JP3639439B2 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP3639439B2
JP3639439B2 JP24721698A JP24721698A JP3639439B2 JP 3639439 B2 JP3639439 B2 JP 3639439B2 JP 24721698 A JP24721698 A JP 24721698A JP 24721698 A JP24721698 A JP 24721698A JP 3639439 B2 JP3639439 B2 JP 3639439B2
Authority
JP
Japan
Prior art keywords
battery
batteries
contact
twenty
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24721698A
Other languages
Japanese (ja)
Other versions
JP2000077049A (en
Inventor
丈志 前田
一成 大北
育郎 米津
晃治 西尾
義人 近野
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP24721698A priority Critical patent/JP3639439B2/en
Publication of JP2000077049A publication Critical patent/JP2000077049A/en
Application granted granted Critical
Publication of JP3639439B2 publication Critical patent/JP3639439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池、ニッケルカドニウム電池、ニッケル水素電池などの二次電池を複数本併設し、これらを互いに並列若しくは直列に接続してなる組電池に関するものである。
【0002】
【従来の技術】
一般に二次電池からなる組電池においては、充放電時に各二次電池が発熱し、温度上昇によって二次電池の容量が変化することになるが、組電池の場合、各二次電池の温度はその位置によって異なり、例えば周囲を他の電池で包囲された内側の電池は、外側の電池よりも高温となる。この様に温度が相違することによって、各電池の容量にバラツキが生じると、これらの電池を直列に接続した場合、容量が最も少ない電池が消耗すると、その時点で他の電池の容量が未だ残存していたとしても、組電池としての出力は零となる。
特に、リチウム電池においては、−20℃〜60℃の範囲で放電容量に大きなバラツキが生じるため、上述の問題は大きなものとなる。
【0003】
そこで従来は、図6に示す如く筐体(1)の内部に、複数の二次電池(2a)(2b)を相互間に空間を設けて配備し、内側の二次電池(2b)の放熱性を改善することにより、外側の二次電池(2a)と内側の二次電池(2b)の温度差を出来るだけ小さくする工夫が為されている。
【0004】
【発明が解決しようとする課題】
しかしながら、図6の如く二次電池相互間に空間を設けることによって組電池全体が大型化するばかりでなく、依然として内側の二次電池(2b)は放熱性が悪いため、外側の二次電池(2a)よりも高温となり、上記の問題は解消されない。
そこで本発明の目的は、各二次電池の温度を従来よりも均一化することが可能な組電池を提供することである。
【0005】
【課題を解決する為の手段】
本発明は、少なくとも1本の二次電池(2)が他の二次電池(2)との位置関係によって他の二次電池(2)とは放熱性が異なる組電池において、前記複数本の二次電池(2)が、正負一対の電流取出し端子とは電気的に絶縁された部分を互いに接触させて配備されていることを特徴とする。
上記本発明に係る組電池においては、複数本の二次電池(2)が互いに接触しているため、二次電池相互間で熱伝導が生じ、これによって各二次電池の温度が均一化される。
【0006】
具体的構成において、各二次電池(2)は、正負一対の電流取出し端子とは電気的に絶縁された円筒状の電池缶(21)を有し、該電池缶(21)の外周面には、他の二次電池(2)と接触すべき平坦な接触面(22)が形成されている。該接触面(22)は、例えば電池缶(21)の外周面を平面研磨して形成することが出来る。
該具体的構成によれば、二次電池相互間の接触面積が大きくなって、大きな熱伝導量が得られ、各二次電池の温度が効率的に均一化される。
【0007】
本発明に係る他の組電池において、各二次電池(2)は、正負一対の電流取出し端子とは電気的に絶縁された円筒状の電池缶(21)を有し、該電池缶(21)の外周面には、他の二次電池(2)の電池缶(21)と接触すべき平坦な接触面(22)が形成され、前記複数本の二次電池(2)は接触面(22)を互いに接触させて配備されている。
