JP4576891B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4576891B2
JP4576891B2 JP2004168172A JP2004168172A JP4576891B2 JP 4576891 B2 JP4576891 B2 JP 4576891B2 JP 2004168172 A JP2004168172 A JP 2004168172A JP 2004168172 A JP2004168172 A JP 2004168172A JP 4576891 B2 JP4576891 B2 JP 4576891B2
Authority
JP
Japan
Prior art keywords
electrode plate
plate group
spacer
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004168172A
Other languages
Japanese (ja)
Other versions
JP2005347195A (en
Inventor
紀子 田中
誠一 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004168172A priority Critical patent/JP4576891B2/en
Publication of JP2005347195A publication Critical patent/JP2005347195A/en
Application granted granted Critical
Publication of JP4576891B2 publication Critical patent/JP4576891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン二次電池に関し、特に出力特性に優れたリチウムイオン二次電池の構造に関するものである。   The present invention relates to a lithium ion secondary battery, and more particularly to a structure of a lithium ion secondary battery excellent in output characteristics.

近年、電子機器の小型化、軽量化が急速に進んでおり、その電源としての電池に対しても小型、軽量化、さらに高容量化の要望が高まっており、高エネルギー密度のリチウムイオン二次電池が盛んに研究開発され、実用化に至っている。   In recent years, electronic devices are rapidly becoming smaller and lighter, and there is an increasing demand for smaller, lighter, and higher capacity batteries as power sources. Batteries have been actively researched and developed and have been put to practical use.

また、これら小型民生用途のみならず、電力貯蔵用や電気自動車用など大容量の大型電池への技術展開も加速してきており、特にハイブリッド電気自動車(HEV)用リチウムイオン二次電池の開発も急速に進められている。さらに、電動工具の駆動用電源など非常に高出力が求められる電池においても従来のニカド電池、ニッケル水素電池に代わって、高出力タイプのリチウムイオン二次電池の開発が急がれている。   In addition to these small-sized consumer applications, technology development for large-capacity large-sized batteries such as those for power storage and electric vehicles has been accelerated. In particular, the development of lithium-ion secondary batteries for hybrid electric vehicles (HEVs) has been accelerated. It is advanced to. Furthermore, even for batteries that require a very high output such as a power source for driving an electric tool, development of a high-output type lithium ion secondary battery is urgently replacing the conventional nickel-cadmium battery and nickel-metal hydride battery.

ここで、電動工具の駆動用電源用リチウムイオン二次電池では、その用途、要求性能が小型民生用途のものとは大きく異なり、限られた容量で高いレベルの出力特性が求められる。そのため電池としては内部抵抗を極力最小にする必要があり、そのために活物質や電解液の開発のみならず、電極集電構造の見直しなど電池構造部品抵抗の低減や電極の薄型長尺化による電極反応面積の増加などにより大幅な高出力化が図られている。   Here, a lithium ion secondary battery for power source for driving an electric tool is greatly different from that of a small-sized consumer application in use and required performance, and a high level output characteristic is required with a limited capacity. Therefore, it is necessary for the battery to minimize internal resistance as much as possible. Therefore, not only the development of active materials and electrolytes, but also the electrode by reducing the resistance of battery structural parts such as reviewing the electrode current collection structure and making the electrodes thinner and longer Significantly higher output is achieved by increasing the reaction area.

従来の角形電池は、角形電池ケースに一つの極板群を収容し、正極、負極から導出した一本の集電リードから電流の経路を得る構造を取っている。しかしながら高出力が求められる電池は、小型民生用途と比較して容量が大きくまた電極が薄型長尺化であるため、一本の集電リードでは部品抵抗が高く十分な高出力特性が得られない問題があり、特許文献1では、角型ケースに極板群を複数個積層収容しこれら複数群を並列接続することにより複数の集電リードを取る方法が考案されている。
特開2003−31202号公報
A conventional prismatic battery has a structure in which a single electrode plate group is accommodated in a rectangular battery case, and a current path is obtained from a single current collecting lead led out from a positive electrode and a negative electrode. However, batteries that require high output have a large capacity compared to small consumer applications, and the electrodes are thin and long, so a single current collector lead has high component resistance and cannot provide sufficient high output characteristics. There is a problem, and Patent Document 1 devises a method of taking a plurality of current collecting leads by housing a plurality of electrode plate groups in a rectangular case and connecting the plurality of groups in parallel.
JP 2003-31202 A

