JP2008103094A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP2008103094A
JP2008103094A JP2006282368A JP2006282368A JP2008103094A JP 2008103094 A JP2008103094 A JP 2008103094A JP 2006282368 A JP2006282368 A JP 2006282368A JP 2006282368 A JP2006282368 A JP 2006282368A JP 2008103094 A JP2008103094 A JP 2008103094A
Authority
JP
Japan
Prior art keywords
negative electrode
conductive material
lithium
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282368A
Other languages
Japanese (ja)
Other versions
JP5317407B2 (en
Inventor
Masaki Koike
小池  将樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2006282368A priority Critical patent/JP5317407B2/en
Priority to KR1020070104539A priority patent/KR20080034811A/en
Publication of JP2008103094A publication Critical patent/JP2008103094A/en
Application granted granted Critical
Publication of JP5317407B2 publication Critical patent/JP5317407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery capable of achieving high capacity. <P>SOLUTION: The non-aqueous secondary battery 1 is composed of a negative electrode 4 in which a negative electrode mixture 4a having a negative electrode active material consisting of lithium vanadium oxide, a conductive material, and a binder is coated on a current collector 4a, a positive electrode 3, and an electrolyte. The conductive material of the negative electrode 4 has an open potential upon storage of lithium ions when charge and discharge are carried out with lithium as a counter electrode which has a lower saturation potential than the lithium vanadium oxide, and the reversible efficiency is 50% or more and reversible capacitance is 150 mAh/g or more upon initial storage and desorption of the lithium ions, and the negative electrode mixture 4a contains the conductive material of 15 wt.% or more and 85 wt.% or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムバナジウム酸化物を負極に含む非水二次電池に関する。   The present invention relates to a non-aqueous secondary battery containing lithium vanadium oxide in a negative electrode.

従来の非水二次電池は特許文献1に開示されている。この非水二次電池は非水系の電解質内にリチウムイオンを吸蔵及び脱離できる正極及び負極が浸漬される。負極はリチウムバナジウム酸化物から成る負極活物質を有している。リチウムバナジウム酸化物は導電性が乏しいため、負極活物質、導電材及びバインダーを混合して集電体上に塗布して負極が形成されている。導電材として黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が用いられる。   A conventional non-aqueous secondary battery is disclosed in Patent Document 1. In this non-aqueous secondary battery, a positive electrode and a negative electrode capable of inserting and extracting lithium ions are immersed in a non-aqueous electrolyte. The negative electrode has a negative electrode active material made of lithium vanadium oxide. Since lithium vanadium oxide has poor conductivity, a negative electrode active material, a conductive material, and a binder are mixed and applied onto a current collector to form a negative electrode. As the conductive material, graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, or the like is used.

非水二次電池の充電時には負極が負に帯電し、正極に吸蔵されたリチウムイオンが脱離して負極に吸蔵される。非水二次電池の放電時には負極に吸蔵されたリチウムイオンが脱離して正極に吸蔵される。負極活物質として体積当りの容量の大きなリチウムバナジウム酸化物を用いることによりエネルギー密度の高い非水二次電池を得ることができる。   When the non-aqueous secondary battery is charged, the negative electrode is negatively charged, and lithium ions stored in the positive electrode are desorbed and stored in the negative electrode. At the time of discharging the non-aqueous secondary battery, lithium ions stored in the negative electrode are desorbed and stored in the positive electrode. By using lithium vanadium oxide having a large capacity per volume as the negative electrode active material, a non-aqueous secondary battery with high energy density can be obtained.

特開2003−68305号公報(第3頁−第11頁、第10図)Japanese Patent Laid-Open No. 2003-68305 (page 3 to page 11, FIG. 10)

非水二次電池はノート型パーソナルコンピュータや携帯電話機等の可搬性の電子機器に広く用いられ、電子機器の消費電力が大きくなっても満充電からの稼働時間を長く維持できることが望まれる。このため、より高容量が得られる非水二次電池が求められている。   Non-aqueous secondary batteries are widely used in portable electronic devices such as notebook personal computers and mobile phones, and it is desired that the operation time from full charge can be maintained long even when the power consumption of the electronic devices increases. For this reason, a non-aqueous secondary battery capable of obtaining a higher capacity is demanded.

また、上記特許文献1に開示される非水二次電池において、負極の導電材として炭素材料を用いた際に導電材とリチウムとが反応する場合がある。これにより、導電性が低下する問題や、接触抵抗の増加により不可逆容量が大きくなって非水二次電池の容量が低下する問題がある。   Further, in the non-aqueous secondary battery disclosed in Patent Document 1, when a carbon material is used as the negative electrode conductive material, the conductive material and lithium may react. As a result, there is a problem that the conductivity is reduced, and a problem that the irreversible capacity is increased due to an increase in contact resistance and the capacity of the nonaqueous secondary battery is reduced.

また、負極の導電材としてシリコン等のリチウムイオンを吸蔵できる金属を用いると、リチウムバナジウム酸化物よりも高い飽和電位を有するために導電材がリチウムバナジウム酸化物よりもリチウムイオンと吸蔵反応し易くなる場合がある。これにより、導電材にリチウムイオンとともに電解質の溶媒が共挿入されると、充放電によって著しく膨張収縮する。このため、サイクルを繰り返すと導電材が崩壊して非水二次電池の容量が低下する問題がある。   Further, when a metal capable of occluding lithium ions such as silicon is used as the negative electrode conductive material, the conductive material has a higher saturation potential than lithium vanadium oxide, so that the conductive material is more likely to occlude with lithium ions than lithium vanadium oxide. There is a case. Thereby, when the electrolyte solvent is co-inserted with the lithium ions in the conductive material, the conductive material is remarkably expanded and contracted by charge and discharge. For this reason, when a cycle is repeated, there exists a problem that a electrically conductive material will collapse and the capacity | capacitance of a non-aqueous secondary battery will fall.

本発明は上記問題に鑑み、リチウムバナジウム酸化物を負極活物質に用いた非水二次電池において、その負極活物質と混合する導電材に応じて最適な含有量を見出し、高容量化を図ることのできる非水二次電池を提供することを目的とする。   In view of the above problems, in the present invention, in a non-aqueous secondary battery using lithium vanadium oxide as a negative electrode active material, the optimum content is found according to the conductive material mixed with the negative electrode active material, and the capacity is increased. An object of the present invention is to provide a nonaqueous secondary battery.

上記目的を達成するために本発明は、リチウムバナジウム酸化物から成る負極活物質と導電材とバインダーとを有する負極合材を集電体上に塗布して成る負極を備えた非水二次電池において、前記導電材は、リチウムを対極として充放電を行った際にリチウムイオンの吸蔵時の開放電位がリチウムバナジウム酸化物よりも低い飽和電位を有するとともに、初回のリチウムイオンの吸蔵及び脱離時の可逆効率が50%以上かつ可逆容量が150mAh/g以上であり、前記負極合材が15重量%以上85重量%以下の前記導電材を含有することを特徴としている。   In order to achieve the above object, the present invention provides a nonaqueous secondary battery comprising a negative electrode formed by applying a negative electrode mixture comprising a negative electrode active material comprising a lithium vanadium oxide, a conductive material, and a binder onto a current collector. In the above, the conductive material has a saturation potential lower than that of lithium vanadium oxide when the lithium ion is occluded when charging / discharging with lithium as a counter electrode, and at the first occlusion and desorption of lithium ion. The reversible efficiency is 50% or more, the reversible capacity is 150 mAh / g or more, and the negative electrode mixture contains 15% by weight or more and 85% by weight or less of the conductive material.

この構成によると、リチウムバナジウム酸化物を正極に配置し、金属リチウムを負極に配置したテストセルにて充放電特性が測定される。該テストセルはリチウムイオンの吸蔵や脱離時に開放電位が例えば、約0.20Vの飽和電位を有する。また、負極の導電材を正極に配置し、金属リチウムを負極に配置したテストセルにて充放電特性が測定される。該テストセルはリチウムイオンの吸蔵や脱離時に開放電位が例えば、約0.10Vのリチウムバナジウム酸化物よりも低い飽和電位を有する。更に、後者のテストセルによる初回のリチウムイオンの吸蔵及び脱離時において、可逆効率が50%以上かつ可逆容量が150mAh/g以上になる。非水二次電池の負極の負極合材にはこの導電材が15重量%以上85重量%以下含まれる。   According to this configuration, charge / discharge characteristics are measured in a test cell in which lithium vanadium oxide is disposed on the positive electrode and metallic lithium is disposed on the negative electrode. The test cell has a saturation potential of, for example, about 0.20 V when the lithium cell is occluded or desorbed. In addition, charge / discharge characteristics are measured in a test cell in which a negative electrode conductive material is disposed on the positive electrode and metal lithium is disposed on the negative electrode. The test cell has a saturation potential lower than that of lithium vanadium oxide having an open potential of, for example, about 0.10 V at the time of insertion and extraction of lithium ions. Furthermore, at the time of the first occlusion and desorption of lithium ions by the latter test cell, the reversible efficiency is 50% or more and the reversible capacity is 150 mAh / g or more. The conductive material is contained in the negative electrode mixture of the negative electrode of the non-aqueous secondary battery in an amount of 15 wt% to 85 wt%.