上記本発明に係る組電池によれば、二次電池相互間に大きな接触面積が得られ、各二次電池の温度が効率的に均一化される。
【0009】
【発明の効果】
本発明に係る組電池によれば、各二次電池の温度を従来よりも均一化することが可能である。
【0010】
【発明の実施の形態】
以下、本発明をリチウム二次電池の組電池に実施した形態につき、図面に沿って具体的に説明する。
本発明に係る組電池は、図1に示す如く、筐体(1)の内部に複数本の二次電池(2)を併設し、これらの二次電池(2)を複数の連結電極(4)によって互いに直列に接続して構成されている。電気的に両端の二次電池(2)(2)にはそれぞれ正電極片(5)及び負電極片(6)が連結されており、両電極片(5)(6)から出力電流を取り出すことが出来る。
各二次電池(2)は、電流取出し端子とは電気的に絶縁された金属製の円筒状電池缶(21)を具えている。
【0011】
上記複数本の二次電池(2)は、図2に示す如く前記電池缶どうしが互いに直接に接触しており、これによって、内側の二次電池(2b)と外側の二次電池(2a)の温度の均一化が図られている。
【0012】
温度の均一化を更に効率的なものとするためには、図3(a)に示す様に、各二次電池(2)の電池缶(21)の外周面を研磨して、平坦な接触面(22)を形成することが有効である。例えば、外径が60mm、肉厚が2mmの電池缶(21)の場合、0.75mmの深さtまで平面研磨を施すことによって、幅Bが約13mmの接触面(22)が形成されることになる。
従って、図3(b)の如く隣接する二次電池(2)(2)の電池缶(21)(21)の接触面(22)(22)どうしを互いに接触させることによって、両二次電池(2)(2)間に大きな熱伝導面積を形成することが出来、この結果、両二次電池(2)(2)の温度を均一化することが可能である。
【0014】
更に、図4に示す如く外周面に平面部を有する断面長円状の二次電池(2)からなる組電池においては、前記平面部を互いに接触させて二次電池を配備することにより、二次電池間に大きな熱伝導面積を形成することが出来、これによって、各二次電池(2)の温度を均一化することが出来る。
【0015】
尚、二次電池(2)として採用されるリチウム電池は、周知の種々の構成が採用可能であって、例えば負極材料としては、黒鉛、コークスなどの炭素材料、リチウム金属、リチウム合金、LixFe23、LixWO2などの金属酸化物、或いはポリアセチレンなどの導電性高分子が挙げられる。特に黒鉛などの炭素材料を負極に用いた場合、優れた効果が発揮される。炭素材料に用いられる黒鉛、コークスとしては、粉砕したものをそのまま用いてもよく、加熱処理(500〜3700℃)、酸処理、アルカリ処理、膨張化処理などの前処理を施したものを用いてもよい。又、黒鉛のd002値は3.35Å以上、3.37Å以下、Lcは400Å以上が好ましい。
正極としては、LiCoO2、LiNiO2、LiMn24等の金属酸化物、及びこれらの複合酸化物が好適である。
電解質としては、リチウムイオンなどの金属イオンを含むLiPF6、LiClO4、LiCF3SO3等の電解質が例示される。又、電解液の有機溶媒としては、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、スルホランなどを単独で或いは混合して用いることが出来る。電解液は、これら溶媒に前記電解質を0.7〜1.5mol/l程度の割合で溶かした溶液が例示される。
【0016】
上記の材料を用いて、次の様にしてリチウム電池を作製した。
正極の作製
正極活物質としてのLiCoO2(リチウム複合酸化物)は、リチウムの水酸化物とコバルトの水酸化物を混合し、空気中800℃で24時間の焼成を施して得た。この正極活物質と導電剤としての人工黒鉛を重量比90:5で混合し、正極合剤を作製した。次に、結着剤であるポリフッ化ビニリデンをN−メチル−2−ピロリドン(NMP)に溶解させて、NMP溶液を調製した。そして、正極合剤とポリフッ化ビニリデンの重量比が95:5となる様に正極合剤とNMP溶液を混合して、スラリーを調製し、このスラリーを正極集電体としてのアルミニウム箔の両面にドクターブレード法により塗布し、150℃で2時間乾燥して正極を作製した。
【0017】
負極の作製
炭素塊(d002=3.356Å;Lc>1000Å)に空気流を噴射して粉砕し、これをふるいにかけて、平均粒子径10μmの炭素粉末を作製した。又、結着剤であるポリフッ化ビニリデンをNMPに溶解させてNMP溶液を調製し、炭素粉末とポリフッ化ビニリデンの重量比が85:15となる様に混練してスラリーを調製した。このスラリーを負極集電体としての銅箔の両面にドクターブレード法によって塗布し、150℃で2時間真空乾燥して負極を作製した。