しかしながら角形に捲回した極板群のリチウム二次電池は充放電により膨張収縮が起こり、とくに緊迫率の低い極板群中央部の膨張収縮率が高くなる。積層収容された極板群はそれぞれの膨張収縮による形状変化が相互作用し、極板の挫屈が生じることによる充放電反応の不均一化からリチウム析出を生じ、容量劣化および安全性が低下する。   However, the lithium secondary battery of the electrode plate group wound in a square shape is expanded and contracted by charging and discharging, and the expansion and contraction rate is particularly high in the central portion of the electrode plate group having a low tension rate. Stacked and accommodated electrode plate groups interact with each other in shape change due to expansion and contraction, resulting in lithium deposition due to non-uniform charge and discharge reaction due to the electrode plate buckling, reducing capacity deterioration and safety. .

本発明は、上記従来の問題点に鑑み、電池の内部抵抗を低減して高出力が得られ、さらに電池特性を向上させることが可能となる電池を提供することを目的とする。   In view of the above-described conventional problems, an object of the present invention is to provide a battery that can reduce the internal resistance of the battery, obtain a high output, and further improve battery characteristics.

上記の目的を達成するために本発明は、シート上の正極板と負極版をセパレータを介して巻回されてなる極板群と、電解液と、電池ケースとを有する非水電解質二次電池において、前記電池ケースに前記極板群が複数個積層収容され、それぞれの極板群が並列接続され、隣接する極板群の間にスペーサーを有し、(スペーサーの面積/極板群の軸芯を通る縦断面積)が0.38以上であることを特徴とする。   In order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary battery having an electrode plate group in which a positive electrode plate and a negative electrode plate on a sheet are wound through a separator, an electrolytic solution, and a battery case. In the battery case, a plurality of the electrode plate groups are stacked and accommodated in the battery case, the electrode plate groups are connected in parallel, and a spacer is provided between the adjacent electrode plate groups (spacer area / electrode axis of the electrode plate group). (Vertical cross-sectional area passing through the core) is 0.38 or more.

本発明の非水電解質二次電池は、上記の構造を有することで、並列接続となり集電リードを複数取ることができ、その結果部品抵抗の低減と高出力特性が得られ、さらに隣接する極板群の間にスペーサーを有することで極板群の膨張収縮を抑制して極板挫屈を防止し、良好な電池特性を得ることができる。   The non-aqueous electrolyte secondary battery according to the present invention has the above-described structure, so that it can be connected in parallel, and a plurality of current collecting leads can be obtained. As a result, component resistance is reduced and high output characteristics are obtained. By having a spacer between the plate groups, expansion and contraction of the electrode plate group can be suppressed to prevent the electrode plate from buckling, and good battery characteristics can be obtained.

本発明は、シート上の正極板と負極版をセパレータを介して巻回されてなる極板群と、電解液と、電池ケースとを有する非水電解質二次電池において、前記電池ケースに前記極板群が複数個積層収容され、それぞれの極板群が並列接続され、隣接する極板群の間にスペーサーを有し、(スペーサーの面積/極板群の軸芯を通る縦断面積)が0.38以上であって、部品抵抗の低減と高出力特性を得るとともに、極板群の膨張を抑制することができるものである。   The present invention provides a non-aqueous electrolyte secondary battery having a group of electrode plates formed by winding a positive electrode plate and a negative electrode plate on a sheet with a separator interposed therebetween, an electrolytic solution, and a battery case. A plurality of plate groups are stacked and accommodated in parallel, each electrode plate group is connected in parallel, and there is a spacer between adjacent electrode plate groups, (spacer area / vertical cross-sectional area passing through the axis of the electrode plate group) is 0. It is .38 or more, and it is possible to obtain a reduction in component resistance and high output characteristics and to suppress expansion of the electrode plate group.

また、スペーサーの少なくとも一部が電池ケースに接合されることにより、スペーサー及び極板群は電池ケース内において定位置に固定される。なお、スペーサーと電池ケースの接合方法は、抵抗溶接、レーザー溶接といった各種溶接による接合、あるいは電池ケースに溝切りを行いスペーサーをはめ込む方法が用いられる。   Further, at least a part of the spacer is joined to the battery case, whereby the spacer and the electrode plate group are fixed in place in the battery case. In addition, the joining method of a spacer and a battery case uses the method of joining by various weldings, such as resistance welding and laser welding, or the method of inserting a spacer by grooving a battery case.

