交換水で希
釈、混合し、スラリー状の負極合剤を得た。得られた負
極合剤を負極集電体である厚さ0.02mmの銅箔の両
面に塗工し、乾燥後、電極厚さが0.12mmとなるよ
うに圧延処理を行い、続いて、片面の電極端から13.
8mmの部分までに塗工した作用物質含有層を除去し、
銅層を剥き出し集電部とした。得られた電極をさらに幅
13mm、長さ192mmの帯状に切り出し負極板4と
した。なお、この負極板4の作用物質含有層の塗布され
た面積は表裏両面を合わせ48.1cm2である。
Next, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) as binders were added to 100 parts by weight of graphitized mesophase pitch carbon fiber powder.
2.5 parts by mass of each was added, and the mixture was diluted with ion-exchanged water and mixed to obtain a slurry-like negative electrode mixture. The obtained negative electrode mixture was applied to both surfaces of a 0.02 mm-thick copper foil that is a negative electrode current collector, and after drying, a rolling treatment was performed so that the electrode thickness would be 0.12 mm. 13. From the electrode end on one side
Remove the active substance-containing layer applied up to 8 mm,
The copper layer was exposed and used as a current collector. The obtained electrode was further cut into a strip having a width of 13 mm and a length of 192 mm to obtain a negative electrode plate 4. The area coated with the active substance-containing layer of the negative electrode plate 4 was 48.1 cm 2 for both front and back surfaces.

【0022】次に、得られた正負極板ならびに厚さ25
μmのポリエチレン微多孔膜からなるセパレータを用い
電極群を製作した。まず、セパレータを幅13.3m
m、長さ370mmの帯状に切り出した。続いて正極板
2の集電部のある端部の裏面にセパレータ3の端部を合
わせ、正極板2の他端でセパレータ3を折り返し、正極
板2の集電部以外の部分をセパレータ3で覆った。次に
セパレータ3で覆った正極板2の集電部が底面となるよ
うに平面上に配置し、負極板4を負極板4の集電部の他
端が正極板2の集電部を投影した面に重なり、かつ、正
極板2と直交するように配置した。その後、正極板2
を、正極板2を覆ったセパレータとともに、負極板4の
エッジに沿って負極板4に重なるように折り返した。次
に負極板4をセパレータ3のエッジ面に沿って再度折り
返し、正極板2を覆ったセパレータ3上に重ねた。以
後、セパレータ3で覆われた正極板2と負極板4を交互
に折り返し、電極群の両端面に正負極の集電部が位置す
る電極群を形成した。製作した電極群は電極端の集電部
に対して垂直方向に弾性を有していた。
Next, the obtained positive and negative electrode plates and a thickness of 25
An electrode group was manufactured using a separator made of a polyethylene microporous film of μm. First, the separator is 13.3m wide
m and a length of 370 mm were cut into strips. Subsequently, the end of the separator 3 is aligned with the back surface of the end having the current collector of the positive electrode plate 2, the separator 3 is folded back at the other end of the positive electrode plate 2, and the part of the positive electrode plate 2 other than the current collector is replaced by the separator 3. Covered. Next, the current collecting part of the positive electrode plate 2 covered with the separator 3 is arranged on a plane so that the bottom surface thereof is arranged, and the negative electrode plate 4 projects the other end of the current collecting part of the negative electrode plate 4 onto the current collecting part of the positive electrode plate 2. It was arranged so as to overlap the above-mentioned surface and be orthogonal to the positive electrode plate 2. After that, the positive electrode plate 2
Was folded back together with the separator covering the positive electrode plate 2 along the edge of the negative electrode plate 4 so as to overlap with the negative electrode plate 4. Next, the negative electrode plate 4 was folded back along the edge surface of the separator 3 and was stacked on the separator 3 covering the positive electrode plate 2. Thereafter, the positive electrode plate 2 and the negative electrode plate 4 covered with the separator 3 were alternately folded back to form an electrode group having positive and negative electrode current collectors on both end faces of the electrode group. The manufactured electrode group had elasticity in the direction perpendicular to the current collecting portion at the electrode end.