また本発明は、リチウムバナジウム酸化物から成る負極活物質と導電材とバインダーとを有する負極合材を集電体上に塗布して成る負極を備えた非水二次電池において、前記導電材は、体積抵抗率が5×10-4Ω・cm以下でリチウムイオンを吸蔵しない金属または化合物から成り、前記負極合材が15重量%以下の前記導電材を含有することを特徴としている。 The present invention also provides a nonaqueous secondary battery having a negative electrode formed by applying a negative electrode mixture comprising a negative electrode active material comprising a lithium vanadium oxide, a conductive material, and a binder onto a current collector. The negative electrode mixture is composed of a metal or a compound that has a volume resistivity of 5 × 10 −4 Ω · cm or less and does not occlude lithium ions, and the negative electrode mixture contains 15% by weight or less of the conductive material.

また本発明は、上記構成の非水二次電池において、プロピレンカーボネートを5重量%以上50重量%以下含む電解質を備えることを特徴としている。   Further, the present invention is characterized in that the non-aqueous secondary battery having the above-described configuration is provided with an electrolyte containing 5 wt% or more and 50 wt% or less of propylene carbonate.

また本発明は、リチウムバナジウム酸化物から成る負極活物質と導電材とバインダーとを有する負極合材を集電体上に塗布して成る負極を備えた非水二次電池において、前記導電材は、リチウムを対極として充放電を行った際にリチウムイオンの吸蔵時の開放電位がリチウムバナジウム酸化物よりも低い飽和電位を有するとともに、初回のリチウムイオンの吸蔵及び脱離時の可逆効率が10%以下または可逆容量が50mAh/g以下であり、且つ比表面積が15m2/g以上であり、前記負極合材が10重量%以上15重量%以下の前記導電材を含有することを特徴としている。ここで、比表面積は、BET法により得られるものである。 The present invention also provides a nonaqueous secondary battery having a negative electrode formed by applying a negative electrode mixture comprising a negative electrode active material comprising a lithium vanadium oxide, a conductive material, and a binder onto a current collector. When the lithium ion is charged / discharged, the open potential during occlusion of lithium ions has a lower saturation potential than lithium vanadium oxide, and the reversible efficiency during the first occlusion and desorption of lithium ions is 10%. Or a reversible capacity of 50 mAh / g or less, a specific surface area of 15 m 2 / g or more, and the negative electrode mixture containing 10% by weight or more and 15% by weight or less of the conductive material. Here, the specific surface area is obtained by the BET method.

この構成によると、リチウムバナジウム酸化物を正極に配置し、金属リチウムを負極に配置したテストセルにて充放電特性が測定される。該テストセルはリチウムイオンの吸蔵や脱離時に開放電位が例えば、約0.20Vの飽和電位を有する。また、負極の導電材を正極に配置し、金属リチウムを負極に配置したテストセルにて充放電特性が測定される。該テストセルはリチウムイオンの吸蔵や脱離時に開放電位が例えば、約0.10Vのリチウムバナジウム酸化物よりも低い飽和電位を有する。更に、初回のリチウムイオンの吸蔵及び脱離時において、可逆効率が10%以下または可逆容量が50mAh/g以下になる。非水二次電池の負極の負極合材には後者のテストセルに用いられる導電材が10重量%以上15重量%以下含まれる。   According to this configuration, charge / discharge characteristics are measured in a test cell in which lithium vanadium oxide is disposed on the positive electrode and metallic lithium is disposed on the negative electrode. The test cell has a saturation potential of, for example, about 0.20 V when the lithium cell is occluded or desorbed. In addition, charge / discharge characteristics are measured in a test cell in which a negative electrode conductive material is disposed on the positive electrode and metal lithium is disposed on the negative electrode. The test cell has a saturation potential lower than that of lithium vanadium oxide having an open potential of, for example, about 0.10 V at the time of insertion and extraction of lithium ions. Furthermore, at the time of first occlusion and desorption of lithium ions, the reversible efficiency is 10% or less or the reversible capacity is 50 mAh / g or less. The negative electrode mixture of the negative electrode of the nonaqueous secondary battery contains 10% by weight to 15% by weight of a conductive material used in the latter test cell.

本発明によると、リチウムバナジウム酸化物よりも低い飽和電位を有して初回のリチウムイオンの吸蔵及び脱離時の可逆効率が50%以上かつ可逆容量が150mAh/g以上の導電材を負極合材に15重量%以上85重量%以下含むので、不可逆容量が小さく導電材の崩壊を回避して非水二次電池の高容量化及びサイクル特性向上を図ることができる。   According to the present invention, a conductive material having a lower saturation potential than that of lithium vanadium oxide, having a reversible efficiency of 50% or more at the time of first occlusion and desorption of lithium ions and a reversible capacity of 150 mAh / g or more is used. 15% by weight or more and 85% by weight or less, the irreversible capacity is small, the collapse of the conductive material can be avoided, and the capacity of the nonaqueous secondary battery can be increased and the cycle characteristics can be improved.

また本発明によると、体積抵抗率が5×10-4Ω・cm以下でリチウムイオンを吸蔵しない金属または化合物から成る導電材を負極合材に15重量%以下含むので、不可逆容量が小さく導電材の崩壊を回避して非水二次電池の高容量化及びサイクル特性向上を図ることができる。 According to the present invention, since the negative electrode mixture contains a conductive material composed of a metal or a compound having a volume resistivity of 5 × 10 −4 Ω · cm or less and does not occlude lithium ions, the conductive material has a small irreversible capacity. Thus, the capacity of the non-aqueous secondary battery can be increased and the cycle characteristics can be improved.

また本発明によると、上記非水二次電池においてプロピレンカーボネートを5重量%以上50重量%以下含む電解質を備えるので、サイクル特性をより向上することができる。   Further, according to the present invention, since the non-aqueous secondary battery includes an electrolyte containing 5 wt% or more and 50 wt% or less of propylene carbonate, cycle characteristics can be further improved.

また本発明によると、リチウムイオンの吸蔵時の開放電位がリチウムバナジウム酸化物よりも低い飽和電位を有して初回のリチウムイオンの吸蔵及び脱離時の可逆効率が10%以下または可逆容量が50mAh/g以下であり、且つ比表面積が15m2/g以上の導電材を負極合材に10重量%以上15重量%以下含むので、不可逆容量が小さく導電材の崩壊を回避して非水二次電池の高容量化及びサイクル特性向上を図ることができる。 Also, according to the present invention, the open potential during occlusion of lithium ions has a lower saturation potential than lithium vanadium oxide, and the reversible efficiency during the first occlusion and desorption of lithium ions is 10% or less, or the reversible capacity is 50 mAh. / G or less, and a conductive material having a specific surface area of 15 m 2 / g or more is contained in the negative electrode mixture in an amount of 10% by weight to 15% by weight. The capacity of the battery can be increased and the cycle characteristics can be improved.

以下に本発明の実施形態を図面を参照して説明する。図1は第1実施形態の非水二次電池を示す縦断面図である。非水二次電池1はスパイラル式円筒型のリチウム二次電池から成る。非水二次電池1にはセンターピン6が設けられ、正極3と負極4との間にセパレータ5が挟まれて成る積層体10がセンターピン6に多重に巻かれている。これにより、積層体10は円筒状構造を成している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing the nonaqueous secondary battery of the first embodiment. The non-aqueous secondary battery 1 is composed of a spiral cylindrical lithium secondary battery. The non-aqueous secondary battery 1 is provided with a center pin 6, and a laminate 10 in which a separator 5 is sandwiched between a positive electrode 3 and a negative electrode 4 is wound around the center pin 6 in a multiple manner. Thereby, the laminated body 10 has comprised the cylindrical structure.

正極3は正極活物質、導電材及びバインダーを混合したを正極合材3aが正極集電体3bの表面及び裏面の2層を挟んで形成される。負極4は負極活物質、導電材及びバインダーを混合した負極合材4aが負極集電体4bの表面及び裏面の2層を挟んで形成される。円筒状の積層体10は中空円柱状のケース2内に収納され、電解質(不図示)に浸漬されている。ケース2によって正極3が接続されるとともに下端が突出した正極端子7が形成されている。   The positive electrode 3 is formed by mixing a positive electrode active material, a conductive material, and a binder, and a positive electrode mixture 3a sandwiching two layers of the front and back surfaces of the positive electrode current collector 3b. The negative electrode 4 is formed by sandwiching a negative electrode mixture 4a in which a negative electrode active material, a conductive material, and a binder are mixed, with two layers of the front surface and the back surface of the negative electrode current collector 4b interposed therebetween. The cylindrical laminate 10 is housed in a hollow columnar case 2 and is immersed in an electrolyte (not shown). The positive electrode 3 is connected by the case 2 and a positive electrode terminal 7 having a lower end protruding is formed.

積層体10の上下にはそれぞれ絶縁板9b、9aが設けられる。正極集電体3bは、絶縁板9aを貫通して正極リード11により正極端子7に接続されている。ケース2の開口側の絶縁板9b上には、絶縁板9b方向に凸形状を有する安全弁13が設けられる。安全弁13の上方には、安全弁13とは反対方向に凸形状を有するキャップ状の負極端子8が形成されている。負極集電体4bは絶縁板9bを貫通して負極リード12により負極端子8に接続されている。また、安全弁13及び負極端子8の縁面はガスケット14によりシールされ、正極端子7から離間している。   Insulating plates 9b and 9a are provided above and below the laminate 10, respectively. The positive electrode current collector 3 b passes through the insulating plate 9 a and is connected to the positive electrode terminal 7 by the positive electrode lead 11. On the insulating plate 9b on the opening side of the case 2, a safety valve 13 having a convex shape in the direction of the insulating plate 9b is provided. A cap-like negative electrode terminal 8 having a convex shape in the opposite direction to the safety valve 13 is formed above the safety valve 13. The negative electrode current collector 4 b passes through the insulating plate 9 b and is connected to the negative electrode terminal 8 by the negative electrode lead 12. Further, the edge surfaces of the safety valve 13 and the negative electrode terminal 8 are sealed by the gasket 14 and are separated from the positive electrode terminal 7.

正極活物質には例えば、コバルト酸リチウム等のリチウム遷移金属酸化物が用いられる。電解質には例えば、エチレンカーボネートやジエチルカーボネート等の溶媒に、LiPF6、Li2SiF6、Li2TiF6、LiBF4等のリチウム塩から成る溶質を含有したものが用いられる。 For example, a lithium transition metal oxide such as lithium cobalt oxide is used as the positive electrode active material. For example, an electrolyte containing a solute composed of a lithium salt such as LiPF 6 , Li 2 SiF 6 , Li 2 TiF 6 , or LiBF 4 in a solvent such as ethylene carbonate or diethyl carbonate is used.

負極活物質はリチウムバナジウム酸化物から成っている。このリチウムバナジウム酸化物は、LiaVbMcOdの一般式により表されるものである。ここで、a,b,c,dは任意の数値であり、Mは遷移金属、アルカリ金属、アルカリ土類金属の中から選ばれる少なくとも一種あるいは複数の元素である。製法としては、例えば、LiOHとV23とを原料としてMを添加し所定温度で焼成する方法(乾式法)や、Li2CO3とV25とMと有機酸とを混合して得られる有機酸塩を所定温度で焼成する方法(湿式法)が挙げられる。尚、湿式法は使用される原料が比較的安価であるため、工業化においてより好ましい。 The negative electrode active material is made of lithium vanadium oxide. This lithium vanadium oxide is represented by the general formula of LiaVbMcOd. Here, a, b, c, and d are arbitrary numerical values, and M is at least one element selected from transition metals, alkali metals, and alkaline earth metals. As a manufacturing method, for example, a method in which M is added using LiOH and V 2 O 3 as raw materials and baked at a predetermined temperature (dry method), or Li 2 CO 3 , V 2 O 5 , M and an organic acid are mixed. And a method (wet method) of firing the organic acid salt obtained at a predetermined temperature. In addition, since the raw material used is comparatively cheap, the wet method is more preferable in industrialization.

負極4の導電材は、リチウムを対極として充放電を行った際にリチウムイオンの吸蔵時の開放電位がリチウムバナジウム酸化物よりも低い飽和電位を有し、初回のリチウムイオンの吸蔵及び脱離時の可逆効率が50%以上かつ可逆容量が150mAh/g以上の材料から成っている。負極4の負極合材4aはこの導電材を15重量%以上85重量%以下含
んでいる。
The conductive material of the negative electrode 4 has a saturation potential lower than that of lithium vanadium oxide when the lithium ion is occluded when charging / discharging with lithium as a counter electrode, and during the first occlusion and desorption of lithium ion. The material has a reversible efficiency of 50% or more and a reversible capacity of 150 mAh / g or more. The negative electrode mixture 4a of the negative electrode 4 contains 15% by weight to 85% by weight of the conductive material.

図2は金属リチウムを負極に配置して種々の材料から成る電極を正極に配置したテストセルにてリチウム基準開放電位を測定した結果を示している。縦軸は開放電位(単位:V)であり、横軸は充電量(単位:%)である。図中、Aはリチウムバナジウム酸化物、Bはグラファイト(黒鉛)、Cはアルミニウム、Dはカーボンブラックである。   FIG. 2 shows the results of measuring the lithium reference open potential in a test cell in which metallic lithium is arranged on the negative electrode and electrodes made of various materials are arranged on the positive electrode. The vertical axis represents the open circuit potential (unit: V), and the horizontal axis represents the charge amount (unit:%). In the figure, A is lithium vanadium oxide, B is graphite (graphite), C is aluminum, and D is carbon black.

同図によると、グラファイトB及びカーボンブラックDは負極活物質であるリチウムバナジウム酸化物Aよりも低い飽和電位を有している。アルミニウムCはリチウムバナジウム酸化物Aよりも高い飽和電位を有している。   According to the figure, graphite B and carbon black D have a lower saturation potential than lithium vanadium oxide A which is a negative electrode active material. Aluminum C has a higher saturation potential than lithium vanadium oxide A.

また、グラファイトBは初回のリチウムイオンの吸蔵及び脱離時の可逆効率が50%以上かつ可逆容量が150mAh/g以上有している。尚、カーボンブラックDは初回のリチウムイオンの吸蔵及び脱離時の可逆効率が50%以上かつ可逆容量が150mAh/g以上にならない。従って、グラファイト等から成る導電材を負極合材4aに15重量%以上85重量%以下含有すればよい。   Further, graphite B has a reversible efficiency of 50% or more and a reversible capacity of 150 mAh / g or more at the time of first occlusion and desorption of lithium ions. Carbon black D does not have a reversible efficiency of 50% or more and a reversible capacity of 150 mAh / g or more at the first occlusion and desorption of lithium ions. Therefore, a conductive material made of graphite or the like may be contained in the negative electrode mixture 4a in an amount of 15% by weight to 85% by weight.

非水二次電池1において初回の充電によって正極3より放出されたリチウムイオンは負極4に吸蔵される。放電時にはその可逆分が負極4より放出されて正極3に戻り、電池容量として観察される。このため、負極4に含まれる導電材の可逆効率を50%以上に高くすることにより非水二次電池1の容量低下を抑制することができる。   In the nonaqueous secondary battery 1, lithium ions released from the positive electrode 3 by the first charge are occluded in the negative electrode 4. At the time of discharging, the reversible amount is released from the negative electrode 4 and returns to the positive electrode 3 and is observed as the battery capacity. For this reason, the capacity | capacitance fall of the non-aqueous secondary battery 1 can be suppressed by making the reversible efficiency of the electrically conductive material contained in the negative electrode 4 high 50% or more.

また、導電材の重量あたりの可逆容量を150mAh/g以上にすることにより、一定体積の電池の中に収納できる負極材料を多く確保することができる。これにより、非水二次電池1の容量を増加させることができる。また、導電材がリチウムバナジウム酸化物よりも低い飽和電位を有することによって、リチウムイオンとの吸蔵反応が抑制される。これにより、充放電時の膨張収縮による導電材の崩壊を防止することができる。   Further, by setting the reversible capacity per weight of the conductive material to 150 mAh / g or more, it is possible to secure a large amount of negative electrode material that can be accommodated in a battery having a constant volume. Thereby, the capacity | capacitance of the non-aqueous secondary battery 1 can be increased. In addition, since the conductive material has a lower saturation potential than lithium vanadium oxide, the occlusion reaction with lithium ions is suppressed. Thereby, collapse of the conductive material due to expansion / contraction during charging / discharging can be prevented.

次に第2実施形態について説明する。本実施形態は第1実施形態と同様に構成され、負極4の構成が異なっている。本実施形態の負極4の導電材は体積抵抗率が5×10-4Ω・cm以下でリチウムイオンを吸蔵しない金属または化合物から成っている。負極合材4aはこの導電材を15重量%以下を含有する。また、電解質がプロピレンカーボネートを5重量%以上50重量%以下含んでいる。その他の部分は第1実施形態と同様である。 Next, a second embodiment will be described. This embodiment is configured similarly to the first embodiment, and the configuration of the negative electrode 4 is different. The conductive material of the negative electrode 4 of the present embodiment is made of a metal or compound that has a volume resistivity of 5 × 10 −4 Ω · cm or less and does not occlude lithium ions. The negative electrode mixture 4a contains 15% by weight or less of this conductive material. Further, the electrolyte contains 5% by weight or more and 50% by weight or less of propylene carbonate. Other parts are the same as those in the first embodiment.

導電材として、体積抵抗率が6.84×10-6Ω・cmのNi、1.67×10-6Ω・cmのCu、73×10-6Ω・cmのステンレス鋼等の金属や、TiN、VC、VN等の化合物(体積抵抗率:21.7×10-6Ω・cm〜200×10-6Ω・cm)等を用いることができる。 As a conductive material, or a metal such as stainless steel having a volume resistivity of Ni of 6.84 × 10 -6 Ω · cm, the 1.67 × 10 -6 Ω · cm Cu , 73 × 10 -6 Ω · cm, TiN, VC, compounds such as VN: can be used (volume resistivity 21.7 × 10 -6 Ω · cm~200 × 10 -6 Ω · cm) and the like.

本実施形態によると、導電材とリチウムとが反応しないため導電性の低下を防止することができる。また、導電材とリチウムとの反応による不可逆容量の増加を防止し、非水二次電池1の容量を増加できるとともにサイクル特性を向上することができる。   According to this embodiment, since a conductive material and lithium do not react, it is possible to prevent a decrease in conductivity. Moreover, the increase in the irreversible capacity due to the reaction between the conductive material and lithium can be prevented, the capacity of the nonaqueous secondary battery 1 can be increased, and the cycle characteristics can be improved.

更に、導電材がリチウムイオンを吸蔵しないため、電解質の溶媒が共挿入して充放電時に膨張収縮することによる導電材の崩壊を防止することができる。特に、電解質が共挿入され易いプロピレンカーボネートを5重量%以上50重量%以下含んでいるため、導電材の崩壊をより確実に防止することができる。   Furthermore, since the conductive material does not occlude lithium ions, it is possible to prevent the conductive material from collapsing due to expansion and contraction during charge and discharge by co-inserting an electrolyte solvent. In particular, since the propylene carbonate in which the electrolyte is easily co-inserted is contained in an amount of 5% by weight or more and 50% by weight or less, the conductive material can be more reliably prevented from collapsing.

次に第3実施形態について説明する。本実施形態は第1実施形態と同様に構成され、負極4の構成が異なっている。本実施形態の負極4の導電材はリチウムイオンの吸蔵時の開放電位がリチウムバナジウム酸化物よりも低い飽和電位を有して初回のリチウムイオンの吸蔵及び脱離時の可逆効率が10%以下または可逆容量が50mAh/g以下であり、且つ比表面積が15m2/g以上の材料から成っている。負極合材4aはこの導電材を10重量%以上15重量%以下含有する。ここで、比表面積は、BET法により得られるものである。その他の部分は第1実施形態と同様である。 Next, a third embodiment will be described. This embodiment is configured similarly to the first embodiment, and the configuration of the negative electrode 4 is different. The conductive material of the negative electrode 4 of the present embodiment has a saturation potential lower than that of lithium vanadium oxide when the lithium ion is occluded, and the reversible efficiency during the first occlusion and desorption of lithium ions is 10% or less or It is made of a material having a reversible capacity of 50 mAh / g or less and a specific surface area of 15 m 2 / g or more. The negative electrode mixture 4a contains 10% by weight or more and 15% by weight or less of this conductive material. Here, the specific surface area is obtained by the BET method. Other parts are the same as those in the first embodiment.

前述の図2において、アセチレンブラックDはリチウムバナジウム酸化物よりも低い飽和電位を有している。また、初回のリチウムイオンの吸蔵及び脱離時の可逆容量が50mAh/g以下であり、比表面積が15m2/gである。従って、アセチレンブラック等のカーボンブラックを導電材として用いることができる。また、高導電性のカーボンブラックであるケッチェンブラックは非表面積が1270m2/gであり、初回のリチウムイオンの吸蔵及び脱離時の可逆容量が50mAh/g以下且つ可逆効率が10%以下である。従って、ケッチェンブラックを導電材として用いてもよい。 In FIG. 2 described above, acetylene black D has a lower saturation potential than lithium vanadium oxide. Moreover, the reversible capacity at the time of occlusion and desorption of lithium ions for the first time is 50 mAh / g or less, and the specific surface area is 15 m 2 / g. Therefore, carbon black such as acetylene black can be used as the conductive material. Ketjen black, which is a highly conductive carbon black, has a non-surface area of 1270 m 2 / g, a reversible capacity of 50 mAh / g or less at the time of first occlusion and desorption of lithium ions, and a reversal efficiency of 10% or less. is there. Therefore, ketjen black may be used as the conductive material.

本実施形態によると、負極4の導電材の可逆効率または可逆容量が低いが、負極合材4aに含まれる導電材の含有量が15重量%以下であるため、導電材とリチウムとの反応を抑制することができる。これにより、導電性の低下を防止するとともに、接触抵抗の増加を抑制することにより不可逆容量を小さくして非水二次電池1の容量を増加させることができる。更に、負極合材4aに含まれる導電材の含有量が10重量%以上であるため、導電性の低下をより防止することができる。これによりサイクル特性の向上が見込める。   According to the present embodiment, the reversible efficiency or reversible capacity of the conductive material of the negative electrode 4 is low, but since the content of the conductive material contained in the negative electrode mixture 4a is 15% by weight or less, the reaction between the conductive material and lithium is performed. Can be suppressed. Thereby, while preventing a fall of electroconductivity, an irreversible capacity | capacitance can be made small by suppressing the increase in contact resistance, and the capacity | capacitance of the non-aqueous secondary battery 1 can be increased. Furthermore, since the content of the conductive material contained in the negative electrode mixture 4a is 10% by weight or more, it is possible to further prevent the decrease in conductivity. This can improve cycle characteristics.

また、導電材がリチウムバナジウム酸化物よりも低い飽和電位を有することによって、リチウムイオンとの吸蔵反応が抑制される。これにより、充放電時の膨張収縮による導電材の崩壊を防止することができる。   In addition, since the conductive material has a lower saturation potential than lithium vanadium oxide, the occlusion reaction with lithium ions is suppressed. Thereby, collapse of the conductive material due to expansion / contraction during charging / discharging can be prevented.

尚、上記の各実施形態では特性の異なる導電材ごとに負極4への混合割合を規定して負極4には一種の導電材が含まれているように記載したが、これに限定されない。例えば第1実施形態の導電材と第2実施形態の導電材とを負極4に同時に混合するなど、複数種の導電材を同時に用いてもよいことはいうまでもない。   In each of the embodiments described above, the mixing ratio to the negative electrode 4 is defined for each conductive material having different characteristics, and the negative electrode 4 is described as including a kind of conductive material. However, the present invention is not limited to this. Needless to say, a plurality of kinds of conductive materials may be used at the same time, for example, the conductive material of the first embodiment and the conductive material of the second embodiment are mixed in the negative electrode 4 at the same time.

次に本発明の実施例について説明する。表1は第1実施形態の非水二次電池1の性能を調べるために用いた負極4の導電材の試料を正極に配置し、金属リチウムを負極に配置した2032型のテストセルにて充放電特性を測定した結果を示している。   Next, examples of the present invention will be described. Table 1 shows a 2032 type test cell in which a conductive material sample of the negative electrode 4 used for investigating the performance of the non-aqueous secondary battery 1 of the first embodiment is arranged on the positive electrode and metallic lithium is arranged on the negative electrode. The result of measuring the discharge characteristics is shown.

Figure 2008103094
Figure 2008103094

試料番号B1は実施例1の負極4の導電材であり、グラファイトから成っている。試料番号B2は後述する実施例2の負極4の導電材であり、1000℃で熱処理を行ったカーボンブラックから成っている。試料番号B11〜B13は比較例の負極4の導電材であり、それぞれ、グラファイトナノファイバー、1500℃で熱処理を行ったカーボンブラック、アルミニウムから成っている。   Sample number B1 is a conductive material of the negative electrode 4 of Example 1, and is made of graphite. Sample number B2 is a conductive material of the negative electrode 4 of Example 2 described later, and is made of carbon black that has been heat-treated at 1000 ° C. Sample numbers B11 to B13 are conductive materials of the negative electrode 4 of the comparative example, and are made of graphite nanofibers, carbon black heat-treated at 1500 ° C., and aluminum, respectively.

尚、グラファイトはタールの蒸留残留分であるピッチを2800〜3000℃で熱処理して得られる粉末から成る。グラファイトナノファイバーは気相中で有機物を噴霧分解することにより黒鉛化される微細な炭素繊維から成る。また、リチウムバナジウム酸化物から成る負極活物質としてLi1.10.92が用いられる。 In addition, graphite consists of the powder obtained by heat-processing the pitch which is a distillation residue of tar at 2800-3000 degreeC. Graphite nanofibers consist of fine carbon fibers that are graphitized by spray decomposition of organic matter in the gas phase. Li 1.1 V 0.9 O 2 is used as a negative electrode active material made of lithium vanadium oxide.

負極活物質であるLi1.10.92はリチウムイオンの吸蔵時の開放電位が0.2Vの飽和電位を有している。実施例1の導電材である試料番号B1はリチウムイオンの吸蔵時の開放電位がLi1.10.92よりも低い0.1Vの飽和電位を有している。比較例の試料番号B11、B12もリチウムイオンの吸蔵時の開放電位がLi1.10.92よりも低い0.1Vの飽和電位を有している。比較例の試料番号B13はリチウムイオンの吸蔵時の開放電位がLi1.10.92よりも高い0.4Vの飽和電位を有している。 Li 1.1 V 0.9 O 2, which is a negative electrode active material, has a saturation potential of an open potential of 0.2 V during occlusion of lithium ions. Sample No. B1, which is the conductive material of Example 1, has a saturation potential of 0.1 V, which is lower than Li 1.1 V 0.9 O 2, when the open potential during occlusion of lithium ions. Sample numbers B11 and B12 of the comparative example also have a saturation potential of 0.1 V, which is lower than Li 1.1 V 0.9 O 2, when the open potential during occlusion of lithium ions. Sample No. B13 of the comparative example has a saturation potential of 0.4 V, in which the open potential during occlusion of lithium ions is higher than Li 1.1 V 0.9 O 2 .

これらの試料を用いたテストセルの充放電を行い、初回のリチウムイオンの吸蔵及び脱離時における試料番号B1の可逆容量は330mAh/gになっている。試料番号B11、B12、B13の可逆容量はそれぞれ330mAh/g、50mAh/g、700mAh/gになっている。   The charge / discharge of the test cell using these samples was performed, and the reversible capacity of sample number B1 at the time of first occlusion and desorption of lithium ions was 330 mAh / g. The reversible capacities of sample numbers B11, B12, and B13 are 330 mAh / g, 50 mAh / g, and 700 mAh / g, respectively.

また、初回のリチウムイオンの吸蔵及び脱離時における試料番号B1の可逆効率は92%になっている。試料番号B11、B12、B13の可逆効率はそれぞれ40%、40%、70%になっている。   Further, the reversible efficiency of sample number B1 at the time of the first occlusion and desorption of lithium ions is 92%. The reversible efficiencies of sample numbers B11, B12, and B13 are 40%, 40%, and 70%, respectively.

図3、図4は表1に示した各試料を18650型の非水二次電池1の負極4の導電材として用いて18650型の非水二次電池1を作製し、負極合材4aに含まれる導電材の含有量をパラメータとして電池容量及び100サイクル後の電池容量の保持率を測定した結果を示している。縦軸は電池容量(単位:mAh)及び保持率(単位:%)であり、横軸は導電材の含有量(単位:重量%)である。ここでは、正極3の活物質にLiCoO2を用い、電解質にLiPF6、溶媒にエチレンカーボネート:ジエチルカーボネート=3:7の混合溶媒を用いた。 3 and 4 show that each sample shown in Table 1 is used as a conductive material for the negative electrode 4 of the 18650-type non-aqueous secondary battery 1, and the 18650-type non-aqueous secondary battery 1 is manufactured. The results of measuring the battery capacity and the battery capacity retention rate after 100 cycles using the content of the conductive material contained as a parameter are shown. The vertical axis represents the battery capacity (unit: mAh) and the retention rate (unit:%), and the horizontal axis represents the content of the conductive material (unit:% by weight). Here, LiCoO 2 was used as the active material of the positive electrode 3, LiPF 6 was used as the electrolyte, and a mixed solvent of ethylene carbonate: diethyl carbonate = 3: 7 was used as the solvent.

図3によると、試料番号B1は導電材の含有量が15重量%〜85重量%の範囲で2000mAh以上の高い電池容量を有し、90%以上の高い保持率を有している。これに対して、試料番号B11、12は導電材の含有量が20重量%〜85重量%の範囲で電池容量が2000mAhよりも低くなる。試料番号B13は導電材の含有量が15重量%〜85重量%の範囲で保持率が90%よりも低くなる。   According to FIG. 3, sample number B1 has a high battery capacity of 2000 mAh or more and a high retention rate of 90% or more when the content of the conductive material is in the range of 15 wt% to 85 wt%. In contrast, sample numbers B11 and B12 have a battery capacity lower than 2000 mAh when the conductive material content is in the range of 20 wt% to 85 wt%. Sample No. B13 has a retention rate lower than 90% when the content of the conductive material is in the range of 15 wt% to 85 wt%.

前述の表1において試料番号B2は実施例2の負極4の導電材であり、1000℃で熱処理を行ったカーボンブラックから成っている。初回のリチウムイオンの吸蔵及び脱離時における試料番号B2の可逆容量は160mAh/gになっている。また、初回のリチウムイオンの吸蔵及び脱離時における試料番号B2の可逆効率は55%になっている。   In Table 1 above, the sample number B2 is a conductive material of the negative electrode 4 of Example 2, and is made of carbon black that has been heat-treated at 1000 ° C. The reversible capacity of sample number B2 at the time of the first occlusion and desorption of lithium ions is 160 mAh / g. In addition, the reversible efficiency of sample number B2 at the time of the first occlusion and desorption of lithium ions is 55%.

また、前述の図3において、試料番号B2は導電材の含有量が15重量%〜85重量%の範囲で2000mAh以上の高い電池容量を有し、90%以上の高い保持率を有してい
る。
In FIG. 3, the sample number B2 has a high battery capacity of 2000 mAh or more and a high retention rate of 90% or more when the content of the conductive material is in the range of 15 wt% to 85 wt%. .

実施例1、2の導電材(B1、B2)によると、初回のリチウムイオンの吸蔵及び脱離時における可逆容量が150mAh/g以上で、可逆効率が50%以上であるため、導電材の含有量が15重量%〜85重量%の範囲で高い電池容量及びサイクル特性を得ることができる。また、負極合材4aに含まれる導電材の含有量を30重量%〜70重量%にすると、より高い電池容量及びサイクル特性を得ることができる。   According to the conductive materials (B1, B2) of Examples 1 and 2, the reversible capacity at the time of the first occlusion and desorption of lithium ions is 150 mAh / g or more, and the reversible efficiency is 50% or more. High battery capacity and cycle characteristics can be obtained when the amount is in the range of 15 wt% to 85 wt%. Further, when the content of the conductive material contained in the negative electrode mixture 4a is 30% by weight to 70% by weight, higher battery capacity and cycle characteristics can be obtained.

これに対して、比較例の試料番号B11の導電材は可逆効率が50%よりも低いため、含有量が15重量%〜85重量%の範囲で高い電池容量を得ることができない。試料番号B12の導電材は可逆容量が150mAh/gよりも低く、可逆効率が50%よりも低いため高い電池容量を得ることができない。試料番号B13の導電材は飽和電位がリチウムイオン酸化物よりも高いためサイクル特性が低下する。   On the other hand, since the reversible efficiency of the conductive material of sample number B11 of the comparative example is lower than 50%, a high battery capacity cannot be obtained when the content is in the range of 15 wt% to 85 wt%. Since the conductive material of sample number B12 has a reversible capacity lower than 150 mAh / g and a reversible efficiency lower than 50%, a high battery capacity cannot be obtained. Since the conductive material of sample number B13 has a higher saturation potential than that of the lithium ion oxide, the cycle characteristics deteriorate.

表2は第2実施形態の非水二次電池1の性能を調べるために用いた負極4の導電材の材料特性を示している。   Table 2 shows the material characteristics of the conductive material of the negative electrode 4 used for examining the performance of the nonaqueous secondary battery 1 of the second embodiment.

Figure 2008103094
Figure 2008103094

試料番号C1は実施例3の負極4の導電材であり、ニッケルから成っている。試料番号C2は後述する実施例4の負極4の導電材であり、ステンレス鋼から成っている。試料番号C3は後述する実施例5の負極4の導電材であり、VN(窒化バナジウム)から成っている。試料番号C11は比較例の負極4の導電材であり、BN(窒化ホウ素)から成っている。   Sample number C1 is a conductive material of the negative electrode 4 of Example 3, and is made of nickel. Sample number C2 is a conductive material of the negative electrode 4 of Example 4 described later, and is made of stainless steel. Sample number C3 is a conductive material of the negative electrode 4 of Example 5 to be described later, and is made of VN (vanadium nitride). Sample number C11 is a conductive material of the negative electrode 4 of the comparative example, and is made of BN (boron nitride).

実施例3の負極4の導電材である試料番号C1は比表面積が5m2/gであり、体積抵抗率が6.8×10-6Ω・cmである。比較例の試料番号C11は比表面積が5m2/gであり、体積抵抗率が1900×10-6Ω・cmである。 Sample No. C1, which is the conductive material of the negative electrode 4 of Example 3, has a specific surface area of 5 m 2 / g and a volume resistivity of 6.8 × 10 −6 Ω · cm. Sample No. C11 of the comparative example has a specific surface area of 5 m 2 / g and a volume resistivity of 1900 × 10 −6 Ω · cm.

図5は、表2に示した各試料を18650型の非水二次電池1の負極4の導電材として用いて18650型の非水二次電池1を作成し、負極合材に含まれる導電材の含有量をパラメータとして電池容量及び100サイクル後の電池容量の保持率を測定した結果を示している。縦軸は電池容量(単位:mAh)及び保持率(単位:%)であり、横軸は導電材の含有量(単位:重量%)である。ここでは、正極3の活物質にLiCoO2を用い、電解質にLiPF6、溶媒にエチレンカーボネート:ジエチルカーボネート=3:7の混合溶媒を用いた。 FIG. 5 shows a conductive material contained in the negative electrode mixture by producing the 18650 type non-aqueous secondary battery 1 using each sample shown in Table 2 as the conductive material of the negative electrode 4 of the 18650 type non-aqueous secondary battery 1. The battery capacity and the retention rate of the battery capacity after 100 cycles were measured using the material content as a parameter. The vertical axis represents the battery capacity (unit: mAh) and the retention rate (unit:%), and the horizontal axis represents the content of the conductive material (unit:% by weight). Here, LiCoO 2 was used as the active material of the positive electrode 3, LiPF 6 was used as the electrolyte, and a mixed solvent of ethylene carbonate: diethyl carbonate = 3: 7 was used as the solvent.

同図によると、試料番号C1は導電材の含有量が15重量%以下の範囲で2000mAh以上の高い電池容量を有し、90%以上の高い保持率を有している。これに対して、試料番号C11は導電材の含有量が10重量%〜15重量%の範囲で保持率が90%よりも低くなる。   According to the figure, the sample number C1 has a high battery capacity of 2000 mAh or more and a high retention rate of 90% or more when the content of the conductive material is 15% by weight or less. On the other hand, in the sample number C11, the retention rate is lower than 90% when the content of the conductive material is in the range of 10% by weight to 15% by weight.

前述の表2において試料番号C2は実施例4の負極4の導電材であり、Niが20重量%、Crが25重量%、Feが55重量%のステンレス鋼から成っている。試料番号C2の比表面積は5m2/gであり、体積抵抗率が73×10-6Ω・cmである。また、前述の図5において、試料番号C2は導電材の含有量が15重量%以下の範囲で2000mAh以上の高い電池容量を有し、90%以上の高い保持率を有している。 In Table 2 above, the sample number C2 is the conductive material of the negative electrode 4 of Example 4, and is made of stainless steel having Ni of 20% by weight, Cr of 25% by weight, and Fe of 55% by weight. Sample No. C2 has a specific surface area of 5 m 2 / g and a volume resistivity of 73 × 10 −6 Ω · cm. In FIG. 5, Sample No. C2 has a high battery capacity of 2000 mAh or more and a high retention rate of 90% or more when the content of the conductive material is in the range of 15% by weight or less.

前述の表2において試料番号C3は実施例5の負極4の導電材であり、VNから成っている。試料番号C3の比表面積は5m2/gであり、体積抵抗率が200×10-6Ω・cmである。また、前述の図5において、試料番号C3は導電材の含有量が15重量%以下の範囲で2000mAh以上の高い電池容量を有し、90%以上の高い保持率を有している。 In Table 2 described above, the sample number C3 is a conductive material of the negative electrode 4 of Example 5, and is made of VN. Sample No. C3 has a specific surface area of 5 m 2 / g and a volume resistivity of 200 × 10 −6 Ω · cm. In FIG. 5, Sample No. C3 has a high battery capacity of 2000 mAh or more and a high retention rate of 90% or more when the content of the conductive material is 15% by weight or less.

実施例3〜5の導電材(C1〜C3)によると、体積抵抗率が200×10-6Ω・cm以下であるため、導電材の含有量が15重量%以下の範囲で高い電池容量及びサイクル特性を得ることができる。これに対して、比較例の試料番号C11の導電材は体積抵抗率が200×10-6Ω・cmよりも高いため、含有量が15重量%以下の範囲で高い保持率を得ることができない。 According to the conductive materials (C1 to C3) of Examples 3 to 5, since the volume resistivity is 200 × 10 −6 Ω · cm or less, the battery capacity is high when the content of the conductive material is 15% by weight or less. Cycle characteristics can be obtained. On the other hand, since the volume resistivity of the conductive material of sample number C11 of the comparative example is higher than 200 × 10 −6 Ω · cm, it is not possible to obtain a high retention rate within a range of 15% by weight or less. .

図6は463048型の非水二次電池のテストセルの電池容量及び80℃で24時間放置した際の厚み変化を示している。縦軸は電池容量(単位:mAh)及び放置後の厚み(単位:%)であり、横軸は電解質中のPC(プロピレンカーボネート)の含有量(単位:重量%)である。   FIG. 6 shows the battery capacity of the test cell of the 463048 type non-aqueous secondary battery and the change in thickness when left at 80 ° C. for 24 hours. The vertical axis represents the battery capacity (unit: mAh) and the thickness after standing (unit:%), and the horizontal axis represents the content (unit: weight%) of PC (propylene carbonate) in the electrolyte.

電解質はEC(エチレンカーボネート)とDEC(ジエチルカーボネート)とを3:7の割合で混合した溶質に1.0mol/Lの体積モル濃度でLiPF6を溶解した溶液Aと、PCから成る溶質に1.0mol/Lの体積モル濃度でLiPF6を溶解した溶液Bとを混合している。即ち、PCの含有量はB液重量/(A液重量+B液重量)で表わされる。   The electrolyte used was a solution A in which LiPF6 was dissolved at a volume molar concentration of 1.0 mol / L in a solute prepared by mixing EC (ethylene carbonate) and DEC (diethyl carbonate) at a ratio of 3: 7, and a solute composed of PC. Solution B in which LiPF6 is dissolved at a volume molar concentration of 0 mol / L is mixed. That is, the PC content is expressed as B solution weight / (A solution weight + B solution weight).

図中、試料番号C4は実施例6の負極4の導電材であり、Ni粉末から成っている。試料番号C12は比較例の負極4の導電材であり、ケッチェンブラックから成っている。同図によると、いずれもPCの含有量が5重量%〜50重量%の範囲で高い電池容量を維持し、80℃で放置した後の厚み変化が小さい。尚、PCは表面張力が高いため、電解質中にPCを70重量%含むとセパレータに浸透せずにいずれも充放電が行われなかった。   In the figure, sample number C4 is a conductive material of the negative electrode 4 of Example 6, and is made of Ni powder. Sample number C12 is a conductive material of the negative electrode 4 of the comparative example, and is made of ketjen black. According to the figure, in all cases, a high battery capacity is maintained when the PC content is in the range of 5 wt% to 50 wt%, and the thickness change after being left at 80 ° C. is small. In addition, since PC has high surface tension, when 70 wt% of PC was included in the electrolyte, none of the separators penetrated and charging / discharging was not performed.

図7はこの非水二次電池の100サイクル後の電池容量の保持率を示している。縦軸は保持率(単位:%)であり、横軸は電解質中のPCの含有量(単位:重量%)である。同図によると、試料番号C4は電解質中のPCの含有量が5重量%〜50重量%の範囲で90%以上の高い保持率を有している。これに対して、試料番号C12は電解質中のPCの含有量が5重量%〜50重量%の範囲で保持率が90%よりも低くなる。即ち、リチウムイオンと吸蔵脱離しないNiを導電材に用いることにより、PCの共挿入を防止してサイクル特性が向上する。   FIG. 7 shows the retention rate of the battery capacity after 100 cycles of this non-aqueous secondary battery. The vertical axis represents the retention rate (unit:%), and the horizontal axis represents the PC content (unit:% by weight) in the electrolyte. According to the figure, the sample number C4 has a high retention rate of 90% or more when the content of PC in the electrolyte is in the range of 5% by weight to 50% by weight. In contrast, sample number C12 has a retention rate lower than 90% when the content of PC in the electrolyte is in the range of 5 wt% to 50 wt%. That is, by using Ni that does not occlude / desorb lithium ions as a conductive material, co-insertion of PC is prevented and cycle characteristics are improved.

表3は第3実施形態の非水二次電池1の性能を調べるために用いた負極4の導電材の試料の比表面積、及びこの試料を正極に配置し、金属リチウムを負極に配置した2032型の非水二次電池のテストセルにて充放電特性を測定した結果を示している。   Table 3 shows a specific surface area of the sample of the conductive material of the negative electrode 4 used for examining the performance of the nonaqueous secondary battery 1 of the third embodiment, and 2032 in which this sample is arranged on the positive electrode and metallic lithium is arranged on the negative electrode. The result of having measured the charging / discharging characteristic in the test cell of the type nonaqueous secondary battery is shown.

Figure 2008103094
Figure 2008103094

試料番号D1は実施例7の負極4の導電材であり、1500℃で熱処理を行ったカーボンブラックから成っている。試料番号D2は後述する実施例8の負極4の導電材であり、ケッチェンブラックから成っている。試料番号D11は比較例の負極4の導電材であり、炭素粉から成っている。   Sample number D1 is a conductive material of the negative electrode 4 of Example 7, and is made of carbon black heat-treated at 1500 ° C. Sample number D2 is a conductive material of the negative electrode 4 of Example 8 to be described later, and is made of ketjen black. Sample number D11 is a conductive material of the negative electrode 4 of the comparative example, and is made of carbon powder.