さらに、スペーサーが極板群中央部と対向していることを特徴とするものである。なお、極板群中央部とは図5において極板群中央部9として示される部分であり、前記極板群中央部9は、高さ方向の中央部長さ11が極板群高さ10の0.5以上、幅方向の中央部長さ13が極板群幅12の0.5以上であることが好ましく、充放電による極板群の膨張収縮は緊迫率の低い極板群中央部で最も大きいが、この極板群中央部をスペーサーで固定することにより極板群の膨張収縮を抑制することが可能となる。   Furthermore, the spacer is opposed to the central part of the electrode plate group. In addition, the electrode plate group central part is a part shown as an electrode plate group central part 9 in FIG. 5, and the electrode plate group central part 9 has a center part length 11 in the height direction of electrode plate group height 10. It is preferable that the central portion length 13 in the width direction is 0.5 or more of the electrode plate group width 12, and the expansion and contraction of the electrode plate group due to charging / discharging is the most in the electrode plate group central portion having a low tension rate. Although large, it is possible to suppress the expansion and contraction of the electrode plate group by fixing the central part of the electrode plate group with a spacer.

また、スペーサーの厚みは0.2mm以上であることが好ましい。これは、スペーサーの厚みが0、2mmより薄いとスペーサーの強度が弱く極板群の膨張収縮を抑制することが不十分となるためである。   Moreover, it is preferable that the thickness of a spacer is 0.2 mm or more. This is because if the thickness of the spacer is less than 0 or 2 mm, the strength of the spacer is weak and it becomes insufficient to suppress the expansion and contraction of the electrode plate group.

さらに、スペーサーの材質は電池ケースと同一の材質が好ましく、Fe、Al等を用いることができる。これは、電池ケースが電位を持つ構造の場合、ケースと接合部を持つスペーサーも電位を持つことになるためであり、材料の耐電圧の影響から電池ケースとスペーサーは同一の材質が好ましい。   Further, the material of the spacer is preferably the same material as the battery case, and Fe, Al, etc. can be used. This is because when the battery case has a potential structure, the spacer having the joint portion with the case also has a potential. From the influence of the withstand voltage of the material, the battery case and the spacer are preferably made of the same material.

以下本発明の非水電解質二次電池についてさらに説明する。   The nonaqueous electrolyte secondary battery of the present invention will be further described below.

正極は集電体であるアルミ箔上に正極活物質、導電材および結着剤などを含む正極合剤層を備えることによって構成されている。まず正極活物質、導電材、結着剤さらには粘度調整等の目的で溶媒を混練して正極合剤ペーストを作製し、その正極合剤ペーストを、アルミニウム箔の集電体に塗布、乾燥させる。その後必要に応じてプレス、スリット加工をすることにより所定の寸法に加工し、シート状の正極を作製する。   The positive electrode is formed by providing a positive electrode mixture layer containing a positive electrode active material, a conductive material, a binder and the like on an aluminum foil as a current collector. First, a positive electrode active material, a conductive material, a binder, and a solvent are kneaded for the purpose of adjusting viscosity to prepare a positive electrode mixture paste, and the positive electrode mixture paste is applied to an aluminum foil current collector and dried. . Thereafter, the sheet is processed into a predetermined size by pressing and slitting as necessary to produce a sheet-like positive electrode.

正極活物質にはLiCoO2、LiNiO2やLiMn24などのリチウム金属複合酸化物が使用されるが、上記Co、NiまたはMnの一部をさらにCo、Mn、Al等で置換したもの、Liで置換したものなど、他元素置換タイプのものをも使用することが可能であり、これら正極活物質はリチウムを吸蔵、放出可能であって、充放電反応が可能である活物質であれば上記に限定されるものではない。 Lithium metal composite oxides such as LiCoO 2 , LiNiO 2 and LiMn 2 O 4 are used for the positive electrode active material, but a part of the Co, Ni or Mn is further substituted with Co, Mn, Al or the like, Other element substitution types such as those substituted with Li can also be used, and these positive electrode active materials can be used as long as they are active materials capable of occluding and releasing lithium and capable of charge / discharge reactions. It is not limited to the above.

また、導電材は正極合剤の充放電反応を効率的に行うために電気伝導性を高めるためのものであり、アセチレンブラック(AB)、ケッチェンブラック(KB)、または黒鉛等
の炭素材料を単体、もしくは複合して用いることができる。
The conductive material is for enhancing electrical conductivity in order to efficiently perform the charge / discharge reaction of the positive electrode mixture, and is made of carbon material such as acetylene black (AB), ketjen black (KB), or graphite. It can be used alone or in combination.