【0018】
電解液の調製
エチレンカーボネートとジエチルカーボネートを体積比1:1で混合した溶媒に、LiPF6を1mol/lの割合で溶解し、電解液を調製した。
【0019】
電池の組立
セパレータとして、イオン透過性のポリプロピレン性の微多孔性膜を用い、正極と負極の間にセパレータが介在する様に、セパレータ、正極、セパレータ及び負極の4枚を重ねて渦巻き状に複数回巻いて、巻き取り電極体を作製した。そして、該巻き取り電極体を用いて、図5に示す如き二次電池(2)を組み立てた。
該二次電池(2)は、電池缶(21)内に、正極(23)、負極(24)及びセパレータ(25)からなる巻き取り電極体を収容すると共に、正極(23)には正極リード(26)を介して正極電流取出し端子(28)を接続し、負極(24)には、負極リード(27)を介して負極電流取出し端子(29)を接続して構成されている。
尚、電池缶(21)は、ポリプロピレン製パッキンによって両電流取出し端子(28)(29)とは電気的に絶縁されている。
【0020】
組電池の作製
本発明の組電池の効果を実証するべく、上述のリチウム二次電池を本用いて、これらを互いに接触させて配備し、図2に示す如き組電池(本発明電池1)を作製した。又、図3に示す如く電池缶(21)の外周面に平坦な接触面(22)を有する本のリチウム二次電池を用いて組電池(本発明電池2)を作製した。
更に、本のリチウム二次電池を図6に示す如く相互間に空間を設けて配備し、比較電池を作製した。
尚、何れの電池の電池缶も、外径が60mm、長さが300mmに形成されている。本発明電池2の接触面(22)の幅Bは13mmに形成されている。又、比較電池において、電池の間隔は5mmに設定されている。
【0021】
充放電特性
そして、上記の本発明電池1、本発明電池2、及び比較電池について、室温にて充放電試験を行ない、電池温度を測定した。その結果を表1に示す。尚、充放電は定電流法を用い、充電電流30A、充電終止電圧4.1V、放電電流30A、放電終止電圧2.7Vにて、各組電池の放電容量を調べた。
又、各組電池について充放電サイクルを繰り返し、500サイクル後の放電容量を調べた。更に、サイクル劣化率を下記数1の様に定義し、500サイクル後のサイクル劣化率を算出した。その結果を表2に示す。
【0022】
【数1】
サイクル劣化率(%/サイクル)=(A/B)/サイクル数×100
ここで、A=初期放電容量−500サイクル後の放電容量
B=初期放電容量
【0023】
【表1】
【表2】
【0024】
表1の結果から明らかな様に、比較電池に比べて、本発明電池1、2では、内側の電池と外側の電池の温度差が十分に小さなものとなっており、本発明の組電池によれば、各電池の温度が十分に均一化されることが分かる。
又、表2の結果から明らかな様に、比較電池に比べて、本発明電池1、2ではサイクル劣化率が小さくなっており、本発明の組電池はサイクル特性が優れていると言える。
【0025】
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、図3(a)(b)に示す如く平坦な接触面(22)を形成する方法としては、平面研磨に限らず、プレス成型によって電池缶(21)の一部に平坦部を形成する方法も採用可能である。
又、各二次電池は、隣接する全ての二次電池と接触させる必要はなく、少なくとも1本の二次電池と接触させた構成においても、ある程度の効果が得られる。
【図面の簡単な説明】
【図1】 本発明に係る組電池を表わす斜視図である。
【図2】 該組電池における複数本の二次電池の配置を示す正面図である。
【図3】 電池缶の外周面に平坦な接触面を形成した2本の二次電池の組合せを表わす拡大断面図である。
【図4】 外周面に平面部を有する二次電池からなる組電池において、複数本の二次電池の配置を示す正面図である。
【図5】 二次電池の断面図である。
【図6】 従来の組電池において、複数本の二次電池の配置を示す正面図である。
【符号の説明】
(1) 筐体
(2) 二次電池(2)
(2a) 外側の二次電池
(2b) 内側の二次電池
(21) 電池缶
(22) 接触面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery in which a plurality of secondary batteries such as a lithium battery, a nickel cadmium battery, and a nickel hydride battery are provided in parallel and connected in parallel or in series to each other.
