WO2022163616A1 - Electricity storage element and electricity storage device - Google Patents

Electricity storage element and electricity storage device Download PDF

Info

Publication number
WO2022163616A1
WO2022163616A1 PCT/JP2022/002562 JP2022002562W WO2022163616A1 WO 2022163616 A1 WO2022163616 A1 WO 2022163616A1 JP 2022002562 W JP2022002562 W JP 2022002562W WO 2022163616 A1 WO2022163616 A1 WO 2022163616A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
composite material
material layer
storage element
electrode body
Prior art date
Application number
PCT/JP2022/002562
Other languages
French (fr)
Japanese (ja)
Inventor
一弥 岡部
良一 奥山
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2022578391A priority Critical patent/JPWO2022163616A1/ja
Publication of WO2022163616A1 publication Critical patent/WO2022163616A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell

Definitions

  • the present invention relates to an electric storage element including an electrode body around which electrode plates are wound, and an electric storage device including an electric storage element.
  • Patent Literature 1 discloses a non-aqueous electrolyte secondary battery (power storage element) that includes a flat electrode body in which a strip-shaped electrode plate having an electrode active material layer formed on the surface is wound.
  • an electrode body in which the winding axis extends in the vertical direction (vertical direction) (hereinafter also referred to as a horizontally wound electrode body)
  • an electrode body (hereinafter also referred to as a vertically wound electrode body) in which the rotation axis extends in the left-right direction (horizontal direction).
  • energy density is higher in a storage element with horizontally wound electrode bodies than in a storage element with vertically wound electrode bodies. Since the electric storage element having the above-described conventional configuration generally includes the vertically wound electrode assembly, there is a possibility that the energy density may be low. For this reason, it is desirable to have a structure capable of improving the energy density even in an electric storage element having a vertically wound electrode body.
  • An object of the present invention is to provide a power storage element and a power storage device capable of improving energy density.
  • a power storage element is a power storage element including an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction, wherein the electrode plate comprises: A mixture layer forming portion having the mixture layer formed thereon, and a mixture layer non-forming portion disposed at an end portion in the first direction from the mixture layer forming portion and having no mixture layer formed thereon.
  • the electrode body has a flat shape in which a length in a second direction that intersects the first direction is longer than a length in a third direction that intersects the first direction and the second direction.
  • the width of the composite material layer forming portion is 16 times or more the width of the composite material layer non-forming portion.
  • a power storage element is a power storage element including an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction, wherein the electrode plate comprises: A mixture layer forming portion having the mixture layer formed thereon, and a mixture layer non-forming portion disposed at an end portion in the first direction from the mixture layer forming portion and having no mixture layer formed thereon.
  • the electrode body has a flat shape in which a length in a second direction that intersects the first direction is longer than a length in a third direction that intersects the first direction and the second direction.
  • a first length in the first direction of the electrode body may be five times or more of a second length in the second direction of the electrode body.
  • a power storage device includes any one of the plurality of power storage elements described above and a pair of external terminals.
  • the first storage element has a pair of first electrode terminals aligned in the first direction
  • the second storage element has a pair of second electrode terminals aligned in the first direction.
  • the pair of external terminals includes a first electrode terminal of the pair of first electrode terminals that is closer to the second storage element and a pair of second electrode terminals that is closer to the first storage element and a second electrode terminal.
  • the present invention can be realized not only as such a power storage element and power storage device, but also as an electrode body.
  • FIG. 1 is a perspective view showing the appearance of a power storage device according to an embodiment.
  • FIG. 2 is a perspective view showing the external appearance of a power storage element according to the embodiment and an electrode body included in the power storage element.
  • FIG. 3 is a front view showing the size of the electrode body according to the embodiment.
  • FIG. 4 is a front view showing the configuration of a laterally-wound electrode body as a comparison target with the vertically-wound electrode body according to the embodiment.
  • FIG. 5A is a graph showing a comparison of energy densities between a power storage element using a vertically wound electrode body according to an embodiment and a power storage element using a horizontally wound electrode body in a comparative example and an example.
  • FIG. 1 is a perspective view showing the appearance of a power storage device according to an embodiment.
  • FIG. 2 is a perspective view showing the external appearance of a power storage element according to the embodiment and an electrode body included in the power storage element.
  • FIG. 3 is a front view showing
  • FIG. 5B is a graph showing a comparison of energy densities between the energy storage elements using the vertically wound electrode bodies according to the embodiment and the energy storage elements using the horizontally wound electrode bodies in the comparative example and the working example.
  • FIG. 6 is a front view showing the configuration of an electrode assembly according to Modification 1 of the embodiment.
  • FIG. 7 is a perspective view showing the configuration of a power storage element according to Modification 2 of the embodiment.
  • a power storage element is a power storage element including an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction, wherein the electrode plate comprises: A mixture layer forming portion having the mixture layer formed thereon, and a mixture layer non-forming portion disposed at an end portion in the first direction from the mixture layer forming portion and having no mixture layer formed thereon.
  • the electrode body has a flat shape in which a length in a second direction that intersects the first direction is longer than a length in a third direction that intersects the first direction and the second direction.
  • the width of the composite material layer forming portion is 16 times or more the width of the composite material layer non-forming portion.
  • the electrode body has a flat shape in which the electrode plate is wound around the winding axis extending in the first direction, the second direction is longer than the third direction, and the electrode body has a flat shape.
  • the width of the composite material layer forming portion of the electrode plate is 16 times or more the width of the composite material layer non-forming portion of the end portion of the electrode plate in the first direction.
  • the ratio of the composite material layer forming portion of the electrode plate in the vertical direction in the container is generally constant.
  • the proportion of the mixture layer-forming portion in the container is substantially constant.
  • the ratio of the composite material layer formed portion to the composite material layer non-formed portion of the electrode plate becomes large.
  • the proportion occupied by the part becomes large.
  • the inventors of the present application have found that when the width of the composite material layer formed portion in the electrode body is 16 times or more the width of the composite material layer non-formed portion, the vertically wound electrode body is superior to the horizontally wound electrode body in the capacity of the storage element. It was found that the energy density increases. Therefore, by setting the width of the composite material layer forming portion in the electrode body to be 16 times or more the width of the composite material layer non-forming portion, the energy density of the electric storage element can be improved.
  • the width of the composite material layer forming portion may be 40 times or more the width of the composite material layer non-forming portion.
  • the inventors of the present application have found that the energy density effectively increases until the width of the composite material layer formed portion of the electrode body becomes 40 times or more the width of the composite material layer non-formed portion in the electric storage element. . Therefore, by making the width of the composite material layer formed portion of the electrode body 40 times or more the width of the composite material layer non-formed portion, it is possible to use an electrode body having an effectively high energy density. can improve the energy density of
  • the width of the composite material layer forming portion may be 80 times or less of the width of the composite material layer non-forming portion.
  • the inventors of the present application have found that, in an electric storage element, if the width of the composite material layer forming portion of the electrode body is greater than 80 times the width of the composite material layer non-forming portion, the electrode body becomes too long and difficult to form. It was found that the energy density did not increase significantly. Therefore, by setting the width of the composite material layer forming portion of the electrode body to 80 times or less of the width of the composite material layer non-forming portion, it is possible to easily form the electrode body and improve the energy density of the storage element. can.
  • the first length in the first direction of the electrode body may be twice or more the second length in the second direction of the electrode body.
  • the inventors of the present application have found that in a storage element, when the first length in the first direction of the electrode body is at least twice the second length in the second direction, the vertically wound electrode body is superior to the horizontally wound electrode body. It was found that the energy density is higher than Therefore, by making the first length in the first direction of the electrode body twice or more the second length in the second direction, the energy density of the electric storage element can be improved.
  • the first length may be five times or more of the second length.
  • the inventors of the present application have found that the energy density effectively increases until the first length of the electrode body is five times the second length in the storage device. Therefore, by setting the first length of the electrode body to be 5 times or more the second length, an electrode body with effectively increased energy density can be used, thereby improving the energy density of the storage element. be able to.
  • a power storage element is a power storage element including an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction, wherein the electrode plate comprises: A mixture layer forming portion having the mixture layer formed thereon, and a mixture layer non-forming portion disposed at an end portion in the first direction from the mixture layer forming portion and having no mixture layer formed thereon.
  • the electrode body has a flat shape in which a length in a second direction that intersects the first direction is longer than a length in a third direction that intersects the first direction and the second direction.
  • a first length in the first direction of the electrode body may be five times or more of a second length in the second direction of the electrode body.
  • the first length in the first direction of the electrode body is five times or more the second length in the second direction, thereby improving the energy density of the electric storage element. can be planned.
  • the width of the composite material layer forming portion in the first direction may be 567 mm or more.
  • the inventors of the present application have found that the energy density is effectively increased when the width of the composite material layer forming portion of the electrode body is as long as 567 mm or more in the electric storage element. Therefore, by increasing the width of the composite material layer forming portion of the electrode body to 567 mm or more, it is possible to use an electrode body with effectively increased energy density, so that the energy density of the storage element can be improved. can.
  • a container in which the electrode body is housed, and an electrode terminal projecting in the first direction from an end surface of the container in the first direction may be provided.
  • the electrode terminals protrude from the container, creating a space around the electrode terminals that is difficult to utilize. If this space is large, the energy density of the storage element as a whole, including the space concerned, will decrease. Therefore, in the electric storage element, the electrode terminal protrudes in the first direction from the end face of the container in the first direction. As a result, the electrode terminals protrude from the outer surface of the container with a small area, and the space around the electrode terminals that is difficult to utilize due to the protruding electrode terminals can be reduced, so that the energy density of the storage element can be reduced. can be improved.
  • a power storage device includes any one of the plurality of power storage elements described above and a pair of external terminals.
  • the first storage element has a pair of first electrode terminals aligned in the first direction
  • the second storage element has a pair of second electrode terminals aligned in the first direction.
  • the pair of external terminals includes a first electrode terminal of the pair of first electrode terminals that is closer to the second storage element and a pair of second electrode terminals that is closer to the first storage element and a second electrode terminal.
  • the power storage device includes the power storage element described above, it is possible to improve the energy density.
  • the length of the power storage element is long, the distance between two electrode terminals connected to a pair of external terminals may become long.
  • the pair of external terminals are arranged near the two electrode terminals, the pair of external terminals are arranged at distant positions, which may make it difficult to connect the power storage device to the outside.
  • the pair of external terminals are arranged close to each other, the length of the bus bar connecting the pair of external terminals and the two electrode terminals becomes long.
  • the pair of external terminals are the first electrode terminal close to the second storage element of the pair of first electrode terminals of the first storage element, and the pair of second electrode terminals of the second storage element. and a second electrode terminal close to the first storage element.
  • the extending direction of the storage element container the extending direction of the electrode body, the extending direction of the winding axis of the electrode body, the mixture layer formed portion and the mixture layer non-formed portion of the electrode body , the width direction of the composite material layer formed portion and the composite material layer non-formed portion, and the direction in which the pair of electrode terminals of the storage element are arranged are defined as the X-axis direction.
  • the direction in which the pair of long sides of the container of the storage element are aligned (opposing direction), the direction in which the pair of flat portions of the electrode body are aligned (opposing direction), or the thickness direction of the container and the electrode body is defined as the Y-axis direction.
  • the direction in which the pair of short sides (upper and bottom surfaces) of the storage element container are arranged (opposing direction), the direction in which the pair of curved portions of the electrode assembly are arranged (opposing direction), the height direction of the container and the electrode assembly, or the vertical direction is defined as the Z-axis direction.
  • These X-axis direction, Y-axis direction, and Z-axis direction are directions that cross each other (perpendicularly in this embodiment).
  • the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.
  • the positive direction of the X-axis indicates the direction of the arrow on the X-axis
  • the negative direction of the X-axis indicates the direction opposite to the positive direction of the X-axis.
  • the Y-axis direction and the Z-axis direction may also be referred to as the first direction
  • the Z-axis direction may also be referred to as the second direction
  • the Y-axis direction may also be referred to as the third direction.
  • Expressions indicating relative directions or orientations, such as parallel and orthogonal also include cases where the directions or orientations are not strictly speaking. Two directions are orthogonal, not only means that the two directions are completely orthogonal, but also substantially orthogonal, i.e., including a difference of about several percent also means
  • FIG. 1 is a perspective view showing the appearance of power storage device 10 according to the present embodiment.
  • FIG. 1 is a diagram showing the inside of the exterior body 200 by seeing through the exterior body 200, and the exterior body 200 (and the pair of external terminals 300) is indicated by broken lines.
  • the power storage device 10 is a device that can charge electricity from the outside and discharge electricity to the outside, and has a substantially rectangular parallelepiped shape in the present embodiment.
  • the power storage device 10 is a battery module (assembled battery) used for power storage, power supply, or the like.
  • the power storage device 10 is used for driving mobile bodies such as automobiles, motorcycles, water crafts, ships, snowmobiles, agricultural machinery, construction machinery, or railroad vehicles for electric railways, or for starting engines. Used as a battery or the like. Examples of such vehicles include electric vehicles (EV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and gasoline vehicles. Examples of railway vehicles for the electric railway include electric trains, monorails, linear motor cars, and hybrid trains having both diesel engines and electric motors.
  • the power storage device 10 can also be used as a stationary battery or the like for home or business use.
  • the power storage device 10 includes a plurality of power storage elements 100 , an exterior body 200 housing the plurality of power storage elements 100 , and a pair of external terminals 300 .
  • the power storage device 10 also includes a bus bar that connects the power storage elements 100 in series or in parallel, a bus bar that connects the power storage elements 100 and the external terminals 300, and the like, but illustration and description thereof are omitted.
  • the power storage device 10 includes spacers and double-sided tape placed between the plurality of power storage elements 100, an adhesive or filler for fixing the power storage elements 100 to the exterior body 200, and a plurality of power storage elements.
  • Constraining members (end plates, side plates, etc.) that constrain 100, busbar frames that position the busbars, and electric devices such as circuit boards and relays that monitor or control the charging state and discharging state of the storage element 100. may be provided.
  • the exterior body 200 is a substantially rectangular parallelepiped (box-shaped) container (module case) that constitutes the exterior body of the power storage device 10 . That is, the exterior body 200 is arranged outside the plurality of power storage elements 100, fixes the plurality of power storage elements 100 at predetermined positions, and protects them from impacts and the like.
  • the exterior body 200 is made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET).
  • PC polycarbonate
  • PP polypropylene
  • PE polyethylene
  • PS polystyrene
  • PPS polyphenylene sulfide resin
  • PPE polyphenylene ether
  • PET polyethylene terephthalate
  • the exterior body 200 thereby prevents the plurality of power storage elements 100 from coming into contact with an external metal member or the like.
  • the exterior body 200 may be made of a conductive material such as metal as long as the insulation of the power storage element 100 is maintained.
  • the "insulation" mentioned above means electrical insulation. The same applies to the following.
  • a pair of (positive electrode side and negative electrode side) external terminals 300 are provided on the exterior body 200 .
  • the pair of external terminals 300 are positive and negative external connection terminals for charging electricity from the outside of the power storage device 10 and discharging electricity to the outside of the power storage device 10, and are made of aluminum, an aluminum alloy, It is made of a conductive member made of metal such as copper, copper alloy, iron, steel, stainless steel, or the like.
  • the pair of external terminals 300 are arranged in the X-axis direction and protrude in the Z-axis positive direction at the X-axis direction central portion and the Y-axis negative direction end portion of the exterior body 200 .
  • the storage element 100 is a secondary battery (single battery) capable of charging and discharging electricity, and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. .
  • the power storage element 100 has a long and flat rectangular parallelepiped shape (square shape) extending in the X-axis direction (first direction).
  • the storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor.
  • the power storage element 100 may be a primary battery that can use stored electricity without being charged by the user, instead of a secondary battery.
  • the storage element 100 may be a battery using a solid electrolyte.
  • the storage element 100 may be a pouch-type storage element.
  • a plurality of (several tens, 48 in FIG. 1) power storage elements 100 are arranged side by side in the X-axis direction (first direction) and the Y-axis direction (third direction).
  • the energy storage element 100 arranged in the positive direction of the X axis is also called the first energy storage element 101
  • the energy storage element 100 arranged in the negative direction of the X axis is also called the second energy storage element 102. That is, a plurality (24 in FIG. 1) of the first storage elements 101 are arranged side by side in the Y-axis direction in the X-axis plus direction, and a plurality (24 in FIG.
  • the plurality of power storage elements 100 included in the power storage device 10 have the first power storage element 101 and the second power storage element 102 arranged in the X-axis direction (first direction).
  • Each of the plurality of power storage elements 100 has a pair of (positive electrode side and negative electrode side) electrode terminals 120 (121 and 122) arranged in the X-axis direction (first direction) (see FIG. 2). A detailed description of the configuration of the storage element 100 including the pair of electrode terminals 120 (121 and 122) will be given later.
  • the pair of electrode terminals 120 (121 and 122) of the first storage element 101 are also referred to as first electrode terminals 120 (121 and 122).
  • the pair of electrode terminals 120 (121 and 122) of the second storage element 102 are also referred to as second electrode terminals 120 (121 and 122). That is, each of the plurality of first storage elements 101 has a pair of first electrode terminals 120 (121 and 122) aligned in the X-axis direction (first direction).
  • each of the plurality of second storage elements 102 has a pair of second electrode terminals 120 (121 and 122) aligned in the X-axis direction (first direction).
  • the first electrode terminals 120, the second electrode terminals 120, the first electrode terminal 120 and the second electrode terminal 120, the first electrode terminal 120 and the external terminal 300, and the second electrode terminal 120 and An external terminal 300 is connected via a bus bar or the like or directly.
  • the plurality of first storage elements 101 and the plurality of second storage elements 102 are connected in series or in parallel.
  • the plurality of first storage elements 101 and the plurality of second storage elements 102 are all connected in series.
  • the second electrode terminal 120 of the second storage element 102 located at the end in the negative direction is connected to the pair of external terminals 300 .
  • the first electrode terminal 122 of the first storage element 101 and the second electrode terminal 102 of the second storage element 102 are connected to the first storage element 101 and the second storage element 102 at the ends in the Y-axis negative direction.
  • the terminals 121 are connected to a pair of external terminals 300 via bus bars or the like.
  • the first electrode terminal 121 is the electrode terminal farthest from the second storage element 102 among the pair of first electrode terminals 120 of the first storage element 101. is.
  • the first electrode terminal 122 is the electrode terminal closest to the second storage element 102 among the pair of first electrode terminals 120 of the first storage element 101 .
  • the second electrode terminal 121 is the electrode closest to the first storage element 101 among the pair of second electrode terminals 120 of the second storage element 102 . terminal.
  • the second electrode terminal 122 is the electrode terminal farthest from the first storage element 101 among the pair of second electrode terminals 120 of the second storage element 102 . Therefore, the first electrode terminal 122 of the first storage element 101 close to the second storage element 102 and the second electrode terminal 121 of the second storage element 102 close to the first storage element 101 are connected to the pair of external terminals 300. Connected.
  • the pair of external terminals 300 includes the first electrode terminal 122 of the pair of first electrode terminals 120 of the first storage element 101 that is closer to the second storage element 102, and the pair of external terminals 300 that the second storage element 102 has. and the second electrode terminal 121 close to the first storage element 101 among the second electrode terminals 120 of the .
  • the pair of external terminals 300 are located directly above the first storage element 101 at the end in the negative Y-axis direction and the second storage element 102 at the end in the negative Y-axis direction (positive Z-axis direction) or in the vicinity thereof. preferably located.
  • the pair of external terminals 300 includes a first electrode terminal 122 close to the second storage element 102 of the first storage element 101 and a second electrode terminal 121 close to the first storage element 101 of the second storage element 102. (in the Z-axis plus direction) or in the vicinity thereof.
  • a plurality of first storage elements 101 are electrically connected by connecting the first electrode terminals 120 of adjacent first storage elements 101 to each other via a bus bar or the like.
  • the first electrode terminals 121 and the first electrode terminals 122 of the adjacent first storage elements 101 are arranged at opposite positions in the X-axis direction.
  • a plurality of first storage elements 101 are connected in series by connecting first electrode terminals 121 and first electrode terminals 122 of adjacent first storage elements 101 via a bus bar or the like. The same applies to the second storage element 102 as well.
  • the first electrode terminal 120 of the first storage element 101 located at the end of the plurality of first storage elements 101 in the positive direction of the Y axis, and the end of the plurality of second storage elements 102 in the positive direction of the Y axis is connected to the second electrode terminal 120 of the second storage element 102 located at , via a bus bar or the like.
  • the first storage element 101 at the end in the positive Y-axis direction and the second storage element 102 at the end in the positive Y-axis direction are electrically connected.
  • an even number of first storage elements 101 are arranged, and an even number of second storage elements 102 are also arranged.
  • the first electrode terminal 121 of the first storage element 101 at the end in the positive Y-axis direction becomes the electrode terminal closer to the second storage element 102 out of the pair of first electrode terminals 120 .
  • the second electrode terminal 122 is the electrode terminal closer to the first storage element 101 out of the pair of second electrode terminals 120 .
  • the first electrode terminal 121 of the first storage element 101 close to the second storage element 102 and the second electrode terminal 122 of the second storage element 102 close to the first storage element 101 are connected via a bus bar or the like.
  • the first storage element 101 and the second storage element 102 are connected in series.
  • the number of power storage elements 100 to be arranged is not limited, and dozens of power storage elements 100 may be arranged, or only a few power storage elements 100 may be arranged. However, as described above, an even number of first storage elements 101 and an even number of second storage elements 102 are preferably arranged. The number of arranged first storage elements 101 and the number of arranged second storage elements 102 are preferably the same or close to each other. Either the plurality of first storage elements 101 or the plurality of second storage elements 102 may be connected in parallel.
  • FIG. 2 is a perspective view showing the appearance of the storage element 100 according to the present embodiment and the electrode body 130 included in the storage element 100. As shown in FIG. In FIG. 2 , the electrode body 130 housed in the container 110 of the electric storage element 100 is taken out from the container 110 and shown below the electric storage element 100 . Since the power storage elements 100 (the first power storage element 101 and the second power storage element 102) of the power storage device 10 all have the same configuration, the configuration of one power storage element 100 will be described in detail below.
  • the storage element 100 has a container 110 and the pair of electrode terminals 120 (121 and 122) (positive electrode side and negative electrode side) described above. 130 and a pair of (positive electrode side and negative electrode side) current collectors (not shown) are accommodated.
  • An electrolytic solution non-aqueous electrolyte
  • gaskets are arranged between the electrode terminals 120 and current collectors and the container 110. omitted.
  • the type of the electrolytic solution is no particular limitation on the type of the electrolytic solution as long as it does not impair the performance of the storage element 100, and various types can be selected.
  • the electric storage element 100 may have a spacer disposed on the side of the electrode body 130, an insulating film wrapping the electrode body 130 and the like, and the like.
  • An insulating film (shrink tube or the like) covering the outer surface of the container 110 may be arranged around the container 110 .
  • the material of the insulating film is not particularly limited as long as it can ensure the insulation required for the storage element 100, but any insulating resin, epoxy resin, kapton, Teflon (registered trademark), silicon, polyisoprene, and polyvinyl chloride.
  • the container 110 is a cuboid-shaped (square or box-shaped) case extending in the X-axis direction (first direction).
  • the material of the container 110 is not particularly limited, and can be, for example, a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate, but resin can also be used.
  • the container 110 is provided with a gas discharge valve that releases the pressure when the pressure inside the container 110 is excessively increased, and an injection part for injecting an electrolytic solution into the inside of the container 110. may
  • the container 110 has a pair of long side surfaces 111 extending in the X-axis direction on both side surfaces in the Y-axis direction, and a pair of short side surfaces 112 extending in the X-axis direction on both side surfaces in the Z-axis direction. has a pair of terminal placement surfaces 113 extending in the Z-axis direction.
  • the long side surface 111 is a rectangular and planar side surface elongated in the X-axis direction, which forms the long side surface of the container 110, and is arranged to face in the Y-axis direction.
  • the long side 111 is adjacent to the short side 112 and the terminal arrangement surface 113 and has a larger area than the short side 112 .
  • the short side surface 112 is a rectangular and planar side surface elongated in the X-axis direction, which forms the short side surface of the container 110, and is arranged to face in the Z-axis direction.
  • the short side 112 is adjacent to the long side 111 and the terminal arrangement surface 113 and has a smaller area than the long side 111 .
  • the terminal arrangement surface 113 is a rectangular and planar side surface on which the electrode terminal 120 is arranged, and is arranged to face in the X-axis direction.
  • the electrode terminals 120 protrude in the X-axis direction (first direction) from the end face of the container 110 in the X-axis direction (first direction) on both sides of the container 110 in the X-axis direction (first direction).
  • terminal members a positive electrode terminal and a negative electrode terminal
  • the electrode terminal 121 is the positive terminal
  • the electrode terminal 122 is the negative terminal.
  • the electrode terminal 121 is fixed to the terminal arrangement surface 113 of the container 110 in the positive direction of the X axis, and is arranged to protrude from the terminal arrangement surface 113 in the positive direction of the X axis.
  • the electrode terminal 122 is fixed to the terminal arrangement surface 113 of the container 110 in the negative direction of the X axis, and arranged so as to protrude from the terminal arrangement surface 113 in the negative direction of the X axis.
  • the electrode terminals 120 are electrically connected to the positive and negative plates of the electrode body 130 via current collectors. That is, the electrode terminal 120 leads the electricity stored in the electrode body 130 to the external space of the storage element 100 and also introduces the electricity into the internal space of the storage element 100 to store the electricity in the electrode body 130 .
  • the electrode terminal 120 is made of aluminum, an aluminum alloy, copper, a copper alloy, or the like.
  • the electrode body 130 is a power storage element (power generation element) formed by laminating a positive electrode plate, a negative electrode plate, and a separator.
  • a microporous sheet made of resin, a non-woven fabric, or the like can be used as the separator.
  • the positive electrode plate is obtained by forming a positive electrode mixture layer on a positive electrode base material, which is a long belt-shaped collector foil made of metal such as aluminum or an aluminum alloy.
  • the negative electrode plate is obtained by forming a negative electrode mixture layer on a negative electrode base material, which is a long band-shaped collector foil made of a metal such as copper or a copper alloy.
  • the positive electrode mixture layer contains a positive electrode active material, a conductive aid, and a binder
  • the negative electrode mixture layer contains a negative electrode active material, a conductive aid, and a binder.
  • known materials can be appropriately used as long as they can intercalate and deintercalate lithium ions.
  • polyanion compounds such as LiMPO 4 , LiMSiO 4 , LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, LiMn 2 Spinel-type lithium manganese oxides such as O 4 and LiMn 1.5 Ni 0.5 O 4 , LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) Lithium transition metal oxides, etc., can be used.
  • negative electrode active materials include lithium metal, lithium alloys (lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and lithium metal-containing alloys such as Wood's alloys). , alloys that can absorb and release lithium, carbon materials (e.g. graphite, non-graphitizable carbon, easily graphitizable carbon, low-temperature fired carbon, amorphous carbon, etc.), silicon oxides, metal oxides, lithium metal oxides ( Li 4 Ti 5 O 12 , etc.), polyphosphate compounds, or compounds of transition metals and group 14 to group 16 elements, such as Co 3 O 4 and Fe 2 P, which are generally called conversion negative electrodes. .
  • lithium alloys lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and lithium metal-containing alloys such as Wood's alloys.
  • the electrode body 130 is formed by alternately stacking and winding a positive electrode plate, a negative electrode plate, and two separators.
  • electrode body 130 includes electrode plates (positive electrode plate and negative electrode plate) on which composite material layers are formed as described above, and is wound around winding axis R extending in the X-axis direction (first direction). It is a wound electrode body (so-called vertically wound electrode body) formed by winding.
  • the winding axis R is a virtual axis that is the central axis when the positive electrode plate, the negative electrode plate, etc. are wound. A straight line.
  • the electrode body 130 is long in the X-axis direction, and the length in the Z-axis direction (second direction) is longer than the length in the Y-axis direction (third direction) (thickness in the Y-axis direction). It has a flat shape (elliptical cylinder shape).
  • the positive electrode plate and the negative electrode plate are wound while being shifted in the direction along the winding axis R (the X-axis direction (first direction)) with the separator interposed therebetween.
  • Each of the positive electrode plate and the negative electrode plate has a portion where the positive electrode material layer and the negative electrode material layer are not formed (coated) and the positive electrode base material and the negative electrode base material are exposed at the ends of the respective shifted directions.
  • the electrode plates (positive electrode plate and negative electrode plate) are arranged at the composite material layer forming portion 131 on which the composite material layer is formed and at the end portion in the X-axis direction (first direction) of the composite material layer forming portion 131. , and mixture layer non-formed portions 132 and 133 where no mixture layer is formed.
  • the mixture layer forming portion 131 is a portion of the positive electrode base material and the negative electrode base material on which the positive electrode mixture layer and the negative electrode mixture layer are formed, and a portion composed of the positive electrode mixture layer and the negative electrode mixture layer.
  • the composite layer forming portion 131 is a main body portion of the electrode body 130 in which the positive electrode composite material layer and the negative electrode composite material layer of the electrode body 130 are formed. , as a whole, has an elongated cylindrical shape extending in the X-axis direction.
  • the composite material layer forming portion 131 has a pair of composite material layer flat portions 131a on both sides in the Y-axis direction, and a pair of composite material layer curved portions 131b on both sides in the Z-axis direction.
  • the compound layer flat portion 131a is a rectangular and flat portion that connects the ends of the pair of compound layer curved portions 131b and extends parallel to the XZ plane facing the Y-axis direction.
  • the compound layer curved portion 131b is a curved portion extending in the X-axis direction, curved in a semicircular arc shape so as to protrude in the Z-axis direction when viewed from the X-axis direction.
  • the curved shape of the composite layer curved portion 131b is not limited to a semicircular arc shape, and may be a part of an elliptical shape or the like, and may be curved in any way.
  • the outer surface of the composite material layer flat portion 131a facing in the Y-axis direction is not limited to being flat, and the outer surface may be slightly concave or slightly bulging.
  • the composite material layer non-formed portion 132 is a portion of the positive electrode substrate where the positive electrode composite material layer is not formed. That is, the composite material layer non-forming portion 132 is an end portion of the electrode body 130 in the X-axis positive direction, which protrudes from the composite material layer-forming portion 131 of the electrode body 130 in the X-axis positive direction. By being wound around, it has a substantially long cylindrical shape as a whole. As a result, the composite material layer non-forming portion 132 has a pair of flat end portions 132a on both sides in the Y-axis direction, and a pair of curved end portions 132b on both sides in the Z-axis direction.
  • the composite material layer non-formation portion 133 is a portion of the negative electrode substrate where the negative electrode composite material layer is not formed. That is, the composite material layer non-formed portion 133 is an end portion of the electrode body 130 in the negative X-axis direction that protrudes from the composite material layer formed portion 131 of the electrode body 130 in the negative direction of the X-axis. By being wound around, it has a substantially long cylindrical shape as a whole. As a result, the composite material layer non-forming portion 133 has a pair of flat end portions 133a on both sides in the Y-axis direction, and a pair of curved end portions 133b on both sides in the Z-axis direction.
  • the end flat portion 132a is a rectangular and flat portion that connects the ends of the pair of end curved portions 132b and extends parallel to the XZ plane and in the Z-axis direction.
  • the end curved portion 132b is a curved portion curved in a semicircular arc shape so as to protrude in the Z-axis direction when viewed from the X-axis direction.
  • the curved shape of the end curved portion 132b is not limited to a semicircular arc shape, and may be a part of an elliptical shape or the like, and may be curved in any way.
  • the flat end portion 132a is not limited to having a flat outer surface facing in the Y-axis direction, and the outer surface may be slightly concave or slightly bulging.
  • the flat end portion 133a and the curved end portion 133b of the composite material layer non-formation portion 133 have the same configuration as the flat end portion 132a and the curved end portion 132b described above, so detailed description thereof will be omitted. .
  • the collectors are conductive collectors (positive collector and negative collector) that are electrically and mechanically connected to the electrode terminal 120 and the electrode body 130 .
  • the positive electrode current collector is electrically and mechanically connected (joined) to the electrode terminal 121 and the end flat portion 132 a of the composite material layer non-formed portion 132 of the electrode assembly 130 .
  • the negative electrode current collector is electrically and mechanically connected (joined) to the electrode terminal 122 and the end flat portion 133 a of the composite material layer non-formed portion 133 of the electrode body 130 .
  • the positive current collector is made of aluminum or an aluminum alloy, like the positive base material of the positive plate of the electrode body 130.
  • the negative current collector is made of copper or copper, like the negative base material of the negative plate of the electrode body 130. It is made of an alloy or the like.
  • the electrode terminal 120 (121 and 122) and the composite material layer non-formed portions 132 and 133 of the electrode body 130 may be directly connected without a current collector.
  • FIG. 3 is a front view showing the size of electrode assembly 130 according to the present embodiment.
  • the length of the container 110 in the X-axis direction is defined as a first container length L1
  • the length of the container 110 in the Z-axis direction (second direction) ( height) is the second container length H1
  • the length (width, thickness) of the container 110 in the Y-axis direction (third direction) is the third container length W1.
  • the first container length L1 can also be defined as the length of the long side 111 in the X-axis direction, the length of the short side 112 in the X-axis direction, or the distance between the pair of terminal placement surfaces 113 .
  • the second container length H1 can also be defined as the length of the long side 111 in the Z-axis direction, the length of the terminal placement surface 113 in the Z-axis direction, or the distance between the pair of short sides 112 .
  • the third container length W1 is also defined as the length (width) of the short side 112 in the Y-axis direction, the length (width) of the terminal arrangement surface 113 in the Y-axis direction, or the distance between the pair of long sides 111. can.
  • the length of the electrode body 130 in the X-axis direction is the first electrode body length L2
  • the length (height) of the electrode body 130 in the Z-axis direction (second direction) is the second electrode body length L2.
  • the body length is H2
  • the length (width and thickness) of the electrode body 130 in the Y-axis direction (third direction) is taken as the third electrode body length W2.
  • the first electrode body length L2 can also be defined as the distance between both end surfaces of the composite material layer non-formed portions 132 and 133 in the X-axis direction.
  • the second electrode body length H2 can also be defined as the distance between both end surfaces of the pair of composite material layer curved portions 131b of the composite material layer forming portion 131 in the Z-axis direction.
  • the third electrode body length W2 can also be defined as the distance between both end surfaces of the pair of composite material layer flat portions 131a of the composite material layer forming portion 131 in the Y-axis direction.
  • the width of the positive electrode plate in the X-axis direction (first direction) is defined as a positive electrode plate width A
  • the width of the negative electrode plate in the X-axis direction (first direction) is defined as a negative electrode plate width B.
  • the width of the composite material layer formed portion 131 in the X-axis direction (first direction) is defined as the composite material layer formed portion width C1
  • the width of the composite material layer non-formed portion 132 in the X-axis direction (first direction) is defined as the composite material layer non-width.
  • the width of the formed portion is C2, and the width of the composite material layer non-formed portion 133 in the X-axis direction (first direction) is defined as the composite material layer non-formed portion width C3.
  • the composite material layer non-formed portion width C2 is the composite material layer non-formed portion width of the positive electrode
  • the composite material layer non-formed portion width C3 is the composite material layer non-formed portion width of the negative electrode.
  • the width of the positive electrode mixture layer in the X-axis direction and the width of the negative electrode mixture layer in the X-axis direction are both illustrated as the same length as the width of the mixture layer forming portion C1.
  • the width of the negative electrode mixture layer in the X-axis direction is slightly larger than the width of the positive electrode mixture layer in the X-axis direction. That is, the negative electrode mixture layer overlaps the mixture layer non-formed portion 132 in the X-axis direction. That is, in FIG. 3, the composite material layer non-forming portion width C2 indicates the portion not overlapping the negative electrode composite material layer, but the actual composite material layer non-forming portion width C2 is the portion overlapping the negative electrode composite layer.
  • the width of the positive electrode mixture layer in the X-axis direction is defined as a mixture layer forming portion width C1 (positive electrode)
  • the width of the negative electrode mixture layer in the X-axis direction is defined as a mixture layer forming portion width C1 (negative electrode).
  • one of the composite material layer forming width C1 (positive electrode) and the composite material layer forming width C1 (negative electrode) is simply indicated as the composite material layer forming portion width C1.
  • Table 1 shows the size of the container 110 in Comparative Examples 1 to 3 and Examples 1 to 7 in the above configuration.
  • Table 1 is a table showing sizes of containers 110 in Comparative Examples 1 to 3 and Examples 1 to 7 in the storage device 100 according to the present embodiment. Specifically, Table 1 shows the first container length L1, the second container length H1, the third container length W1, and the third One container length L1/second container length H1 (first container length L1/second container length H1) is shown.
  • Table 2 shows the sizes of the electrode bodies 130 in Comparative Examples 1 to 3 and Examples 1 to 7.
  • Table 2 is a table showing the sizes of the electrode bodies 130 in Comparative Examples 1 to 3 and Examples 1 to 7 in the energy storage device 100 according to the present embodiment. Specifically, Table 2 shows the first electrode body length L2, the second electrode body length H2, the third electrode body length W2, and First electrode body length L2/second electrode body length H2 (first electrode body length L2/second electrode body length H2) is shown.
  • Table 3 shows the sizes of the composite material layer formed portion 131 and the composite material layer non-formed portions 132 and 133 of the electrode body 130 in Comparative Examples 1 to 3 and Examples 1 to 7.
  • Table 3 shows the composite material layer formed portion 131 and the composite material layer non-formed portions 132 and 133 of the electrode body 130 in Comparative Examples 1 to 3 and Examples 1 to 7 in the energy storage device 100 according to the present embodiment. It is a table showing sizes. Specifically, Table 3 shows the composite material layer forming portion width C1 (positive electrode), the composite material layer non-forming portion width C2, and the composite material layer of the electrode bodies 130 in Comparative Examples 1 to 3 and Examples 1 to 7.
  • Forming portion width C1 positive electrode/mixture layer non-forming portion width C2, composite material layer forming portion width C1 (negative electrode), composite material layer non-forming portion width C3, and composite material layer forming portion width C1 (negative electrode)/ It shows the width of the composite material layer non-forming portion C3.
  • the composite material layer forming portion width C1 (positive electrode) 66.2 mm
  • the composite material layer non-forming portion width C2 14.2 mm
  • Width C2 4.7
  • composite material layer forming portion width C1 (negative electrode) 70.3 mm
  • composite material layer non-forming portion width C3 14.2 mm
  • the layer non-forming portion width C3 5.0.
  • FIG. 4 is a front view showing the configuration of an electrode assembly 140, which is a horizontally wound electrode assembly, for comparison with electrode assembly 130, which is a vertically wound electrode assembly, according to the present embodiment.
  • FIG. 4 is a diagram corresponding to FIG.
  • the electrode body 140 is formed by winding an electrode plate (a positive electrode plate and a negative electrode plate) on which a composite material layer is formed around a winding axis Rz extending in the Z-axis direction. It is a horizontally wound electrode body.
  • the electrode body 140 has a flat shape (elliptical cylinder shape) that is long in the X-axis direction, oblong when viewed from the Z-axis direction, and thin in the Y-axis direction.
  • the electrode body 140 includes a composite material layer forming portion 141 having a composite material layer formed thereon, and a composite material layer non-formed tab protruding from the composite material layer forming portion 141 in the Z-axis positive direction and having no composite material layer formed thereon. and portions 142 and 143 .
  • the length of the electrode body 140 in the X-axis direction is the same as the length of the electrode body 130 in the X-axis direction (first electrode body length L2).
  • the electrode body 140 has a length in the Z-axis direction (the total length of the composite material layer formed portion 141 and the composite material layer non-formed portions 142 and 143) and a length in the Z-axis direction of the electrode body 130 (second It is the same as the electrode body length H2). It is assumed that the electrode body 140 has the same width (third electrode body length W2) as the electrode body 130 also in the Y-axis direction.
  • a composite material layer non-formed portion width C4 which is the amount of protrusion of the composite material layer non-formed portions 142 and 143 in the Z-axis positive direction, is the protrusion of the composite material layer non-formed portion 132 or 133 of the electrode assembly 130 in the X-axis direction.
  • the length is the same as the width C2 or C3 of the composite material layer non-formation portion, which is the amount.
  • the widths C2 and C3 of the mixture non-formed portion are the same length, so the width C4 of the mixture non-formed portion is It is the same length as C2 and C3.
  • Table 4 shows the difference in energy between the energy storage device 100 using the vertically wound electrode assembly according to the present embodiment and the energy storage device using the horizontally wound electrode assembly in Comparative Examples 1 to 3 and Examples 1 to 7.
  • Fig. 10 is a table showing a comparison of densities; Specifically, Table 4 shows, in Comparative Examples 1 to 3 and Examples 1 to 7, the storage element 100 using the vertically wound electrode body 130 and the horizontally wound electrode body. The energy density with respect to the electric storage element using the body 140, the difference therebetween, and the capacity of the electric storage element 100 are shown.
  • FIG. 5A and 5B show, in the energy storage element 100 using the vertically wound electrode body according to the present embodiment, energy storage elements using the horizontally wound electrode bodies in Comparative Examples 1 to 3 and Examples 1 to 7. is a graph showing a comparison of energy densities with Specifically, FIG. 5A shows, in Comparative Examples 1 to 3 and Examples 1 to 7, a power storage element 100 using an electrode body 130 that is a vertically wound electrode body and an electrode that is a horizontally wound electrode body. 4 is a graph showing changes in energy density with a power storage element using the body 140 with respect to the width C1 of the composite material layer formed portion/the width C2 of the non-composite material layer formed portion.
  • FIG. 5A shows, in Comparative Examples 1 to 3 and Examples 1 to 7, a power storage element 100 using an electrode body 130 that is a vertically wound electrode body and an electrode that is a horizontally wound electrode body.
  • 4 is a graph showing changes in energy density with a power storage element using the body 140 with respect to the width C1 of the composite
  • 5B shows, in Comparative Examples 1 to 3 and Examples 1 to 7, the storage element 100 using the vertically wound electrode body 130 and the horizontally wound electrode body 140.
  • 4 is a graph showing a change in difference in energy density from a power storage element with respect to width C1 of a mixture layer formed portion/width C2 of a portion not formed with a mixture layer.
  • the value of the composite material layer forming portion width C1 (positive electrode) is used as the composite material layer forming portion width C1
  • the value of the composite material layer forming portion width C1 negative electrode
  • Example 1 the energy density of the storage device 100 using the electrode assembly 130 is 235 Wh/L, exceeding the energy density of 230 Wh/L of the storage device using the electrode assembly 140 .
  • the capacity of the storage device 100 in Example 1 is 52.9 Ah.
  • the configurations of the storage elements 100 in Examples 1 to 7 are preferable.
  • the first container length L1 is 250 mm or more, so the first container length L1 (the X-axis direction (first direction) of the container 110 is 250 mm or more, the energy density of the storage element 100 can be improved.
  • the first container length L1/second container length H1 is 1.7 or more, the first container length L1 is equal to the second container length H1 (the Z-axis direction of the container 110 When the length (height) in the second direction is 1.7 times or more or 2 times or more, the energy density of the storage element 100 can be improved.
  • the length L2 of the first electrode body was 246.7 mm or more, so the length L2 of the first electrode body (the length of the first electrode body 130 in the X-axis direction (first direction) One length) is 247 mm or more or 250 mm or more, the energy density of the storage element 100 can be improved.
  • the first electrode body length L2/second electrode body length H2 is 1.8 or more. When it is 1.8 times or more or 2 times or more of the second length in the direction (second direction), the energy density of the storage element 100 can be improved.
  • the composite material layer forming portion width C1 is 1.6 times or more the length H2 of the second electrode body. When it is 1.6 times or more or 2 times or more the body length H2, the energy density of the storage element 100 can be improved.
  • the composite material layer forming portion width C1 (positive electrode) is 216.2 mm or more, and the composite material layer forming portion width C1 (negative electrode) is 220.3 mm or more.
  • the composite material layer forming portion width C1 the width of the composite material layer forming portion 131 in the X-axis direction (first direction)
  • the composite material layer forming portion width C1 (positive electrode)/the composite material layer non-forming portion width C2 is 15.2 or more
  • the composite material layer forming portion width C1 (negative electrode)/the composite material layer non-forming is 15.2 or more.
  • the portion width C3 is 15.5 or more
  • the composite material layer forming portion width C1 is 15.2 times or more the composite material layer non-forming portion width C2 or C3 (the width of the composite material layer non-forming portion 132 or 133).
  • the energy density of the storage element 100 can be improved.
  • the capacity of the storage element 100 is 52.9 Ah or more, so when the capacity of the storage element 100 is 53 Ah or more, the energy density of the storage element 100 is improved can be achieved.
  • FIGS. 5A and 5B the energy density of the storage element 100 is effectively increased from Example 1 to Example 3 (the increase in the value of “vertical winding-horizontal winding” is big). Therefore, in Examples 3 to 7, the electrode body 130 with effectively increased energy density can be used, so that the energy density of the storage element 100 can be improved.
  • the configurations of the storage elements 100 in Examples 3 to 7 are preferable.
  • the first container length L1 is preferably 600 mm or more, and the first container length L1/second container length H1 is 4.1 or more or 5 or more. is preferred.
  • the first electrode body length L2 is preferably 597 mm or more or 600 mm or more, and the first electrode body length L2/second electrode body length H2 is preferably 4.4 or more or 5 or more. preferable.
  • the first electrode body length L2 (the first length of the electrode body 130 in the X-axis direction (first direction)) is equal to the second electrode body length H2 (the second electrode body length H2 (the second length of the electrode body 130 in the Z-axis direction (second direction)). It is preferably 4.4 times or more, or 5 times or more of the two lengths). From Tables 2 and 3, it is preferable that the composite material layer forming portion width C1 is 4.2 times or more, or 5 times or more the length H2 of the second electrode body.
  • the composite material layer forming portion width C1 is 567 mm or more or 570 mm or more, and the composite material layer forming portion width C1/the composite material layer non-forming portion width C2 or C3 is 40 or more. is preferred. That is, the composite material layer forming portion width C1 (the width of the composite material layer forming portion 131 in the X-axis direction (first direction)) is equal to the composite material layer non-forming portion width C2 or C3 (the composite material layer non-forming portion 132 or 133 width) is preferably 40 times or more. As shown in Table 4, it is preferable that the capacity of the storage element 100 is 132 Ah or more.
  • the energy density of the storage element 100 can be improved.
  • the first container length L1 is preferably 2000 mm or less
  • the first container length L1/second container length H1 is 13.8 or less or 13 or less.
  • the first electrode body length L2 is preferably 1996 mm or less or 1990 mm or less
  • the first electrode body length L2/second electrode body length H2 is preferably 14.7 or less or 14 or less. preferable.
  • the first electrode body length L2 (the first length of the electrode body 130 in the X-axis direction (first direction)) is equal to the second electrode body length H2 (the second electrode body length H2 (the second length of the electrode body 130 in the Z-axis direction (second direction)). It is preferably not more than 14.7 times or not more than 14 times the length (two lengths). From Tables 2 and 3, it is preferable that the composite material layer forming portion width C1 is 14.5 times or less or 14 times or less the length H2 of the second electrode body.
  • the composite material layer forming portion width C1 is preferably 1970 mm or less or 1966 mm or less, and the composite material layer forming portion width C1/the composite material layer non-forming portion width C2 or C3 is 138 or less or 130 or less. is preferred. That is, the composite material layer forming portion width C1 (the width of the composite material layer forming portion 131 in the X-axis direction (first direction)) is equal to the composite material layer non-forming portion width C2 or C3 (the composite material layer non-forming portion 132 or 133 width) is preferably 138 times or less or 130 times or less. As shown in Table 4, it is preferable that the capacity of the storage element 100 is 448 Ah or less.
  • Example 6 and 7 as shown in Table 2, the first electrode body length L2 of the electrode body 130 was too long, making formation of the electrode body 130 difficult. As shown, the energy density of the storage element 100 does not increase much (the amount of increase in the numerical value of “longitudinal winding-horizontal winding” is small). Therefore, in Examples 1 to 5, it is possible to improve the energy density of the storage element 100 while easily forming the electrode body 130 .
  • the configurations of the storage elements 100 in Examples 1 to 5 are preferable.
  • the first container length L1 is preferably 1200 mm or less, and the first container length L1/second container length H1 is 8.3 or less or 8 or less. is preferred.
  • the first electrode body length L2 is preferably 1196 mm or less or 1190 mm or less, and the first electrode body length L2/second electrode body length H2 is preferably 8.8 or less or 8 or less. preferable.
  • the first electrode body length L2 (the first length of the electrode body 130 in the X-axis direction (first direction)) is equal to the second electrode body length H2 (the second electrode body length H2 (the second length of the electrode body 130 in the Z-axis direction (second direction)).
  • length is preferably 8.8 times or less, or 8 times or less. From Tables 2 and 3, it is preferable that the composite material layer forming portion width C1 is 8.6 times or less, or 8 times or less, the length H2 of the second electrode body.
  • the composite material layer forming portion width C1 is preferably 1170 mm or less or 1166 mm or less, and the composite material layer forming portion width C1/the composite material layer non-forming portion width C2 or C3 is 82 or less or 80 or less. is preferred. That is, the composite material layer forming portion width C1 (the width of the composite material layer forming portion 131 in the X-axis direction (first direction)) is equal to the composite material layer non-forming portion width C2 or C3 (the composite material layer non-forming portion 132 or 133 width) is preferably 82 times or less or 80 times or less. As shown in Table 4, it is preferable that the capacity of the storage element 100 is 267 Ah or less.
  • the electrode body 130 has the electrode plate wound around the winding axis R extending in the first direction (X-axis direction). Z-axis direction) is longer than the third direction (Y-axis direction).
  • the width of the composite material layer forming portion C1 (the width of the composite material layer forming portion 131 of the electrode plate) is less than the width of the composite material layer non-forming portion C2 or C3 (the composite material at the end of the electrode plate in the first direction). 16 times or more of the width of the layer non-forming portion 132 or 133).
  • the space efficiency in the container 110 is reversed between the horizontally-wound electrode body and the vertically-wound electrode body, and the vertically-wound electrode body is the horizontally-wound electrode. It has a higher energy density than the body.
  • the poles in the vertical direction (Z-axis direction) in the container 110 are Since the proportion occupied by the composite material layer forming part 141 of the plate is generally constant, the proportion occupied by the composite material layer forming part 141 in the container 110 is substantially constant.
  • the composite material layer non-formed portion 132 of the composite material layer formed portion 131 of the electrode plate becomes larger. , the proportion occupied by the composite material layer forming portion 131 in the container 110 is increased.
  • the inventors of the present application found that when the composite material layer forming portion width C1 is 16 times or more of the composite material layer non-forming portion width C2 or C3, the vertically wound electrode body is larger than the horizontally wound electrode body. It was found that the energy density of the electric storage device 100 also increased. Therefore, the energy density of the storage element 100 can be improved by setting the composite material layer forming portion width C1 in the electrode body 130 to 16 times or more the composite material layer non-forming portion width C2 or C3.
  • the inventors of the present application have found that the energy density effectively increases until the width C1 of the electrode body 130 where the composite material layer is formed becomes 40 times or more the width of the composite material layer non-formed portion C2 or C3 in the electric storage device 100. I found out. Therefore, by setting the width C1 of the composite material layer formed portion of the electrode body 130 to be 40 times or more the width C2 or C3 of the composite material layer non-formed portion, the electrode body 130 with effectively increased energy density can be used. Therefore, the energy density of the storage element 100 can be improved.
  • the inventors of the present application have found that, in the electric storage device 100, if the width C1 of the electrode body 130 where the composite material layer is formed is greater than 80 times the width C2 or C3 of the composite material layer non-formed part, the electrode body 130 becomes too long and cannot be formed. Although difficult, it was found that the energy density did not increase significantly. Therefore, by setting the width C1 of the composite material layer forming portion of the electrode body 130 to 80 times or less of the width C2 or C3 of the composite material layer non-forming portion, the electrode body 130 can be easily formed and the energy density of the storage element 100 can be improved. can be improved.
  • the inventors of the present application found that in the electric storage element 100, the first electrode body length L2 (first length) in the first direction (X-axis direction) of the electrode body 130 is equal to the second electrode body length in the second direction (Z-axis direction). It was found that the vertically wound electrode body has a higher energy density than the horizontally wound electrode body when the height H2 (second length) is twice or more. Therefore, by making the first electrode body length L2 in the first direction of the electrode body 130 twice or more the second electrode body length H2 in the second direction, the energy density of the storage element 100 can be improved.
  • the inventor of the present application found that the energy density is effective until the first electrode body length L2 (first length) of the electrode body 130 becomes five times the second electrode body length H2 (second length) in the storage element 100. I found that it was getting higher. Therefore, by setting the first electrode body length L2 of the electrode body 130 to be at least five times the second electrode body length H2, the electrode body 130 with effectively increased energy density can be used. can improve the energy density of
  • the inventors of the present application have found that the energy density effectively increases when the width C1 of the composite material layer forming portion of the electrode assembly 130 is as long as 567 mm or more. Therefore, by increasing the width C1 of the composite material layer forming portion of the electrode body 130 to 567 mm or more, the electrode body 130 with effectively increased energy density can be used. can be planned.
  • the electrode terminals 120 protrude from the container 110, creating a space around the electrode terminals 120 that is difficult to utilize. If this space is large, the energy density of the entire power storage element 100 including the space will decrease. Therefore, in the electric storage element 100, the electrode terminals 120 protrude in the first direction from the end surface (the terminal arrangement surface 113) of the container 110 in the first direction (X-axis direction). As a result, the electrode terminal 120 protrudes from the small area of the outer surface of the container 110, and the space around the electrode terminal 120 that is difficult to utilize due to the protruding electrode terminal 120 can be reduced. Therefore, the energy density of the storage element 100 can be improved.
  • the energy density can be improved.
  • the length of the power storage element 100 if the length of the power storage element 100 is long, the distance between the two electrode terminals 120 connected to the pair of external terminals 300 may increase.
  • the pair of external terminals 300 are arranged near the two electrode terminals 120, the pair of external terminals 300 are arranged at distant positions, which may make it difficult to connect the power storage device 10 to the outside. .
  • the pair of external terminals 300 are arranged close to each other, the length of the bus bar connecting the pair of external terminals 300 and the two electrode terminals 120 becomes long.
  • the pair of external terminals 300 is divided into the first electrode terminal 122 of the pair of first electrode terminals 120 of the first storage element 101 that is closer to the second storage element 102 and the pair of external terminals 120 that the second storage element 102 has. and the second electrode terminal 121 close to the first storage element 101 among the second electrode terminals 120 .
  • the pair of external terminals 300 can be arranged close to each other.
  • the current collector (or electrode terminal) is joined to the end face (the end face in the X-axis direction in FIG. 2) of the composite material layer non-formed portion of the electrode body. It is common to However, in this case, since the bonding area at the end face is small, the junction may melt when the storage element is charged and discharged with a large current due to an increase in the capacity of the storage element. In contrast, in the present embodiment, the current collector (or the electrode terminal 120) is joined to the flat portions (end flat portions 132a and 133a) of the electrode body 130, so that the joint area of the joint portion can be increased. . As a result, melting of the junction can be suppressed even when the storage device 100 is charged and discharged with a large current.
  • FIG. 6 is a front view showing the configuration of electrode body 130A according to Modification 1 of the present embodiment. Specifically, FIG. 6 is a diagram corresponding to FIG.
  • an electrode body 130A in this modification has a composite material layer non-formed part 132c and a composite material layer non-formed part 132c and a 133c.
  • Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
  • the composite material layer non-forming portions 132c and 133c are tabs on which a composite material layer is not formed and which are arranged at the end portion in the X-axis direction (first direction) of the composite material layer forming portion 131. That is, the composite material layer non-forming portion 132c is a rectangular flat tab parallel to the XZ plane that protrudes from the end of the composite material layer forming portion 131 in the positive X-axis direction in the positive X-axis direction.
  • the composite material layer non-forming portion 133c is a rectangular and flat tab parallel to the XZ plane that protrudes in the negative X-axis direction from the end of the composite material layer-forming portion 131 in the negative X-axis direction.
  • the current collector (or electrode terminal 120) is connected (bonded) to the flat non-composite material layer portions 132c and 133c.
  • each size (L2, H2, W2, C1, C2, C3, etc.) of the electrode body 130A is the same as that of the electrode body 130 in the above-described embodiment. I can say. Since the current collector (or the electrode terminal 120) is joined to the flat portion of the electrode body 130A, the same applies to the above embodiment.
  • FIG. 7 is a perspective view showing the configuration of a power storage element 100A according to Modification 2 of the present embodiment. Specifically, FIG. 7 is a diagram corresponding to the storage element 100 of FIG.
  • a power storage element 100A in this modification includes electrode terminals 120A instead of the electrode terminals 120 included in the power storage element 100 in the above embodiment.
  • the electrode terminals 120A are arranged in a state of protruding in the positive Z-axis direction from the end face (cover plate) of the container 110 in the positive Z-axis direction at both ends in the X-axis direction of the container 110 of the power storage element 100A.
  • Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
  • the same effects as those of the above-described embodiment can be achieved.
  • the height of the electrode terminal 120A projected in the Z-axis direction is low.
  • the arrangement position of the electrode terminals in the storage element is not particularly limited.
  • the number of electrode terminals included in the storage element is not particularly limited, either.
  • a pair of electrode terminals 120 may protrude from only one side of the container 110 in the X-axis direction, or two electrode terminals 120 may protrude from both sides of the container 110 in the X-axis direction.
  • An electrode terminal 120 may protrude from the long side 111 of the container 110 .
  • a plurality of rectangular parallelepiped power storage elements 100 (a plurality of first power storage elements 101 and a plurality of second power storage elements 102) are arranged.
  • the shape of the storage element 100 (container 110) is not limited to a rectangular parallelepiped shape, and may be a polygonal columnar shape, an oval columnar shape, an elliptical shape, a circular shape, or the like other than the rectangular parallelepiped shape.
  • the power storage elements 100 may be arranged in one row instead of two rows in the X-axis direction, or may be arranged in three or more rows. Only one power storage element 100 may be arranged in the Y-axis direction (only one first power storage element 101 and one second power storage element 102 may be arranged), and only one power storage element 100 may be arranged. It does not have to be placed.
  • all power storage elements 100 and all electrode bodies 130 have the above configuration.
  • any storage element 100 may not have the above configuration, and any electrode assembly 130 may not have the above configuration.
  • the present invention can be realized not only as such a power storage element and power storage device, but also as an electrode body.
  • the present invention can be applied to power storage elements such as lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

An electricity storage element (100) which is provided with an electrode body (130) that is obtained by winding an electrode plate, on which a mixture layer is formed, around a winding axis (R) that extends in a first direction. The electrode plate has: a mixture layer formation part (131) on which the mixture layer is formed; and a mixture layer non-formation part (132) which is arranged on a position closer to an end than the mixture layer formation part (131) in the first direction, and on which the mixture layer is not formed. The electrode body (130) has a flattened shape wherein the length in a second direction that intersects with the first direction is longer than the length in a third direction that intersects with the first direction and the second direction. In the first direction, the width of the mixture layer formation part (131) (the mixture layer formation part width (C1)) is not less than 16 times the width of the mixture layer non-formation part (132 or 133) (the mixture layer non-formation part width (C2 or C3)).

Description

蓄電素子及び蓄電装置Storage element and storage device
 本発明は、極板が巻回された電極体を備える蓄電素子、及び、蓄電素子を備える蓄電装置に関する。 The present invention relates to an electric storage element including an electrode body around which electrode plates are wound, and an electric storage device including an electric storage element.
 従来、合材層が形成された極板が巻回された扁平形状の電極体を備える蓄電素子が広く知られている。特許文献1には、表面に電極活物質層が形成された帯状の極板が巻回された扁平形状の電極体を備える非水電解液二次電池(蓄電素子)が開示されている。 Conventionally, a power storage element is widely known that includes a flat-shaped electrode body in which an electrode plate on which a composite material layer is formed is wound. Patent Literature 1 discloses a non-aqueous electrolyte secondary battery (power storage element) that includes a flat electrode body in which a strip-shaped electrode plate having an electrode active material layer formed on the surface is wound.
特開2013-98026号公報JP 2013-98026 A
 蓄電素子において、極板を巻回軸まわりに巻回して電極体を形成する場合、巻回軸が上下方向(縦方向)に延びる電極体(以下、横巻型電極体とも称する)と、巻回軸が左右方向(横方向)に延びる電極体(以下、縦巻型電極体とも称する)とがある。一般的に、容器内でのスペース効率等の点で、横巻型電極体を備える蓄電素子の方が、縦巻型電極体を備える蓄電素子よりもエネルギー密度が高い。上記従来のような構成の蓄電素子は、一般的に、縦巻型電極体を備えることとなるため、エネルギー密度が低くなるおそれがある。このため、縦巻型電極体を備える蓄電素子でも、エネルギー密度の向上を図ることができる構成が望まれる。 In a power storage element, when an electrode body is formed by winding an electrode plate around a winding axis, an electrode body in which the winding axis extends in the vertical direction (vertical direction) (hereinafter also referred to as a horizontally wound electrode body) There is an electrode body (hereinafter also referred to as a vertically wound electrode body) in which the rotation axis extends in the left-right direction (horizontal direction). In general, from the viewpoint of space efficiency in a container, energy density is higher in a storage element with horizontally wound electrode bodies than in a storage element with vertically wound electrode bodies. Since the electric storage element having the above-described conventional configuration generally includes the vertically wound electrode assembly, there is a possibility that the energy density may be low. For this reason, it is desirable to have a structure capable of improving the energy density even in an electric storage element having a vertically wound electrode body.
 本発明は、エネルギー密度の向上を図ることができる蓄電素子及び蓄電装置を提供することを目的とする。 An object of the present invention is to provide a power storage element and a power storage device capable of improving energy density.
 本発明の一態様に係る蓄電素子は、合材層が形成された極板が第一方向に延びる巻回軸まわりに巻回された電極体を備える蓄電素子であって、前記極板は、前記合材層が形成された合材層形成部と、前記合材層形成部よりも前記第一方向の端部に配置され、前記合材層が形成されていない合材層非形成部と、を有し、前記電極体は、前記第一方向と交差する第二方向の長さの方が、前記第一方向及び前記第二方向と交差する第三方向の長さよりも長い扁平形状であり、前記第一方向において、前記合材層形成部の幅は、前記合材層非形成部の幅の16倍以上である。 A power storage element according to an aspect of the present invention is a power storage element including an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction, wherein the electrode plate comprises: A mixture layer forming portion having the mixture layer formed thereon, and a mixture layer non-forming portion disposed at an end portion in the first direction from the mixture layer forming portion and having no mixture layer formed thereon. , wherein the electrode body has a flat shape in which a length in a second direction that intersects the first direction is longer than a length in a third direction that intersects the first direction and the second direction. In the first direction, the width of the composite material layer forming portion is 16 times or more the width of the composite material layer non-forming portion.
 本発明の一態様に係る蓄電素子は、合材層が形成された極板が第一方向に延びる巻回軸まわりに巻回された電極体を備える蓄電素子であって、前記極板は、前記合材層が形成された合材層形成部と、前記合材層形成部よりも前記第一方向の端部に配置され、前記合材層が形成されていない合材層非形成部と、を有し、前記電極体は、前記第一方向と交差する第二方向の長さの方が、前記第一方向及び前記第二方向と交差する第三方向の長さよりも長い扁平形状であり、前記電極体の前記第一方向における第一長さは、前記電極体の前記第二方向における第二長さの5倍以上であってもよい。 A power storage element according to an aspect of the present invention is a power storage element including an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction, wherein the electrode plate comprises: A mixture layer forming portion having the mixture layer formed thereon, and a mixture layer non-forming portion disposed at an end portion in the first direction from the mixture layer forming portion and having no mixture layer formed thereon. , wherein the electrode body has a flat shape in which a length in a second direction that intersects the first direction is longer than a length in a third direction that intersects the first direction and the second direction. A first length in the first direction of the electrode body may be five times or more of a second length in the second direction of the electrode body.
 本発明の一態様に係る蓄電装置は、上記のいずれかの複数の蓄電素子と、一対の外部端子と、を備え、前記複数の蓄電素子は、前記第一方向に並ぶ第一蓄電素子及び第二蓄電素子を有し、前記第一蓄電素子は、前記第一方向に並ぶ一対の第一電極端子を有し、前記第二蓄電素子は、前記第一方向に並ぶ一対の第二電極端子を有し、前記一対の外部端子は、前記一対の第一電極端子のうちの前記第二蓄電素子に近い第一電極端子と、前記一対の第二電極端子のうちの前記第一蓄電素子に近い第二電極端子と、に接続される。 A power storage device according to an aspect of the present invention includes any one of the plurality of power storage elements described above and a pair of external terminals. The first storage element has a pair of first electrode terminals aligned in the first direction, and the second storage element has a pair of second electrode terminals aligned in the first direction. wherein the pair of external terminals includes a first electrode terminal of the pair of first electrode terminals that is closer to the second storage element and a pair of second electrode terminals that is closer to the first storage element and a second electrode terminal.
 本発明は、このような蓄電素子及び蓄電装置として実現できるだけでなく、電極体としても実現できる。 The present invention can be realized not only as such a power storage element and power storage device, but also as an electrode body.
 本発明における蓄電素子等によれば、エネルギー密度の向上を図ることができる。 According to the electric storage device and the like of the present invention, it is possible to improve the energy density.
図1は、実施の形態に係る蓄電装置の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of a power storage device according to an embodiment. 図2は、実施の形態に係る蓄電素子、及び、蓄電素子が備える電極体の外観を示す斜視図である。FIG. 2 is a perspective view showing the external appearance of a power storage element according to the embodiment and an electrode body included in the power storage element. 図3は、実施の形態に係る電極体のサイズを示す正面図である。FIG. 3 is a front view showing the size of the electrode body according to the embodiment. 図4は、実施の形態に係る縦巻型電極体との比較対象としての横巻型電極体の構成を示す正面図である。FIG. 4 is a front view showing the configuration of a laterally-wound electrode body as a comparison target with the vertically-wound electrode body according to the embodiment. 図5Aは、実施の形態に係る縦巻型電極体を用いた蓄電素子において、比較例及び実施例における横巻型電極体を用いた蓄電素子とのエネルギー密度の比較を示すグラフである。FIG. 5A is a graph showing a comparison of energy densities between a power storage element using a vertically wound electrode body according to an embodiment and a power storage element using a horizontally wound electrode body in a comparative example and an example. 図5Bは、実施の形態に係る縦巻型電極体を用いた蓄電素子において、比較例及び実施例における横巻型電極体を用いた蓄電素子とのエネルギー密度の比較を示すグラフである。FIG. 5B is a graph showing a comparison of energy densities between the energy storage elements using the vertically wound electrode bodies according to the embodiment and the energy storage elements using the horizontally wound electrode bodies in the comparative example and the working example. 図6は、実施の形態の変形例1に係る電極体の構成を示す正面図である。FIG. 6 is a front view showing the configuration of an electrode assembly according to Modification 1 of the embodiment. 図7は、実施の形態の変形例2に係る蓄電素子の構成を示す斜視図である。FIG. 7 is a perspective view showing the configuration of a power storage element according to Modification 2 of the embodiment.
 本発明の一態様に係る蓄電素子は、合材層が形成された極板が第一方向に延びる巻回軸まわりに巻回された電極体を備える蓄電素子であって、前記極板は、前記合材層が形成された合材層形成部と、前記合材層形成部よりも前記第一方向の端部に配置され、前記合材層が形成されていない合材層非形成部と、を有し、前記電極体は、前記第一方向と交差する第二方向の長さの方が、前記第一方向及び前記第二方向と交差する第三方向の長さよりも長い扁平形状であり、前記第一方向において、前記合材層形成部の幅は、前記合材層非形成部の幅の16倍以上である。 A power storage element according to an aspect of the present invention is a power storage element including an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction, wherein the electrode plate comprises: A mixture layer forming portion having the mixture layer formed thereon, and a mixture layer non-forming portion disposed at an end portion in the first direction from the mixture layer forming portion and having no mixture layer formed thereon. , wherein the electrode body has a flat shape in which a length in a second direction that intersects the first direction is longer than a length in a third direction that intersects the first direction and the second direction. In the first direction, the width of the composite material layer forming portion is 16 times or more the width of the composite material layer non-forming portion.
 これによれば、蓄電素子において、電極体は、第一方向に延びる巻回軸まわりに極板が巻回され、第二方向の方が第三方向よりも長い扁平形状であり、第一方向において、極板の合材層形成部の幅は、極板の第一方向の端部の合材層非形成部の幅の16倍以上である。蓄電素子においては、電極体が横方向に長くなると、容器内でのスペース効率が横巻型電極体と縦巻型電極体とで逆転し、縦巻型電極体の方が横巻型電極体よりもエネルギー密度が高くなる。具体的には、横巻型電極体では、電極体が横方向に長くなっても、容器内での縦方向における極板の合材層形成部が占める割合は一般的に一定であるため、容器内での合材層形成部が占める割合はほぼ一定である。これに対し、縦巻型電極体では、電極体が横方向に長くなると、極板の合材層形成部の合材層非形成部に対する比率が大きくなるため、容器内での合材層形成部が占める割合が大きくなる。本願発明者は、電極体において合材層形成部の幅が合材層非形成部の幅の16倍以上の場合に、縦巻型電極体の方が横巻型電極体よりも蓄電素子のエネルギー密度が高くなることを見出した。したがって、電極体において合材層形成部の幅を合材層非形成部の幅の16倍以上とすることで、蓄電素子のエネルギー密度の向上を図ることができる。 According to this, in the electric storage element, the electrode body has a flat shape in which the electrode plate is wound around the winding axis extending in the first direction, the second direction is longer than the third direction, and the electrode body has a flat shape. In the above, the width of the composite material layer forming portion of the electrode plate is 16 times or more the width of the composite material layer non-forming portion of the end portion of the electrode plate in the first direction. In the electric storage element, when the electrode body is elongated in the horizontal direction, the space efficiency in the container is reversed between the horizontally-wound electrode body and the vertically-wound electrode body, and the vertically-wound electrode body is the horizontally-wound electrode body. higher energy density than Specifically, in the horizontally wound electrode body, even if the electrode body is elongated in the horizontal direction, the ratio of the composite material layer forming portion of the electrode plate in the vertical direction in the container is generally constant. The proportion of the mixture layer-forming portion in the container is substantially constant. On the other hand, in the vertically wound electrode body, when the electrode body is elongated in the horizontal direction, the ratio of the composite material layer formed portion to the composite material layer non-formed portion of the electrode plate becomes large. The proportion occupied by the part becomes large. The inventors of the present application have found that when the width of the composite material layer formed portion in the electrode body is 16 times or more the width of the composite material layer non-formed portion, the vertically wound electrode body is superior to the horizontally wound electrode body in the capacity of the storage element. It was found that the energy density increases. Therefore, by setting the width of the composite material layer forming portion in the electrode body to be 16 times or more the width of the composite material layer non-forming portion, the energy density of the electric storage element can be improved.
 前記第一方向において、前記合材層形成部の幅は、前記合材層非形成部の幅の40倍以上であってもよい。 In the first direction, the width of the composite material layer forming portion may be 40 times or more the width of the composite material layer non-forming portion.
 本願発明者は、蓄電素子において、電極体の合材層形成部の幅が合材層非形成部の幅の40倍以上になるまで、エネルギー密度が効果的に高くなっていくことを見出した。したがって、電極体の合材層形成部の幅を合材層非形成部の幅の40倍以上とすることで、エネルギー密度が効果的に高くなった電極体を用いることができるため、蓄電素子のエネルギー密度の向上を図ることができる。 The inventors of the present application have found that the energy density effectively increases until the width of the composite material layer formed portion of the electrode body becomes 40 times or more the width of the composite material layer non-formed portion in the electric storage element. . Therefore, by making the width of the composite material layer formed portion of the electrode body 40 times or more the width of the composite material layer non-formed portion, it is possible to use an electrode body having an effectively high energy density. can improve the energy density of
 前記第一方向において、前記合材層形成部の幅は、前記合材層非形成部の幅の80倍以下であってもよい。 In the first direction, the width of the composite material layer forming portion may be 80 times or less of the width of the composite material layer non-forming portion.
 本願発明者は、蓄電素子において、電極体の合材層形成部の幅が合材層非形成部の幅の80倍よりも大きくなると、電極体が長くなりすぎて形成が困難となるものの、エネルギー密度があまり増えないことを見出した。したがって、電極体の合材層形成部の幅を合材層非形成部の幅の80倍以下とすることで、電極体を容易に形成しつつ、蓄電素子のエネルギー密度の向上を図ることができる。 The inventors of the present application have found that, in an electric storage element, if the width of the composite material layer forming portion of the electrode body is greater than 80 times the width of the composite material layer non-forming portion, the electrode body becomes too long and difficult to form. It was found that the energy density did not increase significantly. Therefore, by setting the width of the composite material layer forming portion of the electrode body to 80 times or less of the width of the composite material layer non-forming portion, it is possible to easily form the electrode body and improve the energy density of the storage element. can.
 前記電極体の前記第一方向における第一長さは、前記電極体の前記第二方向における第二長さの2倍以上であってもよい。 The first length in the first direction of the electrode body may be twice or more the second length in the second direction of the electrode body.
 本願発明者は、蓄電素子において、電極体の第一方向における第一長さが第二方向における第二長さの2倍以上の場合に、縦巻型電極体の方が横巻型電極体よりもエネルギー密度が高くなることを見出した。したがって、電極体の第一方向における第一長さを第二方向における第二長さの2倍以上とすることで、蓄電素子のエネルギー密度の向上を図ることができる。 The inventors of the present application have found that in a storage element, when the first length in the first direction of the electrode body is at least twice the second length in the second direction, the vertically wound electrode body is superior to the horizontally wound electrode body. It was found that the energy density is higher than Therefore, by making the first length in the first direction of the electrode body twice or more the second length in the second direction, the energy density of the electric storage element can be improved.
 前記第一長さは、前記第二長さの5倍以上であってもよい。 The first length may be five times or more of the second length.
 本願発明者は、蓄電素子において、電極体の第一長さが第二長さの5倍になるまで、エネルギー密度が効果的に高くなっていくことを見出した。したがって、電極体の第一長さを第二長さの5倍以上とすることで、エネルギー密度が効果的に高くなった電極体を用いることができるため、蓄電素子のエネルギー密度の向上を図ることができる。 The inventors of the present application have found that the energy density effectively increases until the first length of the electrode body is five times the second length in the storage device. Therefore, by setting the first length of the electrode body to be 5 times or more the second length, an electrode body with effectively increased energy density can be used, thereby improving the energy density of the storage element. be able to.
 本発明の一態様に係る蓄電素子は、合材層が形成された極板が第一方向に延びる巻回軸まわりに巻回された電極体を備える蓄電素子であって、前記極板は、前記合材層が形成された合材層形成部と、前記合材層形成部よりも前記第一方向の端部に配置され、前記合材層が形成されていない合材層非形成部と、を有し、前記電極体は、前記第一方向と交差する第二方向の長さの方が、前記第一方向及び前記第二方向と交差する第三方向の長さよりも長い扁平形状であり、前記電極体の前記第一方向における第一長さは、前記電極体の前記第二方向における第二長さの5倍以上であってもよい。 A power storage element according to an aspect of the present invention is a power storage element including an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction, wherein the electrode plate comprises: A mixture layer forming portion having the mixture layer formed thereon, and a mixture layer non-forming portion disposed at an end portion in the first direction from the mixture layer forming portion and having no mixture layer formed thereon. , wherein the electrode body has a flat shape in which a length in a second direction that intersects the first direction is longer than a length in a third direction that intersects the first direction and the second direction. A first length in the first direction of the electrode body may be five times or more of a second length in the second direction of the electrode body.
 これによれば、蓄電素子において、上述の通り、電極体の第一方向における第一長さを第二方向における第二長さの5倍以上とすることで、蓄電素子のエネルギー密度の向上を図ることができる。 According to this, in the electric storage element, as described above, the first length in the first direction of the electrode body is five times or more the second length in the second direction, thereby improving the energy density of the electric storage element. can be planned.
 前記合材層形成部の前記第一方向における幅は、567mm以上であってもよい。 The width of the composite material layer forming portion in the first direction may be 567 mm or more.
 本願発明者は、蓄電素子において、電極体の合材層形成部の幅が567mm以上と長い場合に、エネルギー密度が効果的に高くなることを見出した。したがって、電極体の合材層形成部の幅を567mm以上と長くすることで、エネルギー密度が効果的に高くなった電極体を用いることができるため、蓄電素子のエネルギー密度の向上を図ることができる。 The inventors of the present application have found that the energy density is effectively increased when the width of the composite material layer forming portion of the electrode body is as long as 567 mm or more in the electric storage element. Therefore, by increasing the width of the composite material layer forming portion of the electrode body to 567 mm or more, it is possible to use an electrode body with effectively increased energy density, so that the energy density of the storage element can be improved. can.
 前記電極体が収容される容器と、前記容器の前記第一方向の端面から前記第一方向に突出する電極端子と、を備えてもよい。 A container in which the electrode body is housed, and an electrode terminal projecting in the first direction from an end surface of the container in the first direction may be provided.
 蓄電素子において、電極端子が容器から突出することによって、電極端子の周囲には、活用しにくいスペースが生じる。このスペースが大きいと、蓄電素子の当該スペースも含めた全体でのエネルギー密度が低下することとなる。このため、蓄電素子において、電極端子を、容器の第一方向の端面から第一方向に突出させる。これにより、電極端子が、容器の外面のうちの小さい面積の面から突出することとなり、電極端子が突出することによって生じる電極端子の周囲の活用しにくいスペースを小さくできるため、蓄電素子のエネルギー密度の向上を図ることができる。 In the storage element, the electrode terminals protrude from the container, creating a space around the electrode terminals that is difficult to utilize. If this space is large, the energy density of the storage element as a whole, including the space concerned, will decrease. Therefore, in the electric storage element, the electrode terminal protrudes in the first direction from the end face of the container in the first direction. As a result, the electrode terminals protrude from the outer surface of the container with a small area, and the space around the electrode terminals that is difficult to utilize due to the protruding electrode terminals can be reduced, so that the energy density of the storage element can be reduced. can be improved.
 本発明の一態様に係る蓄電装置は、上記のいずれかの複数の蓄電素子と、一対の外部端子と、を備え、前記複数の蓄電素子は、前記第一方向に並ぶ第一蓄電素子及び第二蓄電素子を有し、前記第一蓄電素子は、前記第一方向に並ぶ一対の第一電極端子を有し、前記第二蓄電素子は、前記第一方向に並ぶ一対の第二電極端子を有し、前記一対の外部端子は、前記一対の第一電極端子のうちの前記第二蓄電素子に近い第一電極端子と、前記一対の第二電極端子のうちの前記第一蓄電素子に近い第二電極端子と、に接続される。 A power storage device according to an aspect of the present invention includes any one of the plurality of power storage elements described above and a pair of external terminals. The first storage element has a pair of first electrode terminals aligned in the first direction, and the second storage element has a pair of second electrode terminals aligned in the first direction. wherein the pair of external terminals includes a first electrode terminal of the pair of first electrode terminals that is closer to the second storage element and a pair of second electrode terminals that is closer to the first storage element and a second electrode terminal.
 蓄電装置は、上述の蓄電素子を備えているため、エネルギー密度の向上を図ることができている。蓄電装置において、蓄電素子の長さが長いと、一対の外部端子に接続する2つの電極端子の距離が遠くなるおそれがある。この場合、一対の外部端子を当該2つの電極端子の近くに配置すると、一対の外部端子が離れた位置に配置されて、蓄電装置の外部との接続が困難になるおそれがある。しかしながら、一対の外部端子を近付けて配置すると、一対の外部端子と当該2つの電極端子とを接続するバスバーの長さが長くなってしまう。このため、一対の外部端子を、第一蓄電素子が有する一対の第一電極端子のうちの第二蓄電素子に近い第一電極端子と、第二蓄電素子が有する一対の第二電極端子のうちの第一蓄電素子に近い第二電極端子と、に接続する。これにより、エネルギー密度の向上を図ることができる蓄電素子を備えた蓄電装置において、外部端子と蓄電素子の電極端子とを接続するバスバーの長さが長くなるのを抑制しつつ、一対の外部端子を近付けて配置できる。 Since the power storage device includes the power storage element described above, it is possible to improve the energy density. In the power storage device, if the length of the power storage element is long, the distance between two electrode terminals connected to a pair of external terminals may become long. In this case, if the pair of external terminals are arranged near the two electrode terminals, the pair of external terminals are arranged at distant positions, which may make it difficult to connect the power storage device to the outside. However, when the pair of external terminals are arranged close to each other, the length of the bus bar connecting the pair of external terminals and the two electrode terminals becomes long. For this reason, the pair of external terminals are the first electrode terminal close to the second storage element of the pair of first electrode terminals of the first storage element, and the pair of second electrode terminals of the second storage element. and a second electrode terminal close to the first storage element. As a result, in a power storage device having a power storage element capable of improving energy density, the length of the bus bar connecting the external terminal and the electrode terminal of the power storage element is suppressed from increasing, and the pair of external terminals can be placed close together.
 以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電素子及び蓄電装置について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。 Hereinafter, an electric storage element and an electric storage device according to embodiments (including modifications thereof) of the present invention will be described with reference to the drawings. All of the embodiments described below are generic or specific examples. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, manufacturing processes, order of manufacturing processes, and the like shown in the following embodiments are examples, and are not intended to limit the present invention. In each drawing, dimensions and the like are not strictly illustrated. In each figure, the same reference numerals are given to the same or similar components.
 以下の説明及び図面中において、蓄電素子の容器の延設方向、電極体の延設方向、電極体の巻回軸の延設方向、電極体の合材層形成部と合材層非形成部との並び方向、合材層形成部及び合材層非形成部の幅方向、蓄電素子の一対の電極端子の並び方向を、X軸方向と定義する。蓄電素子の容器の一対の長側面の並び方向(対向方向)、電極体の一対の平坦部の並び方向(対向方向)、または、容器及び電極体の厚み方向を、Y軸方向と定義する。蓄電素子の容器の一対の短側面(上面及び底面)の並び方向(対向方向)、電極体の一対の湾曲部の並び方向(対向方向)、容器及び電極体の高さ方向、または、上下方向を、Z軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 In the following description and drawings, the extending direction of the storage element container, the extending direction of the electrode body, the extending direction of the winding axis of the electrode body, the mixture layer formed portion and the mixture layer non-formed portion of the electrode body , the width direction of the composite material layer formed portion and the composite material layer non-formed portion, and the direction in which the pair of electrode terminals of the storage element are arranged are defined as the X-axis direction. The direction in which the pair of long sides of the container of the storage element are aligned (opposing direction), the direction in which the pair of flat portions of the electrode body are aligned (opposing direction), or the thickness direction of the container and the electrode body is defined as the Y-axis direction. The direction in which the pair of short sides (upper and bottom surfaces) of the storage element container are arranged (opposing direction), the direction in which the pair of curved portions of the electrode assembly are arranged (opposing direction), the height direction of the container and the electrode assembly, or the vertical direction is defined as the Z-axis direction. These X-axis direction, Y-axis direction, and Z-axis direction are directions that cross each other (perpendicularly in this embodiment). Depending on the mode of use, the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.
 以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。Y軸方向及びZ軸方向についても同様である。以下では、X軸方向を第一方向とも呼び、Z軸方向を第二方向とも呼び、Y軸方向を第三方向とも呼ぶ場合がある。平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。2つの方向が直交している、とは、当該2つの方向が完全に直交していることを意味するだけでなく、実質的に直交していること、すなわち、例えば数%程度の差異を含むことも意味する。 In the following description, the positive direction of the X-axis indicates the direction of the arrow on the X-axis, and the negative direction of the X-axis indicates the direction opposite to the positive direction of the X-axis. The same applies to the Y-axis direction and the Z-axis direction. Hereinafter, the X-axis direction may also be referred to as the first direction, the Z-axis direction may also be referred to as the second direction, and the Y-axis direction may also be referred to as the third direction. Expressions indicating relative directions or orientations, such as parallel and orthogonal, also include cases where the directions or orientations are not strictly speaking. Two directions are orthogonal, not only means that the two directions are completely orthogonal, but also substantially orthogonal, i.e., including a difference of about several percent also means
 (実施の形態)
 [1 蓄電装置10の全般的な説明]
 まず、本実施の形態における蓄電装置10の全般的な説明を行う。図1は、本実施の形態に係る蓄電装置10の外観を示す斜視図である。図1は、外装体200を透視して外装体200内方を示した図となっており、外装体200(及び一対の外部端子300)は破線で示されている。
(Embodiment)
[1 General description of power storage device 10]
First, a general description of power storage device 10 in the present embodiment will be given. FIG. 1 is a perspective view showing the appearance of power storage device 10 according to the present embodiment. FIG. 1 is a diagram showing the inside of the exterior body 200 by seeing through the exterior body 200, and the exterior body 200 (and the pair of external terminals 300) is indicated by broken lines.
 蓄電装置10は、外部からの電気を充電し、また外部へ電気を放電できる装置であり、本実施の形態では、略直方体形状を有している。蓄電装置10は、電力貯蔵用途または電源用途等に使用される電池モジュール(組電池)である。具体的には、蓄電装置10は、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)及びガソリン自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。蓄電装置10は、家庭用または事業用等に使用される定置用のバッテリ等としても用いることができる。 The power storage device 10 is a device that can charge electricity from the outside and discharge electricity to the outside, and has a substantially rectangular parallelepiped shape in the present embodiment. The power storage device 10 is a battery module (assembled battery) used for power storage, power supply, or the like. Specifically, the power storage device 10 is used for driving mobile bodies such as automobiles, motorcycles, water crafts, ships, snowmobiles, agricultural machinery, construction machinery, or railroad vehicles for electric railways, or for starting engines. Used as a battery or the like. Examples of such vehicles include electric vehicles (EV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and gasoline vehicles. Examples of railway vehicles for the electric railway include electric trains, monorails, linear motor cars, and hybrid trains having both diesel engines and electric motors. The power storage device 10 can also be used as a stationary battery or the like for home or business use.
 図1に示すように、蓄電装置10は、複数の蓄電素子100と、複数の蓄電素子100が収容される外装体200と、一対の外部端子300と、を備えている。蓄電装置10は、蓄電素子100を直列または並列に接続するバスバー、及び、蓄電素子100と外部端子300とを接続するバスバー等も備えているが、それらの図示及び説明は省略する。蓄電装置10は、上記の構成要素の他、複数の蓄電素子100の間に配置されるスペーサ及び両面テープ、蓄電素子100を外装体200に固定するための接着剤または充填剤、複数の蓄電素子100を拘束する拘束部材(エンドプレート、サイドプレート等)、バスバーの位置決めを行うバスバーフレーム、並びに、蓄電素子100の充電状態及び放電状態等を監視または制御する回路基板及びリレー等の電気機器等も備えていてもよい。 As shown in FIG. 1 , the power storage device 10 includes a plurality of power storage elements 100 , an exterior body 200 housing the plurality of power storage elements 100 , and a pair of external terminals 300 . The power storage device 10 also includes a bus bar that connects the power storage elements 100 in series or in parallel, a bus bar that connects the power storage elements 100 and the external terminals 300, and the like, but illustration and description thereof are omitted. In addition to the components described above, the power storage device 10 includes spacers and double-sided tape placed between the plurality of power storage elements 100, an adhesive or filler for fixing the power storage elements 100 to the exterior body 200, and a plurality of power storage elements. Constraining members (end plates, side plates, etc.) that constrain 100, busbar frames that position the busbars, and electric devices such as circuit boards and relays that monitor or control the charging state and discharging state of the storage element 100. may be provided.
 外装体200は、蓄電装置10の外装体を構成する略直方体形状(箱形)の容器(モジュールケース)である。つまり、外装体200は、複数の蓄電素子100の外方に配置され、これら複数の蓄電素子100を所定の位置で固定し、衝撃等から保護する。外装体200は、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリフェニレンサルファイド樹脂(PPS)、ポリフェニレンエーテル(PPE(変性PPEを含む))、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ABS樹脂、若しくは、それらの複合材料等の絶縁部材、または、絶縁塗装をした金属等により形成されている。外装体200は、これにより、複数の蓄電素子100が外部の金属部材等に接触することを回避する。蓄電素子100の絶縁性が保たれる構成であれば、外装体200は、金属等の導電部材で形成されていてもよい。上記の「絶縁」とは、電気的な絶縁を意味する。以下についても同様である。 The exterior body 200 is a substantially rectangular parallelepiped (box-shaped) container (module case) that constitutes the exterior body of the power storage device 10 . That is, the exterior body 200 is arranged outside the plurality of power storage elements 100, fixes the plurality of power storage elements 100 at predetermined positions, and protects them from impacts and the like. The exterior body 200 is made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET). , polybutylene terephthalate (PBT), polyetheretherketone (PEEK), tetrafluoroethylene-perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyethersulfone (PES), ABS resin, or It is formed of an insulating member such as a composite material, or a metal or the like coated with an insulating coating. The exterior body 200 thereby prevents the plurality of power storage elements 100 from coming into contact with an external metal member or the like. The exterior body 200 may be made of a conductive material such as metal as long as the insulation of the power storage element 100 is maintained. The "insulation" mentioned above means electrical insulation. The same applies to the following.
 外装体200には、一対(正極側及び負極側)の外部端子300が設けられている。この一対の外部端子300は、蓄電装置10の外部からの電気を充電し、また蓄電装置10の外部へ電気を放電するための正極側及び負極側の外部接続端子であり、アルミニウム、アルミニウム合金、銅、銅合金、鉄、鋼、ステンレス等の金属製の導電部材で形成されている。本実施の形態では、一対の外部端子300は、外装体200のX軸方向中央部かつY軸マイナス方向の端部において、X軸方向に並びかつZ軸プラス方向に突出して配置されている。 A pair of (positive electrode side and negative electrode side) external terminals 300 are provided on the exterior body 200 . The pair of external terminals 300 are positive and negative external connection terminals for charging electricity from the outside of the power storage device 10 and discharging electricity to the outside of the power storage device 10, and are made of aluminum, an aluminum alloy, It is made of a conductive member made of metal such as copper, copper alloy, iron, steel, stainless steel, or the like. In the present embodiment, the pair of external terminals 300 are arranged in the X-axis direction and protrude in the Z-axis positive direction at the X-axis direction central portion and the Y-axis negative direction end portion of the exterior body 200 .
 蓄電素子100は、電気を充電し、また、電気を放電することのできる二次電池(単電池)であり、より具体的には、リチウムイオン二次電池等の非水電解質二次電池である。蓄電素子100は、X軸方向(第一方向)に延びる長尺かつ扁平な直方体形状(角形)を有している。蓄電素子100は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池でもよいし、キャパシタでもよい。蓄電素子100は、二次電池ではなく、使用者が充電をしなくても蓄えられている電気を使用できる一次電池でもよい。蓄電素子100は、固体電解質を用いた電池でもよい。蓄電素子100は、パウチタイプの蓄電素子でもよい。 The storage element 100 is a secondary battery (single battery) capable of charging and discharging electricity, and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. . The power storage element 100 has a long and flat rectangular parallelepiped shape (square shape) extending in the X-axis direction (first direction). The storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor. The power storage element 100 may be a primary battery that can use stored electricity without being charged by the user, instead of a secondary battery. The storage element 100 may be a battery using a solid electrolyte. The storage element 100 may be a pouch-type storage element.
 本実施の形態では、複数(数十個、図1では48個)の蓄電素子100が、X軸方向(第一方向)及びY軸方向(第三方向)に並んで配列されている。これら複数の蓄電素子100のうち、X軸プラス方向に配置される蓄電素子100を第一蓄電素子101とも称し、X軸マイナス方向に配置される蓄電素子100を第二蓄電素子102とも称する。つまり、X軸プラス方向において、複数(図1では24個)の第一蓄電素子101がY軸方向に並んで配置され、X軸マイナス方向において、複数(図1では24個)の第二蓄電素子102がY軸方向に並んで配置されている。これにより、複数の第一蓄電素子101と複数の第二蓄電素子102とが、X軸方向に並んで配置されている。このように、蓄電装置10が備える複数の蓄電素子100は、X軸方向(第一方向)に並ぶ第一蓄電素子101及び第二蓄電素子102を有している。 In the present embodiment, a plurality of (several tens, 48 in FIG. 1) power storage elements 100 are arranged side by side in the X-axis direction (first direction) and the Y-axis direction (third direction). Among the plurality of energy storage elements 100, the energy storage element 100 arranged in the positive direction of the X axis is also called the first energy storage element 101, and the energy storage element 100 arranged in the negative direction of the X axis is also called the second energy storage element 102. That is, a plurality (24 in FIG. 1) of the first storage elements 101 are arranged side by side in the Y-axis direction in the X-axis plus direction, and a plurality (24 in FIG. 1) of the second storage elements 101 are arranged in the X-axis minus direction. Elements 102 are arranged side by side in the Y-axis direction. As a result, the plurality of first storage elements 101 and the plurality of second storage elements 102 are arranged side by side in the X-axis direction. Thus, the plurality of power storage elements 100 included in the power storage device 10 have the first power storage element 101 and the second power storage element 102 arranged in the X-axis direction (first direction).
 複数の蓄電素子100は、それぞれ、X軸方向(第一方向)に並ぶ一対(正極側及び負極側)の電極端子120(121及び122)を有している(図2参照)。これら一対の電極端子120(121及び122)を含めた蓄電素子100の構成の詳細な説明については、後述する。 Each of the plurality of power storage elements 100 has a pair of (positive electrode side and negative electrode side) electrode terminals 120 (121 and 122) arranged in the X-axis direction (first direction) (see FIG. 2). A detailed description of the configuration of the storage element 100 including the pair of electrode terminals 120 (121 and 122) will be given later.
 第一蓄電素子101が有する一対の電極端子120(121及び122)を、第一電極端子120(121及び122)とも称する。同様に、第二蓄電素子102が有する一対の電極端子120(121及び122)を、第二電極端子120(121及び122)とも称する。つまり、複数の第一蓄電素子101は、それぞれ、X軸方向(第一方向)に並ぶ一対の第一電極端子120(121及び122)を有している。同様に、複数の第二蓄電素子102は、それぞれ、X軸方向(第一方向)に並ぶ一対の第二電極端子120(121及び122)を有している。 The pair of electrode terminals 120 (121 and 122) of the first storage element 101 are also referred to as first electrode terminals 120 (121 and 122). Similarly, the pair of electrode terminals 120 (121 and 122) of the second storage element 102 are also referred to as second electrode terminals 120 (121 and 122). That is, each of the plurality of first storage elements 101 has a pair of first electrode terminals 120 (121 and 122) aligned in the X-axis direction (first direction). Similarly, each of the plurality of second storage elements 102 has a pair of second electrode terminals 120 (121 and 122) aligned in the X-axis direction (first direction).
 このような構成において、第一電極端子120同士、第二電極端子120同士、第一電極端子120及び第二電極端子120、第一電極端子120及び外部端子300、並びに、第二電極端子120及び外部端子300が、バスバー等を介して、または、直接接続される。これにより、複数の第一蓄電素子101と複数の第二蓄電素子102とが、直列または並列に接続される。本実施の形態では、複数の第一蓄電素子101と複数の第二蓄電素子102とは、全て直列接続される。 In such a configuration, the first electrode terminals 120, the second electrode terminals 120, the first electrode terminal 120 and the second electrode terminal 120, the first electrode terminal 120 and the external terminal 300, and the second electrode terminal 120 and An external terminal 300 is connected via a bus bar or the like or directly. Thereby, the plurality of first storage elements 101 and the plurality of second storage elements 102 are connected in series or in parallel. In this embodiment, the plurality of first storage elements 101 and the plurality of second storage elements 102 are all connected in series.
 具体的には、複数の第一蓄電素子101のうちのY軸マイナス方向の端部に位置する第一蓄電素子101の第一電極端子120と、複数の第二蓄電素子102のうちのY軸マイナス方向の端部に位置する第二蓄電素子102の第二電極端子120とが、一対の外部端子300に接続される。本実施の形態では、当該Y軸マイナス方向の端部の第一蓄電素子101及び第二蓄電素子102において、第一蓄電素子101の第一電極端子122と、第二蓄電素子102の第二電極端子121とが、バスバー等を介して一対の外部端子300に接続される。 Specifically, the first electrode terminal 120 of the first storage element 101 located at the end in the Y-axis negative direction among the plurality of first storage elements 101 and the Y-axis terminal of the plurality of second storage elements 102 The second electrode terminal 120 of the second storage element 102 located at the end in the negative direction is connected to the pair of external terminals 300 . In the present embodiment, the first electrode terminal 122 of the first storage element 101 and the second electrode terminal 102 of the second storage element 102 are connected to the first storage element 101 and the second storage element 102 at the ends in the Y-axis negative direction. The terminals 121 are connected to a pair of external terminals 300 via bus bars or the like.
 つまり、Y軸マイナス方向の端部の第一蓄電素子101において、第一電極端子121は、第一蓄電素子101が有する一対の第一電極端子120のうちの第二蓄電素子102から遠い電極端子である。第一電極端子122は、第一蓄電素子101が有する一対の第一電極端子120のうちの第二蓄電素子102に近い電極端子である。同様に、Y軸マイナス方向の端部の第二蓄電素子102において、第二電極端子121は、第二蓄電素子102が有する一対の第二電極端子120のうちの第一蓄電素子101に近い電極端子である。第二電極端子122は、第二蓄電素子102が有する一対の第二電極端子120のうちの第一蓄電素子101から遠い電極端子である。このため、第二蓄電素子102に近い第一蓄電素子101の第一電極端子122と、第一蓄電素子101に近い第二蓄電素子102の第二電極端子121とが、一対の外部端子300に接続される。 That is, in the first storage element 101 at the end in the Y-axis negative direction, the first electrode terminal 121 is the electrode terminal farthest from the second storage element 102 among the pair of first electrode terminals 120 of the first storage element 101. is. The first electrode terminal 122 is the electrode terminal closest to the second storage element 102 among the pair of first electrode terminals 120 of the first storage element 101 . Similarly, in the second storage element 102 at the end in the Y-axis negative direction, the second electrode terminal 121 is the electrode closest to the first storage element 101 among the pair of second electrode terminals 120 of the second storage element 102 . terminal. The second electrode terminal 122 is the electrode terminal farthest from the first storage element 101 among the pair of second electrode terminals 120 of the second storage element 102 . Therefore, the first electrode terminal 122 of the first storage element 101 close to the second storage element 102 and the second electrode terminal 121 of the second storage element 102 close to the first storage element 101 are connected to the pair of external terminals 300. Connected.
 このように、一対の外部端子300は、第一蓄電素子101が有する一対の第一電極端子120のうちの第二蓄電素子102に近い第一電極端子122と、第二蓄電素子102が有する一対の第二電極端子120のうちの第一蓄電素子101に近い第二電極端子121と、に接続される。一対の外部端子300は、Y軸マイナス方向の端部の第一蓄電素子101、及び、Y軸マイナス方向の端部の第二蓄電素子102の直上(Z軸プラス方向)、または、その近傍に配置されているのが好ましい。一対の外部端子300は、当該第一蓄電素子101が有する第二蓄電素子102に近い第一電極端子122と、当該第二蓄電素子102が有する第一蓄電素子101に近い第二電極端子121との直上(Z軸プラス方向)、または、その近傍に配置されているのがさらに好ましい。 In this way, the pair of external terminals 300 includes the first electrode terminal 122 of the pair of first electrode terminals 120 of the first storage element 101 that is closer to the second storage element 102, and the pair of external terminals 300 that the second storage element 102 has. and the second electrode terminal 121 close to the first storage element 101 among the second electrode terminals 120 of the . The pair of external terminals 300 are located directly above the first storage element 101 at the end in the negative Y-axis direction and the second storage element 102 at the end in the negative Y-axis direction (positive Z-axis direction) or in the vicinity thereof. preferably located. The pair of external terminals 300 includes a first electrode terminal 122 close to the second storage element 102 of the first storage element 101 and a second electrode terminal 121 close to the first storage element 101 of the second storage element 102. (in the Z-axis plus direction) or in the vicinity thereof.
 隣り合う第一蓄電素子101の第一電極端子120同士がバスバー等を介して接続されることにより、複数の第一蓄電素子101が電気的に接続される。本実施の形態では、隣り合う第一蓄電素子101は、第一電極端子121と第一電極端子122とがX軸方向において逆の位置に配置されている。隣り合う第一蓄電素子101の第一電極端子121と第一電極端子122とがバスバー等を介して接続されることにより、複数の第一蓄電素子101が直列に接続される。第二蓄電素子102についても同様である。 A plurality of first storage elements 101 are electrically connected by connecting the first electrode terminals 120 of adjacent first storage elements 101 to each other via a bus bar or the like. In the present embodiment, the first electrode terminals 121 and the first electrode terminals 122 of the adjacent first storage elements 101 are arranged at opposite positions in the X-axis direction. A plurality of first storage elements 101 are connected in series by connecting first electrode terminals 121 and first electrode terminals 122 of adjacent first storage elements 101 via a bus bar or the like. The same applies to the second storage element 102 as well.
 複数の第一蓄電素子101のうちのY軸プラス方向の端部に位置する第一蓄電素子101の第一電極端子120と、複数の第二蓄電素子102のうちのY軸プラス方向の端部に位置する第二蓄電素子102の第二電極端子120とが、バスバー等を介して接続される。これにより、当該Y軸プラス方向の端部の第一蓄電素子101と、当該Y軸プラス方向の端部の第二蓄電素子102とが、電気的に接続される。本実施の形態では、第一蓄電素子101は偶数個配置されており、第二蓄電素子102も偶数個配置されている。これにより、Y軸プラス方向の端部の第一蓄電素子101において、第一電極端子121は、一対の第一電極端子120のうちの第二蓄電素子102に近い電極端子となる。同様に、Y軸プラス方向の端部の第二蓄電素子102において、第二電極端子122は、一対の第二電極端子120のうちの第一蓄電素子101に近い電極端子となる。これにより、第二蓄電素子102に近い第一蓄電素子101の第一電極端子121と、第一蓄電素子101に近い第二蓄電素子102の第二電極端子122とが、バスバー等を介して接続されることで、当該第一蓄電素子101と当該第二蓄電素子102とが直列に接続される。 The first electrode terminal 120 of the first storage element 101 located at the end of the plurality of first storage elements 101 in the positive direction of the Y axis, and the end of the plurality of second storage elements 102 in the positive direction of the Y axis is connected to the second electrode terminal 120 of the second storage element 102 located at , via a bus bar or the like. As a result, the first storage element 101 at the end in the positive Y-axis direction and the second storage element 102 at the end in the positive Y-axis direction are electrically connected. In the present embodiment, an even number of first storage elements 101 are arranged, and an even number of second storage elements 102 are also arranged. As a result, the first electrode terminal 121 of the first storage element 101 at the end in the positive Y-axis direction becomes the electrode terminal closer to the second storage element 102 out of the pair of first electrode terminals 120 . Similarly, in the second storage element 102 at the end in the positive direction of the Y axis, the second electrode terminal 122 is the electrode terminal closer to the first storage element 101 out of the pair of second electrode terminals 120 . As a result, the first electrode terminal 121 of the first storage element 101 close to the second storage element 102 and the second electrode terminal 122 of the second storage element 102 close to the first storage element 101 are connected via a bus bar or the like. As a result, the first storage element 101 and the second storage element 102 are connected in series.
 配列される蓄電素子100の個数は限定されず、何十個の蓄電素子100が配置されてもよいし、数個の蓄電素子100しか配置されなくてもよい。ただし、上述の通り、偶数個の第一蓄電素子101と偶数個の第二蓄電素子102が配置されるのが好ましいため、4の倍数個の蓄電素子100が配置されるのが好ましい。配列される第一蓄電素子101の個数と、配列される第二蓄電素子102の個数とは、同じ数、または、近い数であるのが好ましい。複数の第一蓄電素子101及び複数の第二蓄電素子102は、いずれかが並列接続されてもよい。 The number of power storage elements 100 to be arranged is not limited, and dozens of power storage elements 100 may be arranged, or only a few power storage elements 100 may be arranged. However, as described above, an even number of first storage elements 101 and an even number of second storage elements 102 are preferably arranged. The number of arranged first storage elements 101 and the number of arranged second storage elements 102 are preferably the same or close to each other. Either the plurality of first storage elements 101 or the plurality of second storage elements 102 may be connected in parallel.
 [2 蓄電素子100の説明]
 次に、蓄電素子100の構成について、詳細に説明する。図2は、本実施の形態に係る蓄電素子100、及び、蓄電素子100が備える電極体130の外観を示す斜視図である。図2では、蓄電素子100の容器110に収容されている電極体130を、容器110から取り出して、蓄電素子100の下方に図示している。蓄電装置10が有する蓄電素子100(第一蓄電素子101及び第二蓄電素子102)は、全て同様の構成を有するため、以下では、1つの蓄電素子100の構成について詳細に説明する。
[2 Explanation of storage element 100]
Next, the configuration of the storage element 100 will be described in detail. FIG. 2 is a perspective view showing the appearance of the storage element 100 according to the present embodiment and the electrode body 130 included in the storage element 100. As shown in FIG. In FIG. 2 , the electrode body 130 housed in the container 110 of the electric storage element 100 is taken out from the container 110 and shown below the electric storage element 100 . Since the power storage elements 100 (the first power storage element 101 and the second power storage element 102) of the power storage device 10 all have the same configuration, the configuration of one power storage element 100 will be described in detail below.
 図2に示すように、蓄電素子100は、容器110と、上述した一対(正極側及び負極側)の電極端子120(121及び122)とを有し、容器110の内方には、電極体130と、一対(正極側及び負極側)の集電体(図示せず)とが収容されている。容器110の内方には、電解液(非水電解質)が封入され、電極端子120及び集電体と容器110との間にはガスケットが配置されているが、これらの図示及び詳細な説明は省略する。当該電解液としては、蓄電素子100の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択できる。 As shown in FIG. 2, the storage element 100 has a container 110 and the pair of electrode terminals 120 (121 and 122) (positive electrode side and negative electrode side) described above. 130 and a pair of (positive electrode side and negative electrode side) current collectors (not shown) are accommodated. An electrolytic solution (non-aqueous electrolyte) is sealed inside the container 110, and gaskets are arranged between the electrode terminals 120 and current collectors and the container 110. omitted. There is no particular limitation on the type of the electrolytic solution as long as it does not impair the performance of the storage element 100, and various types can be selected.
 蓄電素子100は、上記の構成要素の他、電極体130の側方に配置されるスペーサ、及び、電極体130等を包み込む絶縁フィルム等を有していてもよい。容器110の周囲には、容器110の外面を覆う絶縁フィルム(シュリンクチューブ等)が配置されていてもよい。当該絶縁フィルムの材質は、蓄電素子100に必要な絶縁性を確保できるものであれば特に限定されないが、外装体200に使用可能ないずれかの絶縁性の樹脂、エポキシ樹脂、カプトン、テフロン(登録商標)、シリコン、ポリイソプレン、及びポリ塩化ビニル等を例示できる。 In addition to the components described above, the electric storage element 100 may have a spacer disposed on the side of the electrode body 130, an insulating film wrapping the electrode body 130 and the like, and the like. An insulating film (shrink tube or the like) covering the outer surface of the container 110 may be arranged around the container 110 . The material of the insulating film is not particularly limited as long as it can ensure the insulation required for the storage element 100, but any insulating resin, epoxy resin, kapton, Teflon (registered trademark), silicon, polyisoprene, and polyvinyl chloride.
 容器110は、X軸方向(第一方向)に延びる直方体形状(角形または箱形)のケースである。容器110の材質は、特に限定されず、例えばステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能な金属とできるが、樹脂を用いることもできる。容器110には、容器110内方の圧力が過度に上昇した場合に当該圧力を開放するガス排出弁、及び、容器110内方に電解液を注液するための注液部等が設けられていてもよい。 The container 110 is a cuboid-shaped (square or box-shaped) case extending in the X-axis direction (first direction). The material of the container 110 is not particularly limited, and can be, for example, a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate, but resin can also be used. The container 110 is provided with a gas discharge valve that releases the pressure when the pressure inside the container 110 is excessively increased, and an injection part for injecting an electrolytic solution into the inside of the container 110. may
 容器110は、Y軸方向両側の側面にX軸方向に延びる一対の長側面111を有し、Z軸方向両側の側面にX軸方向に延びる一対の短側面112を有し、X軸方向両側の側面にZ軸方向に延びる一対の端子配置面113を有している。長側面111は、容器110の長側面を形成する、X軸方向に長尺な矩形状かつ平面状の側面であり、Y軸方向に対向して配置される。長側面111は、短側面112及び端子配置面113に隣接し、短側面112よりも面積が大きい。短側面112は、容器110の短側面を形成する、X軸方向に長尺な矩形状かつ平面状の側面であり、Z軸方向に対向して配置される。短側面112は、長側面111及び端子配置面113に隣接し、長側面111よりも面積が小さい。端子配置面113は、電極端子120が配置される矩形状かつ平面状の側面であり、X軸方向に対向して配置される。 The container 110 has a pair of long side surfaces 111 extending in the X-axis direction on both side surfaces in the Y-axis direction, and a pair of short side surfaces 112 extending in the X-axis direction on both side surfaces in the Z-axis direction. has a pair of terminal placement surfaces 113 extending in the Z-axis direction. The long side surface 111 is a rectangular and planar side surface elongated in the X-axis direction, which forms the long side surface of the container 110, and is arranged to face in the Y-axis direction. The long side 111 is adjacent to the short side 112 and the terminal arrangement surface 113 and has a larger area than the short side 112 . The short side surface 112 is a rectangular and planar side surface elongated in the X-axis direction, which forms the short side surface of the container 110, and is arranged to face in the Z-axis direction. The short side 112 is adjacent to the long side 111 and the terminal arrangement surface 113 and has a smaller area than the long side 111 . The terminal arrangement surface 113 is a rectangular and planar side surface on which the electrode terminal 120 is arranged, and is arranged to face in the X-axis direction.
 電極端子120(121及び122)は、容器110のX軸方向(第一方向)の両側において、容器110のX軸方向(第一方向)の端面からX軸方向(第一方向)に突出した状態で配置される、蓄電素子100の端子部材(正極端子及び負極端子)である。本実施の形態では、一対の電極端子120のうち、電極端子121が正極端子であり、電極端子122が負極端子である。具体的には、電極端子121は、容器110のX軸プラス方向の端子配置面113に固定され、かつ、当該端子配置面113からX軸プラス方向に突出して配置される。電極端子122は、容器110のX軸マイナス方向の端子配置面113に固定され、かつ、当該端子配置面113からX軸マイナス方向に突出して配置される。 The electrode terminals 120 (121 and 122) protrude in the X-axis direction (first direction) from the end face of the container 110 in the X-axis direction (first direction) on both sides of the container 110 in the X-axis direction (first direction). terminal members (a positive electrode terminal and a negative electrode terminal) of the storage element 100 arranged in a state. In this embodiment, of the pair of electrode terminals 120, the electrode terminal 121 is the positive terminal and the electrode terminal 122 is the negative terminal. Specifically, the electrode terminal 121 is fixed to the terminal arrangement surface 113 of the container 110 in the positive direction of the X axis, and is arranged to protrude from the terminal arrangement surface 113 in the positive direction of the X axis. The electrode terminal 122 is fixed to the terminal arrangement surface 113 of the container 110 in the negative direction of the X axis, and arranged so as to protrude from the terminal arrangement surface 113 in the negative direction of the X axis.
 電極端子120(121及び122)は、集電体を介して、電極体130の正極板及び負極板に電気的に接続されている。つまり、電極端子120は、電極体130に蓄えられている電気を蓄電素子100の外部空間に導出し、また、電極体130に電気を蓄えるために蓄電素子100の内部空間に電気を導入するための金属製の部材である。電極端子120は、アルミニウム、アルミニウム合金、銅、銅合金等で形成されている。 The electrode terminals 120 (121 and 122) are electrically connected to the positive and negative plates of the electrode body 130 via current collectors. That is, the electrode terminal 120 leads the electricity stored in the electrode body 130 to the external space of the storage element 100 and also introduces the electricity into the internal space of the storage element 100 to store the electricity in the electrode body 130 . is a metal member. The electrode terminal 120 is made of aluminum, an aluminum alloy, copper, a copper alloy, or the like.
 電極体130は、正極板と負極板とセパレータとが積層されて形成された蓄電要素(発電要素)である。セパレータは、樹脂からなる微多孔性のシートまたは不織布等を用いることができる。正極板は、アルミニウムまたはアルミニウム合金等の金属からなる長尺帯状の集電箔である正極基材上に正極合材層が形成されたものである。負極板は、銅または銅合金等の金属からなる長尺帯状の集電箔である負極基材上に負極合材層が形成されたものである。正極基材及び負極基材として、ニッケル、鉄、ステンレス鋼、チタン、焼成炭素、導電性高分子、導電性ガラス、Al-Cd合金など、充放電時の酸化還元反応に対して安定な材料であれば適宜公知の材料を用いることもできる。正極合材層は、正極活物質と、導電助剤と、バインダとを含み、負極合材層は、負極活物質と、導電助剤と、バインダとを含んでいる。正極合材層に用いられる正極活物質、及び、負極合材層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能なものであれば、適宜公知の材料を使用できる。 The electrode body 130 is a power storage element (power generation element) formed by laminating a positive electrode plate, a negative electrode plate, and a separator. A microporous sheet made of resin, a non-woven fabric, or the like can be used as the separator. The positive electrode plate is obtained by forming a positive electrode mixture layer on a positive electrode base material, which is a long belt-shaped collector foil made of metal such as aluminum or an aluminum alloy. The negative electrode plate is obtained by forming a negative electrode mixture layer on a negative electrode base material, which is a long band-shaped collector foil made of a metal such as copper or a copper alloy. Materials that are stable against oxidation-reduction reactions during charging and discharging, such as nickel, iron, stainless steel, titanium, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., are used for the positive and negative electrode base materials. Any known material can be used as appropriate. The positive electrode mixture layer contains a positive electrode active material, a conductive aid, and a binder, and the negative electrode mixture layer contains a negative electrode active material, a conductive aid, and a binder. As the positive electrode active material used for the positive electrode mixture layer and the negative electrode active material used for the negative electrode mixture layer, known materials can be appropriately used as long as they can intercalate and deintercalate lithium ions.
 正極活物質として、LiMPO、LiMSiO、LiMBO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、LiMnやLiMn1.5Ni0.5等のスピネル型リチウムマンガン酸化物、LiMO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いることができる。負極活物質としては、リチウム金属、リチウム合金(リチウム-ケイ素、リチウム-アルミニウム、リチウム-鉛、リチウム-錫、リチウム-アルミニウム-錫、リチウム-ガリウム、及びウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えば黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、ケイ素酸化物、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物、あるいは、一般にコンバージョン負極と呼ばれる、CoやFeP等の、遷移金属と第14族乃至第16族元素との化合物などが挙げられる。 As positive electrode active materials, polyanion compounds such as LiMPO 4 , LiMSiO 4 , LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, LiMn 2 Spinel-type lithium manganese oxides such as O 4 and LiMn 1.5 Ni 0.5 O 4 , LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) Lithium transition metal oxides, etc., can be used. Examples of negative electrode active materials include lithium metal, lithium alloys (lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and lithium metal-containing alloys such as Wood's alloys). , alloys that can absorb and release lithium, carbon materials (e.g. graphite, non-graphitizable carbon, easily graphitizable carbon, low-temperature fired carbon, amorphous carbon, etc.), silicon oxides, metal oxides, lithium metal oxides ( Li 4 Ti 5 O 12 , etc.), polyphosphate compounds, or compounds of transition metals and group 14 to group 16 elements, such as Co 3 O 4 and Fe 2 P, which are generally called conversion negative electrodes. .
 電極体130は、正極板及び負極板と、2枚のセパレータとが交互に積層されかつ巻回されることで形成されている。本実施の形態では、電極体130は、上述の通り合材層が形成された極板(正極板及び負極板)が、X軸方向(第一方向)に延びる巻回軸Rまわりに巻回されて形成された巻回型の電極体(いわゆる縦巻型電極体)である。巻回軸Rとは、正極板及び負極板等を巻回する際の中心軸となる仮想的な軸であり、本実施の形態では、電極体130の中心を通る、X軸方向に平行な直線である。これにより、電極体130は、X軸方向に長尺、かつ、Z軸方向(第二方向)の長さの方がY軸方向(第三方向)の長さよりも長い(Y軸方向の厚みが薄い)扁平形状(長円柱形状)を有している。 The electrode body 130 is formed by alternately stacking and winding a positive electrode plate, a negative electrode plate, and two separators. In the present embodiment, electrode body 130 includes electrode plates (positive electrode plate and negative electrode plate) on which composite material layers are formed as described above, and is wound around winding axis R extending in the X-axis direction (first direction). It is a wound electrode body (so-called vertically wound electrode body) formed by winding. The winding axis R is a virtual axis that is the central axis when the positive electrode plate, the negative electrode plate, etc. are wound. A straight line. Thereby, the electrode body 130 is long in the X-axis direction, and the length in the Z-axis direction (second direction) is longer than the length in the Y-axis direction (third direction) (thickness in the Y-axis direction). It has a flat shape (elliptical cylinder shape).
 具体的には、電極体130は、正極板と負極板とがセパレータを介して巻回軸Rに沿う方向(X軸方向(第一方向))に互いにずらして巻回されている。正極板及び負極板は、それぞれのずらされた方向の端部に、正極合材層及び負極合材層が形成(塗工)されず正極基材及び負極基材が露出した部分を有している。つまり、極板(正極板及び負極板)は、合材層が形成された合材層形成部131と、合材層形成部131よりもX軸方向(第一方向)の端部に配置され、合材層が形成されていない合材層非形成部132及び133と、を有している。 Specifically, in the electrode body 130, the positive electrode plate and the negative electrode plate are wound while being shifted in the direction along the winding axis R (the X-axis direction (first direction)) with the separator interposed therebetween. Each of the positive electrode plate and the negative electrode plate has a portion where the positive electrode material layer and the negative electrode material layer are not formed (coated) and the positive electrode base material and the negative electrode base material are exposed at the ends of the respective shifted directions. there is That is, the electrode plates (positive electrode plate and negative electrode plate) are arranged at the composite material layer forming portion 131 on which the composite material layer is formed and at the end portion in the X-axis direction (first direction) of the composite material layer forming portion 131. , and mixture layer non-formed portions 132 and 133 where no mixture layer is formed.
 合材層形成部131は、正極基材及び負極基材のうちの正極合材層及び負極合材層が形成された部分と、正極合材層及び負極合材層とからなる部位である。つまり、合材層形成部131は、電極体130のうちの正極合材層及び負極合材層が形成された電極体130の本体部であり、巻回軸Rまわりに巻回されることで、全体として、X軸方向に延びる長円柱形状を有している。これにより、合材層形成部131は、Y軸方向両側に一対の合材層平坦部131aを有し、Z軸方向両側に一対の合材層湾曲部131bを有することとなる。 The mixture layer forming portion 131 is a portion of the positive electrode base material and the negative electrode base material on which the positive electrode mixture layer and the negative electrode mixture layer are formed, and a portion composed of the positive electrode mixture layer and the negative electrode mixture layer. In other words, the composite layer forming portion 131 is a main body portion of the electrode body 130 in which the positive electrode composite material layer and the negative electrode composite material layer of the electrode body 130 are formed. , as a whole, has an elongated cylindrical shape extending in the X-axis direction. As a result, the composite material layer forming portion 131 has a pair of composite material layer flat portions 131a on both sides in the Y-axis direction, and a pair of composite material layer curved portions 131b on both sides in the Z-axis direction.
 合材層平坦部131aは、一対の合材層湾曲部131bの端部同士を繋ぐ、Y軸方向に向いたXZ平面に平行に広がる矩形状かつ平坦状の部位である。合材層湾曲部131bは、X軸方向から見てZ軸方向に突出するように半円の円弧形状に湾曲し、X軸方向に延設された湾曲状の部位である。合材層湾曲部131bの湾曲形状は、半円の円弧形状には限定されず、楕円形状の一部等でもよく、どのように湾曲していてもよい。合材層平坦部131aは、Y軸方向に向く外面が平面であることには限定されず、当該外面が少し凹んでいたり、少し膨らんでいたりしていてもよい。 The compound layer flat portion 131a is a rectangular and flat portion that connects the ends of the pair of compound layer curved portions 131b and extends parallel to the XZ plane facing the Y-axis direction. The compound layer curved portion 131b is a curved portion extending in the X-axis direction, curved in a semicircular arc shape so as to protrude in the Z-axis direction when viewed from the X-axis direction. The curved shape of the composite layer curved portion 131b is not limited to a semicircular arc shape, and may be a part of an elliptical shape or the like, and may be curved in any way. The outer surface of the composite material layer flat portion 131a facing in the Y-axis direction is not limited to being flat, and the outer surface may be slightly concave or slightly bulging.
 合材層非形成部132は、正極基材のうちの正極合材層が形成されていない部分からなる部位である。つまり、合材層非形成部132は、電極体130のうちの合材層形成部131からX軸プラス方向に突出する、電極体130のX軸プラス方向の端部であり、巻回軸Rまわりに巻回されることで、全体として、略長円筒形状を有している。これにより、合材層非形成部132は、Y軸方向両側に一対の端部平坦部132aを有し、Z軸方向両側に一対の端部湾曲部132bを有することとなる。合材層非形成部133は、負極基材のうちの負極合材層が形成されていない部分からなる部位である。つまり、合材層非形成部133は、電極体130のうちの合材層形成部131からX軸マイナス方向に突出する、電極体130のX軸マイナス方向の端部であり、巻回軸Rまわりに巻回されることで、全体として、略長円筒形状を有している。これにより、合材層非形成部133は、Y軸方向両側に一対の端部平坦部133aを有し、Z軸方向両側に一対の端部湾曲部133bを有することとなる。 The composite material layer non-formed portion 132 is a portion of the positive electrode substrate where the positive electrode composite material layer is not formed. That is, the composite material layer non-forming portion 132 is an end portion of the electrode body 130 in the X-axis positive direction, which protrudes from the composite material layer-forming portion 131 of the electrode body 130 in the X-axis positive direction. By being wound around, it has a substantially long cylindrical shape as a whole. As a result, the composite material layer non-forming portion 132 has a pair of flat end portions 132a on both sides in the Y-axis direction, and a pair of curved end portions 132b on both sides in the Z-axis direction. The composite material layer non-formation portion 133 is a portion of the negative electrode substrate where the negative electrode composite material layer is not formed. That is, the composite material layer non-formed portion 133 is an end portion of the electrode body 130 in the negative X-axis direction that protrudes from the composite material layer formed portion 131 of the electrode body 130 in the negative direction of the X-axis. By being wound around, it has a substantially long cylindrical shape as a whole. As a result, the composite material layer non-forming portion 133 has a pair of flat end portions 133a on both sides in the Y-axis direction, and a pair of curved end portions 133b on both sides in the Z-axis direction.
 端部平坦部132aは、一対の端部湾曲部132bの端部同士を繋ぐ、XZ平面に平行かつZ軸方向に延びる矩形状かつ平坦状の部位である。端部湾曲部132bは、X軸方向から見てZ軸方向に突出するように半円の円弧形状に湾曲する湾曲状の部位である。端部湾曲部132bの湾曲形状は、半円の円弧形状には限定されず、楕円形状の一部等でもよく、どのように湾曲していてもよい。端部平坦部132aは、Y軸方向に向く外面が平面であることには限定されず、当該外面が少し凹んでいたり、少し膨らんでいたりしていてもよい。合材層非形成部133が有する端部平坦部133a及び端部湾曲部133bについては、上述した端部平坦部132a及び端部湾曲部132bと同様の構成を有するため、詳細な説明は省略する。 The end flat portion 132a is a rectangular and flat portion that connects the ends of the pair of end curved portions 132b and extends parallel to the XZ plane and in the Z-axis direction. The end curved portion 132b is a curved portion curved in a semicircular arc shape so as to protrude in the Z-axis direction when viewed from the X-axis direction. The curved shape of the end curved portion 132b is not limited to a semicircular arc shape, and may be a part of an elliptical shape or the like, and may be curved in any way. The flat end portion 132a is not limited to having a flat outer surface facing in the Y-axis direction, and the outer surface may be slightly concave or slightly bulging. The flat end portion 133a and the curved end portion 133b of the composite material layer non-formation portion 133 have the same configuration as the flat end portion 132a and the curved end portion 132b described above, so detailed description thereof will be omitted. .
 集電体は、電極端子120と電極体130とに電気的及び機械的に接続される導電性の集電部材(正極集電体及び負極集電体)である。具体的には、正極集電体は、電極端子121と、電極体130の合材層非形成部132の端部平坦部132aとに、電気的及び機械的に接続(接合)される。負極集電体は、電極端子122と、電極体130の合材層非形成部133の端部平坦部133aとに、電気的及び機械的に接続(接合)される。正極集電体は、電極体130の正極板の正極基材と同様、アルミニウムまたはアルミニウム合金等で形成され、負極集電体は、電極体130の負極板の負極基材と同様、銅または銅合金等で形成されている。電極端子120(121及び122)と電極体130の合材層非形成部132及び133とは、集電体を介することなく、直接接続されてもよい。 The collectors are conductive collectors (positive collector and negative collector) that are electrically and mechanically connected to the electrode terminal 120 and the electrode body 130 . Specifically, the positive electrode current collector is electrically and mechanically connected (joined) to the electrode terminal 121 and the end flat portion 132 a of the composite material layer non-formed portion 132 of the electrode assembly 130 . The negative electrode current collector is electrically and mechanically connected (joined) to the electrode terminal 122 and the end flat portion 133 a of the composite material layer non-formed portion 133 of the electrode body 130 . The positive current collector is made of aluminum or an aluminum alloy, like the positive base material of the positive plate of the electrode body 130. The negative current collector is made of copper or copper, like the negative base material of the negative plate of the electrode body 130. It is made of an alloy or the like. The electrode terminal 120 (121 and 122) and the composite material layer non-formed portions 132 and 133 of the electrode body 130 may be directly connected without a current collector.
 [3 蓄電素子100の容器110及び電極体130のサイズの説明]
 次に、図2及び図3を用いて、蓄電素子100の容器110及び電極体130のサイズについて、詳細に説明する。図3は、本実施の形態に係る電極体130のサイズを示す正面図である。
[3 Description of Sizes of Container 110 and Electrode Body 130 of Storage Element 100]
Next, the sizes of the container 110 and the electrode body 130 of the storage element 100 will be described in detail with reference to FIGS. 2 and 3. FIG. FIG. 3 is a front view showing the size of electrode assembly 130 according to the present embodiment.
 図2に示すように、蓄電素子100において、容器110のX軸方向(第一方向)の長さを第一容器長さL1とし、容器110のZ軸方向(第二方向)の長さ(高さ)を第二容器長さH1とし、容器110のY軸方向(第三方向)の長さ(幅、厚み)を第三容器長さW1とする。第一容器長さL1は、長側面111のX軸方向の長さ、短側面112のX軸方向の長さ、または、一対の端子配置面113の間の距離とも定義できる。第二容器長さH1は、長側面111のZ軸方向の長さ、端子配置面113のZ軸方向の長さ、または、一対の短側面112の間の距離とも定義できる。第三容器長さW1は、短側面112のY軸方向の長さ(幅)、端子配置面113のY軸方向の長さ(幅)、または、一対の長側面111の間の距離とも定義できる。 As shown in FIG. 2, in the electric storage element 100, the length of the container 110 in the X-axis direction (first direction) is defined as a first container length L1, and the length of the container 110 in the Z-axis direction (second direction) ( height) is the second container length H1, and the length (width, thickness) of the container 110 in the Y-axis direction (third direction) is the third container length W1. The first container length L1 can also be defined as the length of the long side 111 in the X-axis direction, the length of the short side 112 in the X-axis direction, or the distance between the pair of terminal placement surfaces 113 . The second container length H1 can also be defined as the length of the long side 111 in the Z-axis direction, the length of the terminal placement surface 113 in the Z-axis direction, or the distance between the pair of short sides 112 . The third container length W1 is also defined as the length (width) of the short side 112 in the Y-axis direction, the length (width) of the terminal arrangement surface 113 in the Y-axis direction, or the distance between the pair of long sides 111. can.
 同様に、電極体130のX軸方向(第一方向)の長さを第一電極体長さL2とし、電極体130のZ軸方向(第二方向)の長さ(高さ)を第二電極体長さH2とし、電極体130のY軸方向(第三方向)の長さ(幅、厚み)を第三電極体長さW2とする。第一電極体長さL2は、合材層非形成部132及び133のX軸方向における両端面の間の距離とも定義できる。第二電極体長さH2は、合材層形成部131の一対の合材層湾曲部131bのZ軸方向における両端面の間の距離とも定義できる。第三電極体長さW2は、合材層形成部131の一対の合材層平坦部131aのY軸方向における両端面の間の距離とも定義できる。 Similarly, the length of the electrode body 130 in the X-axis direction (first direction) is the first electrode body length L2, and the length (height) of the electrode body 130 in the Z-axis direction (second direction) is the second electrode body length L2. It is assumed that the body length is H2, and the length (width and thickness) of the electrode body 130 in the Y-axis direction (third direction) is taken as the third electrode body length W2. The first electrode body length L2 can also be defined as the distance between both end surfaces of the composite material layer non-formed portions 132 and 133 in the X-axis direction. The second electrode body length H2 can also be defined as the distance between both end surfaces of the pair of composite material layer curved portions 131b of the composite material layer forming portion 131 in the Z-axis direction. The third electrode body length W2 can also be defined as the distance between both end surfaces of the pair of composite material layer flat portions 131a of the composite material layer forming portion 131 in the Y-axis direction.
 図3に示すように、電極体130において、正極板のX軸方向(第一方向)の幅を正極板幅Aとし、負極板のX軸方向(第一方向)の幅を負極板幅Bとする。合材層形成部131のX軸方向(第一方向)の幅を合材層形成部幅C1とし、合材層非形成部132のX軸方向(第一方向)の幅を合材層非形成部幅C2とし、合材層非形成部133のX軸方向(第一方向)の幅を合材層非形成部幅C3とする。本実施の形態では、合材層非形成部幅C2は、正極の合材層非形成部幅であり、合材層非形成部幅C3は、負極の合材層非形成部幅である。 As shown in FIG. 3, in the electrode assembly 130, the width of the positive electrode plate in the X-axis direction (first direction) is defined as a positive electrode plate width A, and the width of the negative electrode plate in the X-axis direction (first direction) is defined as a negative electrode plate width B. and The width of the composite material layer formed portion 131 in the X-axis direction (first direction) is defined as the composite material layer formed portion width C1, and the width of the composite material layer non-formed portion 132 in the X-axis direction (first direction) is defined as the composite material layer non-width. The width of the formed portion is C2, and the width of the composite material layer non-formed portion 133 in the X-axis direction (first direction) is defined as the composite material layer non-formed portion width C3. In the present embodiment, the composite material layer non-formed portion width C2 is the composite material layer non-formed portion width of the positive electrode, and the composite material layer non-formed portion width C3 is the composite material layer non-formed portion width of the negative electrode.
 図3では、正極合材層のX軸方向の幅と負極合材層のX軸方向の幅とを、ともに合材層形成部幅C1として同じ長さで図示しているが、厳密には、負極合材層のX軸方向の幅は、正極合材層のX軸方向の幅よりも少し大きい。つまり、負極合材層は、X軸方向において合材層非形成部132と重なっている。すなわち、図3では、合材層非形成部幅C2は、負極合材層と重なっていない部分を指しているが、実際の合材層非形成部幅C2は、負極合材層と重なる部分の幅も有している。このため、以下では、正極合材層のX軸方向の幅を合材層形成部幅C1(正極)とし、負極合材層のX軸方向の幅を合材層形成部幅C1(負極)として区別して説明する。つまり、正極板幅Aは、合材層形成部幅C1(正極)と合材層非形成部幅C2との合計値であり、負極板幅Bは、合材層形成部幅C1(負極)と合材層非形成部幅C3との合計値である。合材層形成部幅C1(正極)及び合材層形成部幅C1(負極)を区別することなく、合材層形成部幅C1(正極)及び合材層形成部幅C1(負極)の一方または双方を指す場合は、単に、合材層形成部幅C1として示す。 In FIG. 3, the width of the positive electrode mixture layer in the X-axis direction and the width of the negative electrode mixture layer in the X-axis direction are both illustrated as the same length as the width of the mixture layer forming portion C1. , the width of the negative electrode mixture layer in the X-axis direction is slightly larger than the width of the positive electrode mixture layer in the X-axis direction. That is, the negative electrode mixture layer overlaps the mixture layer non-formed portion 132 in the X-axis direction. That is, in FIG. 3, the composite material layer non-forming portion width C2 indicates the portion not overlapping the negative electrode composite material layer, but the actual composite material layer non-forming portion width C2 is the portion overlapping the negative electrode composite layer. also has a width of Therefore, hereinafter, the width of the positive electrode mixture layer in the X-axis direction is defined as a mixture layer forming portion width C1 (positive electrode), and the width of the negative electrode mixture layer in the X-axis direction is defined as a mixture layer forming portion width C1 (negative electrode). will be described separately. That is, the positive electrode plate width A is the total value of the composite material layer forming portion width C1 (positive electrode) and the composite material layer non-forming portion width C2, and the negative electrode plate width B is the composite material layer forming portion width C1 (negative electrode). and the composite material layer non-formed portion width C3. Without distinguishing between the composite material layer forming width C1 (positive electrode) and the composite material layer forming width C1 (negative electrode), one of the composite material layer forming width C1 (positive electrode) and the composite material layer forming width C1 (negative electrode) Alternatively, when referring to both, it is simply indicated as the composite material layer forming portion width C1.
 以上の構成において、比較例1~3、及び、実施例1~7における容器110のサイズを表1に示す。表1は、本実施の形態に係る蓄電素子100において、比較例1~3、及び、実施例1~7における容器110のサイズを示す表である。具体的には、表1は、比較例1~3、及び、実施例1~7における容器110の第一容器長さL1、第二容器長さH1、第三容器長さW1、及び、第一容器長さL1/第二容器長さH1(第一容器長さL1÷第二容器長さH1)を示している。 Table 1 shows the size of the container 110 in Comparative Examples 1 to 3 and Examples 1 to 7 in the above configuration. Table 1 is a table showing sizes of containers 110 in Comparative Examples 1 to 3 and Examples 1 to 7 in the storage device 100 according to the present embodiment. Specifically, Table 1 shows the first container length L1, the second container length H1, the third container length W1, and the third One container length L1/second container length H1 (first container length L1/second container length H1) is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1~3、及び、実施例1~7において、第二容器長さH1及び第三容器長さW1の値を固定し、第一容器長さL1の値を変化させている。つまり、比較例1から実施例7にかけて、第一容器長さL1の値(容器110のX軸方向(第一方向)の長さ)を徐々に大きくしている。比較例1では、第一容器長さL1=100mm、第二容器長さH1=145mm、第三容器長さW1=22mm、及び、第一容器長さL1/第二容器長さH1=0.7である。実施例1では、第一容器長さL1=250mm、第二容器長さH1=145mm、第三容器長さW1=22mm、及び、第一容器長さL1/第二容器長さH1=1.7である。 As shown in Table 1, in Comparative Examples 1 to 3 and Examples 1 to 7, the values of the second container length H1 and the third container length W1 are fixed, and the value of the first container length L1 is are changing. That is, from Comparative Example 1 to Example 7, the value of the first container length L1 (the length of the container 110 in the X-axis direction (first direction)) is gradually increased. In Comparative Example 1, the first container length L1=100 mm, the second container length H1=145 mm, the third container length W1=22 mm, and the first container length L1/second container length H1=0. 7. In Example 1, the first container length L1=250 mm, the second container length H1=145 mm, the third container length W1=22 mm, and the first container length L1/second container length H1=1. 7.
 比較例1~3、及び、実施例1~7における電極体130のサイズを表2に示す。表2は、本実施の形態に係る蓄電素子100において、比較例1~3、及び、実施例1~7における電極体130のサイズを示す表である。具体的には、表2は、比較例1~3、及び、実施例1~7における電極体130の第一電極体長さL2、第二電極体長さH2、第三電極体長さW2、及び、第一電極体長さL2/第二電極体長さH2(第一電極体長さL2÷第二電極体長さH2)を示している。 Table 2 shows the sizes of the electrode bodies 130 in Comparative Examples 1 to 3 and Examples 1 to 7. Table 2 is a table showing the sizes of the electrode bodies 130 in Comparative Examples 1 to 3 and Examples 1 to 7 in the energy storage device 100 according to the present embodiment. Specifically, Table 2 shows the first electrode body length L2, the second electrode body length H2, the third electrode body length W2, and First electrode body length L2/second electrode body length H2 (first electrode body length L2/second electrode body length H2) is shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例1~3、及び、実施例1~7において、第二電極体長さH2及び第三電極体長さW2の値が固定され、第一電極体長さL2の値が変化されている。つまり、比較例1から実施例7にかけて、第一容器長さL1の値を徐々に大きくしたのに伴い、第一電極体長さL2の値(電極体130のX軸方向(第一方向)の長さ)も徐々に大きくなっている。比較例1では、第一電極体長さL2=96.7mm、第二電極体長さH2=135.6mm、第三電極体長さW2=19.4mm、及び、第一電極体長さL2/第二電極体長さH2=0.7である。実施例1では、第一電極体長さL2=246.7mm、第二電極体長さH2=135.6mm、第三電極体長さW2=19.4mm、及び、第一電極体長さL2/第二電極体長さH2=1.8である。 As shown in Table 2, in Comparative Examples 1 to 3 and Examples 1 to 7, the values of the second electrode body length H2 and the third electrode body length W2 are fixed, and the value of the first electrode body length L2 is being changed. That is, from Comparative Example 1 to Example 7, as the value of the first container length L1 was gradually increased, the value of the first electrode body length L2 (the X-axis direction (first direction) of the electrode body 130) length) is gradually increasing. In Comparative Example 1, the first electrode body length L2 = 96.7 mm, the second electrode body length H2 = 135.6 mm, the third electrode body length W2 = 19.4 mm, and the first electrode body length L2/second electrode Body length H2=0.7. In Example 1, the first electrode body length L2 = 246.7 mm, the second electrode body length H2 = 135.6 mm, the third electrode body length W2 = 19.4 mm, and the first electrode body length L2/second electrode Body length H2=1.8.
 比較例1~3、及び、実施例1~7における電極体130の合材層形成部131及び合材層非形成部132、133のサイズを表3に示す。表3は、本実施の形態に係る蓄電素子100において、比較例1~3、及び、実施例1~7における電極体130の合材層形成部131及び合材層非形成部132、133のサイズを示す表である。具体的には、表3は、比較例1~3、及び、実施例1~7における電極体130の合材層形成部幅C1(正極)、合材層非形成部幅C2、合材層形成部幅C1(正極)/合材層非形成部幅C2、合材層形成部幅C1(負極)、合材層非形成部幅C3、及び、合材層形成部幅C1(負極)/合材層非形成部幅C3を示している。 Table 3 shows the sizes of the composite material layer formed portion 131 and the composite material layer non-formed portions 132 and 133 of the electrode body 130 in Comparative Examples 1 to 3 and Examples 1 to 7. Table 3 shows the composite material layer formed portion 131 and the composite material layer non-formed portions 132 and 133 of the electrode body 130 in Comparative Examples 1 to 3 and Examples 1 to 7 in the energy storage device 100 according to the present embodiment. It is a table showing sizes. Specifically, Table 3 shows the composite material layer forming portion width C1 (positive electrode), the composite material layer non-forming portion width C2, and the composite material layer of the electrode bodies 130 in Comparative Examples 1 to 3 and Examples 1 to 7. Forming portion width C1 (positive electrode)/mixture layer non-forming portion width C2, composite material layer forming portion width C1 (negative electrode), composite material layer non-forming portion width C3, and composite material layer forming portion width C1 (negative electrode)/ It shows the width of the composite material layer non-forming portion C3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、比較例1~3、及び、実施例1~7において、合材層非形成部幅C2及びC3の値が固定され、合材層形成部幅C1(正極)及び合材層形成部幅C1(負極)の値が変化されている。つまり、比較例1から実施例7にかけて、第一容器長さL1(及び第一電極体長さL2)の値を徐々に大きくしたのに伴い、合材層形成部幅C1(正極)及び合材層形成部幅C1(負極)の値(合材層形成部131のX軸方向(第一方向)の幅)も徐々に大きくなっている。比較例1では、合材層形成部幅C1(正極)=66.2mm、合材層非形成部幅C2=14.2mm、合材層形成部幅C1(正極)/合材層非形成部幅C2=4.7、合材層形成部幅C1(負極)=70.3mm、合材層非形成部幅C3=14.2mm、及び、合材層形成部幅C1(負極)/合材層非形成部幅C3=5.0である。実施例1では、合材層形成部幅C1(正極)=216.2mm、合材層非形成部幅C2=14.2mm、合材層形成部幅C1(正極)/合材層非形成部幅C2=15.2、合材層形成部幅C1(負極)=220.3mm、合材層非形成部幅C3=14.2mm、及び、合材層形成部幅C1(負極)/合材層非形成部幅C3=15.5である。 As shown in Table 3, in Comparative Examples 1 to 3 and Examples 1 to 7, the values of the composite material layer non-forming portion widths C2 and C3 are fixed, and the composite material layer forming portion width C1 (positive electrode) and The value of the material layer forming portion width C1 (negative electrode) is changed. That is, from Comparative Example 1 to Example 7, as the value of the first container length L1 (and the first electrode body length L2) was gradually increased, the composite material layer forming portion width C1 (positive electrode) and the composite material The value of the layer forming portion width C1 (negative electrode) (the width of the mixture layer forming portion 131 in the X-axis direction (first direction)) also gradually increases. In Comparative Example 1, the composite material layer forming portion width C1 (positive electrode)=66.2 mm, the composite material layer non-forming portion width C2=14.2 mm, the composite material layer forming portion width C1 (positive electrode)/the composite material layer non-forming portion. Width C2 = 4.7, composite material layer forming portion width C1 (negative electrode) = 70.3 mm, composite material layer non-forming portion width C3 = 14.2 mm, and composite material layer forming portion width C1 (negative electrode)/composite material The layer non-forming portion width C3=5.0. In Example 1, the composite material layer forming portion width C1 (positive electrode)=216.2 mm, the composite material layer non-forming portion width C2=14.2 mm, the composite material layer forming portion width C1 (positive electrode)/the composite material layer non-forming portion. Width C2 = 15.2, composite material layer forming portion width C1 (negative electrode) = 220.3 mm, composite material layer non-forming portion width C3 = 14.2 mm, and composite material layer forming portion width C1 (negative electrode)/composite material The layer non-forming portion width C3=15.5.
 次に、縦巻型電極体である電極体130との比較対象として、横巻型電極体である電極体140の構成について、以下に説明する。図4は、本実施の形態に係る縦巻型電極体である電極体130との比較対象としての横巻型電極体である電極体140の構成を示す正面図である。具体的には、図4は、図3に対応する図である。 Next, the configuration of the horizontally wound electrode assembly 140 will be described below as a comparison target with the vertically wound electrode assembly 130 . FIG. 4 is a front view showing the configuration of an electrode assembly 140, which is a horizontally wound electrode assembly, for comparison with electrode assembly 130, which is a vertically wound electrode assembly, according to the present embodiment. Specifically, FIG. 4 is a diagram corresponding to FIG.
 図4に示すように、電極体140は、合材層が形成された極板(正極板及び負極板)が、Z軸方向に延びる巻回軸Rzまわりに巻回されて形成された、いわゆる横巻型電極体である。電極体140は、X軸方向に長尺かつZ軸方向から見て長円形状の、Y軸方向の厚みが薄い扁平形状(長円柱形状)を有している。電極体140は、合材層が形成された合材層形成部141と、合材層形成部141からZ軸プラス方向に突出し、合材層が形成されていないタブである合材層非形成部142及び143と、を有している。 As shown in FIG. 4, the electrode body 140 is formed by winding an electrode plate (a positive electrode plate and a negative electrode plate) on which a composite material layer is formed around a winding axis Rz extending in the Z-axis direction. It is a horizontally wound electrode body. The electrode body 140 has a flat shape (elliptical cylinder shape) that is long in the X-axis direction, oblong when viewed from the Z-axis direction, and thin in the Y-axis direction. The electrode body 140 includes a composite material layer forming portion 141 having a composite material layer formed thereon, and a composite material layer non-formed tab protruding from the composite material layer forming portion 141 in the Z-axis positive direction and having no composite material layer formed thereon. and portions 142 and 143 .
 電極体140は、X軸方向の長さは、電極体130のX軸方向の長さ(第一電極体長さL2)と同じである。電極体140は、Z軸方向の長さ(合材層形成部141と合材層非形成部142及び143との合計の長さ)も、電極体130のZ軸方向の長さ(第二電極体長さH2)と同じである。電極体140は、Y軸方向においても、電極体130と同じ幅(第三電極体長さW2)を有していることとする。合材層非形成部142及び143のZ軸プラス方向への突出量である合材層非形成部幅C4は、電極体130の合材層非形成部132または133のX軸方向への突出量である合材層非形成部幅C2またはC3と同じ長さであることとする。本実施の形態では、表3に示したように、合材層非形成部幅C2及びC3は、同じ長さであるため、合材層非形成部幅C4は、合材層非形成部幅C2及びC3と同じ長さである。 The length of the electrode body 140 in the X-axis direction is the same as the length of the electrode body 130 in the X-axis direction (first electrode body length L2). The electrode body 140 has a length in the Z-axis direction (the total length of the composite material layer formed portion 141 and the composite material layer non-formed portions 142 and 143) and a length in the Z-axis direction of the electrode body 130 (second It is the same as the electrode body length H2). It is assumed that the electrode body 140 has the same width (third electrode body length W2) as the electrode body 130 also in the Y-axis direction. A composite material layer non-formed portion width C4, which is the amount of protrusion of the composite material layer non-formed portions 142 and 143 in the Z-axis positive direction, is the protrusion of the composite material layer non-formed portion 132 or 133 of the electrode assembly 130 in the X-axis direction. The length is the same as the width C2 or C3 of the composite material layer non-formation portion, which is the amount. In the present embodiment, as shown in Table 3, the widths C2 and C3 of the mixture non-formed portion are the same length, so the width C4 of the mixture non-formed portion is It is the same length as C2 and C3.
 このような構成を前提に、比較例1~3、及び、実施例1~7において、縦巻型電極体を用いた蓄電素子100と、横巻型電極体を用いた蓄電素子とのエネルギー密度の比較を、表4、図5A及び図5Bに示す。以下、表4、図5A及び図5Bに示すエネルギー密度は、電極端子を除いた部分におけるエネルギー密度を示している。 On the premise of such a configuration, in Comparative Examples 1 to 3 and Examples 1 to 7, the energy densities of the energy storage element 100 using the vertically wound electrode body and the energy density of the energy storage element using the horizontally wound electrode body are shown in Table 4, Figures 5A and 5B. The energy densities shown in Table 4, FIGS. 5A and 5B below indicate the energy densities in the portions excluding the electrode terminals.
 表4は、本実施の形態に係る縦巻型電極体を用いた蓄電素子100において、比較例1~3、及び、実施例1~7における横巻型電極体を用いた蓄電素子とのエネルギー密度の比較を示す表である。具体的には、表4は、比較例1~3、及び、実施例1~7において、縦巻型電極体である電極体130を用いた蓄電素子100と、横巻型電極体である電極体140を用いた蓄電素子とのエネルギー密度、その差分、及び、蓄電素子100の容量を示している。 Table 4 shows the difference in energy between the energy storage device 100 using the vertically wound electrode assembly according to the present embodiment and the energy storage device using the horizontally wound electrode assembly in Comparative Examples 1 to 3 and Examples 1 to 7. Fig. 10 is a table showing a comparison of densities; Specifically, Table 4 shows, in Comparative Examples 1 to 3 and Examples 1 to 7, the storage element 100 using the vertically wound electrode body 130 and the horizontally wound electrode body. The energy density with respect to the electric storage element using the body 140, the difference therebetween, and the capacity of the electric storage element 100 are shown.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図5A及び図5Bは、本実施の形態に係る縦巻型電極体を用いた蓄電素子100において、比較例1~3、及び、実施例1~7における横巻型電極体を用いた蓄電素子とのエネルギー密度の比較を示すグラフである。具体的には、図5Aは、比較例1~3、及び、実施例1~7において、縦巻型電極体である電極体130を用いた蓄電素子100と、横巻型電極体である電極体140を用いた蓄電素子とのエネルギー密度の、合材層形成部幅C1/合材層非形成部幅C2に対する変化を示すグラフである。図5Bは、比較例1~3、及び、実施例1~7において、縦巻型電極体である電極体130を用いた蓄電素子100と、横巻型電極体である電極体140を用いた蓄電素子とのエネルギー密度の差分の、合材層形成部幅C1/合材層非形成部幅C2に対する変化を示すグラフである。図5A及び図5Bでは、合材層形成部幅C1として、合材層形成部幅C1(正極)の値を用いているが、合材層形成部幅C1(負極)の値を用いた場合も同様の傾向を示す。 5A and 5B show, in the energy storage element 100 using the vertically wound electrode body according to the present embodiment, energy storage elements using the horizontally wound electrode bodies in Comparative Examples 1 to 3 and Examples 1 to 7. is a graph showing a comparison of energy densities with Specifically, FIG. 5A shows, in Comparative Examples 1 to 3 and Examples 1 to 7, a power storage element 100 using an electrode body 130 that is a vertically wound electrode body and an electrode that is a horizontally wound electrode body. 4 is a graph showing changes in energy density with a power storage element using the body 140 with respect to the width C1 of the composite material layer formed portion/the width C2 of the non-composite material layer formed portion. FIG. 5B shows, in Comparative Examples 1 to 3 and Examples 1 to 7, the storage element 100 using the vertically wound electrode body 130 and the horizontally wound electrode body 140. 4 is a graph showing a change in difference in energy density from a power storage element with respect to width C1 of a mixture layer formed portion/width C2 of a portion not formed with a mixture layer. 5A and 5B, the value of the composite material layer forming portion width C1 (positive electrode) is used as the composite material layer forming portion width C1, but when the value of the composite material layer forming portion width C1 (negative electrode) is used also show a similar tendency.
 表4、図5A及び図5Bに示すように、比較例1から実施例7にかけて、縦巻型電極体である電極体130を用いた蓄電素子100、及び、横巻型電極体である電極体140を用いた蓄電素子の双方ともに、エネルギー密度が上昇しているが、電極体130を用いた蓄電素子100の方が、エネルギー密度の上昇速度が速い。このため、電極体130を用いた蓄電素子100は、比較例1~3においては、電極体140を用いた蓄電素子よりもエネルギー密度が小さいまたは同等であるが、実施例1~7では、電極体140を用いた蓄電素子よりもエネルギー密度が大きくなっている。つまり、実施例1において、電極体130を用いた蓄電素子100のエネルギー密度が235Wh/Lとなり、電極体140を用いた蓄電素子のエネルギー密度230Wh/Lを越える。この実施例1における蓄電素子100の容量は、52.9Ahである。 As shown in Table 4, FIGS. 5A and 5B, in Comparative Examples 1 to 7, the energy storage element 100 using the electrode body 130 which is the vertically wound electrode body and the electrode body which is the horizontally wound electrode body The energy densities of both of the storage elements using 140 are increased, but the energy density of the storage element 100 using the electrode assembly 130 increases at a faster rate. Therefore, in Comparative Examples 1 to 3, the energy density of the energy storage device 100 using the electrode body 130 is lower than or equal to that of the energy density of the energy storage device using the electrode body 140, but in Examples 1 to 7, the energy density of the electrode The energy density is higher than that of the electric storage device using the body 140 . That is, in Example 1, the energy density of the storage device 100 using the electrode assembly 130 is 235 Wh/L, exceeding the energy density of 230 Wh/L of the storage device using the electrode assembly 140 . The capacity of the storage device 100 in Example 1 is 52.9 Ah.
 このことから、実施例1~7における蓄電素子100の構成が好ましい。具体的には、表1に示すように、実施例1~7において、第一容器長さL1は250mm以上であるため、第一容器長さL1(容器110のX軸方向(第一方向)の長さ)が250mm以上である場合に、蓄電素子100のエネルギー密度の向上を図ることができる。実施例1~7において、第一容器長さL1/第二容器長さH1が1.7以上であるため、第一容器長さL1が、第二容器長さH1(容器110のZ軸方向(第二方向)の長さ(高さ))の1.7倍以上若しくは2倍以上である場合には、蓄電素子100のエネルギー密度の向上を図ることができる。 For this reason, the configurations of the storage elements 100 in Examples 1 to 7 are preferable. Specifically, as shown in Table 1, in Examples 1 to 7, the first container length L1 is 250 mm or more, so the first container length L1 (the X-axis direction (first direction) of the container 110 is 250 mm or more, the energy density of the storage element 100 can be improved. In Examples 1 to 7, since the first container length L1/second container length H1 is 1.7 or more, the first container length L1 is equal to the second container length H1 (the Z-axis direction of the container 110 When the length (height) in the second direction is 1.7 times or more or 2 times or more, the energy density of the storage element 100 can be improved.
 表2に示すように、実施例1~7において、第一電極体長さL2は246.7mm以上であるため、第一電極体長さL2(電極体130のX軸方向(第一方向)における第一長さ)が247mm以上若しくは250mm以上である場合には、蓄電素子100のエネルギー密度の向上を図ることができる。実施例1~7において、第一電極体長さL2/第二電極体長さH2は1.8以上であるため、第一電極体長さL2が、第二電極体長さH2(電極体130のZ軸方向(第二方向)における第二長さ)の1.8倍以上若しくは2倍以上である場合には、蓄電素子100のエネルギー密度の向上を図ることができる。表2及び表3から、実施例1~7において、合材層形成部幅C1は、第二電極体長さH2の1.6倍以上であるため、合材層形成部幅C1が第二電極体長さH2の1.6倍以上若しくは2倍以上である場合には、蓄電素子100のエネルギー密度の向上を図ることができる。 As shown in Table 2, in Examples 1 to 7, the length L2 of the first electrode body was 246.7 mm or more, so the length L2 of the first electrode body (the length of the first electrode body 130 in the X-axis direction (first direction) One length) is 247 mm or more or 250 mm or more, the energy density of the storage element 100 can be improved. In Examples 1 to 7, the first electrode body length L2/second electrode body length H2 is 1.8 or more. When it is 1.8 times or more or 2 times or more of the second length in the direction (second direction), the energy density of the storage element 100 can be improved. From Tables 2 and 3, in Examples 1 to 7, the composite material layer forming portion width C1 is 1.6 times or more the length H2 of the second electrode body. When it is 1.6 times or more or 2 times or more the body length H2, the energy density of the storage element 100 can be improved.
 表3に示すように、実施例1~7において、合材層形成部幅C1(正極)が216.2mm以上であり、合材層形成部幅C1(負極)が220.3mm以上であるため、合材層形成部幅C1(X軸方向(第一方向)における合材層形成部131の幅)が217mm以上若しくは220mm以上である場合には、蓄電素子100のエネルギー密度の向上を図ることができる。実施例1~7において、合材層形成部幅C1(正極)/合材層非形成部幅C2が15.2以上であり、合材層形成部幅C1(負極)/合材層非形成部幅C3が15.5以上であるため、合材層形成部幅C1が、合材層非形成部幅C2またはC3(合材層非形成部132または133の幅)の15.2倍以上若しくは16倍以上である場合には、蓄電素子100のエネルギー密度の向上を図ることができる。 As shown in Table 3, in Examples 1 to 7, the composite material layer forming portion width C1 (positive electrode) is 216.2 mm or more, and the composite material layer forming portion width C1 (negative electrode) is 220.3 mm or more. , when the composite material layer forming portion width C1 (the width of the composite material layer forming portion 131 in the X-axis direction (first direction)) is 217 mm or more or 220 mm or more, the energy density of the power storage element 100 is improved. can be done. In Examples 1 to 7, the composite material layer forming portion width C1 (positive electrode)/the composite material layer non-forming portion width C2 is 15.2 or more, and the composite material layer forming portion width C1 (negative electrode)/the composite material layer non-forming is 15.2 or more. Since the portion width C3 is 15.5 or more, the composite material layer forming portion width C1 is 15.2 times or more the composite material layer non-forming portion width C2 or C3 (the width of the composite material layer non-forming portion 132 or 133). Alternatively, when it is 16 times or more, the energy density of the storage element 100 can be improved.
 表4に示すように、実施例1~7において、蓄電素子100の容量が52.9Ah以上であるため、蓄電素子100の容量が53Ah以上である場合には、蓄電素子100のエネルギー密度の向上を図ることができる。 As shown in Table 4, in Examples 1 to 7, the capacity of the storage element 100 is 52.9 Ah or more, so when the capacity of the storage element 100 is 53 Ah or more, the energy density of the storage element 100 is improved can be achieved.
 表4、図5A及び図5Bに示すように、実施例1から実施例3にかけて、蓄電素子100のエネルギー密度が効果的に高くなっている(「縦巻-横巻」の数値の増加量が大きい)。このため、実施例3~7において、エネルギー密度が効果的に高くなった電極体130を用いることができるため、蓄電素子100のエネルギー密度の向上を図ることができる。 As shown in Table 4, FIGS. 5A and 5B, the energy density of the storage element 100 is effectively increased from Example 1 to Example 3 (the increase in the value of “vertical winding-horizontal winding” is big). Therefore, in Examples 3 to 7, the electrode body 130 with effectively increased energy density can be used, so that the energy density of the storage element 100 can be improved.
 このことから、実施例3~7における蓄電素子100の構成が好ましい。具体的には、表1に示すように、第一容器長さL1が600mm以上であるのが好ましく、第一容器長さL1/第二容器長さH1が4.1以上若しくは5以上であるのが好ましい。表2に示すように、第一電極体長さL2が597mm以上若しくは600mm以上であるのが好ましく、第一電極体長さL2/第二電極体長さH2が4.4以上若しくは5以上であるのが好ましい。つまり、第一電極体長さL2(電極体130のX軸方向(第一方向)における第一長さ)は、第二電極体長さH2(電極体130のZ軸方向(第二方向)における第二長さ)の4.4倍以上若しくは5倍以上であるのが好ましい。表2及び表3から、合材層形成部幅C1は、第二電極体長さH2の4.2倍以上若しくは5倍以上であるのが好ましい。表3に示すように、合材層形成部幅C1が567mm以上若しくは570mm以上であるのが好ましく、合材層形成部幅C1/合材層非形成部幅C2またはC3が40以上であるのが好ましい。つまり、合材層形成部幅C1(X軸方向(第一方向)における合材層形成部131の幅)は、合材層非形成部幅C2またはC3(合材層非形成部132または133の幅)の40倍以上であるのが好ましい。表4に示すように、蓄電素子100の容量が132Ah以上であるのが好ましい。 For this reason, the configurations of the storage elements 100 in Examples 3 to 7 are preferable. Specifically, as shown in Table 1, the first container length L1 is preferably 600 mm or more, and the first container length L1/second container length H1 is 4.1 or more or 5 or more. is preferred. As shown in Table 2, the first electrode body length L2 is preferably 597 mm or more or 600 mm or more, and the first electrode body length L2/second electrode body length H2 is preferably 4.4 or more or 5 or more. preferable. That is, the first electrode body length L2 (the first length of the electrode body 130 in the X-axis direction (first direction)) is equal to the second electrode body length H2 (the second electrode body length H2 (the second length of the electrode body 130 in the Z-axis direction (second direction)). It is preferably 4.4 times or more, or 5 times or more of the two lengths). From Tables 2 and 3, it is preferable that the composite material layer forming portion width C1 is 4.2 times or more, or 5 times or more the length H2 of the second electrode body. As shown in Table 3, it is preferable that the composite material layer forming portion width C1 is 567 mm or more or 570 mm or more, and the composite material layer forming portion width C1/the composite material layer non-forming portion width C2 or C3 is 40 or more. is preferred. That is, the composite material layer forming portion width C1 (the width of the composite material layer forming portion 131 in the X-axis direction (first direction)) is equal to the composite material layer non-forming portion width C2 or C3 (the composite material layer non-forming portion 132 or 133 width) is preferably 40 times or more. As shown in Table 4, it is preferable that the capacity of the storage element 100 is 132 Ah or more.
 表4、図5A及び図5Bに示すように、実施例1から実施例7までは、蓄電素子100のエネルギー密度の向上を図ることができているため、実施例7までの構成の蓄電素子100であるのが好ましい。具体的には、表1に示すように、第一容器長さL1が2000mm以下であるのが好ましく、第一容器長さL1/第二容器長さH1が13.8以下若しくは13以下であるのが好ましい。表2に示すように、第一電極体長さL2が1996mm以下若しくは1990mm以下であるのが好ましく、第一電極体長さL2/第二電極体長さH2が14.7以下若しくは14以下であるのが好ましい。つまり、第一電極体長さL2(電極体130のX軸方向(第一方向)における第一長さ)は、第二電極体長さH2(電極体130のZ軸方向(第二方向)における第二長さ)の14.7倍以下若しくは14倍以下であるのが好ましい。表2及び表3から、合材層形成部幅C1は、第二電極体長さH2の14.5倍以下若しくは14倍以下であるのが好ましい。表3に示すように、合材層形成部幅C1が1970mm以下若しくは1966mm以下であるのが好ましく、合材層形成部幅C1/合材層非形成部幅C2またはC3が138以下若しくは130以下であるのが好ましい。つまり、合材層形成部幅C1(X軸方向(第一方向)における合材層形成部131の幅)は、合材層非形成部幅C2またはC3(合材層非形成部132または133の幅)の138倍以下若しくは130倍以下であるのが好ましい。表4に示すように、蓄電素子100の容量が448Ah以下であるのが好ましい。 As shown in Table 4, FIGS. 5A and 5B, in Examples 1 to 7, the energy density of the storage element 100 can be improved. is preferred. Specifically, as shown in Table 1, the first container length L1 is preferably 2000 mm or less, and the first container length L1/second container length H1 is 13.8 or less or 13 or less. is preferred. As shown in Table 2, the first electrode body length L2 is preferably 1996 mm or less or 1990 mm or less, and the first electrode body length L2/second electrode body length H2 is preferably 14.7 or less or 14 or less. preferable. That is, the first electrode body length L2 (the first length of the electrode body 130 in the X-axis direction (first direction)) is equal to the second electrode body length H2 (the second electrode body length H2 (the second length of the electrode body 130 in the Z-axis direction (second direction)). It is preferably not more than 14.7 times or not more than 14 times the length (two lengths). From Tables 2 and 3, it is preferable that the composite material layer forming portion width C1 is 14.5 times or less or 14 times or less the length H2 of the second electrode body. As shown in Table 3, the composite material layer forming portion width C1 is preferably 1970 mm or less or 1966 mm or less, and the composite material layer forming portion width C1/the composite material layer non-forming portion width C2 or C3 is 138 or less or 130 or less. is preferred. That is, the composite material layer forming portion width C1 (the width of the composite material layer forming portion 131 in the X-axis direction (first direction)) is equal to the composite material layer non-forming portion width C2 or C3 (the composite material layer non-forming portion 132 or 133 width) is preferably 138 times or less or 130 times or less. As shown in Table 4, it is preferable that the capacity of the storage element 100 is 448 Ah or less.
 実施例6、7では、表2に示すように、電極体130の第一電極体長さL2が長くなりすぎて電極体130の形成が困難となるものの、表4、図5A及び図5Bに示すように、蓄電素子100のエネルギー密度があまり増えない(「縦巻-横巻」の数値の増加量が小さい)。このため、実施例1~5において、電極体130を容易に形成しつつ、蓄電素子100のエネルギー密度の向上を図ることができる。 In Examples 6 and 7, as shown in Table 2, the first electrode body length L2 of the electrode body 130 was too long, making formation of the electrode body 130 difficult. As shown, the energy density of the storage element 100 does not increase much (the amount of increase in the numerical value of “longitudinal winding-horizontal winding” is small). Therefore, in Examples 1 to 5, it is possible to improve the energy density of the storage element 100 while easily forming the electrode body 130 .
 このことから、実施例1~5における蓄電素子100の構成が好ましい。具体的には、表1に示すように、第一容器長さL1が1200mm以下であるのが好ましく、第一容器長さL1/第二容器長さH1が8.3以下若しくは8以下であるのが好ましい。表2に示すように、第一電極体長さL2が1196mm以下若しくは1190mm以下であるのが好ましく、第一電極体長さL2/第二電極体長さH2が8.8以下若しくは8以下であるのが好ましい。つまり、第一電極体長さL2(電極体130のX軸方向(第一方向)における第一長さ)は、第二電極体長さH2(電極体130のZ軸方向(第二方向)における第二長さ)の8.8倍以下若しくは8倍以下であるのが好ましい。表2及び表3から、合材層形成部幅C1は、第二電極体長さH2の8.6倍以下若しくは8倍以下であるのが好ましい。表3に示すように、合材層形成部幅C1が1170mm以下若しくは1166mm以下であるのが好ましく、合材層形成部幅C1/合材層非形成部幅C2またはC3が82以下若しくは80以下であるのが好ましい。つまり、合材層形成部幅C1(X軸方向(第一方向)における合材層形成部131の幅)は、合材層非形成部幅C2またはC3(合材層非形成部132または133の幅)の82倍以下若しくは80倍以下であるのが好ましい。表4に示すように、蓄電素子100の容量が267Ah以下であるのが好ましい。 For this reason, the configurations of the storage elements 100 in Examples 1 to 5 are preferable. Specifically, as shown in Table 1, the first container length L1 is preferably 1200 mm or less, and the first container length L1/second container length H1 is 8.3 or less or 8 or less. is preferred. As shown in Table 2, the first electrode body length L2 is preferably 1196 mm or less or 1190 mm or less, and the first electrode body length L2/second electrode body length H2 is preferably 8.8 or less or 8 or less. preferable. That is, the first electrode body length L2 (the first length of the electrode body 130 in the X-axis direction (first direction)) is equal to the second electrode body length H2 (the second electrode body length H2 (the second length of the electrode body 130 in the Z-axis direction (second direction)). length) is preferably 8.8 times or less, or 8 times or less. From Tables 2 and 3, it is preferable that the composite material layer forming portion width C1 is 8.6 times or less, or 8 times or less, the length H2 of the second electrode body. As shown in Table 3, the composite material layer forming portion width C1 is preferably 1170 mm or less or 1166 mm or less, and the composite material layer forming portion width C1/the composite material layer non-forming portion width C2 or C3 is 82 or less or 80 or less. is preferred. That is, the composite material layer forming portion width C1 (the width of the composite material layer forming portion 131 in the X-axis direction (first direction)) is equal to the composite material layer non-forming portion width C2 or C3 (the composite material layer non-forming portion 132 or 133 width) is preferably 82 times or less or 80 times or less. As shown in Table 4, it is preferable that the capacity of the storage element 100 is 267 Ah or less.
 [4 効果の説明]
 以上のように、本実施の形態に係る蓄電素子100によれば、電極体130は、第一方向(X軸方向)に延びる巻回軸Rまわりに極板が巻回され、第二方向(Z軸方向)の方が第三方向(Y軸方向)よりも長い扁平形状である。第一方向において、合材層形成部幅C1(極板の合材層形成部131の幅)は、合材層非形成部幅C2またはC3(極板の第一方向の端部の合材層非形成部132または133の幅)の16倍以上である。蓄電素子においては、電極体が横方向に長くなると、容器110内でのスペース効率が横巻型電極体と縦巻型電極体とで逆転し、縦巻型電極体の方が横巻型電極体よりもエネルギー密度が高くなる。
[4 Explanation of effects]
As described above, according to the energy storage device 100 according to the present embodiment, the electrode body 130 has the electrode plate wound around the winding axis R extending in the first direction (X-axis direction). Z-axis direction) is longer than the third direction (Y-axis direction). In the first direction, the width of the composite material layer forming portion C1 (the width of the composite material layer forming portion 131 of the electrode plate) is less than the width of the composite material layer non-forming portion C2 or C3 (the composite material at the end of the electrode plate in the first direction). 16 times or more of the width of the layer non-forming portion 132 or 133). In the electric storage element, when the electrode body is elongated in the horizontal direction, the space efficiency in the container 110 is reversed between the horizontally-wound electrode body and the vertically-wound electrode body, and the vertically-wound electrode body is the horizontally-wound electrode. It has a higher energy density than the body.
 具体的には、図4に示すように、横巻型電極体では、電極体140が横方向(X軸方向)に長くなっても、容器110内での縦方向(Z軸方向)における極板の合材層形成部141が占める割合は一般的に一定であるため、容器110内での合材層形成部141が占める割合はほぼ一定である。これに対し、図3に示すように、縦巻型電極体では、電極体130が横方向(X軸方向)に長くなると、極板の合材層形成部131の合材層非形成部132に対する比率が大きくなるため、容器110内での合材層形成部131が占める割合が大きくなる。 Specifically, as shown in FIG. 4 , in the horizontally wound electrode body, even if the electrode body 140 is elongated in the horizontal direction (X-axis direction), the poles in the vertical direction (Z-axis direction) in the container 110 are Since the proportion occupied by the composite material layer forming part 141 of the plate is generally constant, the proportion occupied by the composite material layer forming part 141 in the container 110 is substantially constant. On the other hand, as shown in FIG. 3, in the vertically wound electrode body, when the electrode body 130 is elongated in the horizontal direction (X-axis direction), the composite material layer non-formed portion 132 of the composite material layer formed portion 131 of the electrode plate becomes larger. , the proportion occupied by the composite material layer forming portion 131 in the container 110 is increased.
 本願発明者は、電極体130において、合材層形成部幅C1が合材層非形成部幅C2またはC3の16倍以上の場合に、縦巻型電極体の方が横巻型電極体よりも蓄電素子100のエネルギー密度が高くなることを見出した。したがって、電極体130において合材層形成部幅C1を合材層非形成部幅C2またはC3の16倍以上とすることで、蓄電素子100のエネルギー密度の向上を図ることができる。 In the electrode body 130, the inventors of the present application found that when the composite material layer forming portion width C1 is 16 times or more of the composite material layer non-forming portion width C2 or C3, the vertically wound electrode body is larger than the horizontally wound electrode body. It was found that the energy density of the electric storage device 100 also increased. Therefore, the energy density of the storage element 100 can be improved by setting the composite material layer forming portion width C1 in the electrode body 130 to 16 times or more the composite material layer non-forming portion width C2 or C3.
 本願発明者は、蓄電素子100において、電極体130の合材層形成部幅C1が合材層非形成部幅C2またはC3の40倍以上になるまで、エネルギー密度が効果的に高くなっていくことを見出した。したがって、電極体130の合材層形成部幅C1を合材層非形成部幅C2またはC3の40倍以上とすることで、エネルギー密度が効果的に高くなった電極体130を用いることができるため、蓄電素子100のエネルギー密度の向上を図ることができる。 The inventors of the present application have found that the energy density effectively increases until the width C1 of the electrode body 130 where the composite material layer is formed becomes 40 times or more the width of the composite material layer non-formed portion C2 or C3 in the electric storage device 100. I found out. Therefore, by setting the width C1 of the composite material layer formed portion of the electrode body 130 to be 40 times or more the width C2 or C3 of the composite material layer non-formed portion, the electrode body 130 with effectively increased energy density can be used. Therefore, the energy density of the storage element 100 can be improved.
 本願発明者は、蓄電素子100において、電極体130の合材層形成部幅C1が合材層非形成部幅C2またはC3の80倍よりも大きくなると、電極体130が長くなりすぎて形成が困難となるものの、エネルギー密度があまり増えないことを見出した。したがって、電極体130の合材層形成部幅C1を合材層非形成部幅C2またはC3の80倍以下とすることで、電極体130を容易に形成しつつ、蓄電素子100のエネルギー密度の向上を図ることができる。 The inventors of the present application have found that, in the electric storage device 100, if the width C1 of the electrode body 130 where the composite material layer is formed is greater than 80 times the width C2 or C3 of the composite material layer non-formed part, the electrode body 130 becomes too long and cannot be formed. Although difficult, it was found that the energy density did not increase significantly. Therefore, by setting the width C1 of the composite material layer forming portion of the electrode body 130 to 80 times or less of the width C2 or C3 of the composite material layer non-forming portion, the electrode body 130 can be easily formed and the energy density of the storage element 100 can be improved. can be improved.
 本願発明者は、蓄電素子100において、電極体130の第一方向(X軸方向)における第一電極体長さL2(第一長さ)が、第二方向(Z軸方向)における第二電極体長さH2(第二長さ)の2倍以上の場合に、縦巻型電極体の方が横巻型電極体よりもエネルギー密度が高くなることを見出した。したがって、電極体130の第一方向における第一電極体長さL2を第二方向における第二電極体長さH2の2倍以上とすることで、蓄電素子100のエネルギー密度の向上を図ることができる。 The inventors of the present application found that in the electric storage element 100, the first electrode body length L2 (first length) in the first direction (X-axis direction) of the electrode body 130 is equal to the second electrode body length in the second direction (Z-axis direction). It was found that the vertically wound electrode body has a higher energy density than the horizontally wound electrode body when the height H2 (second length) is twice or more. Therefore, by making the first electrode body length L2 in the first direction of the electrode body 130 twice or more the second electrode body length H2 in the second direction, the energy density of the storage element 100 can be improved.
 本願発明者は、蓄電素子100において、電極体130の第一電極体長さL2(第一長さ)が第二電極体長さH2(第二長さ)の5倍になるまで、エネルギー密度が効果的に高くなっていくことを見出した。したがって、電極体130の第一電極体長さL2を第二電極体長さH2の5倍以上とすることで、エネルギー密度が効果的に高くなった電極体130を用いることができるため、蓄電素子100のエネルギー密度の向上を図ることができる。 The inventor of the present application found that the energy density is effective until the first electrode body length L2 (first length) of the electrode body 130 becomes five times the second electrode body length H2 (second length) in the storage element 100. I found that it was getting higher. Therefore, by setting the first electrode body length L2 of the electrode body 130 to be at least five times the second electrode body length H2, the electrode body 130 with effectively increased energy density can be used. can improve the energy density of
 本願発明者は、蓄電素子100において、電極体130の合材層形成部幅C1が567mm以上と長い場合に、エネルギー密度が効果的に高くなることを見出した。したがって、電極体130の合材層形成部幅C1を567mm以上と長くすることで、エネルギー密度が効果的に高くなった電極体130を用いることができるため、蓄電素子100のエネルギー密度の向上を図ることができる。 The inventors of the present application have found that the energy density effectively increases when the width C1 of the composite material layer forming portion of the electrode assembly 130 is as long as 567 mm or more. Therefore, by increasing the width C1 of the composite material layer forming portion of the electrode body 130 to 567 mm or more, the electrode body 130 with effectively increased energy density can be used. can be planned.
 蓄電素子100において、電極端子120が容器110から突出することによって、電極端子120の周囲には、活用しにくいスペースが生じる。このスペースが大きいと、蓄電素子100の当該スペースも含めた全体でのエネルギー密度が低下することとなる。このため、蓄電素子100において、電極端子120を、容器110の第一方向(X軸方向)の端面(端子配置面113)から第一方向に突出させる。これにより、電極端子120が、容器110の外面のうちの小さい面積の面から突出することとなり、電極端子120が突出することによって生じる電極端子120の周囲の活用しにくいスペースを小さくできる。したがって、蓄電素子100のエネルギー密度の向上を図ることができる。 In the electric storage element 100, the electrode terminals 120 protrude from the container 110, creating a space around the electrode terminals 120 that is difficult to utilize. If this space is large, the energy density of the entire power storage element 100 including the space will decrease. Therefore, in the electric storage element 100, the electrode terminals 120 protrude in the first direction from the end surface (the terminal arrangement surface 113) of the container 110 in the first direction (X-axis direction). As a result, the electrode terminal 120 protrudes from the small area of the outer surface of the container 110, and the space around the electrode terminal 120 that is difficult to utilize due to the protruding electrode terminal 120 can be reduced. Therefore, the energy density of the storage element 100 can be improved.
 本実施の形態に係る蓄電装置10によれば、上述の蓄電素子100を備えているため、エネルギー密度の向上を図ることができている。蓄電装置10において、蓄電素子100の長さが長いと、一対の外部端子300に接続する2つの電極端子120の距離が遠くなるおそれがある。この場合、一対の外部端子300を当該2つの電極端子120の近くに配置すると、一対の外部端子300が離れた位置に配置されて、蓄電装置10の外部との接続が困難になるおそれがある。しかしながら、一対の外部端子300を近付けて配置すると、一対の外部端子300と当該2つの電極端子120とを接続するバスバーの長さが長くなってしまう。このため、一対の外部端子300を、第一蓄電素子101が有する一対の第一電極端子120のうちの第二蓄電素子102に近い第一電極端子122と、第二蓄電素子102が有する一対の第二電極端子120のうちの第一蓄電素子101に近い第二電極端子121と、に接続する。これにより、エネルギー密度の向上を図ることができる蓄電素子100を備えた蓄電装置10において、外部端子300と蓄電素子100の電極端子120とを接続するバスバーの長さが長くなるのを抑制しつつ、一対の外部端子300を近付けて配置できる。 According to the power storage device 10 according to the present embodiment, since the power storage device 100 described above is provided, the energy density can be improved. In the power storage device 10, if the length of the power storage element 100 is long, the distance between the two electrode terminals 120 connected to the pair of external terminals 300 may increase. In this case, if the pair of external terminals 300 are arranged near the two electrode terminals 120, the pair of external terminals 300 are arranged at distant positions, which may make it difficult to connect the power storage device 10 to the outside. . However, when the pair of external terminals 300 are arranged close to each other, the length of the bus bar connecting the pair of external terminals 300 and the two electrode terminals 120 becomes long. Therefore, the pair of external terminals 300 is divided into the first electrode terminal 122 of the pair of first electrode terminals 120 of the first storage element 101 that is closer to the second storage element 102 and the pair of external terminals 120 that the second storage element 102 has. and the second electrode terminal 121 close to the first storage element 101 among the second electrode terminals 120 . As a result, in the power storage device 10 including the power storage element 100 capable of improving the energy density, an increase in the length of the bus bar connecting the external terminal 300 and the electrode terminal 120 of the power storage element 100 can be suppressed. , the pair of external terminals 300 can be arranged close to each other.
 例えば円柱形状(円筒形状)の電極体を備える蓄電素子では、集電体(または電極端子)は、電極体の合材層非形成部の端面(図2ではX軸方向の端面)に接合されるのが一般的である。しかしながら、この場合、当該端面における接合では接合面積が小さくなるため、蓄電素子の大容量化等により蓄電素子を大電流で充放電する際に、接合部が溶断するおそれがある。これに対し、本実施の形態では、集電体(または電極端子120)が電極体130の平坦部分(端部平坦部132a、133a)に接合されることで、接合部の接合面積を大きくできる。これにより、蓄電素子100を大電流で充放電する場合においても、接合部の溶断を抑制できる。 For example, in a power storage element having a columnar (cylindrical) electrode body, the current collector (or electrode terminal) is joined to the end face (the end face in the X-axis direction in FIG. 2) of the composite material layer non-formed portion of the electrode body. It is common to However, in this case, since the bonding area at the end face is small, the junction may melt when the storage element is charged and discharged with a large current due to an increase in the capacity of the storage element. In contrast, in the present embodiment, the current collector (or the electrode terminal 120) is joined to the flat portions (end flat portions 132a and 133a) of the electrode body 130, so that the joint area of the joint portion can be increased. . As a result, melting of the junction can be suppressed even when the storage device 100 is charged and discharged with a large current.
 [5 変形例の説明]
 (変形例1)
 次に、上記実施の形態の変形例1について、説明する。図6は、本実施の形態の変形例1に係る電極体130Aの構成を示す正面図である。具体的には、図6は、図3に対応する図である。
[5 Description of Modifications]
(Modification 1)
Next, Modification 1 of the above embodiment will be described. FIG. 6 is a front view showing the configuration of electrode body 130A according to Modification 1 of the present embodiment. Specifically, FIG. 6 is a diagram corresponding to FIG.
 図6に示すように、本変形例における電極体130Aは、上記実施の形態における電極体130が有していた合材層非形成部132及び133に代えて、合材層非形成部132c及び133cを有している。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 6, an electrode body 130A in this modification has a composite material layer non-formed part 132c and a composite material layer non-formed part 132c and a 133c. Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
 合材層非形成部132c及び133cは、合材層形成部131よりもX軸方向(第一方向)の端部に配置され、合材層が形成されていないタブである。つまり、合材層非形成部132cは、合材層形成部131のX軸プラス方向の端部からX軸プラス方向に突出する、XZ平面に平行な矩形状かつ平坦状のタブである。合材層非形成部133cは、合材層形成部131のX軸マイナス方向の端部からX軸マイナス方向に突出する、XZ平面に平行な矩形状かつ平坦状のタブである。集電体(または電極端子120)は、この平坦な合材層非形成部132c、133cに接続(接合)される。 The composite material layer non-forming portions 132c and 133c are tabs on which a composite material layer is not formed and which are arranged at the end portion in the X-axis direction (first direction) of the composite material layer forming portion 131. That is, the composite material layer non-forming portion 132c is a rectangular flat tab parallel to the XZ plane that protrudes from the end of the composite material layer forming portion 131 in the positive X-axis direction in the positive X-axis direction. The composite material layer non-forming portion 133c is a rectangular and flat tab parallel to the XZ plane that protrudes in the negative X-axis direction from the end of the composite material layer-forming portion 131 in the negative X-axis direction. The current collector (or electrode terminal 120) is connected (bonded) to the flat non-composite material layer portions 132c and 133c.
 以上のように、本変形例に係る蓄電素子によれば、上記実施の形態と同様の効果を奏することができる。つまり、本変形例においても、電極体130Aの各サイズ(L2、H2、W2、C1、C2、C3等)は、上記実施の形態における電極体130と同じであるため、上記実施の形態と同様のことが言える。集電体(または電極端子120)は、電極体130Aの平坦部分に接合されるため、上記実施の形態と同様のことが言える。 As described above, according to the power storage element according to this modified example, the same effects as those of the above-described embodiment can be obtained. That is, even in this modification, each size (L2, H2, W2, C1, C2, C3, etc.) of the electrode body 130A is the same as that of the electrode body 130 in the above-described embodiment. I can say. Since the current collector (or the electrode terminal 120) is joined to the flat portion of the electrode body 130A, the same applies to the above embodiment.
 (変形例2)
 次に、上記実施の形態の変形例2について、説明する。図7は、本実施の形態の変形例2に係る蓄電素子100Aの構成を示す斜視図である。具体的には、図7は、図2の蓄電素子100に対応する図である。
(Modification 2)
Next, Modification 2 of the above embodiment will be described. FIG. 7 is a perspective view showing the configuration of a power storage element 100A according to Modification 2 of the present embodiment. Specifically, FIG. 7 is a diagram corresponding to the storage element 100 of FIG.
 図7に示すように、本変形例における蓄電素子100Aは、上記実施の形態における蓄電素子100が備えていた電極端子120に代えて、電極端子120Aを備えている。電極端子120Aは、蓄電素子100Aが備える容器110のX軸方向の両端部において、容器110のZ軸プラス方向の端面(蓋板)からZ軸プラス方向に突出した状態で配置される。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 7, a power storage element 100A in this modification includes electrode terminals 120A instead of the electrode terminals 120 included in the power storage element 100 in the above embodiment. The electrode terminals 120A are arranged in a state of protruding in the positive Z-axis direction from the end face (cover plate) of the container 110 in the positive Z-axis direction at both ends in the X-axis direction of the container 110 of the power storage element 100A. Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
 以上のように、本変形例に係る蓄電素子100Aによれば、上記実施の形態と同様の効果を奏することができる。本変形例において、電極端子120Aの周囲の活用しにくいスペースを小さくするために、電極端子120AのZ軸方向への突出高さは低い方が好ましい。 As described above, according to the power storage element 100A according to this modified example, the same effects as those of the above-described embodiment can be achieved. In this modification, in order to reduce the space around the electrode terminal 120A that is difficult to utilize, it is preferable that the height of the electrode terminal 120A projected in the Z-axis direction is low.
 このように、蓄電素子における電極端子の配置位置は、特に限定されない。蓄電素子が備える電極端子の個数も特に限定されない。上記実施の形態において、容器110のX軸方向の片側のみから一対の電極端子120が突出していてもよいし、容器110のX軸方向両側から電極端子120が2つずつ突出していてもよい。容器110の長側面111から電極端子120が突出していてもよい。 Thus, the arrangement position of the electrode terminals in the storage element is not particularly limited. The number of electrode terminals included in the storage element is not particularly limited, either. In the above embodiment, a pair of electrode terminals 120 may protrude from only one side of the container 110 in the X-axis direction, or two electrode terminals 120 may protrude from both sides of the container 110 in the X-axis direction. An electrode terminal 120 may protrude from the long side 111 of the container 110 .
 (その他の変形例)
 以上、本発明の実施の形態(その変形例も含む。以下同様)に係る蓄電素子及び蓄電装置について説明したが、本発明は、上記実施の形態には限定されない。今回開示された実施の形態は、全ての点で例示であり、本発明の範囲には、請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
(Other modifications)
As described above, the power storage element and the power storage device according to the embodiments of the present invention (including modifications thereof; the same applies hereinafter), but the present invention is not limited to the above embodiments. The embodiments disclosed this time are exemplifications in all respects, and the scope of the present invention includes all modifications within the meaning and scope of equivalents to the scope of the claims.
 上記実施の形態では、直方体形状の複数の蓄電素子100(複数の第一蓄電素子101及び複数の第二蓄電素子102)が配置されることとした。しかし、蓄電素子100(容器110)の形状は、直方体形状には限定されず、直方体以外の多角柱形状、長円柱形状、楕円形状、または、円形状等でもよい。蓄電素子100は、X軸方向に2列ではなく、1列しか配置されなくてもよいし、3列以上配置されてもよい。蓄電素子100は、Y軸方向に1つしか配置されなくてもよい(1つの第一蓄電素子101及び1つの第二蓄電素子102しか配置されなくてもよい)し、1つの蓄電素子100しか配置されなくてもよい。 In the above embodiment, a plurality of rectangular parallelepiped power storage elements 100 (a plurality of first power storage elements 101 and a plurality of second power storage elements 102) are arranged. However, the shape of the storage element 100 (container 110) is not limited to a rectangular parallelepiped shape, and may be a polygonal columnar shape, an oval columnar shape, an elliptical shape, a circular shape, or the like other than the rectangular parallelepiped shape. The power storage elements 100 may be arranged in one row instead of two rows in the X-axis direction, or may be arranged in three or more rows. Only one power storage element 100 may be arranged in the Y-axis direction (only one first power storage element 101 and one second power storage element 102 may be arranged), and only one power storage element 100 may be arranged. It does not have to be placed.
 上記実施の形態では、全ての蓄電素子100、及び、全ての電極体130が、上記構成を有していることとした。しかし、いずれかの蓄電素子100が上記構成を有していなくてもよいし、いずれかの電極体130が上記構成を有していなくてもよい。 In the above embodiment, all power storage elements 100 and all electrode bodies 130 have the above configuration. However, any storage element 100 may not have the above configuration, and any electrode assembly 130 may not have the above configuration.
 上記実施の形態及びその変形例が備える各構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 A form constructed by arbitrarily combining each component provided in the above embodiment and its modifications is also included within the scope of the present invention.
 本発明は、このような蓄電素子及び蓄電装置として実現できるだけでなく、電極体としても実現できる。 The present invention can be realized not only as such a power storage element and power storage device, but also as an electrode body.
 本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。 The present invention can be applied to power storage elements such as lithium ion secondary batteries.
 10 蓄電装置
 100、100A 蓄電素子
 101 第一蓄電素子
 102 第二蓄電素子
 110 容器
 111 長側面
 112 短側面
 113 端子配置面
 120、121、122 電極端子(第一電極端子、第二電極端子)
 120A 電極端子
 130、130A、140 電極体
 131、141 合材層形成部
 131a 合材層平坦部
 131b 合材層湾曲部
 132、132c、133、133c、142 合材層非形成部
 132a、133a 端部平坦部
 132b、133b 端部湾曲部
 200 外装体
 300 外部端子
 L1 第一容器長さ
 H1 第二容器長さ
 W1 第三容器長さ
 L2 第一電極体長さ
 H2 第二電極体長さ
 W2 第三電極体長さ
 A 正極板幅
 B 負極板幅
 C1 合材層形成部幅
 C2、C3、C4 合材層非形成部幅
 R、Rz 巻回軸
10 power storage device 100, 100A power storage element 101 first power storage element 102 second power storage element 110 container 111 long side 112 short side 113 terminal arrangement surface 120, 121, 122 electrode terminal (first electrode terminal, second electrode terminal)
120A electrode terminal 130, 130A, 140 electrode body 131, 141 composite material layer formed portion 131a composite material layer flat portion 131b composite material layer curved portion 132, 132c, 133, 133c, 142 composite material layer non-formed portion 132a, 133a end portion Flat portions 132b, 133b End curved portion 200 Exterior body 300 External terminal L1 First container length H1 Second container length W1 Third container length L2 First electrode length H2 Second electrode length W2 Third electrode length A Positive electrode plate width B Negative electrode plate width C1 Mixed material layer formed part width C2, C3, C4 Mixed material layer non-formed part width R, Rz Winding axis

Claims (9)

  1.  合材層が形成された極板が第一方向に延びる巻回軸まわりに巻回された電極体を備える蓄電素子であって、
     前記極板は、
     前記合材層が形成された合材層形成部と、
     前記合材層形成部よりも前記第一方向の端部に配置され、前記合材層が形成されていない合材層非形成部と、を有し、
     前記電極体は、前記第一方向と交差する第二方向の長さの方が、前記第一方向及び前記第二方向と交差する第三方向の長さよりも長い扁平形状であり、
     前記第一方向において、前記合材層形成部の幅は、前記合材層非形成部の幅の16倍以上である
     蓄電素子。
    A power storage element comprising an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction,
    The electrode plate is
    a composite material layer forming portion in which the composite material layer is formed;
    a composite material layer non-forming portion disposed at an end portion in the first direction from the composite material layer forming portion and in which the composite material layer is not formed;
    The electrode body has a flat shape in which the length in a second direction that intersects the first direction is longer than the length in a third direction that intersects the first direction and the second direction,
    In the first direction, the width of the composite material layer forming portion is 16 times or more the width of the composite material layer non-forming portion.
  2.  前記第一方向において、前記合材層形成部の幅は、前記合材層非形成部の幅の40倍以上である
     請求項1に記載の蓄電素子。
    The electric storage device according to claim 1, wherein the width of the composite material layer forming portion is 40 times or more the width of the composite material layer non-forming portion in the first direction.
  3.  前記第一方向において、前記合材層形成部の幅は、前記合材層非形成部の幅の80倍以下である
     請求項1または2に記載の蓄電素子。
    The electric storage device according to claim 1 or 2, wherein the width of the composite material layer forming portion is 80 times or less the width of the composite material layer non-forming portion in the first direction.
  4.  前記電極体の前記第一方向における第一長さは、前記電極体の前記第二方向における第二長さの2倍以上である
     請求項1~3のいずれか1項に記載の蓄電素子。
    The electric storage element according to any one of claims 1 to 3, wherein the first length in the first direction of the electrode body is twice or more the second length in the second direction of the electrode body.
  5.  前記第一長さは、前記第二長さの5倍以上である
     請求項4に記載の蓄電素子。
    The electric storage device according to claim 4, wherein the first length is five times or more the second length.
  6.  合材層が形成された極板が第一方向に延びる巻回軸まわりに巻回された電極体を備える蓄電素子であって、
     前記極板は、
     前記合材層が形成された合材層形成部と、
     前記合材層形成部よりも前記第一方向の端部に配置され、前記合材層が形成されていない合材層非形成部と、を有し、
     前記電極体は、前記第一方向と交差する第二方向の長さの方が、前記第一方向及び前記第二方向と交差する第三方向の長さよりも長い扁平形状であり、
     前記電極体の前記第一方向における第一長さは、前記電極体の前記第二方向における第二長さの5倍以上である
     蓄電素子。
    A power storage element comprising an electrode body in which an electrode plate having a composite material layer formed thereon is wound around a winding axis extending in a first direction,
    The electrode plate is
    a composite material layer forming portion in which the composite material layer is formed;
    a composite material layer non-forming portion disposed at an end portion in the first direction from the composite material layer forming portion and in which the composite material layer is not formed;
    The electrode body has a flat shape in which the length in a second direction that intersects the first direction is longer than the length in a third direction that intersects the first direction and the second direction,
    A first length in the first direction of the electrode body is at least five times as long as a second length in the second direction of the electrode body.
  7.  前記合材層形成部の前記第一方向における幅は、567mm以上である
     請求項1~6のいずれか1項に記載の蓄電素子。
    The electric storage element according to any one of claims 1 to 6, wherein the width of the composite material layer forming portion in the first direction is 567 mm or more.
  8.  前記電極体が収容される容器と、
     前記容器の前記第一方向の端面から前記第一方向に突出する電極端子と、を備える
     請求項1~7のいずれか1項に記載の蓄電素子。
    a container in which the electrode body is housed;
    The electric storage element according to any one of claims 1 to 7, further comprising an electrode terminal projecting in the first direction from an end face of the container in the first direction.
  9.  請求項1~8のいずれか1項に記載の複数の蓄電素子と、
     一対の外部端子と、を備え、
     前記複数の蓄電素子は、前記第一方向に並ぶ第一蓄電素子及び第二蓄電素子を有し、
     前記第一蓄電素子は、前記第一方向に並ぶ一対の第一電極端子を有し、
     前記第二蓄電素子は、前記第一方向に並ぶ一対の第二電極端子を有し、
     前記一対の外部端子は、前記一対の第一電極端子のうちの前記第二蓄電素子に近い第一電極端子と、前記一対の第二電極端子のうちの前記第一蓄電素子に近い第二電極端子と、に接続される
     蓄電装置。
    a plurality of power storage elements according to any one of claims 1 to 8;
    a pair of external terminals;
    the plurality of energy storage elements have a first energy storage element and a second energy storage element arranged in the first direction,
    The first storage element has a pair of first electrode terminals arranged in the first direction,
    The second storage element has a pair of second electrode terminals arranged in the first direction,
    The pair of external terminals includes a first electrode terminal of the pair of first electrode terminals that is closer to the second storage element and a second electrode that is of the pair of second electrode terminals and is closer to the first storage element. A power storage device connected to a terminal.
PCT/JP2022/002562 2021-01-29 2022-01-25 Electricity storage element and electricity storage device WO2022163616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578391A JPWO2022163616A1 (en) 2021-01-29 2022-01-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-012886 2021-01-29
JP2021012886 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163616A1 true WO2022163616A1 (en) 2022-08-04

Family

ID=82654597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002562 WO2022163616A1 (en) 2021-01-29 2022-01-25 Electricity storage element and electricity storage device

Country Status (2)

Country Link
JP (1) JPWO2022163616A1 (en)
WO (1) WO2022163616A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057726A1 (en) * 2022-09-16 2024-03-21 株式会社Gsユアサ Power storage element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306471A (en) * 1996-05-16 1997-11-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JPH09306470A (en) * 1996-05-16 1997-11-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2011108507A (en) * 2009-11-18 2011-06-02 Honda Motor Co Ltd Secondary battery
JP2011134634A (en) * 2009-12-25 2011-07-07 Hitachi Vehicle Energy Ltd Winding square battery
JP2012146476A (en) * 2011-01-12 2012-08-02 Hitachi Maxell Energy Ltd Lithium-ion secondary battery
JP2015046243A (en) * 2013-08-27 2015-03-12 日立マクセル株式会社 Lithium ion secondary battery
JP2016058264A (en) * 2014-09-10 2016-04-21 株式会社東芝 Electrode group and nonaqueous electrolyte battery
JP2017228391A (en) * 2016-06-21 2017-12-28 本田技研工業株式会社 Manufacturing method of square battery, manufacturing method of vehicle, design support method of square battery, square battery, and vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306471A (en) * 1996-05-16 1997-11-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JPH09306470A (en) * 1996-05-16 1997-11-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2011108507A (en) * 2009-11-18 2011-06-02 Honda Motor Co Ltd Secondary battery
JP2011134634A (en) * 2009-12-25 2011-07-07 Hitachi Vehicle Energy Ltd Winding square battery
JP2012146476A (en) * 2011-01-12 2012-08-02 Hitachi Maxell Energy Ltd Lithium-ion secondary battery
JP2015046243A (en) * 2013-08-27 2015-03-12 日立マクセル株式会社 Lithium ion secondary battery
JP2016058264A (en) * 2014-09-10 2016-04-21 株式会社東芝 Electrode group and nonaqueous electrolyte battery
JP2017228391A (en) * 2016-06-21 2017-12-28 本田技研工業株式会社 Manufacturing method of square battery, manufacturing method of vehicle, design support method of square battery, square battery, and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057726A1 (en) * 2022-09-16 2024-03-21 株式会社Gsユアサ Power storage element

Also Published As

Publication number Publication date
JPWO2022163616A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US10615398B2 (en) Electrode assembly including coupling part between electrode tabs and electrode lead located in space portion
CN108028348B (en) Energy storage element and method for manufacturing energy storage element
CN108140794B (en) Energy storage element and method for manufacturing energy storage element
CN108028350B (en) Electrochemical energy storage device
US10158107B2 (en) Battery comprising insulative films
WO2022163616A1 (en) Electricity storage element and electricity storage device
WO2018159581A1 (en) Electricity storage element
JP2018056017A (en) Power storage element
JP7318333B2 (en) Storage element
JP2019096466A (en) Power storage element
JP2019046592A (en) Power storage element
WO2022185854A1 (en) Electricity storage element
WO2023063328A1 (en) Power storage element
WO2023063332A1 (en) Power storage element
US20240097179A1 (en) Energy storage device
WO2023063329A1 (en) Power storage element
JP7155850B2 (en) Storage element
WO2022163520A1 (en) Power storage element
JP2019169331A (en) Power storage element
WO2023105987A1 (en) Power storage element
JP7322872B2 (en) Storage element
JP7352857B2 (en) Energy storage element
JP2022110189A (en) Power storage element
JP7303994B2 (en) Storage element
JP2022116701A (en) Power storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745837

Country of ref document: EP

Kind code of ref document: A1