【0023】製作した電極群を85℃で12h乾燥した
後、開口径が20mmの絶縁ガスケット6を一体化した
負極金属ケース5の内底面に電極群の負極集電部が接す
るように配置し、エチレンカーボネートとγ−ブチルラ
クトンを体積比1:2の割合で混合した溶媒に支持塩と
してLiBF4を1.5mol/lの割合で溶解せしめ
た非水電解質を注液し、電極群の正極集電部に接するよ
うにステンレス製の正極ケース1を嵌合し、上下反転
後、負極ケース5を扁平形電池の扁平面に対し垂直の方
向に加圧して電池内部の電極群を圧縮しながら、正極ケ
ースに加締め加工を施し、厚さ5mm、直径24.5m
mの実施例1の扁平形非水電解質二次電池を製作した。
After drying the produced electrode group at 85 ° C. for 12 hours, the electrode group was placed so that the negative electrode current collector of the electrode group was in contact with the inner bottom surface of the negative electrode metal case 5 integrated with the insulating gasket 6 having an opening diameter of 20 mm. A non-aqueous electrolyte prepared by dissolving LiBF 4 as a supporting salt in a ratio of 1.5 mol / l was poured into a solvent in which ethylene carbonate and γ-butyl lactone were mixed in a volume ratio of 1: 2, and the positive electrode collection of the electrode group was performed. While fitting the positive electrode case 1 made of stainless steel so as to be in contact with the electric part and turning it upside down, the negative electrode case 5 is pressed in a direction perpendicular to the flat surface of the flat battery to compress the electrode group inside the battery, The positive electrode case has been swaged to a thickness of 5 mm and a diameter of 24.5 m.
A flat type non-aqueous electrolyte secondary battery of Example 1 was manufactured.

【0024】(実施例2)図3は本発明の実施例2の扁
平形非水電解質二次電池の正極板の平面図、図4は図3
の正極板を用いた電池の扁平面に水平方向の断面図であ
る。
(Embodiment 2) FIG. 3 is a plan view of a positive electrode plate of a flat type non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention, and FIG.
FIG. 3 is a cross-sectional view in a horizontal direction on a flat surface of a battery using the positive electrode plate of FIG.

【0025】本実施例2では図1の扁平形非水電解質二
次電池の帯状の正極板に代えて、図3に示すような直径
18.4mmの円に内接する正五角形からなる構成単位
が、幅10.8mm、長さ0.45mmの連結部を介
し、14連、直線状に連なり、これら構成単位の両面に
は正極作用物質含有層塗工部2bを形成し、電極最端部
の構成単位の作用物質層が片面のみ除去され、正極集電
部2cを形成した正極板2を用い、さらに同様に切り出
した負極板を用い、正五角形が連結部を介し13連、直
線状に連なる形状のセパレータを用い、電極群7を製作
する際の正負極の交差角度が72°である以外は実施例
1の電池と同様に実施例2の扁平形非水電解質二次電池
を製作した。なお、実施例2の正負極板の作用物質含有
層の塗布された面積は表裏両面を合わせ正負極とも5
5.5cm2である。
In Example 2, instead of the strip-shaped positive electrode plate of the flat non-aqueous electrolyte secondary battery of FIG. 1, a constitutional unit composed of a regular pentagon inscribed in a circle having a diameter of 18.4 mm as shown in FIG. , 10.8 mm in width and 0.45 mm in length via a connecting portion, which is continuous in 14 straight lines. The positive electrode active substance-containing layer coating portion 2b is formed on both surfaces of these constituent units, and Using the positive electrode plate 2 in which the active substance layer of the structural unit is removed on only one side and forming the positive electrode current collector 2c, and using the negative electrode plate cut out in the same manner, regular pentagons are linearly connected in 13 lines through the connecting part. A flat type non-aqueous electrolyte secondary battery of Example 2 was manufactured in the same manner as the battery of Example 1 except that the positive and negative electrodes had a crossing angle of 72 ° when the electrode group 7 was manufactured using a shaped separator. In addition, the coated area of the active substance-containing layer of the positive and negative electrode plates of Example 2 was 5 for both the positive and negative electrodes by combining the front and back surfaces.
It is 5.5 cm 2 .