[0002]
[Prior art]
In general, in an assembled battery composed of secondary batteries, each secondary battery generates heat during charging and discharging, and the capacity of the secondary battery changes due to temperature rise. In the case of an assembled battery, the temperature of each secondary battery is Depending on the position, for example, the inner battery surrounded by other batteries has a higher temperature than the outer battery. If the capacity of each battery varies due to the difference in temperature in this way, when these batteries are connected in series, when the battery with the smallest capacity is consumed, the capacity of other batteries still remains at that time. Even if it does, the output as an assembled battery becomes zero.
In particular, in a lithium battery, since the discharge capacity greatly varies in the range of −20 ° C. to 60 ° C., the above problem becomes significant.
[0003]
Therefore, conventionally, as shown in FIG. 6 , a plurality of secondary batteries (2a) and (2b) are provided in the housing (1) with a space between them, and the inner secondary battery (2b) dissipates heat. By improving the performance, a device is devised to minimize the temperature difference between the outer secondary battery (2a) and the inner secondary battery (2b).
[0004]
[Problems to be solved by the invention]
However, the space between the secondary batteries as shown in FIG. 6 not only increases the size of the entire assembled battery, but the inner secondary battery (2b) still has poor heat dissipation, so the outer secondary battery ( The temperature becomes higher than 2a), and the above problem cannot be solved.
Therefore, an object of the present invention is to provide an assembled battery in which the temperature of each secondary battery can be made more uniform than before.
[0005]
[Means for solving the problems]
The present invention provides an assembled battery in which at least one secondary battery (2) differs in heat dissipation from other secondary batteries (2) due to the positional relationship with the other secondary battery (2). The secondary battery (2) is arranged such that portions electrically insulated from a pair of positive and negative current extraction terminals are in contact with each other.
In the assembled battery according to the present invention, since a plurality of secondary batteries (2) are in contact with each other, heat conduction occurs between the secondary batteries, thereby making the temperature of each secondary battery uniform. The
[0006]
In a specific configuration, each secondary battery (2) has a cylindrical battery can (21) that is electrically insulated from a pair of positive and negative current extraction terminals, on the outer peripheral surface of the battery can (21). Is formed with a flat contact surface (22) to be in contact with the other secondary battery (2). The contact surface (22) can be formed, for example, by polishing the outer peripheral surface of the battery can (21).
According to this specific configuration, the contact area between the secondary batteries is increased, a large amount of heat conduction is obtained, and the temperature of each secondary battery is efficiently equalized.
[0007]
In another assembled battery according to the present invention, each secondary battery (2) has a cylindrical battery can (21) that is electrically insulated from a pair of positive and negative current extraction terminals. ) Is formed with a flat contact surface (22) to be contacted with a battery can (21) of another secondary battery (2), and the plurality of secondary batteries (2) are contact surfaces ( 22) are in contact with each other.
According to the assembled battery according to the present invention, a large contact area is obtained between the secondary batteries, and the temperature of each secondary battery is efficiently made uniform.
[0009]
【The invention's effect】
According to the assembled battery according to the present invention, the temperature of each secondary battery can be made more uniform than in the past.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment in which the present invention is applied to an assembled battery of a lithium secondary battery will be specifically described with reference to the drawings.
As shown in FIG. 1, the assembled battery according to the present invention includes a plurality of secondary batteries (2) provided inside a casing (1), and these secondary batteries (2) are connected to a plurality of connecting electrodes (4). ) Are connected in series with each other. A positive electrode piece (5) and a negative electrode piece (6) are connected to the secondary batteries (2) and (2) at both ends electrically, and output current is taken out from both electrode pieces (5) and (6). I can do it.
Each secondary battery (2) includes a metal cylindrical battery can (21) that is electrically insulated from a current extraction terminal.
[0011]
In the plurality of secondary batteries (2), as shown in FIG. 2, the battery cans are in direct contact with each other, whereby the inner secondary battery (2b) and the outer secondary battery (2a) The temperature is made uniform.
[0012]
In order to make the temperature uniform even more efficient, as shown in FIG. 3 (a), the outer peripheral surface of the battery can (21) of each secondary battery (2) is polished to make a flat contact. It is effective to form the surface (22). For example, in the case of a battery can (21) having an outer diameter of 60 mm and a wall thickness of 2 mm, a contact surface (22) having a width B of about 13 mm is formed by performing surface polishing to a depth t of 0.75 mm. It will be.