また、結着剤は合剤同士の接着、および合剤と芯材の間の接着機能を持たせるものであり、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVdF)などを用い、有機溶剤を溶媒とする場合にはPVdFが用いられ、水を溶媒とする場合にはPTFEの水溶性ディスパージョンが特に用いられる。   In addition, the binder is used to provide adhesion between the mixture and an adhesion function between the mixture and the core material, and uses an organic solvent such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF). PVdF is used when the solvent is used, and a water-soluble dispersion of PTFE is particularly used when water is the solvent.

さらに、増粘剤としてはカルボキシメチルセルロース(CMC)などの水溶性高分子を用いることができる。   Further, a water-soluble polymer such as carboxymethyl cellulose (CMC) can be used as the thickener.

また、これらの材料を混練して合剤ペーストを作製するが、合剤混合比は電池の使用適性に応じて任意に調整することが可能である。   In addition, a mixture paste is prepared by kneading these materials, and the mixture mixture ratio can be arbitrarily adjusted according to the suitability of the battery.

一方、負極は集電体である銅箔上に負極活物質と結着剤などの負極合剤層を備えることによって構成されており、正極と同様に合剤ペーストを作製し、その合剤ペーストを銅箔に塗布、乾燥させ、その後必要に応じてプレス、スリット加工することにより所定の寸法に加工し、シート状の負極を得る。   On the other hand, the negative electrode is configured by providing a negative electrode active material and a negative electrode mixture layer such as a binder on a copper foil as a current collector. Is applied to a copper foil and dried, and then processed into a predetermined size by pressing and slitting as necessary to obtain a sheet-like negative electrode.

ここで、負極活物質にはリチウムイオンを吸蔵、放出可能な材料が用いられ、天然黒鉛、人造黒鉛、コークス等の炭素材料を用いることができる。なお、金属リチウムを用いることも可能であるが充放電効率が悪いなどの問題がある。   Here, a material capable of inserting and extracting lithium ions is used for the negative electrode active material, and carbon materials such as natural graphite, artificial graphite, and coke can be used. Although metallic lithium can be used, there are problems such as poor charge / discharge efficiency.

また、結着剤としては、PVdFやスチレンブタジエンゴム(SBR)等を用い、これら活物質および結着剤を分散させる溶媒にはN−メチル−2−ピロリドン(NMP)等の有機溶媒もしくは水を用いることができる。   As the binder, PVdF, styrene butadiene rubber (SBR) or the like is used, and an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water is used as a solvent for dispersing these active materials and the binder. Can be used.

セパレータは正極と負極間の絶縁、さらには電解液を保持するなどの機能を持つものであり、このセパレータにはポリエチレン(PE)、ポリプロピレン(PP)、あるいはそれら積層品等の薄い微多孔膜を用いることができ、その必要機能を得るものであればこれらに限定されるものではない。   The separator has a function of insulating between the positive electrode and the negative electrode and further holding an electrolyte solution. The separator is made of a thin microporous film such as polyethylene (PE), polypropylene (PP), or a laminate thereof. However, the present invention is not limited to these as long as the necessary functions can be obtained.

電解液はリチウム塩を有機溶媒に溶解したものであり、有機溶媒としては、エチレンカーボネート(EC)やプロピレンカーボネート(PC)等の環状カーボネート、また、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートなどの単独もしくは混合系が用いられる。また、リチウム塩としては、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)等を用いることができる。 The electrolytic solution is obtained by dissolving a lithium salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), A chain carbonate such as ethyl methyl carbonate (EMC) or the like alone or in a mixed system is used. As the lithium salt, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like can be used.

本発明により具体的な実施の形態として、種々のスペーサーを用いて作製した角形電池について以下説明する。
(実施例1)
正極は活物質としてリチウムコバルト複合酸化物(LiCoO2)を用い、導電剤にはAB、結着剤にはPVdFを用いた。活物質、導電剤、結着剤とをそれぞれ固形分重量比率で100:2:2の割合で調整しNMPを溶媒として混練し正極合剤ペーストを作製した。合剤ペーストを厚み15μmのアルミニウム箔正極集電体の両面に塗布し、乾燥した後、圧延、スリット加工を施し、厚み0.115mm、合剤幅65mm、長さ335mmの正極板を作製した。
As a specific embodiment according to the present invention, a rectangular battery manufactured using various spacers will be described below.
Example 1
For the positive electrode, lithium cobalt composite oxide (LiCoO 2 ) was used as an active material, AB was used as a conductive agent, and PVdF was used as a binder. The active material, the conductive agent, and the binder were each adjusted at a solid weight ratio of 100: 2: 2, and kneaded with NMP as a solvent to prepare a positive electrode mixture paste. The mixture paste was applied to both surfaces of a 15 μm thick aluminum foil positive electrode current collector, dried, and then rolled and slitted to produce a positive electrode plate having a thickness of 0.115 mm, a mixture width of 65 mm, and a length of 335 mm.