【0026】(実施例3)図5は本発明の実施例3の扁
平形非水電解質二次電池の電極板の平面図である。本実
施例3では図1の扁平形電池の帯状の正極板に代えて、
直径18.4mmの円に内接する正六角形からなる構成
単位が、幅9.3mm、長さ0.45mmの連結部を介
し、14連、直線状に連なり、これら構成単位の両面に
は正極作用物質含有層塗工部2bを形成し、電極最端部
の構成単位の作用物質層が片面のみ除去され、正極集電
部2cを形成した正極板2を用い、さらに同様に切り出
した負極板を用い、正六角形が連結部を介し13連、直
線状に連なる形状のセパレータを用い、電極群を製作す
る際の正負極の交差角度が60°である以外は実施例1
の電池と同様に実施例3の扁平形非水電解質二次電池を
製作した。なお、実施例3の正負極板の作用物質含有層
の塗布された面積は表裏両面を合わせ正負極とも60.
5cm2である。
(Embodiment 3) FIG. 5 is a plan view of an electrode plate of a flat type non-aqueous electrolyte secondary battery of embodiment 3 of the present invention. In Example 3, instead of the strip-shaped positive electrode plate of the flat battery of FIG.
A unit consisting of a regular hexagon inscribed in a circle with a diameter of 18.4 mm is linearly connected in 14 lines via a connecting part having a width of 9.3 mm and a length of 0.45 mm, and both sides of these units have a positive electrode effect. Using the positive electrode plate 2 in which the substance-containing layer coating portion 2b is formed and the active substance layer of the constituent unit at the outermost end of the electrode is removed only on one side, and the positive electrode current collector portion 2c is formed, a similarly cut negative electrode plate is used. Example 1 was used, except that a separator having a shape in which regular hexagons are connected in a series of 13 through a connecting portion and linearly connected, and the crossing angle of the positive and negative electrodes when manufacturing an electrode group is 60 °.
A flat non-aqueous electrolyte secondary battery of Example 3 was manufactured in the same manner as the battery of Example 1. The area coated with the active substance-containing layer on the positive and negative electrode plates of Example 3 was 60.
It is 5 cm 2 .

【0027】(実施例4)図6は本発明の実施例4の扁
平形非水電解質二次電池の電極板の平面図である。本実
施例4では図1の扁平形電池の帯状の正極板に代えて、
直径18.4mmの円に内接する正八角形からなる構成
単位が幅7mm、長さ0.45mmの連結部を介し、1
4連、直線状に連なり、これら構成単位の両面には正極
作用物質含有層塗工部2bを形成し、電極最端部の構成
単位の作用物質層が片面のみ除去され、正極集電部2c
を形成した正極板2を用い、さらに同様に切り出した負
極板を用い、正八角形が連結部を介し13連、直線状に
連なる形状のセパレータを用いた以外は実施例1の電池
と同様に実施例4の扁平形非水電解質二次電池を製作し
た。なお、実施例4の正負極板の作用物質含有層の塗布
された面積は表裏両面を合わせ正負極とも65.8cm
2である。
(Embodiment 4) FIG. 6 is a plan view of an electrode plate of a flat type non-aqueous electrolyte secondary battery of embodiment 4 of the present invention. In Example 4, instead of the strip-shaped positive electrode plate of the flat battery of FIG.
A unit consisting of a regular octagon inscribed in a circle with a diameter of 18.4 mm has a width of 7 mm and a length of 0.45 mm.
The positive electrode active substance-containing layer coating portion 2b is formed on both sides of these constitutional units in a linear manner, and the active substance layer of the constitutional unit at the end of the electrode is removed on only one side to form a positive electrode current collector 2c.
Was carried out in the same manner as in the battery of Example 1 except that the positive electrode plate 2 having the above-mentioned structure was used, the similarly cut negative electrode plate was used, and a separator having a shape in which a regular octagon was connected in a series of 13 and linearly connected was used. A flat non-aqueous electrolyte secondary battery of Example 4 was manufactured. In addition, the applied area of the active substance-containing layer of the positive and negative electrode plates of Example 4 was 65.8 cm for both the positive and negative electrodes by combining the front and back surfaces.
Is 2 .

【0028】(実施例5)図7は本発明の実施例5の扁
平形電池の電極板の平面図、図8は図7の正極板を用い
た電池の扁平面に水平方向の断面図である。
(Embodiment 5) FIG. 7 is a plan view of an electrode plate of a flat battery according to Embodiment 5 of the present invention, and FIG. 8 is a sectional view of the battery using the positive electrode plate of FIG. is there.

【0029】本実施例5では図1の扁平形電池の帯状の
正極板に代えて、直径18.4mmの円の四方を中心か
ら8.5mmの位置で、対向する2辺が平行になるよう
に除去した面形状から成る構成単位が幅7mm、長さ
0.45mmの連結部を介し、14連、直線状に連な
り、これら構成単位の両面には正極作用物質含有層塗工
部2bを形成し、電極最端部の構成単位の作用物質層が
片面のみ除去され、正極集電部2cを形成した正極板2
を用い、さらに同様に切り出した負極板を用い、電極構
成単位と同形の面形状が連結部を介し、13連、直線状
に連なる形状のセパレータを用いた以外は実施例1の電
池と同様に実施例5の扁平形非水電解質二次電池を製作
した。なお、実施例5の正負極板の作用物質含有層の塗
布された面積は表裏両面を合わせ正負極とも69.4c
2である。
In Example 5, instead of the strip-shaped positive electrode plate of the flat battery shown in FIG. 1, two opposite sides are parallel to each other at a position 8.5 mm from the center on each side of a circle having a diameter of 18.4 mm. The constitutional unit composed of the removed surface shape is linearly connected in 14 rows through a connecting portion having a width of 7 mm and a length of 0.45 mm, and the positive electrode active substance-containing layer coating portion 2b is formed on both surfaces of these constitutional units. Then, the positive electrode plate 2 in which the active substance layer of the structural unit at the end of the electrode is removed only on one surface to form the positive electrode current collector 2c
In the same manner as the battery of Example 1, except that a negative electrode plate that was cut out in the same manner was used, and a separator having a surface shape of the same shape as the electrode constitutional unit through the connecting portion and 13 continuous linear shapes was used. A flat non-aqueous electrolyte secondary battery of Example 5 was manufactured. The area coated with the active substance-containing layer on the positive and negative electrode plates of Example 5 was 69.4 c for both the positive and negative electrodes by combining the front and back surfaces.
m 2 .