Therefore, as shown in FIG. 3 (b), by bringing the contact surfaces (22) and (22) of the battery cans (21) and (21) of the adjacent secondary batteries (2) and (2) into contact with each other, (2) A large heat conduction area can be formed between (2), and as a result, the temperature of both secondary batteries (2) (2) can be made uniform.
[0014]
Furthermore, in an assembled battery comprising a secondary battery (2) having an oval cross section having a flat portion on the outer peripheral surface as shown in FIG. 4 , the secondary battery is disposed by bringing the flat portions into contact with each other. A large heat conduction area can be formed between the secondary batteries, whereby the temperature of each secondary battery (2) can be made uniform.
[0015]
The lithium battery employed as the secondary battery (2) can employ various known configurations. For example, as the anode material, carbon materials such as graphite and coke, lithium metal, lithium alloy, Li x Examples thereof include metal oxides such as Fe 2 O 3 and Li x WO 2, and conductive polymers such as polyacetylene. In particular, when a carbon material such as graphite is used for the negative electrode, an excellent effect is exhibited. As graphite and coke used for the carbon material, pulverized ones may be used as they are, and those subjected to pretreatment such as heat treatment (500 to 3700 ° C.), acid treatment, alkali treatment, expansion treatment, etc. Also good. Further, the d 002 value of graphite is preferably 3.35 to 3.37 and Lc is preferably 400 or more.
As the positive electrode, metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and composite oxides thereof are suitable.
Examples of the electrolyte include electrolytes such as LiPF 6 , LiClO 4 , and LiCF 3 SO 3 containing metal ions such as lithium ions. Further, as the organic solvent for the electrolytic solution, ethylene carbonate, diethyl carbonate, dimethoxyethane, sulfolane and the like can be used alone or in combination. Examples of the electrolytic solution include a solution in which the electrolyte is dissolved in these solvents at a rate of about 0.7 to 1.5 mol / l.
[0016]
Using the above materials, a lithium battery was produced as follows.
LiCoO 2 as produced <br/> positive electrode active material of the positive electrode (lithium composite oxides) are mixed hydroxides and cobalt lithium, subjected to baking for 24 hours at 800 ° C. in air to give It was. This positive electrode active material and artificial graphite as a conductive agent were mixed at a weight ratio of 90: 5 to prepare a positive electrode mixture. Next, polyvinylidene fluoride as a binder was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare an NMP solution. Then, the positive electrode mixture and the NMP solution are mixed so that the weight ratio of the positive electrode mixture and polyvinylidene fluoride is 95: 5 to prepare a slurry, and this slurry is formed on both surfaces of the aluminum foil as the positive electrode current collector. It apply | coated by the doctor blade method and dried at 150 degreeC for 2 hours, and produced the positive electrode.
[0017]
Production of Negative Electrode <br/> carbon mass; by injecting airflow ground to (d 002 = 3.356Å Lc> 1000Å ), sieved This was prepared carbon powder having an average particle diameter of 10 [mu] m. Further, polyvinylidene fluoride as a binder was dissolved in NMP to prepare an NMP solution, and kneaded so that the weight ratio of the carbon powder and polyvinylidene fluoride was 85:15 to prepare a slurry. This slurry was applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and vacuum dried at 150 ° C. for 2 hours to produce a negative electrode.
[0018]
Volume ratio Preparation <br/> ethylene carbonate and diethyl carbonate electrolyte 1: mixed solvent at 1, the LiPF 6 was dissolved at a ratio of 1 mol / l, to prepare an electrolytic solution.
[0019]
As a battery assembly separator, an ion-permeable polypropylene microporous membrane is used, and a separator, a positive electrode, a separator, and a negative electrode are stacked in a spiral manner so that the separator is interposed between the positive electrode and the negative electrode. It wound up and produced the winding electrode body. Then, a secondary battery (2) as shown in FIG. 5 was assembled using the wound electrode body.
The secondary battery (2) contains a wound electrode body composed of a positive electrode (23), a negative electrode (24) and a separator (25) in a battery can (21), and a positive electrode lead in the positive electrode (23). A positive current extraction terminal (28) is connected via (26), and a negative electrode current extraction terminal (29) is connected to the negative electrode (24) via a negative electrode lead (27).