負極は活物質として人造黒鉛を用い、結着剤にはSBR水溶性ディスパージョンを用い
た。増粘剤にはCMCを用い、活物質、結着剤、増粘剤とをそれぞれ固形分重量比率で100:1:1の割合で調整し、さらに水を溶媒として上記固形分重量に対して100%配合し、混練して負極合剤ペーストを作製した。これを厚み10μmの銅箔の両面に塗布し、乾燥した後、圧延、スリット加工を施し、厚み0.105mm、合剤幅70mm、長さ360mmの負極板を作製した。
For the negative electrode, artificial graphite was used as the active material, and SBR water-soluble dispersion was used as the binder. CMC is used as the thickener, and the active material, the binder, and the thickener are adjusted at a solid weight ratio of 100: 1: 1, respectively, and water is used as a solvent with respect to the solid weight. 100% was mixed and kneaded to prepare a negative electrode mixture paste. This was applied to both sides of a 10 μm thick copper foil, dried, and then rolled and slitted to produce a negative electrode plate having a thickness of 0.105 mm, a mixture width of 70 mm, and a length of 360 mm.

上記の正極および負極にアルミニウムおよびニッケルの集電リードを接合した後、残存水分の除去を目的として、それぞれ大気中で100℃10時間、80℃10時間乾燥炉で乾燥させた。その後厚み25μmのPE製セパレータを介して正極と負極を捲回した極板群を作製した。極板群の厚みは2.7mm、高さは74mm、幅は49mmであった。   Aluminum and nickel current collector leads were joined to the positive electrode and the negative electrode, and then dried in a drying furnace at 100 ° C. for 10 hours and 80 ° C. for 10 hours in order to remove residual moisture. Thereafter, an electrode plate group in which the positive electrode and the negative electrode were wound through a PE separator having a thickness of 25 μm was produced. The electrode plate group had a thickness of 2.7 mm, a height of 74 mm, and a width of 49 mm.

そして、肉厚が0.5mm、厚み14mm、高さ80mm、幅50mmのFe製電池ケースに厚み0.2mm、高さ74mm、幅49mmのFe製スペーサーを3.1mm間隔で挿入しスペーサーの一辺をケース側面にレーザー溶接した。スペーサーの底辺はケースの底辺から2.5mm上部に位置する。この電池ケースに上記極板群を挿入した。電池ケースと極板群の高さ方向の隙間は上下それぞれ2.5mmであった。   Then, an Fe spacer having a thickness of 0.2 mm, a height of 74 mm, and a width of 49 mm is inserted into an Fe battery case having a thickness of 0.5 mm, a thickness of 14 mm, a height of 80 mm, and a width of 50 mm, at an interval of 3.1 mm. The case was laser welded to the side of the case. The bottom of the spacer is located 2.5 mm above the bottom of the case. The electrode plate group was inserted into this battery case. The gap in the height direction between the battery case and the electrode plate group was 2.5 mm above and below.

さらに、極板群高さに対する、極板群中央部に対向するスペーサーの高さ方向の長さの比が1.0であり、極板群幅に対する、極板群中央部に対向するスペーサーの幅方向の長さの比が1.0であった。   Further, the ratio of the length in the height direction of the spacer facing the center part of the electrode plate group to the height of the electrode plate group is 1.0, and the ratio of the spacer facing the center part of the electrode plate group to the width of the electrode plate group is The length ratio in the width direction was 1.0.

なお、電池ケース内には計4個の群を収容した。この電池の極板群とスペーサーの位置関係を図6に示す。   A total of four groups were accommodated in the battery case. The positional relationship between the electrode plate group and the spacer of this battery is shown in FIG.

各極板群から導出した正極リードを正極接続端子にレーザー溶接し、各極板群から導出した負極リードを負極接続端子に抵抗溶接した。そしてケース内にECとEMCを体積比1:3の配合比で混合した混合溶媒に、溶質としてLiPF6を1mol/dm3の濃度で溶解した電解液を注入後、封口板でケースを封口し角形電池を作製し、この電池を電池Aとした。この電池を充電条件を電圧4.2V、電流1Cの定電流定電圧充電、放電条件を電圧2.5V、電流0.2Cの定電流放電で行った時の容量は3Ahであった。 The positive electrode lead derived from each electrode plate group was laser welded to the positive electrode connection terminal, and the negative electrode lead derived from each electrode plate group was resistance welded to the negative electrode connection terminal. The volume ratio of EC and EMC in Case 1: a solvent mixture in the mixing ratio of 3, after injecting an electrolyte solution prepared by dissolving at a concentration of 1 mol / dm 3 of LiPF 6 as a solute, a case with the sealing plate was sealed A square battery was produced, and this battery was designated as battery A. When this battery was charged with a constant current and constant voltage with a voltage of 4.2 V and a current of 1 C, and discharged with a constant current of 2.5 V and a current of 0.2 C, the capacity was 3 Ah.

(実施例2)
厚み0.2mm、高さ37mm、幅37mmのスペーサーを使用し、極板群高さに対する、極板群中央部に対向するスペーサーの高さ方向の長さの比が0.5であり、極板群幅に対する、極板群中央部に対向するスペーサーの幅方向の長さの比が0.5とした以外は電池Aと同様にして作製した電池を電池Bとした。この電池の極板群とスペーサーの位置関係を図7に示す。
(Example 2)
A spacer having a thickness of 0.2 mm, a height of 37 mm, and a width of 37 mm is used, and the ratio of the length in the height direction of the spacer facing the center of the electrode plate group to the electrode plate group height is 0.5. Battery B was prepared in the same manner as Battery A except that the ratio of the length in the width direction of the spacer facing the center of the electrode plate group to the plate group width was 0.5. The positional relationship between the electrode plate group and the spacer of this battery is shown in FIG.

(比較例1)
厚み0.2mm、高さ37mm、幅27mmのスペーサーを使用し、極板群高さに対する、極板群中央部に対向するスペーサーの高さ方向の長さの比が0.5であり、極板群幅に対する、極板群中央部に対向するスペーサーの幅方向の長さの比が0.3とした以外は電池Aと同様にして作製した電池を電池Cとした。この電池の極板群とスペーサーの位置関係を図8に示す。
(Comparative Example 1)
A spacer having a thickness of 0.2 mm, a height of 37 mm, and a width of 27 mm is used, and the ratio of the length in the height direction of the spacer facing the center part of the electrode plate group to the electrode plate group height is 0.5. A battery C was prepared in the same manner as the battery A, except that the ratio of the length in the width direction of the spacer facing the center part of the electrode plate group to the plate group width was 0.3. The positional relationship between the electrode plate group and the spacer of this battery is shown in FIG.

(比較例2)
厚み0.2mm、高さ22.2mm、幅37mmのスペーサーを使用し、極板群高さに対する、極板群中央部に対向するスペーサーの高さ方向の長さの比が0.3であり、極板群幅に対する、極板群中央部に対向するスペーサーの幅方向の長さの比が0.5とした以外は電池Aと同様にして作製した電池を電池Dとした。この電池の極板群とスペーサーの
位置関係を図9に示す。
(Comparative Example 2)
Using a spacer with a thickness of 0.2 mm, a height of 22.2 mm, and a width of 37 mm, the ratio of the length in the height direction of the spacer facing the center of the electrode plate group to the electrode plate group height is 0.3. A battery D was prepared in the same manner as the battery A, except that the ratio of the length in the width direction of the spacer facing the center part of the electrode plate group to the electrode plate group width was 0.5. The positional relationship between the electrode plate group and the spacer of this battery is shown in FIG.

(比較例3)
厚み0.2mm、高さ37mm、幅10mmのスペーサーを使用し、極板群高さに対する、極板群中央部に対向するスペーサーの高さ方向の長さの比が0であり、極板群幅に対する、極板群中央部に対向するスペーサーの幅方向の長さの比が0とした以外は電池Aと同様にして作製した電池を電池Eとした。この電池の極板群とスペーサーの位置関係を図10に示す。
(Comparative Example 3)
A spacer having a thickness of 0.2 mm, a height of 37 mm, and a width of 10 mm is used, and the ratio of the length in the height direction of the spacer facing the center of the electrode plate group to the electrode plate group height is 0, and the electrode plate group A battery E was prepared in the same manner as the battery A, except that the ratio of the length in the width direction of the spacer facing the center of the electrode plate group to the width was 0. The positional relationship between the electrode plate group and the spacer of this battery is shown in FIG.

