WO2021192658A1 - Electrode plate and coin-shaped secondary battery - Google Patents

Electrode plate and coin-shaped secondary battery Download PDF

Info

Publication number
WO2021192658A1
WO2021192658A1 PCT/JP2021/004506 JP2021004506W WO2021192658A1 WO 2021192658 A1 WO2021192658 A1 WO 2021192658A1 JP 2021004506 W JP2021004506 W JP 2021004506W WO 2021192658 A1 WO2021192658 A1 WO 2021192658A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
current collector
electrode plate
active material
Prior art date
Application number
PCT/JP2021/004506
Other languages
French (fr)
Japanese (ja)
Inventor
とし惠 綿
淳 熊谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022509359A priority Critical patent/JPWO2021192658A1/ja
Priority to CN202180021797.1A priority patent/CN115298868A/en
Publication of WO2021192658A1 publication Critical patent/WO2021192658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to a electrode plate and a coin-type secondary battery.
  • Flat secondary batteries have traditionally been used as power sources for various electronic devices.
  • Examples of a flat secondary battery include a battery using a winding electrode group and a battery using a zigzag bent electrode group.
  • the winding type electrode group is formed by sandwiching a separator between a positive electrode plate and a negative electrode plate and winding them.
  • a battery using a group of electrodes bent in a zigzag manner is disclosed in, for example, Patent Document 1.
  • Patent Document 1 discloses an example in which the direction in which the positive electrode plate extends and the direction in which the negative electrode plate extends are arranged so as to be offset by 90 °, and they are folded to form an electrode group (see FIG. 2 of Patent Document 1). ..
  • One of the objects of the present disclosure is to provide a electrode plate capable of manufacturing a battery with a high yield and a coin-type secondary battery capable of manufacturing a battery with a high yield.
  • the electrode plate is an electrode plate including a current collector and an active material layer arranged on the current collector, and the current collector includes a plurality of repeating units connected in a row, and the plurality of repeating units.
  • the active material layer is arranged on each of the repeating units, and the outer edge of the boundary portion of two adjacent repeating units among the outer edges of the current collector is convex toward the inside of the boundary portion. It has a shape and is composed of smooth lines, and each of the plurality of repeating units is a substantially circular shape or a substantially polygonal shape.
  • the coin-shaped secondary battery is a coin-shaped secondary battery including a coin-shaped case and a positive electrode plate and a negative electrode plate arranged in the case, and the positive electrode plate is a positive electrode current collector and the positive electrode.
  • the negative electrode plate includes a negative electrode current collector and a negative electrode active material layer arranged on the negative electrode current collector, and the positive electrode current collector includes a positive electrode active material layer arranged on the current collector.
  • a plurality of repeating units A connected in a row are included, the negative electrode current collector includes a plurality of repeating units B connected in a row, and the positive electrode active material layer is placed on each of the plurality of repeating units A.
  • the negative electrode active material layer is arranged on each of the plurality of repeating units B, and the positive electrode plate and the negative electrode plate are the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode current collector is bent with the boundary portion X of the two adjacent repeating units A as a bent portion, and the boundary portion Y of the two adjacent repeating units B is bent.
  • the negative electrode current collector is bent as a bent portion, and when the positive electrode current collector is deployed flat, the outer edge of the boundary portion X among the outer edges of the positive electrode current collector is inside the boundary portion X.
  • the outer edge of the boundary portion Y of the outer edges of the negative electrode current collector is formed when the negative electrode current collector is spread flat.
  • the boundary portion Y has a convex shape toward the inside and is composed of smooth lines, and each of the plurality of repeating units A and the plurality of repeating units B is substantially circular or substantially many. It is a square.
  • a electrode plate capable of manufacturing a battery with a high yield and a coin-type secondary battery capable of manufacturing a battery with a high yield can be obtained.
  • FIG. 4A It is sectional drawing which shows typically an example of the coin-type secondary battery of this disclosure. It is sectional drawing which shows typically the electrode group of the coin-type secondary battery shown in FIG. It is a top view which shows an example of the positive electrode plate of the coin-type secondary battery shown in FIG. 1 schematically. It is a figure which shows typically the cross section in the line IIIB-IIIB of FIG. 3A. It is a partially enlarged view of the positive electrode current collector shown in FIG. 3A. It is a top view which shows an example of the negative electrode plate of the coin-type secondary battery shown in FIG. 1 schematically. It is a figure which shows typically the cross section in the line IVB-IVB of FIG. 4A. It is a partially enlarged view of the negative electrode current collector shown in FIG. 4A.
  • the electrode plate of the present disclosure is an electrode plate used in a coin-shaped secondary battery, and is a positive electrode plate and / or a negative electrode plate.
  • the electrode plate includes a current collector and an active material layer arranged on the current collector.
  • the current collector contains a plurality of repeating units in a row.
  • An active material layer is arranged on each of the plurality of repeating units.
  • Each of the multiple repeating units is a substantially circular or substantially polygonal.
  • the current collector is bent with the boundary between two adjacent repeating units as a bent portion. That is, the electrode plate is bent with the boundary portion as a bending portion.
  • the current collector, the repeating unit, the boundary portion, and the active material layer can be read as the positive electrode current collector, the repeating unit A, the boundary portion X, and the positive electrode active material layer, respectively.
  • the electrode plate is a negative electrode plate
  • the current collector, the repeating unit, the boundary portion, and the active material layer can be read as the negative electrode current collector, the repeating unit B, the boundary portion Y, and the negative electrode active material layer, respectively.
  • the electrode plate of the present disclosure can be used for a coin-shaped secondary battery described later.
  • the positive electrode plate and / or the negative electrode plate of the coin-shaped secondary battery described later is an example of the electrode plate of the present disclosure. Therefore, the configuration of the positive electrode plate and / or the negative electrode plate of the coin-shaped secondary battery described later can be applied as the configuration of the electrode plate of the present disclosure.
  • the current collector and the active material layer are not particularly limited, and may be selected according to the type of the secondary battery in which the electrode plate is used and the type of the electrode plate (positive electrode plate, negative electrode plate).
  • As the material of the current collector and the active material layer a known material of the current collector and the active material may be used. Examples of the current collector and the active material layer will be described later.
  • outer edge (P) the outer edge of the boundary between two adjacent repeating units may be referred to as "outer edge (P)" below.
  • the outer edge (P) may have the following characteristics (1).
  • the outer edge (P) has a convex shape toward the inside of the boundary portion (in another viewpoint, the center of the boundary portion).
  • the outer edge (P) has at least one of the following features (2) to (6).
  • the outer edge (P) may have at least one of the features (2) to (6) in addition to the feature of (1) above.
  • the outer edge (P) may have any one of the features (2) to (6) in addition to the feature of the above (1).
  • the outer edge (P) may have the above-mentioned feature (1) and the following feature (2).
  • the outer edge (P) is composed of smooth lines.
  • the outer edge (P) has no corners.
  • the outer edge (P) is rounded.
  • the tangent vector of the outer edge (P) is not discontinuous.
  • the tangent vector of the outer edge (P) may change continuously.
  • the outer edge (P) has a shape with rounded corners composed of two straight lines.
  • the two straight lines are the two sides of the two polygons when the two polygons are joined so as to share the two vertices.
  • the two sides are two unshared sides having one shared vertex as an end point.
  • the boundary portion of the repeating unit is bent when the electrode group is produced. Therefore, a force (tension, etc.) is applied to the boundary portion when the electrode group is manufactured.
  • a corner portion is present on the outer edge (P) of the boundary portion, the force is concentrated on the corner portion and the current collector is likely to break. Since the current collector including the outer edge (P) having the above-mentioned characteristics does not have a portion at the boundary where the force is particularly likely to be concentrated, breakage or the like is unlikely to occur even when the electrode group is produced. Therefore, the electrode group and the secondary battery can be manufactured with a high yield. Further, by using the electrode plate of the present disclosure, a highly reliable secondary battery can be obtained.
  • Each of the plurality of repeating units is a substantially circular shape or a substantially polygonal shape.
  • a substantially circular shape is a shape formed by two equal arc-shaped curves arranged line-symmetrically and point-symmetrically so as to be convex outward, and two straight lines connecting the curves. be.
  • An example of such a shape is a shape obtained by cutting a circle (or ellipse) with two parallel lines having the same distance from the center of the circle (or ellipse). In the case of an ellipse, the two parallel lines are parallel to the major or minor axis of the ellipse.
  • An example of a substantially polygonal shape includes a polygonal portion (polygonal portion) and a portion that fills a region between the polygonal portion and the outer edge (P).
  • the portion that fills the area between the polygon and the outer edge (P) may be referred to as a "rounded portion" below.
  • the number of sides forming the polygonal portion may be in the range of 6 to 12.
  • the polygonal portion may be a hexagon (for example, a regular hexagon), an octagon (for example, a regular octagon), or a decagon (for example, a regular decagon). That is, the repeating unit may be a substantially octagon or a substantially decagon.
  • substantially circular and substantially polygonal shapes include a shape including the above shape and a portion to be a bent portion.
  • an example of a substantially polygonal shape includes a shape including a polygon and a portion to be a bent portion.
  • the shape of the repeating unit may be the following shape. That is, when the innermost diameter of the coin-shaped case in which the electrode plate is arranged is F, the first circle having a diameter of F and the second circle having a diameter of 0.4F and concentric with the first circle. Think of. At this time, the shape of the repeating unit is such that all the outer edges of the repeating unit are regions between the first circle and the second circle (specifically, the circumference of the first circle and the circle of the second circle). It may have a shape that fits in the area between the circumference and the circumference. In one example in this case, the diameter of the second circle may be 0.5F.
  • the innermost diameter F of the case is not particularly limited. The innermost diameter F may be in the range of 6 mm to 9 mm (for example, 7 mm to 9 mm).
  • the shape of the repeating unit A of the positive electrode plate and the shape of the repeating unit B of the negative electrode plate may be the same or different.
  • both the outer edge of the repeating unit A and the outer edge of the repeating unit B are in the region between the first circle and the second circle. You may.
  • the area of the repeating unit A may be larger than the area of the repeating unit B.
  • the area of the repeating unit A may be smaller than the area of the repeating unit B.
  • the width WB of the repeating unit B (see FIG. 4C) may be larger or smaller than the width WA of the repeating unit A (see FIG. 3C).
  • the length LB of the repeating unit B (see FIG. 4C) may be longer or shorter than the length LA of the repeating unit A (see FIG. 3C).
  • the area of the repeating unit B is larger than the area of the repeating unit A.
  • a current collector containing a plurality of repeating units can be composed of one metal sheet.
  • the active material layers arranged on the plurality of repeating units may or may not be connected.
  • the active material layer may not be formed at the bent portion of the current collector.
  • the number of repeating units contained in one current collector is not particularly limited, and may be in the range of 2 to 30 or 3 or more (for example, in the range of 3 to 30 or in the range of 3 to 15). good.
  • a portion (connection portion) for electrically connecting the current collector to the electrode terminal may be connected to the repeating unit existing at one end of the plurality of repeating units.
  • the plurality of repeating units and connecting portions can be composed of one metal sheet.
  • the plurality of repeating units has a shape in which a plurality of polygons are arranged in a row so that two adjacent polygons share two vertices, and the corners of the outer edges of the two vertices are rounded. May be good.
  • the coin-shaped secondary battery of the present disclosure includes a coin-shaped case and a positive electrode plate and a negative electrode plate arranged in the case.
  • the positive electrode plate includes a positive electrode current collector and a positive electrode active material layer arranged on the positive electrode current collector.
  • the negative electrode plate includes a negative electrode current collector and a negative electrode active material layer arranged on the negative electrode current collector.
  • the positive electrode current collector includes a plurality of repeating units (hereinafter, may be referred to as “repeating unit A”) in a row.
  • the negative electrode current collector includes a plurality of repeating units (hereinafter, may be referred to as “repeating unit B”) in a row.
  • a positive electrode active material layer is arranged on each of the plurality of repeating units A.
  • a negative electrode active material layer is arranged on each of the plurality of repeating units B.
  • the positive electrode plate and the negative electrode plate are arranged so that the positive electrode active material layer and the negative electrode active material layer face each other.
  • the coin-shaped secondary battery of the present disclosure also includes a secondary battery having a shape called a button shape. That is, the coin-shaped case also includes a case used for a battery called a button-shaped case.
  • the positive electrode current collector is bent with the boundary portion of two adjacent repeating units A (hereinafter sometimes referred to as “boundary portion X”) as a bent portion.
  • the negative electrode current collector is bent with the boundary portion of two adjacent repeating units B (hereinafter, may be referred to as “boundary portion Y”) as a bent portion.
  • the positive electrode plate and the negative electrode plate are obtained by bending the electrode plate of the present disclosure described above at a boundary portion. Therefore, duplicate explanations may be omitted.
  • each of the repeating units is a substantially circular shape or a substantially polygonal shape as described above.
  • the outer edge of the boundary portion X among the outer edges of the positive electrode plate may have a convex shape toward the inside of the boundary portion X and may be composed of smooth lines.
  • the outer edge of the boundary portion Y among the outer edges of the negative electrode plate may have a convex shape toward the inside of the boundary portion Y and may be composed of smooth lines. ..
  • the plurality of repeating units A form a row of the plurality of first polygons so that the two adjacent first polygons share two vertices. Further, it may have a shape in which the corners of the outer edges at the two vertices are rounded.
  • the plurality of repeating units B form a row of a plurality of second polygons so that two adjacent second polygons share two vertices. Further, it may have a shape in which the corners of the outer edges at the two vertices are rounded.
  • the number of sides of the first polygon may be the same as the number of sides of the second polygon.
  • the first polygon and the second polygon may be polygons having substantially the same shape (for example, congruent polygons).
  • the outer edge (outer edge (P)) of the boundary portion X and the outer edge (outer edge (P)) of the boundary portion Y may be rounded by a curve (for example, an arc) having a radius of curvature R, respectively.
  • the corner portion of the outer edge (P) may be rounded by a curve (for example, an arc) having a radius of curvature R.
  • the radius of curvature of the curve that rounds the outer edge does not have to be constant.
  • the radius of curvature R may be 0.1 mm or more, 0.3 mm or more, or 1 mm or more.
  • the radius of curvature R may be 2.5 mm or less, or 2 mm or less.
  • the radius of curvature R may be in the range of 0.1 to 2.5 mm (for example, in the range of 0.3 to 2.0 mm).
  • a plurality of polygons having a side length of S (mm) are arranged in a row so that two adjacent polygons share two vertices, and the corners of the outer edge of the two vertices are curved.
  • the length S and the radius of curvature R may satisfy the formula of 0.04S ⁇ R ⁇ S or 0.12S ⁇ R ⁇ 0.8S.
  • the secondary battery of the present disclosure may include a separator arranged between the positive electrode plate and the negative electrode plate. Further, the secondary battery of the present disclosure may further include a separator arranged between the positive electrode plate and the negative electrode plate, and a non-aqueous electrolyte arranged in the case. That is, the secondary battery of the present disclosure may be a non-aqueous electrolyte secondary battery.
  • the positive electrode plate and the negative electrode plate may be bent or wound in a zigzag manner, respectively.
  • a separator may be arranged between the positive electrode plate and the negative electrode plate.
  • the separator may be fixed to the negative electrode active material layer or may be fixed to the positive electrode active material layer.
  • the method for fixing the separator is not particularly limited, and a known technique may be used.
  • the separator may be fixed to the active material layer by a hot press or the like.
  • a separator having an adhesive layer on the surface may be used.
  • the adhesive layer for example, a layer containing a resin such as polyvinylidene fluoride can be used.
  • the positive electrode active material layer may be arranged on only one side of the positive electrode current collector, and / or the negative electrode active material layer is the negative electrode current collector. It may be placed on only one side of the body.
  • the secondary battery of the present disclosure may include at least one positive electrode plate and at least one negative electrode plate so that the total number of the number of positive electrode plates and the number of negative electrode plates is 2 or 3.
  • Three examples (first to third arrangement examples) regarding the number of positive electrode plates and negative electrode plates and the arrangement of the active material layer will be described below.
  • the number of positive electrode plates and the number of negative electrode plates are 1, respectively.
  • the positive electrode active material layer is arranged only on one side of the positive electrode current collector, and the negative electrode active material layer is arranged only on one side of the negative electrode current collector.
  • the number of positive electrode plates is 2 and the number of negative electrode plates is 1.
  • the positive electrode active material layer is arranged on only one side of the positive electrode current collector, and the negative electrode active material layer is arranged on both sides of the negative electrode current collector.
  • the positive electrode plate and the negative electrode plate are arranged so as to sandwich one negative electrode plate between the two positive electrode plates.
  • the number of negative electrode plates is 2, and the number of positive electrode plates is 1.
  • the positive electrode active material layer is arranged on both sides of the positive electrode current collector, and the negative electrode active material layer is arranged on only one side of the negative electrode current collector.
  • the positive electrode plate and the negative electrode plate are arranged so as to sandwich one positive electrode plate between the two negative electrode plates.
  • the positive electrode active material layers may be arranged on both sides of the positive electrode current collector, and the negative electrode active material layers are arranged on both sides of the negative electrode current collector. You may.
  • the type of the secondary battery disclosed in the present disclosure is not particularly limited, and may be a nickel hydrogen secondary battery or a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries include lithium secondary batteries and lithium ion secondary batteries.
  • the components of the secondary battery of the present disclosure there are no particular restrictions on the components of the secondary battery of the present disclosure (cases, materials constituting the positive electrode plate, materials constituting the negative electrode plate, and other components, etc.). No. A known material or a known configuration may be applied to the components of the secondary battery of the present disclosure, except that the configuration peculiar to the present disclosure is used.
  • the components of the case where the secondary battery of the present disclosure is a lithium ion secondary battery are illustrated below, but the present disclosure is not limited to the following examples.
  • Positive electrode current collectors include sheet-like objects (eg, foils, meshes, or punching sheets) made of conductive materials (eg, metal materials).
  • metal materials constituting the positive electrode current collector include aluminum, aluminum alloys, titanium, titanium alloys, stainless steel and the like.
  • the thickness of the positive electrode current collector may be in the range of, for example, 5 to 300 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material, and may contain other substances (binding agent, conductive agent, etc.) if necessary.
  • positive electrode active materials include substances that reversibly occlude and release lithium ions.
  • examples of the positive electrode active material include a metal oxide containing lithium, a lithium-transition metal phosphoric acid compound, a lithium-transition metal sulfate compound, and the like.
  • lithium-containing metal oxides include lithium transition metal composite oxides, lithium-nickel-cobalt-aluminum composite oxides and the like.
  • lithium transition metal composite oxides examples include lithium-manganese composite oxides (eg LiMn 2 O 4 ), lithium-nickel composite oxides (eg LiNiO 2 ), lithium-cobalt composite oxides (eg LiCoO 2 ), and , Composite oxides in which some of these transition metal elements are replaced with other metal elements (typical metal elements and / or transition metal elements) are included.
  • binders include fluororesins, polyacrylonitrile, polyimide resins, acrylic resins, polyolefin resins, and rubbery polymers.
  • fluororesins include polytetrafluoroethylene, polyvinylidene fluoride and the like. As the binder, only one kind may be used, or two or more kinds may be used.
  • Examples of conductive agents include carbon materials.
  • Examples of carbon materials used as conductive agents include carbon black (acetylene black, ketjen black, etc.), carbon nanotubes, and graphite. As the conductive agent, only one kind may be used, or two or more kinds may be used.
  • the negative electrode plate includes a negative electrode current collector and a negative electrode active material layer.
  • a part of the negative electrode current collector may form a connection portion electrically connected to a part of the case (case body or sealing plate) that functions as a terminal.
  • the connection is connected to a part of the case by welding (eg ultrasonic welding) or the like.
  • the negative electrode current collector examples include a sheet-like material (for example, foil, mesh, or punching sheet) made of a conductive material (for example, a metal material).
  • the metal material of the negative electrode current collector may be a material that does not form lithium and neither an alloy nor an intermetallic compound.
  • metallic materials for negative electrode current collectors include copper, nickel, iron, and alloys containing these metallic elements (copper alloys, stainless steel, etc.).
  • the metal material of the negative electrode current collector is copper or a copper alloy.
  • the thickness of the negative electrode current collector may be in the range of, for example, 5 to 300 ⁇ m.
  • the negative electrode active material layer contains a negative electrode active material, and may contain other substances (binding agent, conductive agent, thickener, etc.) if necessary.
  • negative electrode active materials include substances that reversibly occlude and release lithium ions.
  • examples of the negative electrode active material include carbon materials, silicon, silicon compounds, lithium alloys, and the like.
  • Examples of carbon materials include graphite, coke, graphitized carbon, graphitized carbon fibers, amorphous carbon and the like.
  • binders include fluororesins such as polyvinylidene fluoride (PVDF), acrylic resins such as methyl polyacrylate and ethylene-methyl methacrylate copolymer, styrene butadiene rubber, acrylic rubber, and rubbers thereof. Includes denatured products.
  • PVDF polyvinylidene fluoride
  • acrylic resins such as methyl polyacrylate and ethylene-methyl methacrylate copolymer
  • styrene butadiene rubber acrylic rubber, and rubbers thereof.
  • the conductive agent include the conductive agent exemplified in the description of the positive electrode active material layer.
  • thickeners include water-soluble polymers containing carboxyl groups (eg, carboxymethyl cellulose).
  • separators examples include sheets that are ion permeable and insulating.
  • the separator may be a laminate of a plurality of sheets including a sheet having ion permeability and insulating property.
  • the separator has a size required to insulate the positive electrode plate and the negative electrode plate.
  • the separator may be a microporous film, a woven fabric, or a non-woven fabric.
  • the material of the separator include a polymer having an insulating property, and specifically, a polyolefin-based polymer, a polyamide-based polymer, a cellulose-based polymer, and the like.
  • the thickness of the separator may be in the range of 5 to 200 ⁇ m.
  • Non-aqueous electrolyte As the non-aqueous electrolyte, one having lithium ion conductivity is used.
  • a typical non-aqueous electrolyte contains a non-aqueous solvent and lithium ions and anions dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte may be in the form of a liquid or in the form of a gel.
  • the liquid non-aqueous electrolyte can be prepared by dissolving the lithium salt in a non-aqueous solvent. Lithium ions and anions are produced by dissolving lithium salts (salts of lithium ions and anions) in non-aqueous solvents.
  • the gel-like non-aqueous electrolyte contains a liquid non-aqueous electrolyte and a matrix polymer.
  • a matrix polymer for example, a polymer material that absorbs a non-aqueous solvent and gels is used. Examples of such polymeric materials include fluororesins, acrylic resins, polyether resins and the like.
  • Examples of the anion of the lithium salt BF 4 -, ClO 4 - , PF 6 -, CF 3 SO 3 -, CF 3 CO 2 -, anions of imides, and the like anions of oxalate complexes.
  • non-aqueous solvents examples include esters, ethers, nitriles, amides, and halogen substituents (eg, fluorides) thereof.
  • the non-aqueous electrolyte may contain only one of these non-aqueous solvents, or may contain two or more of these non-aqueous solvents.
  • esters include carbonic acid esters, carboxylic acid esters, and the like.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, fluoroethylene carbonate (FEC) and the like.
  • chain carbonates include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like.
  • cyclic carboxylic acid esters include ⁇ -butyrolactone, ⁇ -valerolactone and the like.
  • chain carboxylic acid esters include ethyl acetate, methyl propionate, methyl fluoropropionate and the like.
  • the concentration of the lithium salt in the non-aqueous electrolyte may be, for example, in the range of 0.5 mol / L to 3.5 mol / L.
  • the concentration of the lithium salt is the sum of the concentration of the dissociated lithium salt and the concentration of the undissociated lithium salt.
  • the concentration of anions in the non-aqueous electrolyte may be in the range of 0.5 mol / L to 3.5 mol / L.
  • a typical case includes a case body, a sealing plate, and a gasket disposed between the case body and the sealing plate.
  • the case body and the sealing plate each function as electrode terminals.
  • the case body functions as a positive electrode terminal
  • the sealing plate functions as a negative electrode terminal.
  • the case body and the sealing plate can each be formed of metal (for example, conductive stainless steel).
  • the secondary battery described below includes the electrode plate of the present disclosure.
  • the components of the secondary battery described below can be modified based on the above description.
  • the matters described below may be applied to the above-described embodiment.
  • components that are not essential for the secondary battery of the present disclosure can be omitted.
  • FIG. 1 A cross-sectional view of the coin-shaped secondary battery of the first embodiment is schematically shown in FIG.
  • the secondary battery 10 of FIG. 1 includes a coin-shaped case 20, an electrode group 30 arranged in the case 20, and a non-aqueous electrolyte (not shown).
  • the case 20 includes a bottomed cylindrical case body 21, a sealing plate 22, and a gasket 23.
  • the case body 21 is sealed by a sealing plate 22 and a gasket 23.
  • FIG. 2 A cross-sectional view of the electrode group 30 is shown in FIG. FIG. 2 is a cross section along a direction in which the repeating unit 41A and the repeating unit 51B (see FIGS. 3A and 4A) are continuous in a zigzag manner.
  • the electrode group 30 includes a positive electrode plate 40, a negative electrode plate 50, and one separator 60 arranged between them.
  • the positive electrode plate 40, the negative electrode plate 50, and the separator 60 are each bent in a zigzag pattern.
  • the positive electrode active material layer 42 and the negative electrode active material layer 52 face each other with the separator 60 interposed therebetween.
  • FIG. 3A A plan view of the positive electrode plate 40 when it is unfolded flat is shown in FIG. 3A, and a cross-sectional view taken along the line IIIB-IIIB of FIG. 3A is shown in FIG. 3B. Further, a partially enlarged view of the positive electrode current collector 41 is shown in FIG. 3C.
  • the positive electrode plate 40 includes a positive electrode current collector 41 and a positive electrode active material layer 42 arranged on the positive electrode current collector 41.
  • the positive electrode current collector 41 includes a plurality of repeating units 41A connected in a row. 3A and 3C show the boundary 41k of two adjacent repeating units 41A. The plurality of repeating units 41A are connected along one direction PD. A positive electrode active material layer 42 is formed on each repeating unit 41A. The positive electrode active material layer 42 arranged on each of the plurality of repeating units 41A is connected. In the electrode group 30, the positive electrode current collector 41 and the positive electrode plate 40 are bent with all of the boundary portions 41X (peripheral portions of the boundary 41k) of the two adjacent repeating units 41A as bending portions.
  • the connecting portion 43 is connected to the repeating unit 41A at one end.
  • the connecting portion 43 has substantially the same shape as one repeating unit 41A.
  • the connecting portion 43 is a portion connected to the case main body 21, and is connected to the case main body 21 by welding or the like, for example.
  • the positive electrode active material layer 42 is not arranged on the connecting portion 43.
  • the structure of the connecting portion 43 is not particularly limited as long as the positive electrode current collector 41 can be electrically connected to the case body 21. As shown in FIG. 2, the boundary portion between the connecting portion 43 and the repeating unit 41A is also bent as a bent portion.
  • one repeating unit 41A includes an octagonal octagonal portion 41Aa and a rounded portion 41Ab.
  • the rounded portion 41Ab is hatched.
  • the shape formed by the plurality of repeating units 41A is such that a plurality of octagonal portions 41Aa are arranged in a row so that two adjacent octagonal portions 41Aa share two vertices, and further, the outer edge of the two vertices is connected. It has a shape with rounded corners.
  • the portion where the corner portion is rounded becomes the rounded portion 41Ab.
  • the corners are rounded by a curve (arc) having a radius of curvature R.
  • the outer edge of the boundary portion 41X (bent portion) has a convex shape toward the inside of the boundary portion 41X and is composed of smooth lines. There are no corners on the outer edge of the boundary 41X.
  • the tangent vector of the outer edge of the boundary portion 41X is not discontinuous and changes continuously. A part of the outer edge of the boundary portion 41X may be a straight line.
  • FIG. 4A A plan view of the negative electrode plate 50 when unfolded flat is shown in FIG. 4A, and a cross-sectional view taken along the line IVB-IVB of FIG. 4A is shown in FIG. 4B. Further, a partially enlarged view of the negative electrode current collector 51 is shown in FIG. 4C.
  • the negative electrode plate 50 includes a negative electrode current collector 51 and a negative electrode active material layer 52 arranged on the negative electrode current collector 51.
  • the negative electrode current collector 51 includes a plurality of repeating units 51B connected in a row. 4A and 4C show the boundary 51k of two adjacent repeating units 51B. The plurality of repeating units 51B are connected along one direction ND. A negative electrode active material layer 52 is formed on each repeating unit 51B. The negative electrode active material layer 52 arranged on each of the plurality of repeating units 51B is connected. In the electrode group 30, the negative electrode current collector 51 and the negative electrode plate 50 are bent with all of the boundary portions 51Y (peripheral portions of the boundary 51k) of the two adjacent repeating units 51B as bent portions.
  • connection portion 53 is connected to the repeating unit 51B at one end.
  • the connecting portion 53 has substantially the same shape as one repeating unit 51B.
  • the connecting portion 53 is a portion connected to the sealing plate 22, and is connected to the sealing plate 22 by welding or the like, for example.
  • the negative electrode active material layer 52 is not arranged on the connecting portion 53.
  • the structure of the connecting portion 53 is not particularly limited as long as the negative electrode current collector 51 can be electrically connected to the sealing plate 22. As shown in FIG. 2, the boundary portion between the connecting portion 53 and the repeating unit 51B is also bent as a bent portion.
  • one repeating unit 51B includes an octagonal portion 51Ba and a rounded portion 51Bb.
  • the octagonal portion 51Ba and the rounded portion 51Bb have the same shape as the octagonal portion 41Aa and the rounded portion 41Ab, respectively. Therefore, the description of the shape of the repeating unit 51B will be omitted.
  • the positive electrode current collector 41 and the negative electrode current collector 51 are composed of lines having smooth outer edges of boundary portions X and Y which are bent portions. Therefore, even when stress is applied to the boundary portions X and Y when forming the electrode group 30, it is possible to prevent the boundary portions X and Y from being damaged. On the other hand, when a corner portion is present on the outer edge, stress may be concentrated on the corner portion and the current collector may be easily damaged.
  • An insulating member for example, insulating tape
  • insulating tape for preventing such a short circuit may be arranged around the electrode group 30.
  • each of the positive electrode plate, the negative electrode plate, and the separator constituting the electrode group is only one has been described.
  • one of the positive electrode plate and the negative electrode plate may be only one, and the other may be two.
  • the active material layer may be formed on both sides of only one electrode plate, and the active material layer may be formed on one side of each of the other two electrode plates.
  • two separators may be used.
  • one positive electrode plate, two negative electrode plates, and two separators are a negative electrode current collector / negative electrode active material layer / separator / positive electrode active material.
  • the layers may be arranged in the order of layer / positive electrode current collector / positive electrode active material layer / separator / negative electrode active material layer / negative electrode current collector, and may be folded in a zigzag manner.
  • the two positive electrode plates, one negative electrode plate, and the two separators are the positive electrode current collector / positive electrode active material layer / separator /.
  • the negative electrode active material layer / negative electrode current collector / negative electrode active material layer / separator / positive electrode active material layer / positive electrode current collector may be arranged in this order and may be folded in a zigzag manner.
  • one repeating unit A is a positive electrode current collector (or a negative electrode current collector) and both surfaces thereof. Includes the arranged positive electrode active material layer (or negative electrode active material layer).
  • the positive electrode plate 40 and the negative electrode plate 50 are prepared.
  • the materials constituting the positive electrode active material layer 42 are mixed to prepare a positive electrode mixture.
  • the positive electrode mixture is applied onto a conductive sheet (for example, a metal foil) to be the positive electrode current collector 41 to form the positive electrode active material layer 42.
  • the positive electrode plate 40 is manufactured.
  • the positive electrode plate 40 and the positive electrode current collector 41 are manufactured so as to have the above-mentioned structure (planar shape). Even if the positive electrode plate 40 is produced by forming the positive electrode active material layer 42 in a predetermined region of the large-area conductive sheet and then punching the conductive sheet and the positive electrode active material layer 42 together using a punching die. good.
  • the materials constituting the negative electrode active material layer 52 are mixed to prepare a negative electrode mixture.
  • the negative electrode mixture is applied onto a conductive sheet (for example, a metal foil) to be the negative electrode current collector 51 to form the negative electrode active material layer 52.
  • the negative electrode plate 50 is manufactured.
  • the negative electrode plate 50 and the negative electrode current collector 51 are manufactured so as to have the above-mentioned structure (planar shape). Even if the negative electrode plate 50 is manufactured by forming the negative electrode active material layer 52 in a predetermined region of the large-area conductive sheet and then punching the conductive sheet and the negative electrode active material layer 52 together using a punching die. good.
  • the positive electrode plate 40, the negative electrode plate 50, and the separator 60 are arranged so that the positive electrode active material layer 42 and the negative electrode active material layer 52 face each other with the separator 60 interposed therebetween. Then, they are bent together in a zigzag manner to prepare an electrode group 30.
  • the positive electrode plate 40, the negative electrode plate 50, and the separator 60 may be bent and then combined to form the electrode group 30. Further, in the production of the electrode group 30, at least a part of the separator may be fixed to the positive electrode plate 40 or the negative electrode plate 50 before the electrode plate is bent. By fixing the separator, it becomes easy to manufacture the electrode group.
  • the separator can be fixed by the method described above.
  • the sealing plate 22 is fitted to the gasket 23 to form a fitting body.
  • the connecting portion 43 is electrically connected to the case body 21.
  • the connecting portion 53 is electrically connected to the sealing plate 22.
  • the electrode group 30 and the non-aqueous electrolyte are placed in the fitting body of the sealing plate 22 and the gasket 23.
  • the case body 21 is arranged so as to seal the opening of the fitting body, and then the opening end of the case body 21 is crimped to seal the case body 21. In this way, the secondary battery 10 of the first embodiment is obtained.
  • the electrode group 30 is a winding type electrode group
  • the positive electrode plate 40, the negative electrode plate 50, and the separator 60 are arranged so that the separator 60 is arranged between the positive electrode plate 40 and the negative electrode plate 50. And are wound together to make a wound body. After that, the winding body is crushed so as to have a flat shape. At this time, the winding body is crushed so that the boundary portion (rounded portion) of the repeating unit becomes a flat bent portion. In this way, the winding type electrode group 30 can be produced.
  • a secondary battery having a structure similar to that of the secondary battery 10 shown in FIG. 1 was produced and evaluated.
  • a plurality of types of secondary batteries (batteries A1 to A6 and C1) having different shapes of current collectors were produced. The production and evaluation of these secondary batteries will be described below.
  • Example 1 a battery having the same structure as the secondary battery 10 shown in FIG. 1 was produced.
  • the planar shape of the repeating unit A (corresponding to the repeating unit 41A in FIG. 3A) was a substantially regular octagon with a side of 2.5 mm.
  • the length LA of the repeating unit A along the direction PD and the width WA perpendicular to the direction PD (see FIG. 3C) are 6 mm, respectively.
  • the positive electrode current collector has a shape in which 15 regular octagons are connected in a row and the corners of the outer edge of the boundary between two adjacent regular octagons are rounded. Specifically, the corner portion was rounded with a curve having a radius of curvature R of 1.0 mm.
  • the number of repeating units B (corresponding to the repeating unit 51B in FIG. 4A) of the negative electrode current collector was the same as the number of repeating units A.
  • the length LB of the repeating unit B in the direction ND (see FIG. 4C) was the same as the length LA. Further, the width WB perpendicular to the direction ND was made slightly larger than the width WA.
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • a microporous polyolefin membrane (thickness 14 ⁇ m) was used as the separator.
  • the non-aqueous electrolyte was prepared by dissolving LiPF 6 in a non-aqueous solvent.
  • a positive electrode plate and a negative electrode plate were produced using the above materials. Then, an electrode group (see FIG. 2) in which the positive electrode plate, the negative electrode plate, and the separator were bent in a zigzag pattern was produced. Next, using the electrode group, the non-aqueous electrolyte, and the coin-shaped case, a coin-shaped non-aqueous electrolyte secondary battery was produced by the method described above. The size of the obtained secondary battery was 9.5 mm in outer diameter and 2.0 mm in height. The innermost diameter of the case was 7.5 mm.
  • the batteries A2 to A6 were manufactured under the same conditions as the batteries A1 except that the shape of the boundary between the two adjacent repeating units A was changed. Specifically, the curvature of the curve obtained by rounding the corners of the outer edge of the boundary portion was changed in the range of 0.1 to 2.5 mm. The curvatures used in each battery are shown in Table 1 below.
  • Battery C1 was manufactured under the same conditions as battery A1 except that the outer edge of the boundary between two adjacent regular octagons was not rounded.
  • the batteries A1 to A6 having rounded corners at the boundary portion had a higher yield of the electrode group and a larger number of charge / discharge cycles.
  • the radius of curvature was in the range of 0.3 to 2.5 mm, the yield of the electrode group was particularly high, and the number of charge / discharge cycles was particularly large.
  • This disclosure can be used for electrode plates and coin-type secondary batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a positive electrode plate which comprises a positive electrode collector and an active material layer arranged on the positive electrode collector. The positive electrode collector comprises a plurality of repeating units that are aligned in a row, and an active material layer is arranged on each of the plurality of repeating units. The positive electrode collector has an outer edge which, at a boundary portion between two adjacent repeating units, has a shape that protrudes toward the inside of the boundary part and is composed of a smooth line. Each one of the plurality of repeating units has a generally circular shape or a generally polygonal shape.

Description

極板およびコイン形二次電池Plate and coin-shaped secondary battery
 本開示は、極板およびコイン形二次電池に関する。 This disclosure relates to a electrode plate and a coin-type secondary battery.
 扁平形の二次電池は、従来から、様々な電子機器の電源などに用いられてきた。扁平形の二次電池の例には、巻回式の電極群を用いた電池と、ジグザグに折り曲げられた電極群を用いた電池とが含まれる。巻回式の電極群は、セパレータを正極板と負極板とで挟み、それらを巻回することによって形成される。ジグザグに折り曲げられた電極群を用いた電池は、たとえば特許文献1に開示されている。 Flat secondary batteries have traditionally been used as power sources for various electronic devices. Examples of a flat secondary battery include a battery using a winding electrode group and a battery using a zigzag bent electrode group. The winding type electrode group is formed by sandwiching a separator between a positive electrode plate and a negative electrode plate and winding them. A battery using a group of electrodes bent in a zigzag manner is disclosed in, for example, Patent Document 1.
 特許文献1には、正極板が延びる方向と負極板が延びる方向とを90°ずらして配置し、それらを折り畳んで電極群を形成する例が開示されている(特許文献1の図2参照)。 Patent Document 1 discloses an example in which the direction in which the positive electrode plate extends and the direction in which the negative electrode plate extends are arranged so as to be offset by 90 °, and they are folded to form an electrode group (see FIG. 2 of Patent Document 1). ..
特開2016-76329号公報Japanese Unexamined Patent Publication No. 2016-76329
 電池の分野では、歩留まりの向上が重要である。本開示は、歩留まりよく電池を製造できる極板、および、歩留まりよく製造が可能なコイン形二次電池を提供することを目的の1つとする。 In the field of batteries, it is important to improve the yield. One of the objects of the present disclosure is to provide a electrode plate capable of manufacturing a battery with a high yield and a coin-type secondary battery capable of manufacturing a battery with a high yield.
 本開示の一局面は、極板に関する。当該極板は、集電体と前記集電体上に配置された活物質層とを含む極板であって、前記集電体は、一列に連なった複数の繰り返し単位を含み、前記複数の繰り返し単位のそれぞれの上には前記活物質層が配置されており、前記集電体の外縁のうち隣接する2つの前記繰り返し単位の境界部の外縁は、前記境界部の内側に向かって凸の形状を有し、且つ、滑らかな線で構成されており、前記複数の繰り返し単位のそれぞれは、略円形または略多角形である。 One aspect of this disclosure relates to the electrode plate. The electrode plate is an electrode plate including a current collector and an active material layer arranged on the current collector, and the current collector includes a plurality of repeating units connected in a row, and the plurality of repeating units. The active material layer is arranged on each of the repeating units, and the outer edge of the boundary portion of two adjacent repeating units among the outer edges of the current collector is convex toward the inside of the boundary portion. It has a shape and is composed of smooth lines, and each of the plurality of repeating units is a substantially circular shape or a substantially polygonal shape.
 本開示の他の一局面は、コイン形二次電池に関する。当該コイン形二次電池は、コイン形のケースと、前記ケース内に配置された正極板および負極板とを含むコイン形二次電池であって、前記正極板は、正極集電体と前記正極集電体上に配置された正極活物質層とを含み、前記負極板は、負極集電体と前記負極集電体上に配置された負極活物質層とを含み、前記正極集電体は、一列に連なった複数の繰り返し単位Aを含み、前記負極集電体は、一列に連なった複数の繰り返し単位Bを含み、前記複数の繰り返し単位Aのそれぞれの上には前記正極活物質層が配置されており、前記複数の繰り返し単位Bのそれぞれの上には前記負極活物質層が配置されており、前記正極板と前記負極板とは、前記正極活物質層と前記負極活物質層とが対向するように配置されており、隣接する2つの前記繰り返し単位Aの境界部Xを折り曲げ部として前記正極集電体は折り曲げられており、隣接する2つの前記繰り返し単位Bの境界部Yを折り曲げ部として前記負極集電体は折り曲げられており、前記正極集電体を平らに展開したときに、前記正極集電体の外縁のうち前記境界部Xの外縁は、前記境界部Xの内側に向かって凸の形状を有し、且つ、滑らかな線で構成されており、前記負極集電体を平らに展開したときに、前記負極集電体の外縁のうち前記境界部Yの外縁は、前記境界部Yの内側に向かって凸の形状を有し、且つ、滑らかな線で構成されており、前記複数の繰り返し単位Aおよび前記複数の繰り返し単位Bのそれぞれは、略円形または略多角形である。 Another aspect of this disclosure relates to coin-type secondary batteries. The coin-shaped secondary battery is a coin-shaped secondary battery including a coin-shaped case and a positive electrode plate and a negative electrode plate arranged in the case, and the positive electrode plate is a positive electrode current collector and the positive electrode. The negative electrode plate includes a negative electrode current collector and a negative electrode active material layer arranged on the negative electrode current collector, and the positive electrode current collector includes a positive electrode active material layer arranged on the current collector. , A plurality of repeating units A connected in a row are included, the negative electrode current collector includes a plurality of repeating units B connected in a row, and the positive electrode active material layer is placed on each of the plurality of repeating units A. The negative electrode active material layer is arranged on each of the plurality of repeating units B, and the positive electrode plate and the negative electrode plate are the positive electrode active material layer and the negative electrode active material layer. Are arranged so as to face each other, the positive electrode current collector is bent with the boundary portion X of the two adjacent repeating units A as a bent portion, and the boundary portion Y of the two adjacent repeating units B is bent. The negative electrode current collector is bent as a bent portion, and when the positive electrode current collector is deployed flat, the outer edge of the boundary portion X among the outer edges of the positive electrode current collector is inside the boundary portion X. The outer edge of the boundary portion Y of the outer edges of the negative electrode current collector is formed when the negative electrode current collector is spread flat. , The boundary portion Y has a convex shape toward the inside and is composed of smooth lines, and each of the plurality of repeating units A and the plurality of repeating units B is substantially circular or substantially many. It is a square.
 本開示によれば、歩留まりよく電池を製造できる極板、および、歩留まりよく製造が可能なコイン形二次電池が得られる。 According to the present disclosure, a electrode plate capable of manufacturing a battery with a high yield and a coin-type secondary battery capable of manufacturing a battery with a high yield can be obtained.
本開示のコイン形二次電池の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the coin-type secondary battery of this disclosure. 図1に示したコイン形二次電池の電極群を模式的に示す断面図である。It is sectional drawing which shows typically the electrode group of the coin-type secondary battery shown in FIG. 図1に示したコイン形二次電池の正極板の一例を模式的に示す平面図である。It is a top view which shows an example of the positive electrode plate of the coin-type secondary battery shown in FIG. 1 schematically. 図3Aの線IIIB-IIIBにおける断面を模式的に示す図である。It is a figure which shows typically the cross section in the line IIIB-IIIB of FIG. 3A. 図3Aに示した正極集電体の一部拡大図である。It is a partially enlarged view of the positive electrode current collector shown in FIG. 3A. 図1に示したコイン形二次電池の負極板の一例を模式的に示す平面図である。It is a top view which shows an example of the negative electrode plate of the coin-type secondary battery shown in FIG. 1 schematically. 図4Aの線IVB-IVBにおける断面を模式的に示す図である。It is a figure which shows typically the cross section in the line IVB-IVB of FIG. 4A. 図4Aに示した負極集電体の一部拡大図である。It is a partially enlarged view of the negative electrode current collector shown in FIG. 4A.
 以下、本開示の実施形態について説明する。なお、以下の説明では、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。 Hereinafter, embodiments of the present disclosure will be described. In the following description, the embodiments of the present disclosure will be described with examples, but the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.
 (極板)
 本開示の極板は、コイン形の二次電池に用いられる極板であり、正極板および/または負極板である。当該極板は、集電体と集電体上に配置された活物質層とを含む。集電体は、一列に連なった複数の繰り返し単位を含む。複数の繰り返し単位のそれぞれの上には、活物質層が配置されている。複数の繰り返し単位のそれぞれは、略円形または略多角形である。電池内において、隣接する2つの繰り返し単位の境界部を折り曲げ部として集電体は折り曲げられる。すなわち、当該境界部を折り曲げ部として極板は折り曲げられる。
(Pole plate)
The electrode plate of the present disclosure is an electrode plate used in a coin-shaped secondary battery, and is a positive electrode plate and / or a negative electrode plate. The electrode plate includes a current collector and an active material layer arranged on the current collector. The current collector contains a plurality of repeating units in a row. An active material layer is arranged on each of the plurality of repeating units. Each of the multiple repeating units is a substantially circular or substantially polygonal. In the battery, the current collector is bent with the boundary between two adjacent repeating units as a bent portion. That is, the electrode plate is bent with the boundary portion as a bending portion.
 極板が正極板である場合、集電体、繰り返し単位、境界部、および活物質層をそれぞれ、正極集電体、繰り返し単位A、境界部X、および正極活物質層と読み替えることができる。極板が負極板である場合、集電体、繰り返し単位、境界部、および活物質層をそれぞれ、負極集電体、繰り返し単位B、境界部Y、および負極活物質層と読み替えることができる。 When the electrode plate is a positive electrode plate, the current collector, the repeating unit, the boundary portion, and the active material layer can be read as the positive electrode current collector, the repeating unit A, the boundary portion X, and the positive electrode active material layer, respectively. When the electrode plate is a negative electrode plate, the current collector, the repeating unit, the boundary portion, and the active material layer can be read as the negative electrode current collector, the repeating unit B, the boundary portion Y, and the negative electrode active material layer, respectively.
 本開示の極板は、後述するコイン形の二次電池に用いることができる。後述するコイン形の二次電池の正極板および/または負極板は、本開示の極板の一例である。そのため、後述するコイン形の二次電池の正極板および/または負極板の構成を、本開示の極板の構成として適用できる。集電体および活物質層に特に限定はなく、極板が用いられる二次電池の種類、および、極板の種類(正極板、負極板)に応じて選択すればよい。集電体および活物質層の材料には、公知の集電体および活物質の材料を用いてもよい。集電体および活物質層の例については後述する。 The electrode plate of the present disclosure can be used for a coin-shaped secondary battery described later. The positive electrode plate and / or the negative electrode plate of the coin-shaped secondary battery described later is an example of the electrode plate of the present disclosure. Therefore, the configuration of the positive electrode plate and / or the negative electrode plate of the coin-shaped secondary battery described later can be applied as the configuration of the electrode plate of the present disclosure. The current collector and the active material layer are not particularly limited, and may be selected according to the type of the secondary battery in which the electrode plate is used and the type of the electrode plate (positive electrode plate, negative electrode plate). As the material of the current collector and the active material layer, a known material of the current collector and the active material may be used. Examples of the current collector and the active material layer will be described later.
 集電体の外縁のうち隣接する2つの繰り返し単位の境界部の外縁を、以下では「外縁(P)」と称する場合がある。外縁(P)は、以下の(1)の特徴を有してもよい。
(1)外縁(P)は、境界部の内側(別の観点では境界部の中央)に向かって凸の形状を有する。
Of the outer edges of the current collector, the outer edge of the boundary between two adjacent repeating units may be referred to as "outer edge (P)" below. The outer edge (P) may have the following characteristics (1).
(1) The outer edge (P) has a convex shape toward the inside of the boundary portion (in another viewpoint, the center of the boundary portion).
 外縁(P)は、以下の(2)~(6)のうちの少なくとも1つの特徴を有する。外縁(P)は、上記(1)の特徴に加えて、(2)~(6)のうちの少なくとも1つの特徴を有してもよい。外縁(P)は、上記(1)の特徴に加えて、(2)~(6)のうちのいずれか1つの特徴を有してもよい。例えば、外縁(P)は、上記(1)の特徴と以下の(2)の特徴とを有してもよい。
(2)外縁(P)は、滑らかな線で構成されている。
(3)外縁(P)には、角がない。
(4)外縁(P)は、丸められている。
(5)外縁(P)において、外縁(P)の接ベクトルが不連続になっていない。たとえば、外縁(P)の接ベクトルが連続的に変化していてもよい。
(6)外縁(P)は、2つの直線で構成される角部を丸めた形状を有する。ここで、2つの直線は、2つの頂点を共有するように2つの多角形を結合させたときの、当該2つの多角形の2つの辺である。当該2つの辺は、共有されている1つの頂点を端点とする共有されていない2つの辺である。これらについては、後述する実施形態1において具体的に説明する。
The outer edge (P) has at least one of the following features (2) to (6). The outer edge (P) may have at least one of the features (2) to (6) in addition to the feature of (1) above. The outer edge (P) may have any one of the features (2) to (6) in addition to the feature of the above (1). For example, the outer edge (P) may have the above-mentioned feature (1) and the following feature (2).
(2) The outer edge (P) is composed of smooth lines.
(3) The outer edge (P) has no corners.
(4) The outer edge (P) is rounded.
(5) At the outer edge (P), the tangent vector of the outer edge (P) is not discontinuous. For example, the tangent vector of the outer edge (P) may change continuously.
(6) The outer edge (P) has a shape with rounded corners composed of two straight lines. Here, the two straight lines are the two sides of the two polygons when the two polygons are joined so as to share the two vertices. The two sides are two unshared sides having one shared vertex as an end point. These will be specifically described in the first embodiment described later.
 本開示の極板は、電極群を作製する際に、繰り返し単位の境界部が折り曲げられる。そのため、電極群を作製する際に、境界部に力(張力など)が加わる。境界部の外縁(P)に角部が存在する場合、角部に力が集中して集電体が破断しやすくなる。上記の特徴を有する外縁(P)を含む集電体は、力が特に集中しやすい部分が境界部にないため、電極群を作製する際にも破断等が生じにくい。そのため、歩留まりよく電極群および二次電池を製造できる。さらに、本開示の極板を用いることによって、信頼性が高い二次電池が得られる。 In the electrode plate of the present disclosure, the boundary portion of the repeating unit is bent when the electrode group is produced. Therefore, a force (tension, etc.) is applied to the boundary portion when the electrode group is manufactured. When a corner portion is present on the outer edge (P) of the boundary portion, the force is concentrated on the corner portion and the current collector is likely to break. Since the current collector including the outer edge (P) having the above-mentioned characteristics does not have a portion at the boundary where the force is particularly likely to be concentrated, breakage or the like is unlikely to occur even when the electrode group is produced. Therefore, the electrode group and the secondary battery can be manufactured with a high yield. Further, by using the electrode plate of the present disclosure, a highly reliable secondary battery can be obtained.
 複数の繰り返し単位のそれぞれは、略円形または略多角形である。略円形の形状の一例は、外側に向かって凸となるように線対称且つ点対称に配置された2つの等しい円弧状の曲線と、当該曲線同士をつなぐ2つの直線とによって形成される形状である。そのような形状の一例は、円(または楕円)の中心からの距離が等しい2つの平行な線で円(または楕円)を切った形状である。なお、楕円の場合、2つの平行な線は、楕円の長軸または短軸に平行である。 Each of the plurality of repeating units is a substantially circular shape or a substantially polygonal shape. An example of a substantially circular shape is a shape formed by two equal arc-shaped curves arranged line-symmetrically and point-symmetrically so as to be convex outward, and two straight lines connecting the curves. be. An example of such a shape is a shape obtained by cutting a circle (or ellipse) with two parallel lines having the same distance from the center of the circle (or ellipse). In the case of an ellipse, the two parallel lines are parallel to the major or minor axis of the ellipse.
 略多角形の形状の一例は、多角形部(多角形の部分)と、当該多角形部と上記外縁(P)との間の領域を埋める部分とを含む。多角形と上記外縁(P)との間の領域を埋める部分を、以下では、「丸め部」と称する場合がある。多角形部を構成する辺の数は、6~12の範囲にあってもよい。たとえば、多角形部は、六角形(例えば正六角形)や八角形(例えば正八角形)や十角形(例えば正十角形)であってもよい。すなわち、繰り返し単位は、略八角形や略十角形であってもよい。 An example of a substantially polygonal shape includes a polygonal portion (polygonal portion) and a portion that fills a region between the polygonal portion and the outer edge (P). The portion that fills the area between the polygon and the outer edge (P) may be referred to as a "rounded portion" below. The number of sides forming the polygonal portion may be in the range of 6 to 12. For example, the polygonal portion may be a hexagon (for example, a regular hexagon), an octagon (for example, a regular octagon), or a decagon (for example, a regular decagon). That is, the repeating unit may be a substantially octagon or a substantially decagon.
 略円形および略多角形の形状の例には、上記の形状と折り曲げ部となる部分とを含む形状が含まれる。たとえば、略多角形の形状の例には、多角形と折り曲げ部となる部分とを含む形状が含まれる。 Examples of substantially circular and substantially polygonal shapes include a shape including the above shape and a portion to be a bent portion. For example, an example of a substantially polygonal shape includes a shape including a polygon and a portion to be a bent portion.
 1つの観点では、繰り返し単位の形状は以下の形状であってもよい。すなわち、極板が配置されるコイン形のケースの最内径をFとしたときに、直径がFの第1の円と、第1の円と同心円であり直径が0.4Fの第2の円とを考える。このとき、繰り返し単位の形状は、繰り返し単位の外縁のすべてが第1の円と第2の円との間の領域(具体的には、第1の円の円周と第2の円の円周との間の領域)に入る形状であってもよい。この場合の一例では、第2の円の直径は、0.5Fであってもよい。ケースの最内径Fに特に限定はない。最内径Fは、6mm~9mmの範囲(たとえば7mm~9mm)の範囲にあってもよい。 From one point of view, the shape of the repeating unit may be the following shape. That is, when the innermost diameter of the coin-shaped case in which the electrode plate is arranged is F, the first circle having a diameter of F and the second circle having a diameter of 0.4F and concentric with the first circle. Think of. At this time, the shape of the repeating unit is such that all the outer edges of the repeating unit are regions between the first circle and the second circle (specifically, the circumference of the first circle and the circle of the second circle). It may have a shape that fits in the area between the circumference and the circumference. In one example in this case, the diameter of the second circle may be 0.5F. The innermost diameter F of the case is not particularly limited. The innermost diameter F may be in the range of 6 mm to 9 mm (for example, 7 mm to 9 mm).
 なお、正極板の繰り返し単位Aの形状と負極板の繰り返し単位Bの形状とは同じであってもよいし、異なってもよい。繰り返し単位Aの形状と繰り返し単位Bの形状とが異なる場合、繰り返し単位Aの外縁および繰り返し単位Bの外縁がともに、上記第1の円と第2の円との間の領域に入る形状であってもよい。 The shape of the repeating unit A of the positive electrode plate and the shape of the repeating unit B of the negative electrode plate may be the same or different. When the shape of the repeating unit A and the shape of the repeating unit B are different, both the outer edge of the repeating unit A and the outer edge of the repeating unit B are in the region between the first circle and the second circle. You may.
 繰り返し単位Aの面積は、繰り返し単位Bの面積よりも大きくてもよい。あるいは、繰り返し単位Aの面積は、繰り返し単位Bの面積よりも小さくてもよい。例えば、繰り返し単位Bの幅WB(図4C参照)は、繰り返し単位Aの幅WA(図3C参照)よりも大きくてもよいし、小さくてもよい。また、繰り返し単位Bの長さLB(図4C参照)は、繰り返し単位Aの長さLA(図3C参照)よりも長くてよいし、短くてもよい。一例では、繰り返し単位Bの面積は繰り返し単位Aの面積よりも大きい。 The area of the repeating unit A may be larger than the area of the repeating unit B. Alternatively, the area of the repeating unit A may be smaller than the area of the repeating unit B. For example, the width WB of the repeating unit B (see FIG. 4C) may be larger or smaller than the width WA of the repeating unit A (see FIG. 3C). Further, the length LB of the repeating unit B (see FIG. 4C) may be longer or shorter than the length LA of the repeating unit A (see FIG. 3C). In one example, the area of the repeating unit B is larger than the area of the repeating unit A.
 複数の繰り返し単位を含む集電体は、1枚の金属シートによって構成できる。複数の繰り返し単位上に配置された活物質層は、つながっていてもよいし、つながっていなくてもよい。たとえば、集電体の折り曲げ部の部分には、活物質層が形成されていなくてもよい。 A current collector containing a plurality of repeating units can be composed of one metal sheet. The active material layers arranged on the plurality of repeating units may or may not be connected. For example, the active material layer may not be formed at the bent portion of the current collector.
 1つの集電体に含まれる繰り返し単位の数に特に限定はなく、2~30の範囲にあってもよいし、3以上(例えば3~30の範囲や3~15の範囲)であってもよい。 The number of repeating units contained in one current collector is not particularly limited, and may be in the range of 2 to 30 or 3 or more (for example, in the range of 3 to 30 or in the range of 3 to 15). good.
 複数の繰り返し単位のうち一端に存在する繰り返し単位には、集電体を電極端子に電気的に接続するための部分(接続部)が接続されていてもよい。複数の繰り返し単位および接続部は、1枚の金属シートによって構成できる。 A portion (connection portion) for electrically connecting the current collector to the electrode terminal may be connected to the repeating unit existing at one end of the plurality of repeating units. The plurality of repeating units and connecting portions can be composed of one metal sheet.
 複数の繰り返し単位は、複数の多角形を、隣接する2つの多角形が2つの頂点を共有するように一列に連ね、さらに、当該2つの頂点における外縁の角部を丸めた形状を有してもよい。 The plurality of repeating units has a shape in which a plurality of polygons are arranged in a row so that two adjacent polygons share two vertices, and the corners of the outer edges of the two vertices are rounded. May be good.
 (コイン形二次電池)
 本開示のコイン形二次電池は、コイン形のケースと、ケース内に配置された正極板および負極板とを含む。正極板は、正極集電体と正極集電体上に配置された正極活物質層とを含む。負極板は、負極集電体と負極集電体上に配置された負極活物質層とを含む。正極集電体は、一列に連なった複数の繰り返し単位(以下では「繰り返し単位A」と称する場合がある)を含む。負極集電体は、一列に連なった複数の繰り返し単位(以下では「繰り返し単位B」と称する場合がある)を含む。複数の繰り返し単位Aのそれぞれの上には正極活物質層が配置されている。複数の繰り返し単位Bのそれぞれの上には負極活物質層が配置されている。正極板と負極板とは、正極活物質層と負極活物質層とが対向するように配置されている。
(Coin-type secondary battery)
The coin-shaped secondary battery of the present disclosure includes a coin-shaped case and a positive electrode plate and a negative electrode plate arranged in the case. The positive electrode plate includes a positive electrode current collector and a positive electrode active material layer arranged on the positive electrode current collector. The negative electrode plate includes a negative electrode current collector and a negative electrode active material layer arranged on the negative electrode current collector. The positive electrode current collector includes a plurality of repeating units (hereinafter, may be referred to as “repeating unit A”) in a row. The negative electrode current collector includes a plurality of repeating units (hereinafter, may be referred to as “repeating unit B”) in a row. A positive electrode active material layer is arranged on each of the plurality of repeating units A. A negative electrode active material layer is arranged on each of the plurality of repeating units B. The positive electrode plate and the negative electrode plate are arranged so that the positive electrode active material layer and the negative electrode active material layer face each other.
 なお、本開示のコイン形二次電池には、ボタン形と呼ばれる形状を有する二次電池も含まれる。すなわち、コイン形のケースには、ボタン形と呼ばれる電池に用いられるケースも含まれる。 The coin-shaped secondary battery of the present disclosure also includes a secondary battery having a shape called a button shape. That is, the coin-shaped case also includes a case used for a battery called a button-shaped case.
 隣接する2つの繰り返し単位Aの境界部(以下では「境界部X」と称する場合がある)を折り曲げ部として、正極集電体は折り曲げられている。隣接する2つの繰り返し単位Bの境界部(以下では「境界部Y」と称する場合がある)を折り曲げ部として、負極集電体は折り曲げられている。 The positive electrode current collector is bent with the boundary portion of two adjacent repeating units A (hereinafter sometimes referred to as "boundary portion X") as a bent portion. The negative electrode current collector is bent with the boundary portion of two adjacent repeating units B (hereinafter, may be referred to as “boundary portion Y”) as a bent portion.
 正極板および負極板は、上述した本開示の極板を境界部で折り曲げたものである。そのため、重複する説明を省略する場合がある。 The positive electrode plate and the negative electrode plate are obtained by bending the electrode plate of the present disclosure described above at a boundary portion. Therefore, duplicate explanations may be omitted.
 集電体(正極集電体、負極集電体)を平らに展開したときに、集電体の外縁のうち隣接する2つの繰り返し単位(繰り返し単位A、繰り返し単位B)の境界部(境界部X、境界部Y)の外縁(P)は、上述した形状を有する。また、繰り返し単位(繰り返し単位A、繰り返し単位B)のそれぞれは、上述したように、略円形または略多角形である。 When the current collector (positive electrode current collector, negative electrode current collector) is deployed flat, the boundary portion (boundary portion) of two adjacent repeating units (repeating unit A and repeating unit B) on the outer edge of the current collector. The outer edge (P) of X, the boundary portion Y) has the above-mentioned shape. Further, each of the repeating units (repeating unit A and repeating unit B) is a substantially circular shape or a substantially polygonal shape as described above.
 正極板を平らに展開したときに、正極板の外縁のうち境界部Xの外縁は、境界部Xの内側に向かって凸の形状を有し、且つ、滑らかな線で構成されていてもよい。負極板を平らに展開したときに、負極板の外縁のうち境界部Yの外縁は、境界部Yの内側に向かって凸の形状を有し、且つ、滑らかな線で構成されていてもよい。 When the positive electrode plate is developed flat, the outer edge of the boundary portion X among the outer edges of the positive electrode plate may have a convex shape toward the inside of the boundary portion X and may be composed of smooth lines. .. When the negative electrode plate is unfolded flat, the outer edge of the boundary portion Y among the outer edges of the negative electrode plate may have a convex shape toward the inside of the boundary portion Y and may be composed of smooth lines. ..
 正極集電体を平らに展開したときに、複数の繰り返し単位Aは、複数の第1の多角形を、隣接する2つの第1の多角形が2つの頂点を共有するように一列に連ね、さらに、当該2つの頂点における外縁の角部を丸めた形状を有してもよい。負極集電体を平らに展開したときに、複数の繰り返し単位Bは、複数の第2の多角形を、隣接する2つの第2の多角形が2つの頂点を共有するように一列に連ね、さらに、当該2つの頂点における外縁の角部を丸めた形状を有してもよい。第1の多角形の辺の数と前記第2の多角形の辺の数とが同じであってもよい。第1の多角形と第2の多角形とは、実質的に同じ形状を有する多角形(例えば合同な多角形)であってもよい。 When the positive electrode current collector is unfolded flat, the plurality of repeating units A form a row of the plurality of first polygons so that the two adjacent first polygons share two vertices. Further, it may have a shape in which the corners of the outer edges at the two vertices are rounded. When the negative electrode current collector is unfolded flat, the plurality of repeating units B form a row of a plurality of second polygons so that two adjacent second polygons share two vertices. Further, it may have a shape in which the corners of the outer edges at the two vertices are rounded. The number of sides of the first polygon may be the same as the number of sides of the second polygon. The first polygon and the second polygon may be polygons having substantially the same shape (for example, congruent polygons).
 境界部Xの外縁(外縁(P))および境界部Yの外縁(外縁(P))はそれぞれ、曲率半径Rの曲線(例えば円弧)で丸められていてもよい。例えば、外縁(P)の上記角部が、曲率半径Rの曲線(例えば円弧)で丸められていてもよい。なお、外縁を丸める曲線の曲率半径は一定でなくてもよい。 The outer edge (outer edge (P)) of the boundary portion X and the outer edge (outer edge (P)) of the boundary portion Y may be rounded by a curve (for example, an arc) having a radius of curvature R, respectively. For example, the corner portion of the outer edge (P) may be rounded by a curve (for example, an arc) having a radius of curvature R. The radius of curvature of the curve that rounds the outer edge does not have to be constant.
 曲率半径Rは、0.1mm以上であってもよいし、0.3mm以上であってもよいし、1mm以上であってもよい。曲率半径Rは、2.5mm以下であってもよいし、2mm以下であってもよい。曲率半径Rは、0.1~2.5mmの範囲(たとえば0.3~2.0mmの範囲)にあってもよい。曲率半径Rが0.3mm以上である曲線で外縁(P)を丸めることによって、電極群を作製する際の集電体の損傷を特に少なくすることができる。曲率半径Rが2.0mm以下である曲線で外縁(P)を丸めることによって、電極群を作製する際に、電極板を折り曲げることが容易になる。 The radius of curvature R may be 0.1 mm or more, 0.3 mm or more, or 1 mm or more. The radius of curvature R may be 2.5 mm or less, or 2 mm or less. The radius of curvature R may be in the range of 0.1 to 2.5 mm (for example, in the range of 0.3 to 2.0 mm). By rounding the outer edge (P) with a curve having a radius of curvature R of 0.3 mm or more, damage to the current collector when forming the electrode group can be particularly reduced. By rounding the outer edge (P) with a curve having a radius of curvature R of 2.0 mm or less, it becomes easy to bend the electrode plate when producing the electrode group.
 一辺の長さがS(mm)である複数の多角形を、隣接する2つの多角形が2つの頂点を共有するように一列に連ね、さらに、当該2つの頂点における外縁の角部を、曲率半径R(mm)の曲線で丸める場合について考える(図3C参照)。この場合、長さSと曲率半径Rとは、0.04S≦R≦Sの式を満たしてもよいし、0.12S≦R≦0.8Sを満たしてもよい。 A plurality of polygons having a side length of S (mm) are arranged in a row so that two adjacent polygons share two vertices, and the corners of the outer edge of the two vertices are curved. Consider the case of rounding with a curve having a radius R (mm) (see FIG. 3C). In this case, the length S and the radius of curvature R may satisfy the formula of 0.04S ≦ R ≦ S or 0.12S ≦ R ≦ 0.8S.
 本開示の二次電池は、正極板と負極板との間に配置されたセパレータを含んでもよい。また、本開示の二次電池は、正極板と負極板との間に配置されたセパレータと、ケース内に配置された非水電解質とをさらに含んでもよい。すなわち、本開示の二次電池は、非水電解質二次電池であってもよい。 The secondary battery of the present disclosure may include a separator arranged between the positive electrode plate and the negative electrode plate. Further, the secondary battery of the present disclosure may further include a separator arranged between the positive electrode plate and the negative electrode plate, and a non-aqueous electrolyte arranged in the case. That is, the secondary battery of the present disclosure may be a non-aqueous electrolyte secondary battery.
 正極板および負極板はそれぞれ、ジグザグに折り曲げられていてもよいし、または、巻回されていてもよい。これらの場合において、正極板と負極板との間にはセパレータが配置されていてもよい。 The positive electrode plate and the negative electrode plate may be bent or wound in a zigzag manner, respectively. In these cases, a separator may be arranged between the positive electrode plate and the negative electrode plate.
 セパレータの少なくとも一部は、負極活物質層に固定されていてもよいし、正極活物質層に固定されていてもよい。セパレータを活物質層に固定することによって、電池の製造が容易になる。セパレータの固定方法に特に限定はなく、公知の技術を用いてもよい。たとえば、熱プレスなどによってセパレータを活物質層に固定してもよい。あるいは、表面に接着層を有するセパレータを用いてもよい。接着層には、たとえば、ポリフッ化ビニリデンなどの樹脂を含む層を用いることができる。 At least a part of the separator may be fixed to the negative electrode active material layer or may be fixed to the positive electrode active material layer. By fixing the separator to the active material layer, the battery can be easily manufactured. The method for fixing the separator is not particularly limited, and a known technique may be used. For example, the separator may be fixed to the active material layer by a hot press or the like. Alternatively, a separator having an adhesive layer on the surface may be used. As the adhesive layer, for example, a layer containing a resin such as polyvinylidene fluoride can be used.
 正極板および負極板がそれぞれ、ジグザグに折り曲げられている場合、正極活物質層は正極集電体の片面のみに配置されていてもよいし、および/または、負極活物質層は前記負極集電体の片面のみに配置されていてもよい。 When the positive electrode plate and the negative electrode plate are each bent in a zigzag pattern, the positive electrode active material layer may be arranged on only one side of the positive electrode current collector, and / or the negative electrode active material layer is the negative electrode current collector. It may be placed on only one side of the body.
 本開示の二次電池は、正極板の数と負極板の数との合計が2または3となるように、少なくとも1つの正極板および少なくとも1つの負極板を含んでもよい。正極板および負極板の数と活物質層の配置に関する3つの例(第1~第3の配置例)について以下に説明する。 The secondary battery of the present disclosure may include at least one positive electrode plate and at least one negative electrode plate so that the total number of the number of positive electrode plates and the number of negative electrode plates is 2 or 3. Three examples (first to third arrangement examples) regarding the number of positive electrode plates and negative electrode plates and the arrangement of the active material layer will be described below.
 第1の配置例では、正極板の数および負極板の数がそれぞれ1である。この場合、正極集電体の片面のみに正極活物質層が配置され且つ負極集電体の片面のみに負極活物質層が配置されている。第2の配置例では、正極板の数が2であり、負極板の数は1である。この場合、正極集電体の片面のみに正極活物質層が配置され且つ負極集電体の両面に負極活物質層が配置されている。第2の配置例では、2つの正極板で1つの負極板を挟むように、正極板と負極板とが配置される。第3の配置例では、負極板の数が2であり、正極板の数は1である。この場合、正極集電体の両面に正極活物質層が配置され且つ負極集電体の片面のみに負極活物質層が配置されている。第3の配置例では、2つの負極板で1つの正極板を挟むように、正極板と負極板とが配置される。 In the first arrangement example, the number of positive electrode plates and the number of negative electrode plates are 1, respectively. In this case, the positive electrode active material layer is arranged only on one side of the positive electrode current collector, and the negative electrode active material layer is arranged only on one side of the negative electrode current collector. In the second arrangement example, the number of positive electrode plates is 2 and the number of negative electrode plates is 1. In this case, the positive electrode active material layer is arranged on only one side of the positive electrode current collector, and the negative electrode active material layer is arranged on both sides of the negative electrode current collector. In the second arrangement example, the positive electrode plate and the negative electrode plate are arranged so as to sandwich one negative electrode plate between the two positive electrode plates. In the third arrangement example, the number of negative electrode plates is 2, and the number of positive electrode plates is 1. In this case, the positive electrode active material layer is arranged on both sides of the positive electrode current collector, and the negative electrode active material layer is arranged on only one side of the negative electrode current collector. In the third arrangement example, the positive electrode plate and the negative electrode plate are arranged so as to sandwich one positive electrode plate between the two negative electrode plates.
 正極板および負極板がそれぞれ巻回されている場合、正極集電体の両面に正極活物質層が配置されていてもよく、且つ、負極集電体の両面に負極活物質層が配置されていてもよい。 When the positive electrode plate and the negative electrode plate are wound respectively, the positive electrode active material layers may be arranged on both sides of the positive electrode current collector, and the negative electrode active material layers are arranged on both sides of the negative electrode current collector. You may.
 本開示の二次電池の種類に特に限定はなく、ニッケル水素二次電池であってもよいし、非水電解質二次電池であってもよい。非水電解質二次電池の例には、リチウム二次電池およびリチウムイオン二次電池が含まれる。 The type of the secondary battery disclosed in the present disclosure is not particularly limited, and may be a nickel hydrogen secondary battery or a non-aqueous electrolyte secondary battery. Examples of non-aqueous electrolyte secondary batteries include lithium secondary batteries and lithium ion secondary batteries.
 本開示に特有の構成を用いることを除いて、本開示の二次電池の構成要素(ケース、正極板を構成する材料、負極板を構成する材料、およびその他の構成要素など)に特に限定はない。本開示に特有の構成を用いることを除いて、本開示の二次電池の構成要素には、公知の材料や公知の構成を適用してもよい。本開示の二次電池がリチウムイオン二次電池である場合の構成要素について以下に例示するが、本開示は以下の例示に限定されない。 Except for using the configurations specific to the present disclosure, there are no particular restrictions on the components of the secondary battery of the present disclosure (cases, materials constituting the positive electrode plate, materials constituting the negative electrode plate, and other components, etc.). No. A known material or a known configuration may be applied to the components of the secondary battery of the present disclosure, except that the configuration peculiar to the present disclosure is used. The components of the case where the secondary battery of the present disclosure is a lithium ion secondary battery are illustrated below, but the present disclosure is not limited to the following examples.
 (正極板)
 正極集電体の例には、導電性材料(たとえば金属材料)で作られたシート状物(たとえば、箔、メッシュ、またはパンチングシート)などが含まれる。正極集電体を構成する金属材料の例には、アルミニウム、アルミニウム合金、チタン、チタン合金、およびステンレス鋼などが含まれる。正極集電体の厚さは、たとえば、5~300μmの範囲にあってもよい。
(Positive plate)
Examples of positive electrode current collectors include sheet-like objects (eg, foils, meshes, or punching sheets) made of conductive materials (eg, metal materials). Examples of metal materials constituting the positive electrode current collector include aluminum, aluminum alloys, titanium, titanium alloys, stainless steel and the like. The thickness of the positive electrode current collector may be in the range of, for example, 5 to 300 μm.
 正極活物質層は、正極活物質を含み、必要に応じて他の物質(結着剤、導電剤など)を含んでもよい。正極活物質の例には、リチウムイオンを可逆的に吸蔵および放出する物質が含まれる。具体的には、正極活物質の例には、リチウムを含有する金属酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが含まれる。リチウムを含有する金属酸化物の例には、リチウム遷移金属複合酸化物、およびリチウム-ニッケル-コバルト-アルミニウム複合酸化物などが含まれる。リチウム遷移金属複合酸化物の例には、リチウム-マンガン複合酸化物(たとえばLiMn)、リチウム-ニッケル複合酸化物(たとえばLiNiO)、リチウム-コバルト複合酸化物(たとえばLiCoO)、および、これらの遷移金属元素の一部を他の金属元素(典型金属元素および/または遷移金属元素)に置換した複合酸化物などが含まれる。 The positive electrode active material layer contains a positive electrode active material, and may contain other substances (binding agent, conductive agent, etc.) if necessary. Examples of positive electrode active materials include substances that reversibly occlude and release lithium ions. Specifically, examples of the positive electrode active material include a metal oxide containing lithium, a lithium-transition metal phosphoric acid compound, a lithium-transition metal sulfate compound, and the like. Examples of lithium-containing metal oxides include lithium transition metal composite oxides, lithium-nickel-cobalt-aluminum composite oxides and the like. Examples of lithium transition metal composite oxides include lithium-manganese composite oxides (eg LiMn 2 O 4 ), lithium-nickel composite oxides (eg LiNiO 2 ), lithium-cobalt composite oxides (eg LiCoO 2 ), and , Composite oxides in which some of these transition metal elements are replaced with other metal elements (typical metal elements and / or transition metal elements) are included.
 結着剤の例には、フッ素樹脂、ポリアクリロニトリル、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂、およびゴム状重合体などが含まれる。フッ素樹脂の例には、ポリテトラフルオロエチレン、およびポリフッ化ビニリデンなどが含まれる。結着剤は、1種のみを用いてもよいし、2種以上を用いてもよい。 Examples of binders include fluororesins, polyacrylonitrile, polyimide resins, acrylic resins, polyolefin resins, and rubbery polymers. Examples of fluororesins include polytetrafluoroethylene, polyvinylidene fluoride and the like. As the binder, only one kind may be used, or two or more kinds may be used.
 導電剤の例には、炭素材料が含まれる。導電剤として用いられる炭素材料の例には、カーボンブラック(アセチレンブラック、ケッチェンブラックなど)、カーボンナノチューブ、および黒鉛が含まれる。導電剤は、1種のみを用いてもよいし、2種以上を用いてもよい。 Examples of conductive agents include carbon materials. Examples of carbon materials used as conductive agents include carbon black (acetylene black, ketjen black, etc.), carbon nanotubes, and graphite. As the conductive agent, only one kind may be used, or two or more kinds may be used.
 (負極板)
 負極板は、負極集電体と負極活物質層とを含む。負極集電体の一部は、端子として機能するケースの一部(ケース本体または封口板)に電気的に接続される接続部を構成してもよい。その場合、接続部は、溶接(たとえば超音波溶接)などによって、ケースの一部に接続される。
(Negative electrode plate)
The negative electrode plate includes a negative electrode current collector and a negative electrode active material layer. A part of the negative electrode current collector may form a connection portion electrically connected to a part of the case (case body or sealing plate) that functions as a terminal. In that case, the connection is connected to a part of the case by welding (eg ultrasonic welding) or the like.
 負極集電体の例には、導電性材料(たとえば金属材料)で作られたシート状物(たとえば、箔、メッシュ、またはパンチングシート)などが含まれる。負極集電体の金属材料は、リチウムと、合金および金属間化合物のいずれも形成しない材料であってもよい。負極集電体の金属材料の例には、銅、ニッケル、鉄、およびこれらの金属元素を含む合金(銅合金、ステンレス鋼など)などが含まれる。好ましい一例では、負極集電体の金属材料は、銅または銅合金である。負極集電体の厚さは、たとえば、5~300μmの範囲にあってもよい。 Examples of the negative electrode current collector include a sheet-like material (for example, foil, mesh, or punching sheet) made of a conductive material (for example, a metal material). The metal material of the negative electrode current collector may be a material that does not form lithium and neither an alloy nor an intermetallic compound. Examples of metallic materials for negative electrode current collectors include copper, nickel, iron, and alloys containing these metallic elements (copper alloys, stainless steel, etc.). In a preferred example, the metal material of the negative electrode current collector is copper or a copper alloy. The thickness of the negative electrode current collector may be in the range of, for example, 5 to 300 μm.
 負極活物質層は、負極活物質を含み、必要に応じて他の物質(結着剤、導電剤、増粘剤など)を含んでもよい。負極活物質の例には、リチウムイオンを可逆的に吸蔵および放出する物質が含まれる。具体的には、負極活物質の例には、炭素材料、ケイ素、ケイ素化合物、およびリチウム合金などが含まれる。炭素材料の例には、黒鉛、コークス、黒鉛化途上炭素、黒鉛化炭素繊維、および非晶質炭素などが含まれる。 The negative electrode active material layer contains a negative electrode active material, and may contain other substances (binding agent, conductive agent, thickener, etc.) if necessary. Examples of negative electrode active materials include substances that reversibly occlude and release lithium ions. Specifically, examples of the negative electrode active material include carbon materials, silicon, silicon compounds, lithium alloys, and the like. Examples of carbon materials include graphite, coke, graphitized carbon, graphitized carbon fibers, amorphous carbon and the like.
 結着剤の例には、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂、ポリアクリル酸メチル、エチレン-メタクリル酸メチル共重合体などのアクリル樹脂、スチレンブタジエンゴム、アクリルゴム、および、これらのゴムの変性体が含まれる。導電剤の例には、正極活物質層の説明で例示した導電剤が含まれる。増粘剤の例には、カルボキシル基を含む水溶性高分子(たとえばカルボキシメチルセルロース)が含まれる。 Examples of binders include fluororesins such as polyvinylidene fluoride (PVDF), acrylic resins such as methyl polyacrylate and ethylene-methyl methacrylate copolymer, styrene butadiene rubber, acrylic rubber, and rubbers thereof. Includes denatured products. Examples of the conductive agent include the conductive agent exemplified in the description of the positive electrode active material layer. Examples of thickeners include water-soluble polymers containing carboxyl groups (eg, carboxymethyl cellulose).
 (セパレータ)
 セパレータの例には、イオン透過性および絶縁性を有するシートが含まれる。なお、セパレータは、イオン透過性および絶縁性を有するシートを含む複数のシートを積層したものであってもよい。セパレータは、正極板と負極板とを絶縁するために必要なサイズを有する。
(Separator)
Examples of separators include sheets that are ion permeable and insulating. The separator may be a laminate of a plurality of sheets including a sheet having ion permeability and insulating property. The separator has a size required to insulate the positive electrode plate and the negative electrode plate.
 セパレータは、微多孔フィルム、織布、または不織布であってもよい。セパレータの材料の例には、絶縁性を有する高分子が含まれ、具体的には、ポリオレフィン系高分子、ポリアミド系高分子、セルロース系高分子などが含まれる。セパレータの厚さは、5~200μmの範囲にあってもよい。 The separator may be a microporous film, a woven fabric, or a non-woven fabric. Examples of the material of the separator include a polymer having an insulating property, and specifically, a polyolefin-based polymer, a polyamide-based polymer, a cellulose-based polymer, and the like. The thickness of the separator may be in the range of 5 to 200 μm.
 (非水電解質)
 非水電解質としては、リチウムイオン伝導性を有するものが使用される。典型的な非水電解質は、非水溶媒と、非水溶媒に溶解しているリチウムイオンおよびアニオンとを含む。非水電解質は、液状であってもよいし、ゲル状であってもよい。液状の非水電解質は、リチウム塩を非水溶媒に溶解させることによって調製できる。リチウム塩(リチウムイオンとアニオンとの塩)を非水溶媒に溶解させることによって、リチウムイオンおよびアニオンが生成される。
(Non-aqueous electrolyte)
As the non-aqueous electrolyte, one having lithium ion conductivity is used. A typical non-aqueous electrolyte contains a non-aqueous solvent and lithium ions and anions dissolved in the non-aqueous solvent. The non-aqueous electrolyte may be in the form of a liquid or in the form of a gel. The liquid non-aqueous electrolyte can be prepared by dissolving the lithium salt in a non-aqueous solvent. Lithium ions and anions are produced by dissolving lithium salts (salts of lithium ions and anions) in non-aqueous solvents.
 ゲル状の非水電解質は、液状の非水電解質と、マトリックスポリマーとを含む。マトリックスポリマーとしては、たとえば、非水溶媒を吸収してゲル化するポリマー材料が使用される。このようなポリマー材料の例には、フッ素樹脂、アクリル樹脂、およびポリエーテル樹脂などが含まれる。 The gel-like non-aqueous electrolyte contains a liquid non-aqueous electrolyte and a matrix polymer. As the matrix polymer, for example, a polymer material that absorbs a non-aqueous solvent and gels is used. Examples of such polymeric materials include fluororesins, acrylic resins, polyether resins and the like.
 リチウム塩のアニオンの例には、BF 、ClO 、PF 、CFSO 、CFCO 、イミド類のアニオン、オキサレート錯体のアニオンなどが含まれる。 Examples of the anion of the lithium salt, BF 4 -, ClO 4 - , PF 6 -, CF 3 SO 3 -, CF 3 CO 2 -, anions of imides, and the like anions of oxalate complexes.
 非水溶媒の例には、エステル、エーテル、ニトリル、アミド、および、これらのハロゲン置換体(たとえばフッ化物)などが含まれる。非水電解質は、これらの非水溶媒を1種だけ含んでもよいし、2種以上含んでもよい。 Examples of non-aqueous solvents include esters, ethers, nitriles, amides, and halogen substituents (eg, fluorides) thereof. The non-aqueous electrolyte may contain only one of these non-aqueous solvents, or may contain two or more of these non-aqueous solvents.
 エステルの例には、炭酸エステル、カルボン酸エステルなどが含まれる。環状炭酸エステルの例には、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート(FEC)などが含まれる。鎖状炭酸エステルの例には、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどが含まれる。環状カルボン酸エステルの例には、γ-ブチロラクトン、γ-バレロラクトンなどが含まれる。鎖状カルボン酸エステルの例には、酢酸エチル、プロピオン酸メチル、フルオロプロピオン酸メチルなどが含まれる。 Examples of esters include carbonic acid esters, carboxylic acid esters, and the like. Examples of cyclic carbonates include ethylene carbonate, propylene carbonate, fluoroethylene carbonate (FEC) and the like. Examples of chain carbonates include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like. Examples of cyclic carboxylic acid esters include γ-butyrolactone, γ-valerolactone and the like. Examples of chain carboxylic acid esters include ethyl acetate, methyl propionate, methyl fluoropropionate and the like.
 非水電解質中のリチウム塩の濃度は、たとえば、0.5mol/L~3.5mol/Lの範囲としてもよい。ここで、リチウム塩の濃度は、解離したリチウム塩の濃度と未解離のリチウム塩の濃度との合計である。非水電解質中のアニオンの濃度は、0.5mol/L~3.5mol/Lの範囲であってもよい。 The concentration of the lithium salt in the non-aqueous electrolyte may be, for example, in the range of 0.5 mol / L to 3.5 mol / L. Here, the concentration of the lithium salt is the sum of the concentration of the dissociated lithium salt and the concentration of the undissociated lithium salt. The concentration of anions in the non-aqueous electrolyte may be in the range of 0.5 mol / L to 3.5 mol / L.
 (ケース)
 典型的なケースは、ケース本体と、封口板と、ケース本体と封口板との間に配置されたガスケットとを含む。通常、ケース本体および封口板はそれぞれ、電極端子として機能する。たとえば、一般的なコイン形の電池の場合、ケース本体は正極端子として機能し、封口板は負極端子として機能する。ケース本体および封口板はそれぞれ、金属(たとえば導電性を有するステンレス鋼)を用いて形成できる。
(Case)
A typical case includes a case body, a sealing plate, and a gasket disposed between the case body and the sealing plate. Normally, the case body and the sealing plate each function as electrode terminals. For example, in the case of a general coin-shaped battery, the case body functions as a positive electrode terminal, and the sealing plate functions as a negative electrode terminal. The case body and the sealing plate can each be formed of metal (for example, conductive stainless steel).
 以下では、本開示の二次電池の一例およびその製造方法について、図面を参照して具体的に説明する。以下で説明する二次電池は、本開示の極板を含む。以下で説明する二次電池の構成要素は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。また、本開示の二次電池に必須ではない構成要素は省略することが可能である。 Hereinafter, an example of the secondary battery of the present disclosure and a method for manufacturing the same will be specifically described with reference to the drawings. The secondary battery described below includes the electrode plate of the present disclosure. The components of the secondary battery described below can be modified based on the above description. In addition, the matters described below may be applied to the above-described embodiment. Further, components that are not essential for the secondary battery of the present disclosure can be omitted.
 (実施形態1)
 実施形態1のコイン形の二次電池の断面図を、図1に模式的に示す。図1の二次電池10は、コイン形のケース20と、ケース20内に配置された電極群30および非水電解質(図示せず)とを含む。ケース20は、有底円筒形のケース本体21と、封口板22と、ガスケット23とを含む。ケース本体21は、封口板22およびガスケット23によって封口されている。
(Embodiment 1)
A cross-sectional view of the coin-shaped secondary battery of the first embodiment is schematically shown in FIG. The secondary battery 10 of FIG. 1 includes a coin-shaped case 20, an electrode group 30 arranged in the case 20, and a non-aqueous electrolyte (not shown). The case 20 includes a bottomed cylindrical case body 21, a sealing plate 22, and a gasket 23. The case body 21 is sealed by a sealing plate 22 and a gasket 23.
 電極群30の断面図を図2に示す。図2は、繰り返し単位41Aおよび繰り返し単位51B(図3Aおよび図4A参照)がジグザグに連なる方向に沿った断面である。電極群30は、正極板40、負極板50、および、それらの間に配置された1つのセパレータ60を含む。正極板40、負極板50、およびセパレータ60はそれぞれ、ジグザグに折り曲げられている。正極活物質層42と負極活物質層52とは、セパレータ60を挟んで対向している。 A cross-sectional view of the electrode group 30 is shown in FIG. FIG. 2 is a cross section along a direction in which the repeating unit 41A and the repeating unit 51B (see FIGS. 3A and 4A) are continuous in a zigzag manner. The electrode group 30 includes a positive electrode plate 40, a negative electrode plate 50, and one separator 60 arranged between them. The positive electrode plate 40, the negative electrode plate 50, and the separator 60 are each bent in a zigzag pattern. The positive electrode active material layer 42 and the negative electrode active material layer 52 face each other with the separator 60 interposed therebetween.
 (正極板)
 正極板40を平らに展開したときの平面図を図3Aに示し、図3Aの線IIIB-IIIBにおける断面図を図3Bに示す。また、正極集電体41の一部拡大図を図3Cに示す。正極板40は、正極集電体41と、正極集電体41上に配置された正極活物質層42とを含む。
(Positive plate)
A plan view of the positive electrode plate 40 when it is unfolded flat is shown in FIG. 3A, and a cross-sectional view taken along the line IIIB-IIIB of FIG. 3A is shown in FIG. 3B. Further, a partially enlarged view of the positive electrode current collector 41 is shown in FIG. 3C. The positive electrode plate 40 includes a positive electrode current collector 41 and a positive electrode active material layer 42 arranged on the positive electrode current collector 41.
 正極集電体41は、一列に連なった複数の繰り返し単位41Aを含む。図3Aおよび図3Cには、隣接する2つの繰り返し単位41Aの境界41kを示す。複数の繰り返し単位41Aは、1つの方向PDに沿って連なっている。それぞれの繰り返し単位41A上には、正極活物質層42が形成されている。複数の繰り返し単位41Aのそれぞれの上に配置された正極活物質層42はつながっている。電極群30において、隣接する2つの繰り返し単位41Aの境界部41X(境界41kの周辺部)のすべてを折り曲げ部として、正極集電体41および正極板40が折り曲げられている。 The positive electrode current collector 41 includes a plurality of repeating units 41A connected in a row. 3A and 3C show the boundary 41k of two adjacent repeating units 41A. The plurality of repeating units 41A are connected along one direction PD. A positive electrode active material layer 42 is formed on each repeating unit 41A. The positive electrode active material layer 42 arranged on each of the plurality of repeating units 41A is connected. In the electrode group 30, the positive electrode current collector 41 and the positive electrode plate 40 are bent with all of the boundary portions 41X (peripheral portions of the boundary 41k) of the two adjacent repeating units 41A as bending portions.
 一端の繰り返し単位41Aには、接続部43が連なっている。図示する一例では、接続部43は、1つの繰り返し単位41Aと概ね同じ形状を有する。接続部43は、ケース本体21に接続される部分であり、たとえば溶接等によってケース本体21に接続される。接続部43には、正極活物質層42は配置されていない。なお、正極集電体41をケース本体21に電気的に接続できる限り、接続部43の構造に特に限定はない。図2に示すように、接続部43と繰り返し単位41Aとの境界部も、折り曲げ部として折り曲げられる。 The connecting portion 43 is connected to the repeating unit 41A at one end. In the illustrated example, the connecting portion 43 has substantially the same shape as one repeating unit 41A. The connecting portion 43 is a portion connected to the case main body 21, and is connected to the case main body 21 by welding or the like, for example. The positive electrode active material layer 42 is not arranged on the connecting portion 43. The structure of the connecting portion 43 is not particularly limited as long as the positive electrode current collector 41 can be electrically connected to the case body 21. As shown in FIG. 2, the boundary portion between the connecting portion 43 and the repeating unit 41A is also bent as a bent portion.
 図3Cを参照して、1つの繰り返し単位41Aは、八角形である八角形部41Aaと、丸め部41Abとを含む。なお、図3Cでは、丸め部41Abにハッチングを付している。複数の繰り返し単位41Aによって形成される形状は、複数の八角形部41Aaを、隣接する2つの八角形部41Aaが2つの頂点を共有するように一列に連ね、さらに、当該2つの頂点における外縁の角部を丸めた形状を有する。角部が丸められた部分が、丸め部41Abとなる。図3Cに示す一例では、角部が、曲率半径Rの曲線(円弧)で丸められている。 With reference to FIG. 3C, one repeating unit 41A includes an octagonal octagonal portion 41Aa and a rounded portion 41Ab. In FIG. 3C, the rounded portion 41Ab is hatched. The shape formed by the plurality of repeating units 41A is such that a plurality of octagonal portions 41Aa are arranged in a row so that two adjacent octagonal portions 41Aa share two vertices, and further, the outer edge of the two vertices is connected. It has a shape with rounded corners. The portion where the corner portion is rounded becomes the rounded portion 41Ab. In the example shown in FIG. 3C, the corners are rounded by a curve (arc) having a radius of curvature R.
 正極集電体41を平らに展開したときに、境界部41X(折り曲げ部)の外縁は、境界部41Xの内側に向かって凸の形状を有し、且つ、滑らかな線で構成されている。境界部41Xの外縁には角がない。境界部41Xの外縁の接ベクトルは、不連続になっておらず、連続的に変化している。境界部41Xの外縁の一部は直線であってもよい。 When the positive electrode current collector 41 is deployed flat, the outer edge of the boundary portion 41X (bent portion) has a convex shape toward the inside of the boundary portion 41X and is composed of smooth lines. There are no corners on the outer edge of the boundary 41X. The tangent vector of the outer edge of the boundary portion 41X is not discontinuous and changes continuously. A part of the outer edge of the boundary portion 41X may be a straight line.
 (負極板)
 負極板50を平らに展開したときの平面図を図4Aに示し、図4Aの線IVB-IVBにおける断面図を図4Bに示す。また、負極集電体51の一部拡大図を図4Cに示す。負極板50は、負極集電体51と、負極集電体51上に配置された負極活物質層52とを含む。
(Negative electrode plate)
A plan view of the negative electrode plate 50 when unfolded flat is shown in FIG. 4A, and a cross-sectional view taken along the line IVB-IVB of FIG. 4A is shown in FIG. 4B. Further, a partially enlarged view of the negative electrode current collector 51 is shown in FIG. 4C. The negative electrode plate 50 includes a negative electrode current collector 51 and a negative electrode active material layer 52 arranged on the negative electrode current collector 51.
 負極集電体51は、一列に連なった複数の繰り返し単位51Bを含む。図4Aおよび図4Cには、隣接する2つの繰り返し単位51Bの境界51kを示す。複数の繰り返し単位51Bは、1つの方向NDに沿って連なっている。それぞれの繰り返し単位51B上には、負極活物質層52が形成されている。複数の繰り返し単位51Bのそれぞれの上に配置された負極活物質層52はつながっている。電極群30において、隣接する2つの繰り返し単位51Bの境界部51Y(境界51kの周辺部)のすべてを折り曲げ部として、負極集電体51および負極板50が折り曲げられている。 The negative electrode current collector 51 includes a plurality of repeating units 51B connected in a row. 4A and 4C show the boundary 51k of two adjacent repeating units 51B. The plurality of repeating units 51B are connected along one direction ND. A negative electrode active material layer 52 is formed on each repeating unit 51B. The negative electrode active material layer 52 arranged on each of the plurality of repeating units 51B is connected. In the electrode group 30, the negative electrode current collector 51 and the negative electrode plate 50 are bent with all of the boundary portions 51Y (peripheral portions of the boundary 51k) of the two adjacent repeating units 51B as bent portions.
 一端の繰り返し単位51Bには、接続部53が連なっている。図示する一例では、接続部53は、1つの繰り返し単位51Bと概ね同じ形状を有する。接続部53は、封口板22に接続される部分であり、たとえば溶接等によって封口板22に接続される。接続部53には、負極活物質層52は配置されていない。なお、負極集電体51を封口板22に電気的に接続できる限り、接続部53の構造に特に限定はない。図2に示すように、接続部53と繰り返し単位51Bとの境界部も、折り曲げ部として折り曲げられる。 A connection portion 53 is connected to the repeating unit 51B at one end. In the illustrated example, the connecting portion 53 has substantially the same shape as one repeating unit 51B. The connecting portion 53 is a portion connected to the sealing plate 22, and is connected to the sealing plate 22 by welding or the like, for example. The negative electrode active material layer 52 is not arranged on the connecting portion 53. The structure of the connecting portion 53 is not particularly limited as long as the negative electrode current collector 51 can be electrically connected to the sealing plate 22. As shown in FIG. 2, the boundary portion between the connecting portion 53 and the repeating unit 51B is also bent as a bent portion.
 図4Cを参照して、1つの繰り返し単位51Bは、八角形部51Baと、丸め部51Bbとを含む。八角形部51Baおよび丸め部51Bbはそれぞれ、八角形部41Aaおよび丸め部41Abと同じ形状を有する。そのため、繰り返し単位51Bの形状については説明を省略する。 With reference to FIG. 4C, one repeating unit 51B includes an octagonal portion 51Ba and a rounded portion 51Bb. The octagonal portion 51Ba and the rounded portion 51Bb have the same shape as the octagonal portion 41Aa and the rounded portion 41Ab, respectively. Therefore, the description of the shape of the repeating unit 51B will be omitted.
 正極集電体41および負極集電体51は、折り曲げ部となる境界部XおよびYの外縁が滑らかな線で構成されている。そのため、電極群30を形成する際などに境界部XおよびYに応力が加わったときでも、境界部XおよびYが損傷することを抑制できる。一方、当該外縁に角部が存在する場合、当該角部に応力が集中して集電体が破損しやすくなる場合がある。 The positive electrode current collector 41 and the negative electrode current collector 51 are composed of lines having smooth outer edges of boundary portions X and Y which are bent portions. Therefore, even when stress is applied to the boundary portions X and Y when forming the electrode group 30, it is possible to prevent the boundary portions X and Y from being damaged. On the other hand, when a corner portion is present on the outer edge, stress may be concentrated on the corner portion and the current collector may be easily damaged.
 なお、正極板40および/または負極板50がケース20と接触すると短絡することがある。そのような短絡を防止するための絶縁部材(たとえば絶縁テープ)が、電極群30の周囲に配置されてもよい。 If the positive electrode plate 40 and / or the negative electrode plate 50 comes into contact with the case 20, a short circuit may occur. An insulating member (for example, insulating tape) for preventing such a short circuit may be arranged around the electrode group 30.
 実施形態1では、電極群を構成する正極板、負極板、およびセパレータがそれぞれ1つのみである場合について説明した。しかし、正極板および負極板の一方が1つのみであり他方が2つであってもよい。その場合、1つのみの極板の両面に活物質層が形成され、他方の2つの極板のそれぞれの片面に活物質層が形成されてもよい。その場合、2つのセパレータが用いられてもよい。正極板が1つのみであり負極板が2つである場合には、1つの正極板、2つの負極板、および2つのセパレータは、負極集電体/負極活物質層/セパレータ/正極活物質層/正極集電体/正極活物質層/セパレータ/負極活物質層/負極集電体、という順になるように配置され且つジグザグに折り畳まれてもよい。同様に、負極板が1つのみであり正極板が2つである場合には、2つの正極板、1つの負極板、および2つのセパレータは、正極集電体/正極活物質層/セパレータ/負極活物質層/負極集電体/負極活物質層/セパレータ/正極活物質層/正極集電体、という順になるように配置され且つジグザグに折り畳まれてもよい。正極板(または負極板)の両面に活物質層が形成される場合、1つの繰り返し単位A(または1つの繰り返し単位B)は、正極集電体(または負極集電体)と、その両面に配置された正極活物質層(または負極活物質層)とを含む。 In the first embodiment, the case where each of the positive electrode plate, the negative electrode plate, and the separator constituting the electrode group is only one has been described. However, one of the positive electrode plate and the negative electrode plate may be only one, and the other may be two. In that case, the active material layer may be formed on both sides of only one electrode plate, and the active material layer may be formed on one side of each of the other two electrode plates. In that case, two separators may be used. When there is only one positive electrode plate and two negative electrode plates, one positive electrode plate, two negative electrode plates, and two separators are a negative electrode current collector / negative electrode active material layer / separator / positive electrode active material. The layers may be arranged in the order of layer / positive electrode current collector / positive electrode active material layer / separator / negative electrode active material layer / negative electrode current collector, and may be folded in a zigzag manner. Similarly, when there is only one negative electrode plate and two positive electrode plates, the two positive electrode plates, one negative electrode plate, and the two separators are the positive electrode current collector / positive electrode active material layer / separator /. The negative electrode active material layer / negative electrode current collector / negative electrode active material layer / separator / positive electrode active material layer / positive electrode current collector may be arranged in this order and may be folded in a zigzag manner. When active material layers are formed on both sides of a positive electrode plate (or a negative electrode plate), one repeating unit A (or one repeating unit B) is a positive electrode current collector (or a negative electrode current collector) and both surfaces thereof. Includes the arranged positive electrode active material layer (or negative electrode active material layer).
 (コイン形二次電池の製造方法)
 本実施形態の二次電池の製造方法の一例について説明する。以下では、実施形態1で説明した二次電池10の製造方法の一例について説明する。以下で説明する製造工程には、公知の技術を適用することができる。なお、本実施形態の二次電池の製造方法は、以下の製造方法に限定されない。
(Manufacturing method of coin-shaped secondary battery)
An example of the method for manufacturing the secondary battery of the present embodiment will be described. Hereinafter, an example of the method for manufacturing the secondary battery 10 described in the first embodiment will be described. Known techniques can be applied to the manufacturing process described below. The method for manufacturing the secondary battery of the present embodiment is not limited to the following manufacturing method.
 まず、正極板40および負極板50を準備する。正極板40の作製方法の一例では、まず、正極活物質層42を構成する材料を混合して正極合剤を調製する。次に、その正極合剤を、正極集電体41となる導電性シート(たとえば金属箔)上に塗布することによって、正極活物質層42を形成する。このようにして、正極板40が作製される。正極板40および正極集電体41は、上述した構造(平面形状)を有するように作製する。大面積の導電性シートの所定の領域に正極活物質層42を形成した後に、導電性シートおよび正極活物質層42を打ち抜き型を用いて一緒に打ち抜くことによって、正極板40を作製してもよい。 First, the positive electrode plate 40 and the negative electrode plate 50 are prepared. In an example of the method for producing the positive electrode plate 40, first, the materials constituting the positive electrode active material layer 42 are mixed to prepare a positive electrode mixture. Next, the positive electrode mixture is applied onto a conductive sheet (for example, a metal foil) to be the positive electrode current collector 41 to form the positive electrode active material layer 42. In this way, the positive electrode plate 40 is manufactured. The positive electrode plate 40 and the positive electrode current collector 41 are manufactured so as to have the above-mentioned structure (planar shape). Even if the positive electrode plate 40 is produced by forming the positive electrode active material layer 42 in a predetermined region of the large-area conductive sheet and then punching the conductive sheet and the positive electrode active material layer 42 together using a punching die. good.
 負極板50の作製方法の一例では、まず、負極活物質層52を構成する材料を混合して負極合剤を調製する。次に、その負極合剤を、負極集電体51となる導電性シート(たとえば金属箔)上に塗布することによって、負極活物質層52を形成する。このようにして、負極板50が作製される。負極板50および負極集電体51は、上述した構造(平面形状)を有するように作製する。大面積の導電性シートの所定の領域に負極活物質層52を形成した後に、導電性シートおよび負極活物質層52を打ち抜き型を用いて一緒に打ち抜くことによって、負極板50を作製してもよい。 In an example of the method for producing the negative electrode plate 50, first, the materials constituting the negative electrode active material layer 52 are mixed to prepare a negative electrode mixture. Next, the negative electrode mixture is applied onto a conductive sheet (for example, a metal foil) to be the negative electrode current collector 51 to form the negative electrode active material layer 52. In this way, the negative electrode plate 50 is manufactured. The negative electrode plate 50 and the negative electrode current collector 51 are manufactured so as to have the above-mentioned structure (planar shape). Even if the negative electrode plate 50 is manufactured by forming the negative electrode active material layer 52 in a predetermined region of the large-area conductive sheet and then punching the conductive sheet and the negative electrode active material layer 52 together using a punching die. good.
 次に、正極活物質層42と負極活物質層52とがセパレータ60を挟んで対向するように、正極板40と負極板50とセパレータ60とを配置する。そして、それらを一緒にジグザグに折り曲げて電極群30を作製する。なお、正極板40と負極板50とセパレータ60とを折り曲げてから、それらを組み合わせて電極群30を作製してもよい。また、電極群30の作製において、極板を折り曲げる前に、正極板40または負極板50に、セパレータの少なくとも一部を固定しておいてもよい。セパレータを固定しておくことによって、電極群の作製が容易になる。セパレータの固定は、上述した方法で行うことができる。 Next, the positive electrode plate 40, the negative electrode plate 50, and the separator 60 are arranged so that the positive electrode active material layer 42 and the negative electrode active material layer 52 face each other with the separator 60 interposed therebetween. Then, they are bent together in a zigzag manner to prepare an electrode group 30. The positive electrode plate 40, the negative electrode plate 50, and the separator 60 may be bent and then combined to form the electrode group 30. Further, in the production of the electrode group 30, at least a part of the separator may be fixed to the positive electrode plate 40 or the negative electrode plate 50 before the electrode plate is bent. By fixing the separator, it becomes easy to manufacture the electrode group. The separator can be fixed by the method described above.
 また、封口板22をガスケット23に嵌合させて嵌合体を形成しておく。次に、接続部43をケース本体21に電気的に接続する。同様に、接続部53を封口板22に電気的に接続する。これらの電気的な接続は、たとえば溶接(超音波溶接など)によって実施できる。なお、必要に応じて、接続部の接続の前または後に、電極群30の周囲を絶縁部材で保護する。 Further, the sealing plate 22 is fitted to the gasket 23 to form a fitting body. Next, the connecting portion 43 is electrically connected to the case body 21. Similarly, the connecting portion 53 is electrically connected to the sealing plate 22. These electrical connections can be made, for example, by welding (such as ultrasonic welding). If necessary, the periphery of the electrode group 30 is protected by an insulating member before or after the connection of the connection portion.
 次に、電極群30および非水電解質を、封口板22とガスケット23との嵌合体中に配置する。次に、当該嵌合体の開口部を封じるようにケース本体21を配置し、その後、ケース本体21の開口端をかしめて封口する。このようにして、実施形態1の二次電池10が得られる。 Next, the electrode group 30 and the non-aqueous electrolyte are placed in the fitting body of the sealing plate 22 and the gasket 23. Next, the case body 21 is arranged so as to seal the opening of the fitting body, and then the opening end of the case body 21 is crimped to seal the case body 21. In this way, the secondary battery 10 of the first embodiment is obtained.
 なお、電極群30が巻回タイプの電極群である場合には、まず、正極板40と負極板50との間にセパレータ60が配置されるように、正極板40と負極板50とセパレータ60とを一緒に巻回して巻回体を作製する。その後、扁平形状となるように巻回体を潰す。このとき、繰り返し単位の境界部(丸め部)が扁平形状の折り曲げ部となるように、巻回体を潰す。このようにして、巻回タイプの電極群30を作製できる。 When the electrode group 30 is a winding type electrode group, first, the positive electrode plate 40, the negative electrode plate 50, and the separator 60 are arranged so that the separator 60 is arranged between the positive electrode plate 40 and the negative electrode plate 50. And are wound together to make a wound body. After that, the winding body is crushed so as to have a flat shape. At this time, the winding body is crushed so that the boundary portion (rounded portion) of the repeating unit becomes a flat bent portion. In this way, the winding type electrode group 30 can be produced.
 実施例によって、本開示をさらに詳細に説明する。この実施例では、図1に示した二次電池10と同様の構造を有する二次電池を作製して評価した。この実施例では、集電体の形が異なる複数種の二次電池(電池A1~A6およびC1)を作製した。それらの二次電池の作製および評価について、以下に説明する。 The present disclosure will be described in more detail by way of examples. In this example, a secondary battery having a structure similar to that of the secondary battery 10 shown in FIG. 1 was produced and evaluated. In this example, a plurality of types of secondary batteries (batteries A1 to A6 and C1) having different shapes of current collectors were produced. The production and evaluation of these secondary batteries will be described below.
 (電池A1)
 実施例1では、図1に示した二次電池10と同様の構造を有する電池を作製した。繰り返し単位A(図3Aの繰り返し単位41Aに相当)の平面形状は、1辺が2.5mmの略正八角形とした。方向PDに沿った繰り返し単位Aの長さLA、および、方向PDに垂直な幅WA(図3C参照)はそれぞれ6mmである。正極集電体は、15個の正八角形を一列につなげ、隣接する2つの正八角形の境界部の外縁の角部を丸めた形状を有する。具体的には、当該角部を、曲率半径Rが1.0mmの曲線で丸めた。負極集電体の繰り返し単位B(図4Aの繰り返し単位51Bに相当)の数は、繰り返し単位Aの数と同じとした。方向NDにおける繰り返し単位Bの長さLB(図4C参照)は長さLAと同じとした。また、方向NDに垂直な幅WBは、幅WAよりもわずかに大きくした。
(Battery A1)
In Example 1, a battery having the same structure as the secondary battery 10 shown in FIG. 1 was produced. The planar shape of the repeating unit A (corresponding to the repeating unit 41A in FIG. 3A) was a substantially regular octagon with a side of 2.5 mm. The length LA of the repeating unit A along the direction PD and the width WA perpendicular to the direction PD (see FIG. 3C) are 6 mm, respectively. The positive electrode current collector has a shape in which 15 regular octagons are connected in a row and the corners of the outer edge of the boundary between two adjacent regular octagons are rounded. Specifically, the corner portion was rounded with a curve having a radius of curvature R of 1.0 mm. The number of repeating units B (corresponding to the repeating unit 51B in FIG. 4A) of the negative electrode current collector was the same as the number of repeating units A. The length LB of the repeating unit B in the direction ND (see FIG. 4C) was the same as the length LA. Further, the width WB perpendicular to the direction ND was made slightly larger than the width WA.
 正極活物質層を構成する正極合剤は、正極活物質であるコバルト酸リチウム(LiCoO)と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、コバルト酸リチウム:アセチレンブラック:ポリフッ化ビニリデン=9:0.1:0.1の質量比で混合することによって調製した。正極集電体には、アルミニウム箔を用いた。この正極集電体の片面に、正極合剤を塗布することによって、厚さ55μmの正極活物質層を形成した。なお、15個の正八角形状の部分のうち、一端の2つの部分には、活物質層を配置せず、溶接のための接続部とした。すなわち、正極活物質層が配置されている繰り返し単位Aの数は、13であった。 The positive electrode mixture constituting the positive electrode active material layer consists of lithium cobalt oxide (LiCoO 2 ), which is a positive electrode active material, acetylene black, which is a conductive agent, and vinylidene polyfluoride, which is a binder, and lithium cobalt oxide: acetylene. It was prepared by mixing with a mass ratio of black: polyvinylidene fluoride = 9: 0.1: 0.1. Aluminum foil was used for the positive electrode current collector. By applying a positive electrode mixture on one side of the positive electrode current collector, a positive electrode active material layer having a thickness of 55 μm was formed. Of the 15 regular octagonal parts, the active material layer was not arranged in two parts at one end, and the connecting part was used for welding. That is, the number of repeating units A in which the positive electrode active material layer was arranged was 13.
 負極活物質層を構成する負極合剤は、負極活物質である黒鉛と、増粘剤であるカルボキシメチルセルロース(CMC)と、結着剤であるスチレンブタジエンゴム(SBR)とを、黒鉛:CMC:SBR=9:0.1:0.1の質量比で混合することによって調製した。負極集電体には、銅箔を用いた。 The negative electrode mixture constituting the negative electrode active material layer is composed of graphite, which is a negative electrode active material, carboxymethyl cellulose (CMC), which is a thickener, and styrene-butadiene rubber (SBR), which is a binder. Prepared by mixing with a mass ratio of SBR = 9: 0.1: 0.1. A copper foil was used for the negative electrode current collector.
 セパレータには、ポリオレフィン製の微多孔膜(厚さ14μm)を用いた。非水電解質は、非水溶媒にLiPFを溶解させることによって調製した。非水溶媒には、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとを、エチレンカーボネート:プロピレンカーボネート:メチルエチルカーボネート=30:1:61の体積比で混合することによって調製した。 A microporous polyolefin membrane (thickness 14 μm) was used as the separator. The non-aqueous electrolyte was prepared by dissolving LiPF 6 in a non-aqueous solvent. The non-aqueous solvent was prepared by mixing ethylene carbonate, propylene carbonate, and methyl ethyl carbonate in a volume ratio of ethylene carbonate: propylene carbonate: methyl ethyl carbonate = 30: 1: 61.
 上記の材料を用いて正極板および負極板を作製した。そして、正極板、負極板、およびセパレータがジグザグに折り曲げられた電極群(図2参照)を作製した。次に、その電極群と非水電解質とコイン形のケースとを用いて、上述した方法でコイン形の非水電解質二次電池を作製した。得られた二次電池のサイズは、外径が9.5mmで、高さが2.0mmであった。また、ケースの最内径は7.5mmであった。 A positive electrode plate and a negative electrode plate were produced using the above materials. Then, an electrode group (see FIG. 2) in which the positive electrode plate, the negative electrode plate, and the separator were bent in a zigzag pattern was produced. Next, using the electrode group, the non-aqueous electrolyte, and the coin-shaped case, a coin-shaped non-aqueous electrolyte secondary battery was produced by the method described above. The size of the obtained secondary battery was 9.5 mm in outer diameter and 2.0 mm in height. The innermost diameter of the case was 7.5 mm.
 (電池A2~A6)
 電池A2~A6は、隣接する2つの繰り返し単位Aの境界部の形状を変化させたことを除き、電池A1と同様の条件で作製した。具体的には、当該境界部の外縁の角部を丸めた曲線の曲率を、0.1~2.5mmの範囲で変化させた。各電池で用いた曲率を、後掲する表1に示す。
(Batteries A2 to A6)
The batteries A2 to A6 were manufactured under the same conditions as the batteries A1 except that the shape of the boundary between the two adjacent repeating units A was changed. Specifically, the curvature of the curve obtained by rounding the corners of the outer edge of the boundary portion was changed in the range of 0.1 to 2.5 mm. The curvatures used in each battery are shown in Table 1 below.
 (電池C1)
 電池C1は、隣接する2つの正八角形の境界部の外縁の角部を丸めなかったことを除き、電池A1と同様の条件で作製した。
(Battery C1)
Battery C1 was manufactured under the same conditions as battery A1 except that the outer edge of the boundary between two adjacent regular octagons was not rounded.
 (電極群作製時の歩留まり評価)
 上記の電池A1~A6およびC1の電極群をそれぞれ10個作製した。そして、正極集電体および負極集電体のそれぞれの通電状態を確認し、それによって、集電体が切れているかどうかを評価したすなわち、通電が不可能であれば不良品であると判断し、通電が可能であれば良品と判断した。そして、電極群の作製数と良品の数とから、歩留まり(%)を求めた。歩留まりは、以下の式で表される。
歩留まり(%)=100×(良品の数)/(作製数)
 (充放電試験)
 上記の電池A1~A6およびC1について、充放電サイクル試験を行った。充電工程は、6mAの電流値で電池電圧が4.35Vになるまで充電した後、電流値が0.5mAとなるまで4.35Vの定電圧を印加することによって行った。放電工程は、6mAの電流値で電池電圧が3.0Vになるまで放電することによって行った。1回の充電工程と1回の放電工程とからなる充放電サイクルを1サイクルとして、充放電を繰り返した。そして、電池容量が初期の電池容量の80%になるまでの充放電サイクル数nを評価した。なお、1000サイクルを経た段階において電池容量が初期の電池容量の80%より大きい電池(電池A3,A1,A4,A5,A6)については、表1の充放電サイクル数nを1000とした。評価結果を表1に示す。
(Yield evaluation during electrode group fabrication)
Ten electrode groups of the above batteries A1 to A6 and C1 were prepared. Then, the energized states of the positive electrode current collector and the negative electrode current collector were confirmed, and it was evaluated whether or not the current collector was cut off. That is, if energization was not possible, it was determined to be a defective product. If it can be energized, it is judged to be a good product. Then, the yield (%) was calculated from the number of produced electrode groups and the number of non-defective products. The yield is expressed by the following formula.
Yield (%) = 100 x (number of non-defective products) / (number of products manufactured)
(Charge / discharge test)
A charge / discharge cycle test was performed on the above batteries A1 to A6 and C1. The charging step was performed by charging the battery with a current value of 6 mA until the battery voltage reached 4.35 V, and then applying a constant voltage of 4.35 V until the current value reached 0.5 mA. The discharging step was performed by discharging until the battery voltage became 3.0 V at a current value of 6 mA. The charging / discharging cycle was repeated, with the charging / discharging cycle consisting of one charging step and one discharging step as one cycle. Then, the number of charge / discharge cycles n until the battery capacity became 80% of the initial battery capacity was evaluated. For batteries (batteries A3, A1, A4, A5, A6) whose battery capacity is larger than 80% of the initial battery capacity after 1000 cycles, the number of charge / discharge cycles n in Table 1 is set to 1000. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、丸め部がない電池C1に比べて、境界部の角部が丸められている電池A1~A6は、電極群の歩留まりが高く、充放電サイクル数が多かった。曲率半径が0.3~2.5mmの範囲にある場合には、電極群の歩留まりが特に高く、充放電サイクル数が特に多かった。 As shown in Table 1, compared to the battery C1 having no rounded portion, the batteries A1 to A6 having rounded corners at the boundary portion had a higher yield of the electrode group and a larger number of charge / discharge cycles. When the radius of curvature was in the range of 0.3 to 2.5 mm, the yield of the electrode group was particularly high, and the number of charge / discharge cycles was particularly large.
 本開示は、極板およびコイン形二次電池に利用できる。 This disclosure can be used for electrode plates and coin-type secondary batteries.
10:二次電池
20:ケース
40:正極板
41:正極集電体
41A、51B:繰り返し単位
41Aa、51Ba:八角形部(多角形部)
41Ab、51Bb:丸め部
41k、51k:境界
41X、51Y:境界部
42:正極活物質層
50:負極板
51:負極集電体
52:負極活物質層
60:セパレータ
10: Secondary battery 20: Case 40: Positive electrode plate 41: Positive electrode current collector 41A, 51B: Repeating unit 41Aa, 51Ba: Octagonal part (polygonal part)
41Ab, 51Bb: Rounded portion 41k, 51k: Boundary 41X, 51Y: Boundary 42: Positive electrode active material layer 50: Negative electrode plate 51: Negative electrode current collector 52: Negative electrode active material layer 60: Separator

Claims (8)

  1.  集電体と前記集電体上に配置された活物質層とを含む極板であって、
     前記集電体は、一列に連なった複数の繰り返し単位を含み、
     前記複数の繰り返し単位のそれぞれの上には前記活物質層が配置されており、
     前記集電体の外縁のうち隣接する2つの前記繰り返し単位の境界部の外縁は、前記境界部の内側に向かって凸の形状を有し、且つ、滑らかな線で構成されており、
     前記複数の繰り返し単位のそれぞれは、略円形または略多角形である、極板。
    A plate containing a current collector and an active material layer arranged on the current collector.
    The current collector contains a plurality of repeating units in a row.
    The active material layer is arranged on each of the plurality of repeating units.
    The outer edge of the boundary portion of the two adjacent repeating units of the outer edge of the current collector has a convex shape toward the inside of the boundary portion and is composed of smooth lines.
    An electrode plate in which each of the plurality of repeating units is substantially circular or substantially polygonal.
  2.  前記複数の繰り返し単位は、複数の多角形を、隣接する2つの多角形が2つの頂点を共有するように一列に連ね、さらに、前記2つの頂点における外縁の角部を丸めた形状を有する、請求項1に記載の極板。 The plurality of repeating units have a shape in which a plurality of polygons are arranged in a row so that two adjacent polygons share two vertices, and the corners of the outer edges of the two vertices are rounded. The electrode plate according to claim 1.
  3.  コイン形のケースと、前記ケース内に配置された正極板および負極板とを含むコイン形二次電池であって、
     前記正極板は、正極集電体と前記正極集電体上に配置された正極活物質層とを含み、
     前記負極板は、負極集電体と前記負極集電体上に配置された負極活物質層とを含み、
     前記正極集電体は、一列に連なった複数の繰り返し単位Aを含み、
     前記負極集電体は、一列に連なった複数の繰り返し単位Bを含み、
     前記複数の繰り返し単位Aのそれぞれの上には前記正極活物質層が配置されており、
     前記複数の繰り返し単位Bのそれぞれの上には前記負極活物質層が配置されており、
     前記正極板と前記負極板とは、前記正極活物質層と前記負極活物質層とが対向するように配置されており、
     隣接する2つの前記繰り返し単位Aの境界部Xを折り曲げ部として前記正極集電体は折り曲げられており、
     隣接する2つの前記繰り返し単位Bの境界部Yを折り曲げ部として前記負極集電体は折り曲げられており、
     前記正極集電体を平らに展開したときに、前記正極集電体の外縁のうち前記境界部Xの外縁は、前記境界部Xの内側に向かって凸の形状を有し、且つ、滑らかな線で構成されており、
     前記負極集電体を平らに展開したときに、前記負極集電体の外縁のうち前記境界部Yの外縁は、前記境界部Yの内側に向かって凸の形状を有し、且つ、滑らかな線で構成されており、
     前記複数の繰り返し単位Aおよび前記複数の繰り返し単位Bのそれぞれは、略円形または略多角形である、コイン形二次電池。
    A coin-shaped secondary battery including a coin-shaped case and a positive electrode plate and a negative electrode plate arranged in the case.
    The positive electrode plate includes a positive electrode current collector and a positive electrode active material layer arranged on the positive electrode current collector.
    The negative electrode plate includes a negative electrode current collector and a negative electrode active material layer arranged on the negative electrode current collector.
    The positive electrode current collector includes a plurality of repeating units A connected in a row, and includes a plurality of repeating units A.
    The negative electrode current collector includes a plurality of repeating units B connected in a row, and includes a plurality of repeating units B.
    The positive electrode active material layer is arranged on each of the plurality of repeating units A.
    The negative electrode active material layer is arranged on each of the plurality of repeating units B, and the negative electrode active material layer is arranged.
    The positive electrode plate and the negative electrode plate are arranged so that the positive electrode active material layer and the negative electrode active material layer face each other.
    The positive electrode current collector is bent with the boundary portion X of the two adjacent repeating units A as a bent portion.
    The negative electrode current collector is bent with the boundary portion Y of the two adjacent repeating units B as a bent portion.
    When the positive electrode current collector is deployed flat, the outer edge of the boundary portion X among the outer edges of the positive electrode current collector has a convex shape toward the inside of the boundary portion X and is smooth. Consists of lines
    When the negative electrode current collector is deployed flat, the outer edge of the boundary portion Y of the outer edges of the negative electrode current collector has a convex shape toward the inside of the boundary portion Y and is smooth. Consists of lines
    A coin-shaped secondary battery in which each of the plurality of repeating units A and the plurality of repeating units B is substantially circular or substantially polygonal.
  4.  前記正極集電体を平らに展開したときに、前記複数の繰り返し単位Aは、複数の第1の多角形を、隣接する2つの前記第1の多角形が2つの頂点を共有するように一列に連ね、さらに、前記2つの頂点における外縁の角部を丸めた形状を有し、
     前記負極集電体を平らに展開したときに、前記複数の繰り返し単位Bは、複数の第2の多角形を、隣接する2つの前記第2の多角形が2つの頂点を共有するように一列に連ね、さらに、前記2つの頂点における外縁の角部を丸めた形状を有し、
     前記第1の多角形の辺の数と前記第2の多角形の辺の数とが同じである、請求項3に記載のコイン形二次電池。
    When the positive electrode current collector is deployed flat, the plurality of repeating units A form a row of a plurality of first polygons so that two adjacent first polygons share two vertices. Further, it has a shape in which the corners of the outer edges at the two vertices are rounded.
    When the negative electrode current collector is deployed flat, the plurality of repeating units B form a row of a plurality of second polygons so that two adjacent second polygons share two vertices. Further, it has a shape in which the corners of the outer edges at the two vertices are rounded.
    The coin-shaped secondary battery according to claim 3, wherein the number of sides of the first polygon and the number of sides of the second polygon are the same.
  5.  前記境界部Xの外縁および前記境界部Yの外縁はそれぞれ、曲率半径が0.3~2.0mmの範囲にある曲線で丸められている、請求項3または4に記載のコイン形二次電池。 The coin-shaped secondary battery according to claim 3 or 4, wherein the outer edge of the boundary portion X and the outer edge of the boundary portion Y are each rounded with a curve having a radius of curvature in the range of 0.3 to 2.0 mm. ..
  6.  前記正極板と前記負極板との間に配置されたセパレータと、前記ケース内に配置された非水電解質とをさらに含む、請求項3~5のいずれか1項に記載のコイン形二次電池。 The coin-type secondary battery according to any one of claims 3 to 5, further comprising a separator arranged between the positive electrode plate and the negative electrode plate, and a non-aqueous electrolyte arranged in the case. ..
  7.  前記正極板および前記負極板はそれぞれ、ジグザグに折り曲げられているか、または、巻回されている、請求項3~6のいずれか1項に記載のコイン形二次電池。 The coin-shaped secondary battery according to any one of claims 3 to 6, wherein the positive electrode plate and the negative electrode plate are each bent or wound in a zigzag manner.
  8.  前記正極板および前記負極板はそれぞれ、ジグザグに折り曲げられており、
     前記正極活物質層は前記正極集電体の片面のみに配置されている、および/または、前記負極活物質層は前記負極集電体の片面のみに配置されている、請求項3~6のいずれか1項に記載のコイン形二次電池。
    The positive electrode plate and the negative electrode plate are each bent in a zigzag manner.
    The positive electrode active material layer is arranged only on one side of the positive electrode current collector, and / or the negative electrode active material layer is arranged only on one side of the negative electrode current collector, claim 3 to 6. The coin-shaped secondary battery according to any one of the items.
PCT/JP2021/004506 2020-03-25 2021-02-08 Electrode plate and coin-shaped secondary battery WO2021192658A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022509359A JPWO2021192658A1 (en) 2020-03-25 2021-02-08
CN202180021797.1A CN115298868A (en) 2020-03-25 2021-02-08 Polar plate and coin-shaped secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-054834 2020-03-25
JP2020054834 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021192658A1 true WO2021192658A1 (en) 2021-09-30

Family

ID=77891343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004506 WO2021192658A1 (en) 2020-03-25 2021-02-08 Electrode plate and coin-shaped secondary battery

Country Status (3)

Country Link
JP (1) JPWO2021192658A1 (en)
CN (1) CN115298868A (en)
WO (1) WO2021192658A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020781B2 (en) * 2000-08-09 2007-12-12 松下電器産業株式会社 Coin battery
JP2016115470A (en) * 2014-12-12 2016-06-23 シチズンホールディングス株式会社 Flat type battery
JP6626557B1 (en) * 2018-11-14 2019-12-25 セイコーインスツル株式会社 Electrochemical cell
JP2020080277A (en) * 2018-11-14 2020-05-28 セイコーインスツル株式会社 Electrochemical cell
JP2020080283A (en) * 2018-11-14 2020-05-28 セイコーインスツル株式会社 Electrochemical cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020781B2 (en) * 2000-08-09 2007-12-12 松下電器産業株式会社 Coin battery
JP2016115470A (en) * 2014-12-12 2016-06-23 シチズンホールディングス株式会社 Flat type battery
JP6626557B1 (en) * 2018-11-14 2019-12-25 セイコーインスツル株式会社 Electrochemical cell
JP2020080277A (en) * 2018-11-14 2020-05-28 セイコーインスツル株式会社 Electrochemical cell
JP2020080283A (en) * 2018-11-14 2020-05-28 セイコーインスツル株式会社 Electrochemical cell

Also Published As

Publication number Publication date
JPWO2021192658A1 (en) 2021-09-30
CN115298868A (en) 2022-11-04

Similar Documents

Publication Publication Date Title
US20180006322A1 (en) Electrode plate and secondary battery
JP4020781B2 (en) Coin battery
JP7140899B2 (en) electrode group
JPWO2015147066A1 (en) Multilayer battery and method of manufacturing the same
JP2012212506A (en) Laminate type battery
JP2009289672A (en) Wound type power storage device
JPH09306471A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
WO2012053556A1 (en) Non-aqueous electrolyte secondary cell
JP2011070932A (en) Lithium secondary battery
JP4366775B2 (en) Solid electrolyte battery
JP2005243455A (en) Electrochemical device
KR20080047165A (en) Electrode assembly and secondary battery comprising the same
JP5337418B2 (en) Non-aqueous electrolyte secondary battery
JP2016072015A (en) Flexible battery
JP7262023B2 (en) Flat non-aqueous electrolyte secondary battery
JP2003077543A (en) Flat nonaqueous electrolyte secondary battery
JP2002175839A (en) Sealed battery
WO2021192658A1 (en) Electrode plate and coin-shaped secondary battery
JP6904939B2 (en) Storage battery module
JP2003077457A (en) Flat non-aqueous electrolyte secondary battery
JP2022549538A (en) Electrochemical device and electronic device containing the electrochemical device
JP2009187724A (en) Rolled lithium ion secondary battery
WO2022201906A1 (en) Coin-shaped cell
JP5776948B2 (en) Lithium secondary battery and manufacturing method thereof
JPH09306470A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776915

Country of ref document: EP

Kind code of ref document: A1