The battery can (21) is electrically insulated from both current extraction terminals (28) and (29) by a polypropylene packing.
[0020]
Production of assembled battery In order to demonstrate the effect of the assembled battery of the present invention, eight lithium secondary batteries described above were used and placed in contact with each other, and the assembled battery as shown in FIG. Was made. Also, as shown in FIG. 3, an assembled battery (present invention battery 2) was produced using eight lithium secondary batteries having a flat contact surface (22) on the outer peripheral surface of the battery can (21).
Further, eight lithium secondary batteries were provided with a space between them as shown in FIG. 6 to produce a comparative battery.
The battery can of any battery is formed with an outer diameter of 60 mm and a length of 300 mm. The width B of the contact surface (22) of the battery 2 of the present invention is 13 mm. In the comparative battery, the battery interval is set to 5 mm.
[0021]
Charge / discharge characteristics The above-described present invention battery 1, the present invention battery 2, and the comparative battery were subjected to a charge / discharge test at room temperature to measure the battery temperature. The results are shown in Table 1. In addition, charging / discharging used the constant current method, and the discharge capacity of each assembled battery was investigated by charge current 30A, charge end voltage 4.1V, discharge current 30A, discharge end voltage 2.7V.
Moreover, the charge / discharge cycle was repeated about each assembled battery, and the discharge capacity after 500 cycles was investigated. Furthermore, the cycle deterioration rate was defined as the following formula 1, and the cycle deterioration rate after 500 cycles was calculated. The results are shown in Table 2.
[0022]
[Expression 1]
Cycle degradation rate (% / cycle) = (A / B) / number of cycles × 100
Here, A = initial discharge capacity−discharge capacity after 500 cycles B = initial discharge capacity
[Table 1]
[Table 2]
[0024]
As is clear from the results in Table 1, in the batteries 1 and 2 of the present invention, the temperature difference between the inner battery and the outer battery is sufficiently small compared to the comparative battery. According to this, it can be seen that the temperature of each battery is sufficiently uniformed.
As is clear from the results in Table 2, the batteries 1 and 2 of the present invention have a lower cycle deterioration rate than the comparative battery, and it can be said that the assembled battery of the present invention has excellent cycle characteristics.
[0025]
In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, as shown in FIGS. 3 (a) and 3 (b), the method for forming the flat contact surface (22) is not limited to planar polishing, and a flat portion is formed on a part of the battery can (21) by press molding. A method can also be employed.
Further, each secondary battery does not need to be in contact with all adjacent secondary batteries, and a certain degree of effect can be obtained even in a configuration in which the secondary battery is in contact with at least one secondary battery.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an assembled battery according to the present invention.
FIG. 2 is a front view showing an arrangement of a plurality of secondary batteries in the assembled battery.
FIG. 3 is an enlarged sectional view showing a combination of two secondary batteries in which a flat contact surface is formed on the outer peripheral surface of the battery can.
FIG. 4 is a front view showing an arrangement of a plurality of secondary batteries in an assembled battery including a secondary battery having a flat portion on an outer peripheral surface.
FIG. 5 is a cross-sectional view of a secondary battery.
FIG. 6 is a front view showing an arrangement of a plurality of secondary batteries in a conventional assembled battery.
[Explanation of symbols]
(1) Case
(2) Secondary battery (2)
(2a) Outer secondary battery
(2b) Inner secondary battery
(21) Battery can
(22) Contact surface

Claims (4)

  1. 複数本の二次電池Multiple secondary batteries (( 2 )) を併設して、これらを互いに電気的に接続してなり、少なくとも1本の二次電池And at least one secondary battery that is electrically connected to each other. (( 2 )) は、他の二次電池Other rechargeable battery (( 2 )) との位置関係によって他の二次電池Depending on the positional relationship with other secondary batteries (( 2 )) とは放熱性が異なる組電池において、前記複数本の二次電池In the assembled battery having different heat dissipation, the plurality of secondary batteries (( 2 )) は、正負一対の電流取出し端子とは電気的に絶縁された部分を互いに接触させて配備され、各二次電池Is provided with a pair of positive and negative current extraction terminals in contact with each other, and each secondary battery (( 2 )) は、正負一対の電流取出し端子とは電気的に絶縁された円筒状の電池缶Is a cylindrical battery can that is electrically insulated from a pair of positive and negative current extraction terminals (21)(twenty one) を有し、該電池缶The battery can (21)(twenty one) の外周面には、他の二次電池On the outer peripheral surface of the other secondary battery (( 2 )) と接触すべき平坦な接触面Flat contact surface to contact with (22)(twenty two) が形成されていることを特徴とする組電池。Is formed.