(比較例4)
スペーサーを用いないこと以外は電池Aと同様にして作製した電池を電池Fとした。この電池の極板群とスペーサーの位置関係を図11に示す。
(Comparative Example 4)
Battery F was prepared in the same manner as Battery A except that no spacer was used. The positional relationship between the electrode plate group and the spacer of this battery is shown in FIG.

これらの電池について充電条件を上限電圧4.2V、最大電流1Cの定電流定電圧充電、放電条件を下限電圧2.5V、電流10Cの定電流放電としてサイクル寿命試験を行った。なお、容量を確認するために充電条件を上記条件、放電条件を下限電圧2.5V、電流0.2Cの定電流放電として行った200サイクル目の容量維持率を測定した結果を表1に示す。   These batteries were subjected to a cycle life test with a charging condition of an upper limit voltage of 4.2 V and a constant current constant voltage charging with a maximum current of 1 C and a discharging condition of a lower limit voltage of 2.5 V and a constant current discharging of a current of 10 C. Table 1 shows the results of measuring the capacity retention rate at the 200th cycle when the charging conditions were the above conditions to confirm the capacity, the discharge conditions were a constant current discharge with a lower limit voltage of 2.5 V, and a current of 0.2 C. .

なお、表1における「面積比」とは、「(スペーサーの面積/極板群の軸芯を通る縦断面積)」であり、「高さ比」とは、「(極板群中央部に対向するスペーサーの高さ方向の長さ)/(極板群高さ)」であり、「幅比」とは、「(極板群中央部に対向するスペーサーの幅方向の長さ)/(極板群幅)」である。   The “area ratio” in Table 1 is “(spacer area / longitudinal sectional area passing through the axis of the electrode plate group)”, and “height ratio” is “(facing the center of the electrode plate group). The length in the height direction of the spacer) / (electrode plate group height) ”, and the“ width ratio ”means“ (the length in the width direction of the spacer facing the center of the electrode plate group) / (pole Board group width) ".

Figure 0004576891
表1の結果より、電池Aおよび電池Bは高い容量維持率が得られるが、電池C〜電池Fの容量維持率は低い結果となった。これらの電池を分解観察すると、電池C〜Fでは、極板の挫屈およびリチウム析出が観察されたが、電池Aおよび電池Bでは極板の挫屈は観察されなかった。したがって、極板群の中央部にスペーサーを有することで極板群の膨張収縮を抑制して極板挫屈を防止し、良好な電池特性を得ることができる。
Figure 0004576891
From the results shown in Table 1, although the battery A and the battery B have high capacity retention rates, the capacity retention rates of the batteries C to F were low. When these batteries were disassembled and observed, in the batteries C to F, electrode plate buckling and lithium deposition were observed, but in the batteries A and B, electrode plate buckling was not observed. Therefore, by having a spacer at the center of the electrode plate group, expansion and contraction of the electrode plate group can be suppressed to prevent electrode plate buckling, and good battery characteristics can be obtained.

次にスペーサーの厚みについて検討する。
(比較例5)
厚みが0.1mmのスペーサーを使用し、電池ケース厚みを13.7mmとした以外は電池Aと同様にして作製した電池を電池Gとした。
Next, the thickness of the spacer is examined.
(Comparative Example 5)
A battery G was prepared in the same manner as Battery A except that a spacer having a thickness of 0.1 mm was used and the battery case thickness was 13.7 mm.

電池Aと電池Gについて充電条件を上限電圧4.2V、最大電流1Cの定電流定電圧充電、放電条件を電圧下限2.5V、電流10Cの定電流放電としてサイクル寿命試験を行った。なお、容量を確認するために充電条件を上記条件、放電条件を電圧下限2.5V、電流0.2Cの定電流放電として行った200サイクル目の容量維持率を表2に示す。   A cycle life test was performed on the batteries A and G with the charging condition being a constant current constant voltage charging with an upper limit voltage of 4.2 V and a maximum current of 1 C, and the discharging condition being a constant voltage discharging with a voltage lower limit of 2.5 V and a current of 10 C. In addition, Table 2 shows the capacity maintenance rate at the 200th cycle in which the charging conditions are the above conditions and the discharging conditions are a constant voltage discharge with a voltage lower limit of 2.5 V and a current of 0.2 C in order to confirm the capacity.