実施例7の負極4の導電材である試料番号D1は比表面積が15m2/gであり、試料番号D11は比表面積が3m2/gである。これらの試料を用いたテストセルの充放電を行い、初回のリチウムイオンの吸蔵及び脱離時における試料番号D1の可逆容量は50mAh/gになっている。試料番号D11の可逆容量は50mAh/gになっている。また、初回のリチウムイオンの吸蔵及び脱離時における試料番号D1の可逆効率は40%になっている。試料番号D11の可逆効率は40%になっている。 Sample number D1, which is the conductive material of negative electrode 4 of Example 7, has a specific surface area of 15 m 2 / g, and sample number D11 has a specific surface area of 3 m 2 / g. The charge / discharge of the test cell using these samples was performed, and the reversible capacity of sample number D1 at the time of the first occlusion and desorption of lithium ions was 50 mAh / g. The reversible capacity of sample number D11 is 50 mAh / g. Moreover, the reversible efficiency of the sample number D1 at the time of the first occlusion and desorption of lithium ions is 40%. The reversible efficiency of sample number D11 is 40%.

図8は、表3に示した各試料を18650型の非水二次電池1の負極4の導電材として用いて18650型の非水二次電池1を作成し、負極合材4aに含まれる導電材の含有量をパラメータとして電池容量及び100サイクル後の電池容量の保持率を測定した結果を示している。縦軸は電池容量(単位:mAh)及び保持率(単位:%)であり、横軸は導電材の含有量(単位:重量%)である。ここでは、正極3の活物質にLiCoO2を用い、電解質にLiPF6、溶媒にエチレンカーボネート:ジエチルカーボネート=3:7の混合溶媒を用いた。 FIG. 8 shows a sample 18650 type non-aqueous secondary battery 1 using each sample shown in Table 3 as a conductive material of the negative electrode 4 of the 18650 type non-aqueous secondary battery 1, and is included in the negative electrode mixture 4a. The results of measuring the battery capacity and the battery capacity retention rate after 100 cycles using the content of the conductive material as a parameter are shown. The vertical axis represents the battery capacity (unit: mAh) and the retention rate (unit:%), and the horizontal axis represents the content of the conductive material (unit:% by weight). Here, LiCoO 2 was used as the active material of the positive electrode 3, LiPF 6 was used as the electrolyte, and a mixed solvent of ethylene carbonate: diethyl carbonate = 3: 7 was used as the solvent.

同図によると、試料番号D1は導電材の含有量が10重量%〜15重量%の範囲で2000mAh以上の高い電池容量を有し、90%以上の高い保持率を有している。これに対して、試料番号D11は導電材の含有量が10重量%〜15重量%の範囲で保持率が90%よりも低くなる。   According to the figure, sample number D1 has a high battery capacity of 2000 mAh or more and a high retention rate of 90% or more when the content of the conductive material is in the range of 10 wt% to 15 wt%. On the other hand, in the sample number D11, the retention rate is lower than 90% when the content of the conductive material is in the range of 10% by weight to 15% by weight.

前述の表3において試料番号D2は実施例8の負極4の導電材であり、ケッチェンブラから成っている。試料番号D2の比表面積は1270m2/gである。また、初回のリチウムイオンの吸蔵及び脱離時における試料番号D2の可逆容量は45mAh/gになっている。初回のリチウムイオンの吸蔵及び脱離時における試料番号D2の可逆効率は8%になっている。 In Table 3 above, the sample number D2 is the conductive material of the negative electrode 4 of Example 8, and is made of a ketchen bra. The specific surface area of sample number D2 is 1270 m 2 / g. The reversible capacity of sample number D2 at the time of the first insertion and extraction of lithium ions is 45 mAh / g. The reversible efficiency of sample number D2 at the time of the first occlusion and desorption of lithium ions is 8%.

また、前述の図8において、試料番号D2は導電材の含有量が10重量%〜15重量%の範囲で2000mAh以上の高い電池容量を有し、90%以上の高い保持率を有している。   In FIG. 8, sample number D2 has a high battery capacity of 2000 mAh or more and a high retention rate of 90% or more when the content of the conductive material is in the range of 10 wt% to 15 wt%. .

実施例7、8の導電材(D1、D2)によると、比表面積が15m2/g以上であり、初回のリチウムイオンの吸蔵及び脱離時における可逆容量が50mAh/g以下または可逆効率が10%以下であるため、導電材の含有量が10重量%〜15重量%の範囲で高い電池容量及びサイクル特性を得ることができる。 According to the conductive materials (D1, D2) of Examples 7 and 8, the specific surface area is 15 m 2 / g or more, the reversible capacity is 50 mAh / g or less at the time of first occlusion and desorption of lithium ions, or the reversibility efficiency is 10 % Or less, high battery capacity and cycle characteristics can be obtained when the content of the conductive material is in the range of 10 to 15% by weight.

これに対して、比較例の試料番号D11の導電材は比表面積が15m2/gよりも低いため、含有量が10重量%〜15重量%の範囲でサイクル特性が低下する。 On the other hand, since the specific surface area of the conductive material of Sample No. D11 of the comparative example is lower than 15 m 2 / g, the cycle characteristics are degraded when the content is in the range of 10 wt% to 15 wt%.

本発明は、リチウムイオン二次電池等の非水二次電池に利用することができる。   The present invention can be used for non-aqueous secondary batteries such as lithium ion secondary batteries.

本発明の第1実施形態の非水二次電池を示す縦断面図The longitudinal cross-sectional view which shows the nonaqueous secondary battery of 1st Embodiment of this invention. 非水二次電池の負極の種々の導電材における充電特性を示す図The figure which shows the charge characteristic in the various electrically conductive material of the negative electrode of a non-aqueous secondary battery 本発明の第1実施形態の非水二次電池の負極の導電材の含有量と電池容量及び100サイクル後の電池容量の保持率との関係を示す図The figure which shows the relationship between content of the electrically conductive material of the negative electrode of the non-aqueous secondary battery of 1st Embodiment of this invention, battery capacity, and the retention of the battery capacity after 100 cycles. 本発明の第1実施形態の非水二次電池の負極の導電材の比較例の含有量と電池容量及び100サイクル後の電池容量の保持率との関係を示す図The figure which shows the relationship between the content of the comparative example of the electrically conductive material of the negative electrode of the non-aqueous secondary battery of 1st Embodiment of this invention, battery capacity, and the retention of the battery capacity after 100 cycles. 本発明の第2実施形態の非水二次電池の負極の導電材の含有量と電池容量及び100サイクル後の電池容量の保持率との関係を示す図The figure which shows the relationship between content of the electrically conductive material of the negative electrode of the non-aqueous secondary battery of 2nd Embodiment of this invention, battery capacity, and the retention of the battery capacity after 100 cycles. 本発明の第2実施形態の非水二次電池の電解質のPCの含有量と電池容量及び厚み変化との関係を示す図The figure which shows the relationship between content of PC of the electrolyte of the non-aqueous secondary battery of 2nd Embodiment of this invention, battery capacity, and thickness change. 本発明の第2実施形態の非水二次電池の電解質のPCの含有量と保持率との関係を示す図The figure which shows the relationship between PC content and the retention rate of the electrolyte of the nonaqueous secondary battery of 2nd Embodiment of this invention. 本発明の第3実施形態の非水二次電池の負極の導電材の含有量と電池容量及び100サイクル後の電池容量の保持率との関係を示す図The figure which shows the relationship between content of the electrically conductive material of the negative electrode of the nonaqueous secondary battery of 3rd Embodiment of this invention, battery capacity, and the retention of the battery capacity after 100 cycles.

符号の説明Explanation of symbols

1 非水二次電池
2 ケース
3 正極
4 負極
5 セパレータ
6 センターピン
7 正極端子
8 負極端子
10 積層体
DESCRIPTION OF SYMBOLS 1 Nonaqueous secondary battery 2 Case 3 Positive electrode 4 Negative electrode 5 Separator 6 Center pin 7 Positive electrode terminal 8 Negative electrode terminal 10 Laminated body

Claims (4)

リチウムバナジウム酸化物から成る負極活物質と導電材とバインダーとを有する負極合材を集電体上に塗布して成る負極を備えた非水二次電池において、前記導電材は、リチウムを対極として充放電を行った際にリチウムイオンの吸蔵時の開放電位がリチウムバナジウム酸化物よりも低い飽和電位を有するとともに、初回のリチウムイオンの吸蔵及び脱離時の可逆効率が50%以上かつ可逆容量が150mAh/g以上であり、前記負極合材が15重量%以上85重量%以下の前記導電材を含有することを特徴とする非水二次電池。   In a non-aqueous secondary battery including a negative electrode formed by applying a negative electrode active material composed of lithium vanadium oxide, a negative electrode composite material having a conductive material and a binder on a current collector, the conductive material has lithium as a counter electrode. The open potential during occlusion of lithium ions during charging / discharging has a lower saturation potential than lithium vanadium oxide, the reversibility efficiency during the first occlusion and desorption of lithium ions is 50% or more, and the reversible capacity is high. 150 mAh / g or more, The said negative electrode compound material contains the said electrically conductive material of 15 weight% or more and 85 weight% or less, The nonaqueous secondary battery characterized by the above-mentioned. リチウムバナジウム酸化物から成る負極活物質と導電材とバインダーとを有する負極合材を集電体上に塗布して成る負極を備えた非水二次電池において、前記導電材は、体積抵抗率が5×10-4Ω・cm以下でリチウムイオンを吸蔵しない金属または化合物から成り、前記負極合材が15重量%以下の前記導電材を含有することを特徴とする非水二次電池。 In a non-aqueous secondary battery including a negative electrode formed by applying a negative electrode active material composed of lithium vanadium oxide, a negative electrode mixture having a conductive material and a binder onto a current collector, the conductive material has a volume resistivity. A non-aqueous secondary battery comprising a metal or a compound that does not occlude lithium ions at 5 × 10 −4 Ω · cm or less, and the negative electrode mixture contains 15% by weight or less of the conductive material. プロピレンカーボネートを5重量%以上50重量%以下含む電解質を備えることを特徴とする請求項2に記載の非水二次電池。   The non-aqueous secondary battery according to claim 2, further comprising an electrolyte containing 5 wt% or more and 50 wt% or less of propylene carbonate. リチウムバナジウム酸化物から成る負極活物質と導電材とバインダーとを有する負極合材を集電体上に塗布して成る負極を備えた非水二次電池において、前記導電材は、リチウムを対極として充放電を行った際にリチウムイオンの吸蔵時の開放電位がリチウムバナジウム酸化物よりも低い飽和電位を有するとともに、初回のリチウムイオンの吸蔵及び脱離時の可逆効率が10%以下または可逆容量が50mAh/g以下であり、且つ比表面積が15m2/g以上であり、前記負極合材が10重量%以上15重量%以下の前記導電材を含有することを特徴とする非水二次電池。 In a non-aqueous secondary battery including a negative electrode formed by applying a negative electrode active material composed of lithium vanadium oxide, a negative electrode composite material having a conductive material and a binder on a current collector, the conductive material has lithium as a counter electrode. When charging / discharging, the open potential during occlusion of lithium ions has a lower saturation potential than lithium vanadium oxide, and the reversible efficiency during the first occlusion and desorption of lithium ions is 10% or less or the reversible capacity is A non-aqueous secondary battery having 50 mAh / g or less, a specific surface area of 15 m 2 / g or more, and the negative electrode mixture containing 10% by weight or more and 15% by weight or less of the conductive material.
JP2006282368A 2006-10-17 2006-10-17 Non-aqueous secondary battery Active JP5317407B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006282368A JP5317407B2 (en) 2006-10-17 2006-10-17 Non-aqueous secondary battery
KR1020070104539A KR20080034811A (en) 2006-10-17 2007-10-17 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282368A JP5317407B2 (en) 2006-10-17 2006-10-17 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2008103094A true JP2008103094A (en) 2008-05-01
JP5317407B2 JP5317407B2 (en) 2013-10-16

Family

ID=39437286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282368A Active JP5317407B2 (en) 2006-10-17 2006-10-17 Non-aqueous secondary battery

Country Status (2)

Country Link
JP (1) JP5317407B2 (en)
KR (1) KR20080034811A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078352A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Sodium ion battery system
KR101560441B1 (en) * 2013-01-25 2015-10-14 주식회사 엘지화학 Method for fabricating the iron oxide nanoparticles
KR101561376B1 (en) 2013-01-10 2015-10-19 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
KR101561373B1 (en) * 2013-01-10 2015-10-19 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
US9425633B2 (en) 2012-10-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Sodium ion battery system, method for using sodium ion battery, and method for producing sodium ion battery
US9620776B2 (en) 2013-01-10 2017-04-11 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363862A (en) * 1991-06-10 1992-12-16 Matsushita Electric Ind Co Ltd Lithium secondary battery
JPH06302320A (en) * 1993-04-14 1994-10-28 Seiko Instr Inc Nonaqueous electrolyte secondary battery
JPH07296852A (en) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd Organic electrolyte secondary battery
JP2000003730A (en) * 1998-06-15 2000-01-07 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000149947A (en) * 1998-11-12 2000-05-30 Mitsubishi Gas Chem Co Inc Graphite powder for lithium ion battery negative electrode
JP2000299107A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2003068305A (en) * 2001-03-01 2003-03-07 Sumitomo Metal Ind Ltd Negative material for secondary lithium battery and its manufacturing method
JP2003142101A (en) * 2001-10-31 2003-05-16 Nec Corp Positive electrode for secondary battery and secondary battery using the same
JP2005072009A (en) * 2003-08-27 2005-03-17 Samsung Sdi Co Ltd Binder and electrode for lithium battery, and lithium battery using the same
JP2005072008A (en) * 2003-08-21 2005-03-17 Samsung Sdi Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery including it
JP2005216855A (en) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary cell and its manufacturing method as well as lithium secondary cell including above
JP2006128115A (en) * 2004-10-27 2006-05-18 Samsung Sdi Co Ltd Negative electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery having this
JP2006228505A (en) * 2005-02-16 2006-08-31 Hitachi Chem Co Ltd Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363862A (en) * 1991-06-10 1992-12-16 Matsushita Electric Ind Co Ltd Lithium secondary battery
JPH06302320A (en) * 1993-04-14 1994-10-28 Seiko Instr Inc Nonaqueous electrolyte secondary battery
JPH07296852A (en) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd Organic electrolyte secondary battery
JP2000003730A (en) * 1998-06-15 2000-01-07 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000149947A (en) * 1998-11-12 2000-05-30 Mitsubishi Gas Chem Co Inc Graphite powder for lithium ion battery negative electrode
JP2000299107A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2003068305A (en) * 2001-03-01 2003-03-07 Sumitomo Metal Ind Ltd Negative material for secondary lithium battery and its manufacturing method
JP2003142101A (en) * 2001-10-31 2003-05-16 Nec Corp Positive electrode for secondary battery and secondary battery using the same
JP2005072008A (en) * 2003-08-21 2005-03-17 Samsung Sdi Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery including it
JP2005072009A (en) * 2003-08-27 2005-03-17 Samsung Sdi Co Ltd Binder and electrode for lithium battery, and lithium battery using the same
JP2005216855A (en) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary cell and its manufacturing method as well as lithium secondary cell including above
JP2006128115A (en) * 2004-10-27 2006-05-18 Samsung Sdi Co Ltd Negative electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery having this
JP2006228505A (en) * 2005-02-16 2006-08-31 Hitachi Chem Co Ltd Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425633B2 (en) 2012-10-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Sodium ion battery system, method for using sodium ion battery, and method for producing sodium ion battery
JP2014078352A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Sodium ion battery system
US9543582B2 (en) 2013-01-10 2017-01-10 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9608270B2 (en) 2013-01-10 2017-03-28 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
KR101561375B1 (en) * 2013-01-10 2015-10-19 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
KR101561374B1 (en) * 2013-01-10 2015-10-19 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
KR101561377B1 (en) * 2013-01-10 2015-10-20 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
KR101561376B1 (en) 2013-01-10 2015-10-19 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
US10581076B2 (en) 2013-01-10 2020-03-03 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
KR101561373B1 (en) * 2013-01-10 2015-10-19 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
US9620776B2 (en) 2013-01-10 2017-04-11 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US9627685B2 (en) 2013-01-10 2017-04-18 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9742006B2 (en) 2013-01-10 2017-08-22 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US10020499B2 (en) 2013-01-10 2018-07-10 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US9755234B2 (en) 2013-01-10 2017-09-05 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9865875B2 (en) 2013-01-10 2018-01-09 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9755231B2 (en) 2013-01-25 2017-09-05 Lg Chem, Ltd. Method of preparing iron oxide nanoparticles
KR101560441B1 (en) * 2013-01-25 2015-10-14 주식회사 엘지화학 Method for fabricating the iron oxide nanoparticles

Also Published As

Publication number Publication date
JP5317407B2 (en) 2013-10-16
KR20080034811A (en) 2008-04-22

Similar Documents

Publication Publication Date Title
JP5066798B2 (en) Secondary battery
JP5723186B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
JP2004111076A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP5317407B2 (en) Non-aqueous secondary battery
KR20140001114A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP2006134762A (en) Secondary battery
JP2012174535A (en) Electrode active material, and metal secondary battery comprising negative electrode containing the electrode active material
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JPH06302315A (en) Electrode for nonaqueous electrolytic secondary battery and its manufacture
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2012022792A (en) Nonaqueous electrolytic device for accumulating electric charge
JP2011233277A (en) Power storage device
JP2001229977A (en) Nonaqueous electrolyte secondary battery
JP2001006684A (en) Nonaqueous electrolyte battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP3639439B2 (en) Assembled battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP7189041B2 (en) secondary battery
WO2023157470A1 (en) Cylindrical nonaqueous electrolyte secondary battery
JP7259196B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5317407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250