【0030】(比較例1)図9は比較例1の電池の扁平
面に垂直方向の断面図、図10は比較例1の電池の扁平
面に水平方向の断面図である。
(Comparative Example 1) FIG. 9 is a sectional view of the battery of Comparative Example 1 in the direction perpendicular to the flat surface, and FIG. 10 is a sectional view of the battery of Comparative Example 1 in the horizontal direction on the flat surface.

【0031】図9及び図10において、1は正極ケー
ス、2は正極板、3はセパレータ、4は負極板、4aは
負極通電部、5は負極ケース、6は絶縁ガスケット、7
は電極群である。
9 and 10, 1 is a positive electrode case, 2 is a positive electrode plate, 3 is a separator, 4 is a negative electrode plate, 4a is a negative electrode conducting part, 5 is a negative electrode case, 6 is an insulating gasket, 7
Is an electrode group.

【0032】比較例1の電池では正負極板2、4が幅1
3mm、長さ11.4mmの作用物質層塗工部に幅7m
mの作用物質層が塗工されていない通電部2a、4aが
付随した複数の短辺状平板であり、正極板2及び負極板
4を短辺状のセパレータ3を介し積層した後、正負極板
の抵抗溶接により束ねて製作した積層電極群7を用いた
以外は実施例1と同様に比較例1の電池を製作した。な
お、比較例1の正負極板の作用物質含有層の塗布された
合計面積は表裏両面を合わせ正負極とも40.0cm2
である。
In the battery of Comparative Example 1, the positive and negative electrode plates 2 and 4 have a width of 1
Width 7m in 3mm, 11.4mm long active substance layer coating part
m is a plurality of short-sided flat plates accompanied by current-carrying parts 2a, 4a not coated with the positive electrode plate 2 and the negative electrode plate 4 with the short-sided separator 3 interposed therebetween, and then the positive and negative electrodes A battery of Comparative Example 1 was manufactured in the same manner as in Example 1 except that the laminated electrode group 7 manufactured by bundling plates by resistance welding was used. The total area of the positive and negative electrode plates of Comparative Example 1 coated with the active substance-containing layer was 40.0 cm 2 for both the positive and negative electrodes by combining the front and back surfaces.
Is.

【0033】(比較例2)図11は比較例2の電池の扁
平面に垂直方向の断面図である。本比較例2の電池では
正負極板2、4が幅13mm、長さ181mmの帯状で
あり、正負極集電部の長さが15.8mmであり、正負
極集電部を外周巻き終わり側とし、これら正極板2と負
極板4の間にセパレータ3を介して渦巻状に捲回し、扁
平形電池の扁平面に対し水平方向に正負極対向部をもつ
ように捲回電極の中心部の空間がなくなるまで加圧し、
捲回電極群を製作した。この捲回電極群を用いた以外は
実施例1と同様に電池を製作した。なお、1は正極ケー
ス、5は負極ケース、6は絶縁ガスケットであり、ま
た、比較例1の正負極板の作用物質含有層の塗布された
合計面積は表裏両面を合わせ正負極とも45.0cm2
である。
Comparative Example 2 FIG. 11 is a sectional view of the battery of Comparative Example 2 in a direction perpendicular to the flat surface. In the battery of Comparative Example 2, the positive and negative electrode plates 2 and 4 were strip-shaped with a width of 13 mm and a length of 181 mm, the length of the positive and negative electrode current collectors was 15.8 mm, and the positive and negative electrode current collectors were wound around the outer circumference. And, the positive electrode plate 2 and the negative electrode plate 4 are spirally wound with the separator 3 interposed therebetween, and the center portion of the wound electrode has a positive and negative electrode facing portion in the horizontal direction with respect to the flat surface of the flat battery. Pressurize until there is no space,
A wound electrode group was manufactured. A battery was manufactured in the same manner as in Example 1 except that this wound electrode group was used. In addition, 1 is a positive electrode case, 5 is a negative electrode case, 6 is an insulating gasket, and the total area of the positive and negative electrode plates of Comparative Example 1 coated with the active substance-containing layer is 45.0 cm for both the positive and negative electrodes. 2
Is.

【0034】以上の通り製作した実施例1〜5及び比較
例1、2の電池について、4.2V、5mAの定電流定
電圧で48h初充電を実施した。その後、1kHzの交
流法により内部抵抗を測定し、さらに50mAの定電流
で3.0Vまで放電を実施し、放電容量を求めた。結果
を表1に示す。
The batteries of Examples 1 to 5 and Comparative Examples 1 and 2 manufactured as described above were initially charged for 48 hours at a constant current and a constant voltage of 4.2 V and 5 mA. Then, the internal resistance was measured by an alternating current method of 1 kHz, and further discharged to 3.0 V at a constant current of 50 mA to obtain the discharge capacity. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より明らかであるが、実施例1の帯状
の電極を折り返すことにより製作した電極群を用いた電
池は比較例1の複数の短辺状平板電極を積層し、通電部
を溶接することにより束ねた積層電極群を用いた電池や
比較例2の帯状の電極を捲回することにより製作した捲
回電極群を用いた電池に比べ、電極面積が大きく、ま
た、電極群と電池ケースとの接触が良好なため、内部抵
抗が低く、かつ、放電容量が大きい。
As is clear from Table 1, the battery using the electrode group produced by folding the strip-shaped electrodes of Example 1 is a laminate of a plurality of short-sided flat plate electrodes of Comparative Example 1, and the current-carrying parts are welded. The electrode area is larger than that of the battery using the laminated electrode group bundled by the above and the battery using the wound electrode group manufactured by winding the strip-shaped electrode of Comparative Example 2, and the electrode group and the battery are Since the contact with the case is good, the internal resistance is low and the discharge capacity is large.

【0037】また、電極群を構成している電極の形状を
実施例1の帯状から多角形が連なる形状に変更した実施
例2〜4では、電極面積の増加に伴い放電容量が増加し
ており、さらに好ましい。そして、電極形状が円形の四
方を除去した面形状が連なる実施例4の電池ではさらに
放電容量が大きく、さらに好ましい。
Further, in Examples 2 to 4 in which the shape of the electrodes forming the electrode group was changed from the strip shape in Example 1 to the shape in which polygons are connected, the discharge capacity increased as the electrode area increased. , And more preferably. The discharge capacity of the battery of Example 4 in which the surface shapes obtained by removing the four sides of the circular electrode shape are continuous is even more preferable.

【0038】なお、本発明の上記実施例では、非水電解
質に非水溶媒を用いた扁平形非水溶媒二次電池を用いて
説明したが、非水電解質にポリマー電解質を用いたポリ
マー二次電池や固体電解質を用いた固体電解質二次電池
についても当然適用可能であり、樹脂製セパレータの代
りにポリマー薄膜や固体電解質膜を用いることも可能で
ある。また、電池形状については正極ケースの加締め加
工により封口するコイン形非水電解質をもとに説明した
が、正負極電極を入れ替え、負極ケースの加締め加工に
より封口することも可能である。さらに、電池形状につ
いてもコイン形である必要はなく小判形などの特殊形状
を有する扁平形非水電解質二次電池においても適用可能
である。
In the above embodiment of the present invention, the flat non-aqueous solvent secondary battery using the non-aqueous solvent as the non-aqueous electrolyte has been described, but the polymer secondary using the polymer electrolyte as the non-aqueous electrolyte is described. It is naturally applicable to a battery or a solid electrolyte secondary battery using a solid electrolyte, and it is also possible to use a polymer thin film or a solid electrolyte membrane instead of the resin separator. Further, the shape of the battery has been described based on the coin-shaped non-aqueous electrolyte which is sealed by crimping the positive electrode case, but it is also possible to replace the positive and negative electrodes and crimp the negative electrode case. Further, the battery shape does not have to be a coin shape, and can be applied to a flat non-aqueous electrolyte secondary battery having a special shape such as an oval shape.

【0039】また、上記実施例は正極作用物質としてコ
バルト酸リチウム、負極作用物質として炭素質材料を用
いた電池について説明を行ったが、本発明は電池並びに
電極の構造の変更に主眼を置いたものであり、作用物質
に関してはこれらに限定されるものではなく、正極およ
び/または負極に他の作用物質を用いた電池に対しても
当然適用可能である。
In addition, although the above-mentioned embodiment has explained the battery using the lithium cobalt oxide as the positive electrode acting substance and the carbonaceous material as the negative electrode acting substance, the present invention focuses on the change of the structure of the battery and the electrode. However, the active substance is not limited to these, and is naturally applicable to a battery using another active substance for the positive electrode and / or the negative electrode.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
重負荷放電特性が著しく優れ、かつ、電池サイズが非常
に小さな扁平形非水電解質二次電池においても、内部抵
抗が低く、放電容量が大きな扁平形非水電解質二次電池
を提供することができる。よって、その工業的価値は非
常に大きなものである。
As described above, according to the present invention,
It is possible to provide a flat non-aqueous electrolyte secondary battery with a low internal resistance and a large discharge capacity even in a flat non-aqueous electrolyte secondary battery with extremely excellent heavy load discharge characteristics and a very small battery size. . Therefore, its industrial value is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の電池の扁平面に垂直方向の
断面図。
FIG. 1 is a sectional view of a battery of Example 1 of the present invention in a direction perpendicular to a flat surface.

【図2】本発明の実施例1の電池の扁平面に水平方向の
断面図。
FIG. 2 is a sectional view of the battery of Example 1 of the present invention in the horizontal direction on the flat surface.

【図3】本発明の実施例2の電池の電極板の平面図。FIG. 3 is a plan view of an electrode plate of a battery of Example 2 of the present invention.

【図4】本発明の実施例2の電池の扁平面に水平方向の
断面図。
FIG. 4 is a sectional view of a battery of Example 2 of the present invention in a horizontal direction on a flat surface.

【図5】本発明の実施例3の電池の電極板の平面図。FIG. 5 is a plan view of an electrode plate of a battery of Example 3 of the present invention.

【図6】本発明の実施例4の電池の電極板の平面図。FIG. 6 is a plan view of an electrode plate of a battery according to Example 4 of the present invention.

【図7】本発明の実施例5の電池の電極板の平面図。FIG. 7 is a plan view of an electrode plate of a battery of Example 5 of the present invention.

【図8】本発明の実施例5の電池の扁平面に水平方向の
断面図。
FIG. 8 is a sectional view of a battery of Example 5 of the present invention in a horizontal direction on a flat surface.

【図9】比較例1の電池の扁平面に垂直方向の断面図。9 is a cross-sectional view of a battery of Comparative Example 1 in a direction perpendicular to a flat surface.

【図10】比較例1の電池の扁平面に水平方向の断面
図。
FIG. 10 is a cross-sectional view of the battery of Comparative Example 1 in the horizontal direction on the flat surface.

【図11】比較例2の電池の扁平面に垂直方向の断面
図。
11 is a cross-sectional view of a battery of Comparative Example 2 in a direction perpendicular to a flat surface.

【符号の説明】[Explanation of symbols]

1…正極ケース、2…正極板、2a…正極通電部、2b
…正極作用物質含有層塗工部、2c…正極集電部、3…
セパレータ、4…負極板、4a…負極通電部、4b…負
極作用物質含有層塗工部、4c…負極集電部、5…負極
ケース、6…絶縁ガスケット、7…電極群。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode case, 2 ... Positive electrode plate, 2a ... Positive electrode conducting part, 2b
... Coating part containing positive electrode active substance-containing layer, 2c ... Positive electrode current collecting part, 3 ...
Separator, 4 ... Negative electrode plate, 4a ... Negative electrode conducting part, 4b ... Negative electrode active substance-containing layer coating part, 4c ... Negative electrode current collecting part, 5 ... Negative electrode case, 6 ... Insulating gasket, 7 ... Electrode group.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z (72)発明者 宇田川 和男 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H011 AA03 CC06 GG02 JJ02 5H021 AA01 AA06 BB04 CC17 CC18 5H022 AA09 AA18 CC08 CC21 5H029 AJ03 AJ06 AK03 AL07 AM02 AM03 AM05 AM07 BJ14 BJ15 DJ02 DJ03 DJ05 EJ04 EJ12 5H050 AA02 AA08 AA12 BA17 CA08 CB08 DA19 DA20 EA08 EA23 EA24 FA05 FA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 10/40 H01M 10/40 Z (72) Inventor Kazuo Udagawa 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo issue Toshiba battery Co., Ltd. in the F-term (reference) 5H011 AA03 CC06 GG02 JJ02 5H021 AA01 AA06 BB04 CC17 CC18 5H022 AA09 AA18 CC08 CC21 5H029 AJ03 AJ06 AK03 AL07 AM02 AM03 AM05 AM07 BJ14 BJ15 DJ02 DJ03 DJ05 EJ04 EJ12 5H050 AA02 AA08 AA12 BA17 CA08 CB08 DA19 DA20 EA08 EA23 EA24 FA05 FA06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 負極端子を兼ねる金属製の負極ケース
と、正極端子を兼ねる金属製の正極ケースが、絶縁ガス
ケットを介し嵌合され、さらに前記正極ケースまたは負
極ケースが加締め加工により加締められた封口構造を有
し、その内部に少なくとも正極、セパレータ、負極を含
む発電要素と、非水電解質を内包し、扁平形電池の扁平
面に垂直な方向の断面を見た場合に、正極と負極がセパ
レータを介し対向している正負極対向面を少なくとも3
面以上有する電極群が収納され、かつ、電極群の扁平形
電池の扁平面に水平な方向の外面に導電性を有する電極
構成材を露出させ、その電極構成材を直接、あるいは電
気的に電池ケースに接続し、電極群と外部端子を兼ねる
電池ケースとの集電をとる構造を有する扁平形非水電解
質二次電池において、前記電極群は、セパレータを介し
交差するように配置された正極と負極を、セパレータを
介し交互に折り返して構成されていることを特徴とする
扁平形非水電解質二次電池。
1. A negative electrode case made of metal also serving as a negative electrode terminal and a positive electrode case made of metal also serving as a positive electrode terminal are fitted through an insulating gasket, and the positive electrode case or the negative electrode case is swaged by swaging. A positive electrode and a negative electrode when having a sealed structure and including a power generation element including at least a positive electrode, a separator and a negative electrode and a non-aqueous electrolyte in the inside and seeing a cross section in a direction perpendicular to a flat surface of a flat battery. Have at least three positive and negative electrode facing surfaces facing each other through the separator.
The electrode group having more than one surface is housed, and the electrode component having conductivity is exposed on the outer surface of the flat battery of the electrode group in the direction horizontal to the flat surface, and the electrode component is directly or electrically connected to the battery. In a flat non-aqueous electrolyte secondary battery having a structure for collecting current between a battery case which also serves as an electrode group and an external terminal, connected to a case, the electrode group, and a positive electrode arranged so as to cross through a separator and A flat type non-aqueous electrolyte secondary battery, characterized in that the negative electrode is alternately folded back through a separator.
【請求項2】 電極は単位面を複数個連ねて構成されて
おり、電極の隣り合う単位面は、電極を折り返す際の折
り返し線を中心に対称形を成していることを特徴とする
請求項1記載の扁平形非水電解質二次電池。
2. The electrode is formed by connecting a plurality of unit surfaces, and adjacent unit surfaces of the electrodes are symmetrical with respect to a folding line when the electrodes are folded back. Item 2. A flat non-aqueous electrolyte secondary battery according to item 1.
【請求項3】 電極は多角形を複数個連ねて構成されて
いることを特徴とする請求項2記載の扁平形非水電解質
二次電池。
3. The flat non-aqueous electrolyte secondary battery according to claim 2, wherein the electrode is formed by connecting a plurality of polygons.
【請求項4】 電極は円または楕円の周囲を少なくとも
4個の辺ができるように除去した面形状を複数個連ねて
構成されていることを特徴とする請求項2記載の扁平形
非水電解質二次電池。
4. The flat non-aqueous electrolyte according to claim 2, wherein the electrode is formed by connecting a plurality of surface shapes in which a circumference of a circle or an ellipse is removed so that at least four sides are formed. Secondary battery.
【請求項5】 電極は少なくとも4個の辺を有し、4辺
の間を単数または複数の直線及び/または曲線で結んだ
面形状を複数個連ねて構成されていることを特徴とする
請求項2記載の扁平形非水電解質二次電池。
5. The electrode has at least four sides, and is formed by connecting a plurality of surface shapes in which the four sides are connected by a single line or a plurality of straight lines and / or curved lines. Item 2. A flat nonaqueous electrolyte secondary battery according to item 2.
【請求項6】 電極を構成する隣り合う単位面が短冊状
の連結部で連結された形状を有する電極を用いているこ
とを特徴とする請求項2記載の扁平形非水電解質二次電
池。
6. The flat non-aqueous electrolyte secondary battery according to claim 2, wherein an electrode having a shape in which adjacent unit surfaces forming the electrode are connected by a strip-shaped connecting portion is used.
【請求項7】 電極群は、正負極のどちらか一方の電極
をセパレータで包み込み、他極の電極をそれと交差する
ように配置し、セパレータで包み込まれた電極と他極の
電極を交互に折り返して構成されていることを特徴とす
る請求項1記載の扁平形非水電解質二次電池。
7. The electrode group includes one of positive and negative electrodes wrapped with a separator, the electrode of the other electrode arranged so as to intersect with the electrode, and the electrode wrapped with the separator and the electrode of the other electrode are alternately folded back. The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the flat non-aqueous electrolyte secondary battery is configured as follows.
【請求項8】 電極群は、単位面が複数個連なり、隣り
合う単位面が単位面同士の境界を境に対称形を成してい
る正極及び負極を用い、この正極ならびに負極を、セパ
レータを介して交差するように配置し、電極を構成して
いる単位面と単位面の境界を折線として正極と負極を、
セパレータを介し交互に折り返して構成されていること
を特徴とする電極群を備えた扁平形非水電解質二次電
池。
8. The electrode group includes a positive electrode and a negative electrode in which a plurality of unit surfaces are continuous and adjacent unit surfaces are symmetrical with respect to a boundary between the unit surfaces, and the positive and negative electrodes are separated by a separator. The positive and negative electrodes are arranged so as to intersect with each other, and the boundary between the unit surface and the unit surface forming the electrode is a broken line.
A flat type non-aqueous electrolyte secondary battery provided with an electrode group, which is characterized by being alternately folded back through a separator.
JP2001269076A 2001-09-05 2001-09-05 Flat non-aqueous electrolyte secondary battery Withdrawn JP2003077457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269076A JP2003077457A (en) 2001-09-05 2001-09-05 Flat non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269076A JP2003077457A (en) 2001-09-05 2001-09-05 Flat non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003077457A true JP2003077457A (en) 2003-03-14

Family

ID=19094955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269076A Withdrawn JP2003077457A (en) 2001-09-05 2001-09-05 Flat non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003077457A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310578A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
CN100392892C (en) * 2003-10-10 2008-06-04 日产自动车株式会社 Flat cell, battery, combined battery, and vehicle
JP2014120426A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Cylindrical battery
JP2014120427A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Cylindrical battery
CN107658396A (en) * 2017-10-31 2018-02-02 宁波必霸能源有限公司 Sealing ring of alkaline button type battery and alkaline button cell
EP4095962A1 (en) * 2021-05-24 2022-11-30 Dongguan Huiyan Electronic Co., Ltd. Cleavage flaking type lithium ion battery and preparation method thereof
JP2023501838A (en) * 2020-09-29 2023-01-20 寧徳新能源科技有限公司 Secondary battery and battery module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392892C (en) * 2003-10-10 2008-06-04 日产自动车株式会社 Flat cell, battery, combined battery, and vehicle
JP2005310578A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
JP2014120426A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Cylindrical battery
JP2014120427A (en) * 2012-12-19 2014-06-30 Gs Yuasa Corp Cylindrical battery
CN107658396A (en) * 2017-10-31 2018-02-02 宁波必霸能源有限公司 Sealing ring of alkaline button type battery and alkaline button cell
CN107658396B (en) * 2017-10-31 2023-05-02 宁波必霸能源有限公司 Alkaline button cell sealing ring and alkaline button cell
JP2023501838A (en) * 2020-09-29 2023-01-20 寧徳新能源科技有限公司 Secondary battery and battery module
JP7332696B2 (en) 2020-09-29 2023-08-23 寧徳新能源科技有限公司 Secondary battery and battery module
EP4095962A1 (en) * 2021-05-24 2022-11-30 Dongguan Huiyan Electronic Co., Ltd. Cleavage flaking type lithium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100677020B1 (en) Electrochemical device and method for manufacturing same
US8785030B2 (en) Flexible battery and method for producing the same
JP4293501B2 (en) Electrochemical devices
JP6032628B2 (en) Thin battery
JPH103946A (en) Nonaqueous electrolyte secondary battery
WO2020110975A1 (en) Non-aqueous electrolyte secondary battery
KR19980071000A (en) Electrode for Lithium Ion Secondary Battery and Lithium Ion Secondary Battery Using It
EP0910131B1 (en) Lithium secondary battery
JP5337418B2 (en) Non-aqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP2008103094A (en) Non-aqueous secondary battery
JP2003077457A (en) Flat non-aqueous electrolyte secondary battery
JP2003077543A (en) Flat nonaqueous electrolyte secondary battery
JP4887568B2 (en) Secondary battery
JPH03152881A (en) Rectangular type lithium secondary battery
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP2004296325A (en) Nonaqueous secondary battery
JP4297711B2 (en) Electrochemical element
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP4565530B2 (en) Flat non-aqueous electrolyte secondary battery
JPH10247522A (en) Nonaqueous electrolyte secondary battery
WO2021192658A1 (en) Electrode plate and coin-shaped secondary battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP4501180B2 (en) Non-aqueous polymer secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202