  2. 前記電池缶Battery can (21)(twenty one) の外周面を平面研磨して接触面Polishing the outer peripheral surface of the contact surface (22)(twenty two) が形成されている請求項1に記載の組電池。The assembled battery according to claim 1, wherein
  3. 複数本の二次電池Multiple secondary batteries (( 2 )) を併設して、これらを互いに電気的に接続してなる組電池において、各二次電池In the assembled battery in which these are electrically connected to each other, each secondary battery (( 2 )) は、正負一対の電流取出し端子とは電気的に絶縁された円筒状の電池缶Is a cylindrical battery can that is electrically insulated from a pair of positive and negative current extraction terminals (21)(twenty one) を有し、該電池缶The battery can (21)(twenty one) の外周面には、他の二次電池On the outer peripheral surface of the other secondary battery (( 2 )) の電池缶Battery can (21)(twenty one) と接触すべき平坦な接触面Flat contact surface to contact with (22)(twenty two) が形成され、前記複数本の二次電池And the plurality of secondary batteries (( 2 )) は接触面Is the contact surface (22)(twenty two) を互いに接触させて配備されていることを特徴とする組電池。The battery pack is characterized by being arranged in contact with each other.
  4. 前記電池缶Battery can (21)(twenty one) の外周面を平面研磨して接触面Polishing the outer peripheral surface of the contact surface (22)(twenty two) が形成されている請求項3に記載の組電池。The assembled battery according to claim 3, wherein
JP24721698A 1998-09-01 1998-09-01 Assembled battery Expired - Fee Related JP3639439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24721698A JP3639439B2 (en) 1998-09-01 1998-09-01 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24721698A JP3639439B2 (en) 1998-09-01 1998-09-01 Assembled battery

Publications (2)

Publication Number Publication Date
JP2000077049A JP2000077049A (en) 2000-03-14
JP3639439B2 true JP3639439B2 (en) 2005-04-20

Family

ID=17160183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24721698A Expired - Fee Related JP3639439B2 (en) 1998-09-01 1998-09-01 Assembled battery

Country Status (1)

Country Link
JP (1) JP3639439B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420244B2 (en) 2010-05-14 2013-04-16 Exelis, Inc. Battery pack configured for enhanced operation in a cold environment
KR102043969B1 (en) 2017-04-18 2019-11-12 주식회사 엘지화학 Battery module
WO2018194296A1 (en) * 2017-04-18 2018-10-25 주식회사 엘지화학 Battery module

Also Published As

Publication number Publication date
JP2000077049A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP4366101B2 (en) Lithium secondary battery
KR101479320B1 (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US8313862B2 (en) Non-aqueous battery with columnar active material
JP3172388B2 (en) Lithium secondary battery
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
KR100469163B1 (en) Anode-activating materials and non-aqueous electrolyte secondary cells
JP5217076B2 (en) Lithium ion battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4204231B2 (en) Lithium secondary battery
JP5218808B2 (en) Lithium ion battery
KR20110000697A (en) Lithium-ion secondary battery
US9466832B2 (en) Lithium secondary battery including a nickel containing lithium complex oxide
US8101295B2 (en) Lithium secondary battery
RU2307430C1 (en) Lithium-ion battery characterized in improved storage properties at high temperature
JP2008294314A (en) Capacitor
JP4834299B2 (en) Lithium secondary battery
US20060019164A1 (en) Lithium storage cell capable of operating at high temperature
WO2009150773A1 (en) Charging method and discharging method of lithium ion secondary battery
US20050048361A1 (en) Stacked type lithium ion secondary batteries
CN1266799C (en) Lithium accumulator
JP2009200302A (en) Method of manufacturing electricity storage device, and electricity storage device
JP2000100474A (en) Sealed lithium ion secondary electrochemical battery
JP3492173B2 (en) Non-aqueous battery
JP2000123873A (en) Solid electrolyte battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees