JPH09306471A - Nonaqueous electrolyte secondary battery and manufacture thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacture thereof

Info

Publication number
JPH09306471A
JPH09306471A JP8121935A JP12193596A JPH09306471A JP H09306471 A JPH09306471 A JP H09306471A JP 8121935 A JP8121935 A JP 8121935A JP 12193596 A JP12193596 A JP 12193596A JP H09306471 A JPH09306471 A JP H09306471A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
strip
secondary battery
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8121935A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP8121935A priority Critical patent/JPH09306471A/en
Publication of JPH09306471A publication Critical patent/JPH09306471A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery and its manufacturing method in which an inferiority factor can be decreased even when its capacity is heightened and high rate discharge is possible. SOLUTION: In both surfaces or one surface of a band-shaped positive electrode collector 11 formed of an aluminum substrate, except a region in both side edge parts, by coating a positive electrode mix layer 14 consisting of a lithium cobalt oxide, conductive agent and a binder, a bond-shaped positive electrode plate 1 having uncoated parts 12, 13 in both the side edge parts is formed. A plurality of positive electrode lead terminals are mounted by ultrasonic welding to the uncoated part 12 of the positive electrode collector 11. Ratio of a width W1 of the uncoated part 12 in a positive electrode lead terminal connection side relating to an electrode width L is set to 0.7% or more and 20% or less, a width W2 of the other uncoated part 13 is set to 0.5mm or more and 20mm or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、帯状正極板および
帯状負極板を有する非水電解質二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery having a strip-shaped positive electrode plate and a strip-shaped negative electrode plate.

【0002】[0002]

【従来の技術】リチウム二次電池(リチウムイオン二次
電池)は、高エネルギー密度を有しかつ軽量性に優れる
ことから種々の分野で用いられている。特に、駆動機
器、携帯電子機器、電気自動車等の電源として用いられ
るリチウム二次電池は、高率放電性能が要求される。非
水電解質の抵抗は水溶液系電解質に比べて著しく大きい
ために、高率放電性能を得るためには電極を大面積化し
て対向面積を増やす必要がある。そのため、非水電解質
のリチウム二次電池では、水溶液系二次電池の電極と比
較して極めて薄い帯状電極が必要となる。
2. Description of the Related Art Lithium secondary batteries (lithium ion secondary batteries) are used in various fields because they have a high energy density and are lightweight. Particularly, a lithium secondary battery used as a power source for a driving device, a portable electronic device, an electric vehicle, etc. is required to have a high rate discharge performance. Since the resistance of the non-aqueous electrolyte is significantly higher than that of the aqueous electrolyte, it is necessary to increase the area of the electrodes and increase the facing area in order to obtain high rate discharge performance. Therefore, a non-aqueous electrolyte lithium secondary battery requires an extremely thin strip electrode as compared with an electrode of an aqueous solution secondary battery.

【0003】図9、図10および図11は従来のリチウ
ム二次電池における電極の製造方法を示す図である。ま
ず、図9に示すように、金属箔からなる帯状の集電体5
0の表面に塗布装置60を用いてスラリー状の電極ペー
スト52を間欠塗工した後、乾燥させる。集電体50上
の電極ペースト52間には未塗工部51が形成される。
9, FIG. 10 and FIG. 11 are views showing a method of manufacturing an electrode in a conventional lithium secondary battery. First, as shown in FIG. 9, a strip-shaped current collector 5 made of a metal foil.
The surface of No. 0 is intermittently coated with the electrode paste 52 in the form of slurry using the coating device 60, and then dried. An uncoated portion 51 is formed between the electrode pastes 52 on the current collector 50.

【0004】次に、図10に示すように、集電体50を
スリッタを用いて破線で示すように所定幅に切断するこ
とにより帯状電極板を形成する。その後、図11に示す
ように、集電体50の間欠した未塗工部51にリード端
子53を溶接する。このようにして製造された帯状正極
板と帯状負極板とをセパレータを介して巻回または積層
することにより発電素子を組み立てる。
Next, as shown in FIG. 10, the band-shaped electrode plate is formed by cutting the current collector 50 into a predetermined width as shown by a broken line using a slitter. Then, as shown in FIG. 11, the lead terminal 53 is welded to the intermittent uncoated portion 51 of the current collector 50. The band-shaped positive electrode plate and the band-shaped negative electrode plate thus manufactured are wound or laminated with a separator interposed therebetween to assemble a power generation element.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電気自
動車等に用いられる大型リチウム二次電池では、100
〜400Wh級という高容量で、かつ20〜1000A
という高率放電性能が要求される。このような高率放電
性能を得るためには、10〜50本のリード端子が必要
となる。集電体の間欠した未塗工部にリード端子を溶接
する上記の方法では、多数のリード端子を溶接するため
に未塗工部を複数設けると、電極板の面積に対する未塗
工部の面積の割合が大きくなり、電池のエネルギー密度
が低下するという問題が発生する。そのため、高い電池
容量を得ることが困難となる。
However, in a large lithium secondary battery used in an electric vehicle or the like, 100
~ High capacity of 400Wh class and 20 ~ 1000A
High rate discharge performance is required. To obtain such high rate discharge performance, 10 to 50 lead terminals are required. In the above method of welding the lead terminal to the intermittent uncoated portion of the current collector, if a plurality of uncoated portions are provided to weld a large number of lead terminals, the area of the uncoated portion relative to the area of the electrode plate However, there is a problem that the energy density of the battery is lowered. Therefore, it becomes difficult to obtain a high battery capacity.

【0006】そこで、本発明者は、上記問題を解決すべ
く図12および図13に示す電極板の製造方法を案出し
た。図12に示すように、帯状の集電体70の表面に、
両方の側縁部の領域を除いて合材層73を塗工すること
により、集電体70の表面の両方の側縁部に未塗工部7
1,72を形成する。そして、集電体70を破線で示す
ようにスリッタを用いて切断することにより一方の未塗
工部72を切り離す。その後、図13に示すように、集
電体70の未塗工部71に複数のリード端子80を溶接
により取り付ける。この方法によれば、高容量でかつ高
率放電が可能な非水電解質二次電池が得られる。
Therefore, the present inventor has devised a method of manufacturing the electrode plate shown in FIGS. 12 and 13 in order to solve the above problem. As shown in FIG. 12, on the surface of the strip-shaped current collector 70,
By coating the mixture layer 73 except for the regions of both side edge portions, the uncoated portion 7 is applied to both side edge portions of the surface of the current collector 70.
1, 72 are formed. Then, the current collector 70 is cut with a slitter as shown by a broken line to separate one uncoated portion 72. Then, as shown in FIG. 13, a plurality of lead terminals 80 are attached to the uncoated portion 71 of the current collector 70 by welding. According to this method, a non-aqueous electrolyte secondary battery having a high capacity and capable of high rate discharge can be obtained.

【0007】しかしながら、さらに高容量化を図るため
に電極密度を向上させるとともに電極板の長さを増大さ
せると、従来の小型電池に比べて不良率が高くなるとい
う問題が生じた。本発明者は、高容量化に伴う不良率の
増加の原因を究明するために種々の検討および実験を行
った結果、以下の点が判明した。
However, if the electrode density is increased and the length of the electrode plate is increased in order to further increase the capacity, there arises a problem that the defective rate becomes higher than that of a conventional small battery. The present inventor has conducted various studies and experiments in order to investigate the cause of the increase in defective rate associated with higher capacity, and as a result, the following points have been found.

【0008】電極密度を向上させるために合材層73が
塗工された集電体70を大きな圧力でプレスすると、図
14に示すように、集電体70の平面形状が僅かながら
湾曲する。これは、集電体70として、厚みが10〜5
0mmと極めて薄くかつ柔らかい銅またはアルミニウム
からなる金属箔を用いているために、プレス圧が加えら
れると合材層73の塗工部では矢印Aで示すように金属
箔が圧延され、未塗工部71では矢印Bで示すようにほ
とんど圧延されないことによる。このように、集電体7
0が僅かながら湾曲しているので、図15に示すよう
に、湾曲した集電体70を巻芯81を中心として渦巻き
状に巻回すると、たけのこ状に巻きずれが生じる。その
結果、内部短絡が生じることとなる。
When the current collector 70 coated with the composite material layer 73 in order to improve the electrode density is pressed with a large pressure, the planar shape of the current collector 70 is slightly curved as shown in FIG. This has a thickness of 10 to 5 as the current collector 70.
Since a metal foil made of copper or aluminum, which is extremely thin and 0 mm, is used, the metal foil is rolled as shown by an arrow A in the coating portion of the composite material layer 73 when a pressing pressure is applied, and the metal foil is not coated. This is because the portion 71 is hardly rolled as indicated by arrow B. In this way, the current collector 7
Since 0 is slightly curved, when the curved current collector 70 is spirally wound around the winding core 81, as shown in FIG. As a result, an internal short circuit will occur.

【0009】また、集電体70の硬度と合材層73の硬
度が異なるので、電極板の製造時に集電体70を合材層
73とともにスリッタで切断すると、集電体70の縁部
に10〜50μmと極めて薄いひげ状の金属片が発生す
ることがある。このようなひげ状の金属片が発生する
と、内部短絡が生じるおそれがある。小容量の二次電池
では、電極長(帯状電極板の長さ)が50cm程度と短
いため、ひげ状の金属片の発生確率が低く、不良率は
0.1〜0.5%程度と問題にならない。これに対し
て、電極長が10〜20mの高容量の二次電池では、ひ
げ状の金属片の発生確率が高く、不良率が2〜20%と
大きくなる。
Further, since the hardness of the current collector 70 and the hardness of the composite material layer 73 are different from each other, when the current collector 70 is cut together with the composite material layer 73 by a slitter at the time of manufacturing the electrode plate, the edge portion of the current collector 70 is cut off. A very thin whisker-shaped metal piece of 10 to 50 μm may occur. When such a beard-shaped metal piece is generated, an internal short circuit may occur. In a small-capacity secondary battery, since the electrode length (length of the strip-shaped electrode plate) is as short as about 50 cm, the occurrence rate of whisker-like metal pieces is low, and the defective rate is about 0.1 to 0.5%. do not become. On the other hand, in a high-capacity secondary battery having an electrode length of 10 to 20 m, a whisker-like metal piece is highly likely to be generated, and the defective rate is as large as 2 to 20%.

【0010】このように、高容量化を図るために電極密
度を向上させかつ電極板の長さを増大させると、内部短
絡による不良率が増加するという問題が生じる。本発明
の目的は、高容量化しても不良率が低く、かつ高率放電
が可能な非水電解質二次電池およびその製造方法を提供
することである。
As described above, if the electrode density is increased and the length of the electrode plate is increased in order to increase the capacity, there is a problem that the defective rate due to an internal short circuit increases. An object of the present invention is to provide a non-aqueous electrolyte secondary battery which has a low defect rate even when the capacity is increased and which can be discharged at a high rate, and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段および発明の効果】本発明
に係る非水電解質二次電池は、帯状の集電体に合材層が
形成されてなる帯状電極板を有する非水電解質二次電池
において、集電体の表面に両方の側縁部の領域を除いて
合材層が形成されたものである。
Means for Solving the Problems and Effects of the Invention A non-aqueous electrolyte secondary battery according to the present invention has a strip-shaped electrode plate in which a mixture layer is formed on a strip-shaped current collector. In the above, the mixture layer is formed on the surface of the current collector except for both side edge regions.

【0012】本発明に係る非水電解質二次電池において
は、集電体の表面の両方の側縁部に合材層の未形成領域
が形成されている。このため、電極密度を向上させるた
めに帯状電極板をプレスしても、帯状電極板の平面形状
が湾曲しない。また、集電体を合材層の未形成領域で切
断することができるので、集電体の縁部にひげ状の金属
片が発生しない。したがって、高容量化にために電極密
度を向上させかつ帯状電極板の長さを長くしても内部短
絡による不良率が低く保たれる。
In the non-aqueous electrolyte secondary battery according to the present invention, the area where the mixture layer is not formed is formed on both side edges of the surface of the current collector. Therefore, even if the strip electrode plate is pressed to improve the electrode density, the planar shape of the strip electrode plate does not curve. Further, since the current collector can be cut in the region where the composite material layer is not formed, whiskers of metal pieces are not generated at the edge of the current collector. Therefore, even if the electrode density is increased to increase the capacity and the length of the strip electrode plate is increased, the defect rate due to the internal short circuit can be kept low.

【0013】特に、集電体の少なくとも一方の側縁部に
おける合材層の未形成領域に1または複数のリード端子
が取り付けられることが好ましい。これにより、帯状電
極板の面積に対する合材層の面積を大きく保ちつつリー
ド端子の数または面積を増加させることができる。した
がって、高容量でかつ高率放電が可能となる。
In particular, it is preferable that one or a plurality of lead terminals be attached to at least one side edge portion of the current collector in a region where the composite material layer is not formed. This makes it possible to increase the number or area of the lead terminals while keeping the area of the composite material layer large with respect to the area of the strip electrode plate. Therefore, high capacity and high rate discharge are possible.

【0014】また、集電体の幅に対する少なくとも一方
の側縁部における未形成領域の幅の割合が0.7%以上
20%以下であることが好ましい。それにより、リード
端子の取り付け強度を確保するとともに、高い電池容量
を得ることができる。
Further, the ratio of the width of the unformed region in at least one side edge portion to the width of the current collector is preferably 0.7% or more and 20% or less. Thereby, the attachment strength of the lead terminals can be secured and a high battery capacity can be obtained.

【0015】さらに、集電体の一方の側縁部における合
材層の未形成領域に1または複数のリード端子が取り付
けられ、集電体の他方の側縁部における合材層の未形成
領域の幅が0.5mm以上20mm以下であることが好
ましい。それにより、プレスの際の帯状電極板の湾曲お
よび集電体の切断の際のひげ状の金属片の発生を防止す
ることができ、かつ高い電池容量を確保することができ
る。
Further, one or a plurality of lead terminals are attached to an area where the composite material layer is not formed on one side edge portion of the current collector, and an area where the composite material layer is not formed on the other side edge portion of the current collector. The width is preferably 0.5 mm or more and 20 mm or less. As a result, it is possible to prevent the bending of the strip electrode plate during pressing and the generation of whiskers of metal pieces during cutting of the current collector, and to secure a high battery capacity.

【0016】なお、上記帯状電極板の構造は、帯状正極
板および帯状負極板の一方が有していてもよく、両方が
有していてもよい。ただし、帯状正極板および帯状負極
板の両方が上記の構造を有することが好ましい。これに
より、不良率の低減、高容量および高率放電を効果的に
確保することができる。
The structure of the strip electrode plate may be possessed by either one of the strip positive electrode plate and the strip negative electrode plate, or both of them. However, it is preferable that both the strip-shaped positive electrode plate and the strip-shaped negative electrode plate have the above structure. As a result, it is possible to effectively reduce the defective rate and effectively ensure high capacity and high rate discharge.

【0017】帯状の正極集電体に正極合材層が形成され
た帯状正極板と帯状の負極集電体に負極合材層が形成さ
れた帯状負極板とがセパレータを介して巻回または積層
されてなる非水電解質二次電池において、正極集電体の
表面に両方の側縁部の領域を除いて正極合材層が形成さ
れ、かつ負極集電体の表面に両方の側縁部の領域を除い
て負極合材層が形成されてもよい。
A strip-shaped positive electrode plate in which a positive electrode mixture layer is formed on a strip-shaped positive electrode collector and a strip negative electrode plate in which a negative electrode mixture layer is formed on a strip-shaped negative electrode collector are wound or laminated with a separator in between. In the non-aqueous electrolyte secondary battery thus formed, the positive electrode mixture layer is formed on the surface of the positive electrode current collector except for the regions of both side edges, and the surface of both sides of the negative electrode current collector is formed. The negative electrode mixture layer may be formed except the region.

【0018】この場合、電極密度を向上させるために帯
状正極板および帯状負極板をプレスしても、帯状正極板
および帯状負極板の平面形状は湾曲しない。また、集電
体を合材層の未形成領域で切断することができるので、
集電体の縁部にひげ状の金属片が発生しない。したがっ
て、内部短絡による不良率が少なく、高容量の非水電解
質二次電池が得られる。
In this case, even if the strip-shaped positive electrode plate and the strip-shaped negative electrode plate are pressed to improve the electrode density, the planar shapes of the strip-shaped positive electrode plate and the strip-shaped negative electrode plate are not curved. Further, since the current collector can be cut in the area where the composite material layer is not formed,
No whisker-like metal pieces are generated on the edges of the current collector. Therefore, a high capacity non-aqueous electrolyte secondary battery with a low defective rate due to an internal short circuit can be obtained.

【0019】本発明に係る非水電解質二次電池の製造方
法は、帯状の集電体に合材層が形成されてなる帯状電極
板を有する非水電解質二次電池の製造方法において、集
電体の表面に両方の側縁部の領域を除いて集電体よりも
狭い幅に合材層を形成するものである。
The method for producing a non-aqueous electrolyte secondary battery according to the present invention is a method for producing a non-aqueous electrolyte secondary battery having a strip-shaped electrode plate in which a mixture layer is formed on a strip-shaped collector. The mixture layer is formed on the surface of the body in a width narrower than that of the current collector except for the regions on both side edges.

【0020】本発明に係る製造方法においては、集電体
の表面の両方の側縁部に合材層の未形成領域が存在する
ので、電極密度を向上させるために帯状電極板をプレス
しても、帯状電極板の平面形状が湾曲しない。また、集
電体を合材層の未形成領域で切断することができるの
で、集電体の縁部にひげ状の金属片が発生しない。した
がって、内部短絡による不良率が低く、高容量の非水電
解質二次電池が得られる。
In the manufacturing method according to the present invention, since the region where the composite material layer is not formed exists on both side edges of the surface of the current collector, the strip electrode plate is pressed to improve the electrode density. Also, the planar shape of the strip electrode plate is not curved. Further, since the current collector can be cut in the region where the composite material layer is not formed, whiskers of metal pieces are not generated at the edge of the current collector. Therefore, it is possible to obtain a high capacity non-aqueous electrolyte secondary battery having a low defective rate due to an internal short circuit.

【0021】特に、集電体に複数の合材層をストライプ
状に形成した後、集電体を合材層の未形成領域で切断す
ることにより帯状電極板を形成してもよい。この場合、
複数の帯状電極板を効率良く製造することができる。
In particular, the strip-shaped electrode plate may be formed by forming a plurality of composite material layers on the current collector in a stripe shape and then cutting the current collector at a region where the composite material layer is not formed. in this case,
It is possible to efficiently manufacture a plurality of strip electrode plates.

【0022】[0022]

【発明の実施の形態】以下、図1〜図4を参照しながら
本発明の一実施例におけるリチウム二次電池およびその
製造方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A lithium secondary battery and a method of manufacturing the same according to an embodiment of the present invention will be described below with reference to FIGS.

【0023】まず、図3において、帯状正極板1は、厚
さ20μmのアルミニウム基板(アルミニウム箔)から
なる正極集電体の片面または両面に、リチウムコバルト
複合酸化物(LiCoO2 )を導電剤とともに結着剤を
用いて保持させたものである。帯状正極板1の厚さは例
えば190μmであり、幅は例えば165mmである。
First, in FIG. 3, the strip-shaped positive electrode plate 1 has a lithium cobalt composite oxide (LiCoO 2 ) together with a conductive agent on one or both sides of a positive electrode current collector made of an aluminum substrate (aluminum foil) having a thickness of 20 μm. It is held by using a binder. The belt-shaped positive electrode plate 1 has a thickness of 190 μm and a width of 165 mm, for example.

【0024】帯状負極板3は、厚さ18μmの銅基板
(銅箔)からなる負極集電体の片面または両面に黒鉛を
結着剤を用いて保持させたものである。帯状負極板3の
厚さは例えば160μmであり、幅は例えば169mm
である。
The strip-shaped negative electrode plate 3 is obtained by holding graphite on one or both sides of a negative electrode current collector made of a copper substrate (copper foil) having a thickness of 18 μm using a binder. The strip-shaped negative electrode plate 3 has a thickness of, for example, 160 μm and a width of, for example, 169 mm.
It is.

【0025】セパレータ2は、ポリエチレン製の微多孔
膜により形成される。このセパレータ2の厚さは例えば
25μmであり、幅は例えば173mmである。ここ
で、図1および図2を参照しながら帯状正極板1の製造
方法を説明する。まず、図1に示すように、アルミニウ
ム基板からなる正極集電体11の表面に、両方の側縁部
の領域を除いてリチウムコバルト複合酸化物、導電剤お
よび結着剤からなる正極合材層14を塗布装置を用いて
塗工する。これにより、正極集電体11の表面の両方の
側縁部に一定幅を有する未塗工部12,13がそれぞれ
形成される。未塗工部12,13では、正極集電体11
が露出している。一方の未塗工部12の幅はW1であ
り、他方の未塗工部13の幅はW2である。また、帯状
正極板1の幅(電極幅)はLとなる。
The separator 2 is formed of a polyethylene microporous film. The separator 2 has a thickness of 25 μm and a width of 173 mm, for example. Here, a method for manufacturing the strip-shaped positive electrode plate 1 will be described with reference to FIGS. 1 and 2. First, as shown in FIG. 1, on the surface of the positive electrode current collector 11 made of an aluminum substrate, a positive electrode mixture layer composed of a lithium cobalt composite oxide, a conductive agent and a binder except for the regions at both side edges. 14 is applied using a coating device. As a result, the uncoated portions 12 and 13 having a constant width are formed on both side edge portions of the surface of the positive electrode current collector 11, respectively. In the uncoated parts 12 and 13, the positive electrode current collector 11
Is exposed. The width of one uncoated portion 12 is W1, and the width of the other uncoated portion 13 is W2. The width (electrode width) of the strip-shaped positive electrode plate 1 is L.

【0026】次に、図2に示すように、正極集電体11
の未塗工部12に、複数の正極リード端子4を超音波溶
接により取り付ける。このようにして、帯状正極板1が
製造される。
Next, as shown in FIG. 2, the positive electrode current collector 11
A plurality of positive electrode lead terminals 4 are attached to the uncoated part 12 by ultrasonic welding. In this way, the strip-shaped positive electrode plate 1 is manufactured.

【0027】なお、未塗工部12の幅W1が電極幅Lの
0.7%よりも小さいと、正極リード端子4の溶接強度
が弱くなるので、電池組み立て時に正極リード端子4が
外れる等の支障が生じる。一方、未塗工部12の幅W1
が電極板Lの20%を越えると、電池容量が低下する。
したがって、未塗工部12のW1は、電極幅Lの0.7
%〜20%であることが好ましい。
If the width W1 of the uncoated portion 12 is smaller than 0.7% of the electrode width L, the welding strength of the positive electrode lead terminal 4 becomes weak, so that the positive electrode lead terminal 4 may come off during battery assembly. It causes trouble. On the other hand, the width W1 of the uncoated portion 12
When exceeds 20% of the electrode plate L, the battery capacity decreases.
Therefore, W1 of the uncoated portion 12 is 0.7 of the electrode width L.
% To 20% is preferable.

【0028】また、未塗工部13の幅W2が0.5mm
よりも小さいと、プレス時に帯状正極板1が湾曲しやす
くなるので、電池組み立て時に帯状正極板1の巻きずれ
が生じる。一方、未塗工部13の幅W2が20mmを越
えると、電池容量が低下する。したがって、未塗工部1
3の幅W2は、0.5mm〜20mmであることが好ま
しい。
The width W2 of the uncoated portion 13 is 0.5 mm.
If it is smaller than the above range, the strip-shaped positive electrode plate 1 is likely to be bent during pressing, so that the strip-shaped positive electrode plate 1 is misaligned during battery assembly. On the other hand, when the width W2 of the uncoated portion 13 exceeds 20 mm, the battery capacity decreases. Therefore, the uncoated part 1
The width W2 of 3 is preferably 0.5 mm to 20 mm.

【0029】なお、帯状負極板3の製造方法も図1およ
び図2に示した製造方法と同様である。図3において、
帯状正極板1の正極集電体の未塗工部には、上記のよう
にして複数の正極リード端子4が取り付けられ、帯状負
極板3の負極集電体の未塗工部には、複数の負極リード
端子5が取り付けられている。これらの帯状正極板1お
よび帯状負極板3をセパレータ2を介して重ね合わせ、
アルミニウム製のパイプからなる巻芯6を中心として渦
巻状に巻回することにより円筒形の電極群を作製する。
この電極群が発電素子となる。
The method for manufacturing the strip negative electrode plate 3 is the same as the manufacturing method shown in FIGS. In FIG.
A plurality of positive electrode lead terminals 4 are attached to the uncoated portion of the positive electrode current collector of the strip positive electrode plate 1 as described above, and a plurality of uncoated portions of the negative electrode collector of the strip negative electrode plate 3 are The negative electrode lead terminal 5 is attached. These strip-shaped positive electrode plate 1 and strip-shaped negative electrode plate 3 are superposed with a separator 2 in between,
A cylindrical electrode group is produced by spirally winding the core 6 made of an aluminum pipe.
This electrode group serves as a power generating element.

【0030】次に、図4に示すように、円筒形の電極群
の外周部をテープ7で固定し、押し潰すことにより長円
形の横断面を有する電極群に成形する。その後、その電
極群を長円形の横断面を有する電池容器(図示せず)に
収納して二重巻き締め封口する。電池容器の寸法は、例
えば、縦50mm、横130mmおよび高さ210mm
とし、電池容量を100Ahとする。正極リード端子4
および負極リード端子5は電池容器に設けられた正極端
子および負極端子に接続する。
Next, as shown in FIG. 4, the outer peripheral portion of the cylindrical electrode group is fixed with tape 7 and crushed to form an electrode group having an oval cross section. After that, the electrode group is housed in a battery container (not shown) having an oval cross section and double-fastened and sealed. The dimensions of the battery container are, for example, 50 mm in length, 130 mm in width and 210 mm in height.
And the battery capacity is 100 Ah. Positive electrode lead terminal 4
The negative electrode lead terminal 5 is connected to the positive electrode terminal and the negative electrode terminal provided on the battery container.

【0031】そして、この電池容器内に、エチレンカー
ボネートおよびジメチルカーボネートの1:1(体積
比)の混合溶液に1mol/l(リットル)の六フッ化
燐酸リチウム(LiPF6 )を溶解した電解液を減圧注
入する。
Then, in this battery container, an electrolytic solution prepared by dissolving 1 mol / l (liter) of lithium hexafluorophosphate (LiPF 6 ) in a mixed solution of ethylene carbonate and dimethyl carbonate at a ratio of 1: 1 (volume ratio) was placed. Inject under reduced pressure.

【0032】ここで、図1〜図4に示した方法および条
件で帯状正極板1の未塗工部12,13の幅W1,W2
が異なるリチウム二次電池をそれぞれ20個ずつ作製し
た。このようにして作製されたリチウム二次電池を、2
0Aの定電流および4.2Vの定電圧で8時間充電した
後、20Aの定電流で2.75Vまで放電した。そし
て、電極幅Lに対する未塗工部12(正極リード端子接
続部)の幅W1の割合(W1/L)とリチウム二次電池
の20個中の不良数ならびに放電容量の関係を測定し
た。この測定結果を表1に示す。
Here, the widths W1 and W2 of the uncoated portions 12 and 13 of the strip-shaped positive electrode plate 1 according to the methods and conditions shown in FIGS.
20 lithium secondary batteries having different characteristics were produced. The lithium secondary battery thus manufactured is
After being charged with a constant current of 0 A and a constant voltage of 4.2 V for 8 hours, the battery was discharged with a constant current of 20 A to 2.75 V. Then, the relationship between the ratio (W1 / L) of the width W1 of the uncoated portion 12 (positive electrode lead terminal connection portion) to the electrode width L, the number of defects in 20 lithium secondary batteries, and the discharge capacity was measured. The results of this measurement are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示すように、W1/Lが0.7%以
上20%以下であると、比較的不良数が少なく、かつ比
較的高い放電容量が得られることがわかる。特に、W1
/Lが1%以上10%以下であると、不良数が極めて少
なく、より高い放電容量が得られる。W1/Lが0.5
%であると、放電容量は高いが、不良数が多くなってい
る。これは、電池組み立て時の正極リード端子4の溶接
部の外れによるものと考えられる。また、W1/Lが3
0%になると、不良数は少ないが、放電容量が低くな
る。したがって、電極幅Lに対する未塗工部12の幅W
1の割合は0.7%以上20%以下が好ましく、1%以
上10%以下がさらに好ましい。
As shown in Table 1, when W1 / L is 0.7% or more and 20% or less, the number of defects is relatively small and a relatively high discharge capacity can be obtained. In particular, W1
When / L is 1% or more and 10% or less, the number of defects is extremely small and a higher discharge capacity can be obtained. W1 / L is 0.5
%, The discharge capacity is high, but the number of defects is large. It is considered that this is due to the detachment of the welded portion of the positive electrode lead terminal 4 when assembling the battery. Also, W1 / L is 3
At 0%, the number of defects is small, but the discharge capacity is low. Therefore, the width W of the uncoated portion 12 with respect to the electrode width L
The ratio of 1 is preferably 0.7% or more and 20% or less, more preferably 1% or more and 10% or less.

【0035】なお、帯状負極板3の電極幅Lに対する負
極合材層の一方の未塗工部(負極リード端子接続部)の
幅W1の割合も、帯状正極板1と同様に、0.7%以上
20%以下が好ましく、1%以上10%以下がさらに好
ましい。
The ratio of the width W1 of one uncoated portion (negative electrode lead terminal connecting portion) of the negative electrode mixture layer to the electrode width L of the strip negative electrode plate 3 is 0.7 as in the strip positive electrode plate 1. % Or more and 20% or less are preferable, and 1% or more and 10% or less are more preferable.

【0036】次に、未塗工部13(正極リード端子非接
続部)の幅W2とリチウム二次電池の20個中の不良数
ならびに放電容量の関係を測定した。帯状正極板1の製
造の際には、電池の高容量化を図るために、正極集電体
11の表面にリチウムコバルト複合酸化物(LiCoO
2 )、導電剤および結着剤からなる正極合材層14を塗
工した後、温度150℃のホットロールプレスにより1
0トンで加圧した。これにより、正極合材層14の多孔
度を40%以下にし、電極密度を向上させた。この場
合、電極幅Lに対する未塗工部12の幅W1の割合(W
1/L)は5%である。この測定結果を表2に示す。
Next, the relationship between the width W2 of the uncoated portion 13 (the portion to which the positive electrode lead terminal is not connected), the number of defects in 20 lithium secondary batteries, and the discharge capacity was measured. When the strip-shaped positive electrode plate 1 is manufactured, in order to increase the capacity of the battery, a lithium cobalt composite oxide (LiCoO 2) is formed on the surface of the positive electrode current collector 11.
2 ), after applying the positive electrode mixture layer 14 composed of a conductive agent and a binder, 1 by a hot roll press at a temperature of 150 ° C.
Pressurized with 0 ton. Thereby, the porosity of the positive electrode mixture layer 14 was set to 40% or less, and the electrode density was improved. In this case, the ratio of the width W1 of the uncoated portion 12 to the electrode width L (W
1 / L) is 5%. The measurement results are shown in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】表2に示すように、W2が0.5mm以上
20mm以下であると、比較的不良数が少なく、かつ比
較的高い放電容量が得られることがわかる。特に、W2
が1.0mm以上10mm以下であると、不良数が極め
て少なく、より高い放電容量が得られる。W2が0.2
mmであると、放電容量は高いが、不良数が多くなって
いる。これは、ホットロールプレス時の帯状正極板1の
湾曲に基づく巻きずれまたは正極集電体11の切断時の
バリ(ひげ状の金属片)によるものと考えられる。ま
た、W2が30mmになると、不良数は少ないが、放電
容量が低くなる。したがって、未塗工部13の幅W2
は、0.5mm以上20mm以下が好ましく、1.0m
m以上10mm以下がさらに好ましい。
As shown in Table 2, it can be seen that when W2 is 0.5 mm or more and 20 mm or less, the number of defects is relatively small and a relatively high discharge capacity can be obtained. Especially W2
Is 1.0 mm or more and 10 mm or less, the number of defects is extremely small and a higher discharge capacity can be obtained. W2 is 0.2
When it is mm, the discharge capacity is high, but the number of defects is large. It is considered that this is due to winding deviation due to the curvature of the strip-shaped positive electrode plate 1 at the time of hot roll pressing or burrs (whisker-shaped metal pieces) at the time of cutting the positive electrode current collector 11. When W2 is 30 mm, the number of defects is small, but the discharge capacity is low. Therefore, the width W2 of the uncoated portion 13
Is preferably 0.5 mm or more and 20 mm or less, 1.0 m
It is more preferably m or more and 10 mm or less.

【0039】なお、帯状負極板3の負極合材層の他方の
未塗工部(負極リード端子非接続部)の幅W2も、帯状
正極板1と同様に、0.5mm以上20mm以下が好ま
しく、1.0mm以上10mm以下がさらに好ましい。
The width W2 of the other uncoated portion (non-negative electrode lead terminal non-connecting portion) of the negative electrode mixture layer of the strip negative electrode plate 3 is preferably 0.5 mm or more and 20 mm or less as in the strip positive electrode plate 1. , 1.0 mm or more and 10 mm or less are more preferable.

【0040】上記のように、本実施例のリチウム二次電
池では、帯状正極板1および帯状負極板3の表面の両方
の側縁部にそれぞれ正極合材層および負極合材層の未塗
工部を設け、電極幅Lに対するリード端子接続側の未塗
工部の幅W1の割合を0.7%以上20%以下に設定す
るとともに、他方の未塗工部の幅W2を0.5mm以上
20mm以下に設定することにより、不良率が少なく、
高容量でかつ高率放電が可能となる。
As described above, in the lithium secondary battery of this embodiment, the positive electrode composite material layer and the negative electrode composite material layer are not coated on both side edges of the surfaces of the strip positive electrode plate 1 and the strip negative electrode plate 3, respectively. The width W1 of the uncoated portion on the lead terminal connection side with respect to the electrode width L is set to 0.7% or more and 20% or less, and the width W2 of the other uncoated portion is 0.5 mm or more. By setting it to 20 mm or less, the defect rate is small,
High capacity and high rate discharge are possible.

【0041】図5は帯状正極板1の製造方法の他の例を
示す図である。図5の例では、正極集電体11の両面ま
たは片面に正極合材層14を複数のストライプ状に塗工
する。それにより、正極集電体11の両方の側縁部に未
塗工部12,13が形成され、正極合材層14間に未塗
工部12a,12bが形成される。その後、正極集電体
11を破線で示すようにスリッタを用いて未塗工部12
a,12bで切断する。この方法によれば、複数の帯状
正極板1を効率良く製造することができ、量産性に優れ
る。帯状負極板3も同様にして製造することができる。
FIG. 5 is a diagram showing another example of a method of manufacturing the strip positive electrode plate 1. In the example of FIG. 5, the positive electrode mixture layer 14 is applied in a plurality of stripes on both surfaces or one surface of the positive electrode current collector 11. As a result, the uncoated portions 12 and 13 are formed on both side edges of the positive electrode current collector 11, and the uncoated portions 12 a and 12 b are formed between the positive electrode mixture layers 14. Thereafter, the positive electrode current collector 11 is uncoated with a slitter 12 as shown by a broken line.
Cut at a and 12b. According to this method, a plurality of strip-shaped positive electrode plates 1 can be efficiently manufactured, and mass productivity is excellent. The strip negative electrode plate 3 can be manufactured in the same manner.

【0042】なお、上記実施例では、正極リード端子4
を正極集電体11の一方の未塗工部12に取り付けてい
るが、図6(a)に示すように、正極リード端子4を正
極集電体11の両方の側縁部に形成された未塗工部12
に取り付けてもよい。この場合、両方の側縁部の未塗工
部12の幅W1を上記実施例と同様に設定することが好
ましい。同様に、負極リード端子5を負極集電体の両方
の側縁部に形成された未塗工部に取り付けてもよい。こ
の場合、図6(b)に示すように、正極リード端子4お
よび負極リード端子5は電極群の両方の端部に設けられ
る。
In the above embodiment, the positive electrode lead terminal 4 is used.
6 is attached to one uncoated portion 12 of the positive electrode current collector 11, but the positive electrode lead terminals 4 are formed on both side edge portions of the positive electrode current collector 11 as shown in FIG. 6A. Uncoated part 12
May be attached to. In this case, it is preferable to set the width W1 of the uncoated portions 12 on both side edge portions in the same manner as in the above embodiment. Similarly, the negative electrode lead terminal 5 may be attached to the uncoated portions formed on both side edges of the negative electrode current collector. In this case, as shown in FIG. 6B, the positive electrode lead terminal 4 and the negative electrode lead terminal 5 are provided at both ends of the electrode group.

【0043】なお、上記実施例では、電極群を長円形の
横断面を有する形状に成形しているが、電極群の形状は
これに限定されず、図7(a)に示すように、円筒形で
あってもよい。また、図7(b)に示すように、帯状正
極板および帯状負極板をセパレータを介して重ね合わせ
て折り畳むように積層することにより、電極群を角形に
成形してもよい。
In the above embodiment, the electrode group is formed in a shape having an oval cross section, but the shape of the electrode group is not limited to this, and as shown in FIG. It may be shaped. Alternatively, as shown in FIG. 7B, the electrode group may be formed into a rectangular shape by stacking the strip-shaped positive electrode plate and the strip-shaped negative electrode plate so as to be stacked and folded so as to be folded.

【0044】また、正極リード端子および負極リード端
子の形状および溶接方法も上記実施例に限定されない。
例えば、図8に示すように、帯状正極板1の一方の未塗
工部側の端面に例えば十字形の正極リード端子4を溶接
し、帯状負極板3の他方の未塗工部側の端面に例えば十
字形の負極リード端子5を溶接してもよい。なお、正極
リード端子4および負極リード端子5の形状は他の形状
であってもよい。
The shapes and welding methods of the positive electrode lead terminal and the negative electrode lead terminal are not limited to those in the above embodiment.
For example, as shown in FIG. 8, for example, a cross-shaped positive electrode lead terminal 4 is welded to one end surface of the strip-shaped positive electrode plate 1 on the uncoated portion side, and the other end surface of the strip-shaped negative electrode plate 3 on the uncoated portion side is welded. Alternatively, for example, a cross-shaped negative electrode lead terminal 5 may be welded. The shapes of the positive electrode lead terminal 4 and the negative electrode lead terminal 5 may be other shapes.

【0045】さらに、正極合材層および負極合材層は、
上記実施例のものに限定されない。正極合材層として
は、リチウムコバルト複合酸化物(LiCoO2 )の
他、二硫化チタンを始めとして二酸化マンガン、リチウ
ムニッケル複合酸化物、スピネル型リチウムマンガン酸
化物、五酸化バナジウム、三酸化モリブデン等を含む種
々の合材層を用いることができる。また、負極合材層と
しては、黒鉛材料の他、低結晶性の炭素材料、アモルフ
ァスの炭素材料、金属酸化物等を含む種々の合材層を用
いることができる。
Further, the positive electrode mixture layer and the negative electrode mixture layer are
It is not limited to the above embodiment. As the positive electrode mixture layer, in addition to lithium cobalt composite oxide (LiCoO 2 ), titanium disulfide, manganese dioxide, lithium nickel composite oxide, spinel type lithium manganese oxide, vanadium pentoxide, molybdenum trioxide, etc. are used. Various mix layers can be used, including: As the negative electrode mixture layer, various mixture layers including a graphite material, a low crystalline carbon material, an amorphous carbon material, a metal oxide, etc. can be used.

【0046】本発明は、リチウム二次電池に限らず、種
々の非水電解質二次電池に適用することができる。
The present invention can be applied not only to the lithium secondary battery but also to various non-aqueous electrolyte secondary batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるリチウム2次電池の
帯状正極板の第1の製造工程を示す平面図である。
FIG. 1 is a plan view showing a first manufacturing process of a strip-shaped positive electrode plate of a lithium secondary battery in an example of the present invention.

【図2】本発明の一実施例におけるリチウム二次電池の
帯状正極板の第2の製造工程を示す平面図である。
FIG. 2 is a plan view showing a second manufacturing process of the strip-shaped positive electrode plate of the lithium secondary battery in one example of the present invention.

【図3】本発明の一実施例におけるリチウム二次電池の
電極群の分解斜視図である。
FIG. 3 is an exploded perspective view of an electrode group of a lithium secondary battery according to an embodiment of the present invention.

【図4】本発明の一実施例におけるリチウム二次電池の
電極群の斜視図である。
FIG. 4 is a perspective view of an electrode group of a lithium secondary battery according to an embodiment of the present invention.

【図5】帯状正極板の製造方法の他の例を示す平面図で
ある。
FIG. 5 is a plan view showing another example of a method for manufacturing a strip positive electrode plate.

【図6】正極リード端子および負極リード端子の取り付
け方法の他の例を示す図である。
FIG. 6 is a diagram showing another example of a method of attaching the positive electrode lead terminal and the negative electrode lead terminal.

【図7】電極群の形状の他の例を示す斜視図である。FIG. 7 is a perspective view showing another example of the shape of the electrode group.

【図8】正極リード端子および負極リード端子の他の例
を示す斜視図である。
FIG. 8 is a perspective view showing another example of the positive electrode lead terminal and the negative electrode lead terminal.

【図9】従来のリチウム二次電池における電極板の第1
の製造工程を示す斜視図である。
FIG. 9 shows a first electrode plate of a conventional lithium secondary battery.
FIG. 6 is a perspective view showing a manufacturing process of.

【図10】従来のリチウム二次電池における電極板の第
2の製造工程を示す平面図である。
FIG. 10 is a plan view showing a second manufacturing process of an electrode plate in a conventional lithium secondary battery.

【図11】従来のリチウム二次電池における電極板の第
3の製造工程を示す平面図である。
FIG. 11 is a plan view showing a third manufacturing process of an electrode plate in a conventional lithium secondary battery.

【図12】本発明者の他の発明に係るリチウム二次電池
の帯状電極板の第1の製造工程を示す平面図である。
FIG. 12 is a plan view showing a first manufacturing process of a strip electrode plate of a lithium secondary battery according to another invention of the present inventor.

【図13】本発明者の他の発明に係るリチウム二次電池
の帯状電極板の第2の製造工程を示す平面図である。
FIG. 13 is a plan view showing a second manufacturing process of a strip electrode plate of a lithium secondary battery according to another invention of the present inventor.

【図14】帯状電極板のプレスによる湾曲を示す平面図
である。
FIG. 14 is a plan view showing the bending of the strip electrode plate by pressing.

【図15】図14の帯状電極板を巻回した際の巻きずれ
を示す斜視図である。
FIG. 15 is a perspective view showing a winding deviation when the strip electrode plate of FIG. 14 is wound.

【符号の説明】 1 帯状正極板 2 セパレータ 3 帯状負極板 4 正極リード端子 5 負極リード端子 11 正極集電体 12,13 未塗工部 14 正極合材層[Explanation of reference symbols] 1 strip positive electrode plate 2 separator 3 strip negative electrode plate 4 positive electrode lead terminal 5 negative electrode lead terminal 11 positive electrode current collector 12, 13 uncoated portion 14 positive electrode mixture layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 帯状の集電体に合材層が形成されてなる
帯状電極板を有する非水電解質二次電池において、前記
集電体の表面に両方の側縁部の領域を除いて前記合材層
が形成されたことを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery having a strip-shaped electrode plate in which a mixture layer is formed on a strip-shaped current collector, wherein the surface of the current collector is excluding both side edge regions. A non-aqueous electrolyte secondary battery having a mixture layer formed.
【請求項2】 前記集電体の少なくとも一方の側縁部に
おける前記合材層の未形成領域に1または複数のリード
端子が接続されたことを特徴とする請求項1記載の非水
電解質二次電池。
2. The non-aqueous electrolyte according to claim 1, wherein one or a plurality of lead terminals are connected to an area where at least one side edge of the current collector is not formed with the composite material layer. Next battery.
【請求項3】 前記集電体の幅に対する前記少なくとも
一方の側縁部における前記合材層の未形成領域の幅の割
合は0.7%以上20%以下であることを特徴とする請
求項2記載の非水電解質二次電池。
3. The ratio of the width of the region where the mixture layer is not formed in the at least one side edge portion to the width of the current collector is 0.7% or more and 20% or less. 2. The non-aqueous electrolyte secondary battery described in 2.
【請求項4】 前記集電体の一方の側縁部における前記
合材層の未形成領域に1または複数のリード端子が接続
され、前記集電体の他方の側縁部における前記合材層の
未形成領域の幅が0.5mm以上20mm以下であるこ
とを特徴とする請求項1、2または3記載の非水電解質
二次電池。
4. The one or more lead terminals are connected to the unformed region of the one side edge portion of the current collector, and the one or more lead terminals are connected to the other side edge portion of the current collector. The non-aqueous electrolyte secondary battery according to claim 1, 2 or 3, wherein the width of the unformed region is 0.5 mm or more and 20 mm or less.
【請求項5】 帯状の正極集電体に正極合材層が形成さ
れた帯状正極板と帯状の負極集電体に負極合材層が形成
された帯状負極板とがセパレータを介して巻回または積
層されてなる非水電解質二次電池において、前記正極集
電体の表面に両方の側縁部の領域を除いて前記正極合材
層が形成され、かつ前記負極集電体の表面に両方の側縁
部の領域を除いて前記負極合材層が形成されたことを特
徴とする非水電解質二次電池。
5. A strip-shaped positive electrode plate in which a positive electrode mixture layer is formed on a strip-shaped positive electrode collector and a strip negative electrode plate in which a negative electrode mixture layer is formed on a strip-shaped negative electrode collector are wound with a separator interposed therebetween. Alternatively, in a non-aqueous electrolyte secondary battery formed by stacking, the positive electrode mixture layer is formed on the surface of the positive electrode current collector except for both side edge regions, and both are formed on the surface of the negative electrode current collector. The non-aqueous electrolyte secondary battery in which the negative electrode mixture layer is formed except for the side edge region.
【請求項6】 帯状の集電体に合材層が形成されてなる
帯状電極板を有する非水電解質二次電池の製造方法にお
いて、前記集電体の表面に両方の側縁部の領域を除いて
前記集電体よりも狭い幅に前記合材層を形成することを
特徴とする非水電解質二次電池の製造方法。
6. A method for manufacturing a non-aqueous electrolyte secondary battery having a strip-shaped electrode plate in which a mixture layer is formed on a strip-shaped current collector, wherein both side edge regions are provided on the surface of the current collector. A method for manufacturing a non-aqueous electrolyte secondary battery, characterized in that the mixture layer is formed in a width narrower than that of the current collector.
【請求項7】 集電体に複数の合材層をストライプ状に
形成した後、前記集電体を前記合材層の未形成領域で切
断することにより前記帯状電極板を形成することを特徴
とする請求項6記載の非水電解質二次電池の製造方法。
7. The strip-shaped electrode plate is formed by forming a plurality of composite material layers on a current collector in a stripe shape and then cutting the current collector at a region where the composite material layer is not formed. The method for producing a non-aqueous electrolyte secondary battery according to claim 6.
JP8121935A 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery and manufacture thereof Pending JPH09306471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8121935A JPH09306471A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8121935A JPH09306471A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09306471A true JPH09306471A (en) 1997-11-28

Family

ID=14823581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8121935A Pending JPH09306471A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09306471A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312517A (en) * 1998-04-28 1999-11-09 Shin Kobe Electric Mach Co Ltd Manufacture of battery electrode
JPH11329408A (en) * 1998-05-13 1999-11-30 Fuji Film Celltec Kk Nonaqueous secondary battery electrode sheet and nonaqueous secondary battery using this
JP2000331674A (en) * 1999-05-20 2000-11-30 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and intermediate product thereof, and manufacture thereof
JP2001102033A (en) * 1999-09-30 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2001110456A (en) * 1999-10-14 2001-04-20 Ngk Insulators Ltd Lithium secondary battery and manufacturing method for wound-type electrode body
JP2002246008A (en) * 1997-11-10 2002-08-30 Ngk Insulators Ltd Lithium secondary battery
JP2003100283A (en) * 2002-09-05 2003-04-04 Ngk Insulators Ltd Lithium secondary battery
JP2003168481A (en) * 2001-12-03 2003-06-13 Sony Corp Secondary battery, its manufacturing method, and application equipment
JP2008311011A (en) * 2007-06-13 2008-12-25 Panasonic Corp Nonaqueous electrolyte secondary battery
CN100459230C (en) * 2004-06-14 2009-02-04 松下电器产业株式会社 Electrochemical element
JP2011238375A (en) * 2010-05-06 2011-11-24 Hitachi Vehicle Energy Ltd Secondary battery and method for manufacturing the same
KR101141867B1 (en) * 2008-09-30 2012-05-08 가부시끼가이샤 도시바 Secondary battery
JP2012138194A (en) * 2010-12-24 2012-07-19 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
US8574752B2 (en) 2009-10-29 2013-11-05 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery using the same
US9083055B2 (en) 2009-05-08 2015-07-14 Samsung Sdi Co., Ltd. Electrode with plural active material layers with different amounts of conductive material for rechargeable lithium battery and method for manufacturing the same and rechargeable lithium battery including the electrode
US10079380B2 (en) * 2011-08-12 2018-09-18 Lg Chem, Ltd. Jelly-roll of improved productivity and battery cell comprising the same
JP2018166079A (en) * 2017-03-28 2018-10-25 三洋電機株式会社 Manufacturing method of secondary battery
US10854872B2 (en) * 2014-11-26 2020-12-01 Zeon Corporation Method for manufacturing electrode for lithium ion secondary cell
WO2022163616A1 (en) * 2021-01-29 2022-08-04 株式会社Gsユアサ Electricity storage element and electricity storage device
WO2024048145A1 (en) * 2022-08-31 2024-03-07 パナソニックエナジー株式会社 Cylindrical battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246008A (en) * 1997-11-10 2002-08-30 Ngk Insulators Ltd Lithium secondary battery
JPH11312517A (en) * 1998-04-28 1999-11-09 Shin Kobe Electric Mach Co Ltd Manufacture of battery electrode
JPH11329408A (en) * 1998-05-13 1999-11-30 Fuji Film Celltec Kk Nonaqueous secondary battery electrode sheet and nonaqueous secondary battery using this
JP4612132B2 (en) * 1999-05-20 2011-01-12 大日本印刷株式会社 Non-aqueous electrolyte secondary battery electrode plate, intermediate product of the electrode plate, and manufacturing method thereof
JP2000331674A (en) * 1999-05-20 2000-11-30 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and intermediate product thereof, and manufacture thereof
JP2001102033A (en) * 1999-09-30 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2001110456A (en) * 1999-10-14 2001-04-20 Ngk Insulators Ltd Lithium secondary battery and manufacturing method for wound-type electrode body
JP2003168481A (en) * 2001-12-03 2003-06-13 Sony Corp Secondary battery, its manufacturing method, and application equipment
JP2003100283A (en) * 2002-09-05 2003-04-04 Ngk Insulators Ltd Lithium secondary battery
CN100459230C (en) * 2004-06-14 2009-02-04 松下电器产业株式会社 Electrochemical element
JP2008311011A (en) * 2007-06-13 2008-12-25 Panasonic Corp Nonaqueous electrolyte secondary battery
KR101141867B1 (en) * 2008-09-30 2012-05-08 가부시끼가이샤 도시바 Secondary battery
US9083055B2 (en) 2009-05-08 2015-07-14 Samsung Sdi Co., Ltd. Electrode with plural active material layers with different amounts of conductive material for rechargeable lithium battery and method for manufacturing the same and rechargeable lithium battery including the electrode
US8574752B2 (en) 2009-10-29 2013-11-05 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery using the same
JP2011238375A (en) * 2010-05-06 2011-11-24 Hitachi Vehicle Energy Ltd Secondary battery and method for manufacturing the same
JP2012138194A (en) * 2010-12-24 2012-07-19 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
US10079380B2 (en) * 2011-08-12 2018-09-18 Lg Chem, Ltd. Jelly-roll of improved productivity and battery cell comprising the same
US10854872B2 (en) * 2014-11-26 2020-12-01 Zeon Corporation Method for manufacturing electrode for lithium ion secondary cell
JP2018166079A (en) * 2017-03-28 2018-10-25 三洋電機株式会社 Manufacturing method of secondary battery
WO2022163616A1 (en) * 2021-01-29 2022-08-04 株式会社Gsユアサ Electricity storage element and electricity storage device
WO2024048145A1 (en) * 2022-08-31 2024-03-07 パナソニックエナジー株式会社 Cylindrical battery

Similar Documents

Publication Publication Date Title
JP3743781B2 (en) Nonaqueous electrolyte secondary battery
JPH09306471A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3702308B2 (en) Nonaqueous electrolyte secondary battery
JP3804702B2 (en) Nonaqueous electrolyte secondary battery
US8986869B2 (en) Secondary battery and method of preparing the same
JP4798967B2 (en) Electrochemical element
JP5735096B2 (en) Non-aqueous secondary battery manufacturing method and non-aqueous secondary battery manufacturing method
JP6032628B2 (en) Thin battery
JP2003051339A (en) Nonaqueous electrolyte battery and manufacturing method therefor
WO2020129881A1 (en) Rectangular secondary battery
JPH0896802A (en) Manufacture of secondary battery electrode
JPH11121045A (en) Nonaqueous electrolyte secondary battery
JP3763233B2 (en) Flat battery and method of manufacturing the same
JP2010205429A (en) Nonaqueous electrolyte secondary battery and electrode for the same
JP2002175839A (en) Sealed battery
JP2003077543A (en) Flat nonaqueous electrolyte secondary battery
JPH09306470A (en) Nonaqueous electrolyte secondary battery
JP2002050343A (en) Manufacturing method of secondary cell and secondary cell
JP3749010B2 (en) Method for producing non-aqueous electrolyte battery
WO2021192658A1 (en) Electrode plate and coin-shaped secondary battery
JPH06333553A (en) Nonaqueous secondary battery
JP2002298921A (en) Secondary battery
JP2011054319A (en) Nonaqueous electrolyte secondary battery
JP7353302B2 (en) secondary battery
JP2000173597A (en) Paste-form band electrode for winding