Figure 0004576891
スペーサーの厚みが0.2mmである電池Aは高い容量維持率が得られるが、スペーサーの厚みが0.1mmである電池Gの容量維持率は低い結果となった。したがって、スペーサーの厚みが薄いと、スペーサーによる極板群の膨張収縮の抑制効果が低くなるため、0.2mm以上の厚みが効果的である。以上のことから本発明の形態により、特性の良好なリチウム二次電池を得ることができることがわかった。なお、スペーサーの厚みの上限値については、いずれの値であっても本発明の効果を奏することができた。
Figure 0004576891
The battery A with a spacer thickness of 0.2 mm has a high capacity retention rate, but the battery G with a spacer thickness of 0.1 mm has a low capacity retention rate. Accordingly, if the spacer is thin, the effect of suppressing the expansion and contraction of the electrode plate group by the spacer is reduced, and therefore a thickness of 0.2 mm or more is effective. From the above, it was found that a lithium secondary battery with good characteristics can be obtained according to the embodiment of the present invention. In addition, about the upper limit of the thickness of the spacer, even if it was any value, the effect of this invention was able to be show | played.

本発明の非水電解質二次電池は、高出力特性が得られ、極板の挫屈を抑制できることから電動工具やコードレス掃除機や電動車輌用等の高出力用非水電解質二次電池として有用である。   The non-aqueous electrolyte secondary battery of the present invention is useful as a high-power non-aqueous electrolyte secondary battery for electric tools, cordless vacuum cleaners, electric vehicles, and the like because high output characteristics are obtained and buckling of the electrode plate can be suppressed. It is.

本発明の実施形態における電池の正極端子側横断面図The positive electrode terminal side cross-sectional view of the battery in embodiment of this invention 本発明の実施形態における電池の負極端子側横断面図Cross-sectional view of negative electrode terminal side of battery in an embodiment of the present invention 本発明の実施形態における電池の短辺側縦断面図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a short side of a battery according to an embodiment of the present invention. 本発明の実施形態における電池の長辺側縦断面図Long side longitudinal sectional view of a battery in an embodiment of the present invention 本発明の実施形態のおける極板群の縦断面図The longitudinal cross-sectional view of the electrode group in the embodiment of the present invention 電池Aの縦断面図Vertical section of battery A 電池Bの縦断面図Vertical section of battery B 電池Cの縦断面図Vertical section of battery C 電池Dの縦断面図Vertical section of battery D 電池Eの縦断面図Vertical section of battery E 電池Fの縦断面図Vertical section of battery F

符号の説明Explanation of symbols

1 電池ケース
2 極板群
3 スペーサー
4 正極リード接続端子
5 正極リード
6 負極リード接続端子
7 負極リード
8 電池ケースとスペーサーの接合部
9 極板群中央部
10 極板群高さ
11 極板群中央部の高さ方向の長さ
12 極板群幅
13 極板群中央部の幅方向の長さ
DESCRIPTION OF SYMBOLS 1 Battery case 2 Electrode plate group 3 Spacer 4 Positive electrode lead connection terminal 5 Positive electrode lead 6 Negative electrode lead connection terminal 7 Negative electrode lead 8 Junction part of a battery case and a spacer 9 Electrode plate group center part 10 Electrode plate group height 11 Electrode plate group center Length in the height direction of the part 12 Width of the electrode plate group 13 Length in the width direction of the center part of the electrode plate group

Claims (5)

シート上の正極板と負極をセパレータを介して角形に巻回されてなる極板群と、電解液と、電池ケースとを有する非水電解質二次電池において、前記電池ケースに前記極板群が複数個積層収容され、それぞれの極板群が並列接続され、隣接する極板群の間に前記極板群の膨張収縮を抑制することができる程度の強度を有するスペーサーを有し、(スペーサーの面積/極板群のスペーサーと対向する面の面積)が0.38以上である非水電解質二次電池。 In a non-aqueous electrolyte secondary battery having an electrode plate group in which a positive electrode plate and a negative electrode plate on a sheet are wound in a square shape with a separator interposed therebetween, an electrolyte, and a battery case, the electrode plate group is attached to the battery case. Are stacked and accommodated in parallel, and each electrode plate group is connected in parallel, and between adjacent electrode plate groups, there is a spacer having a strength that can suppress expansion and contraction of the electrode plate group. Non-aqueous electrolyte secondary battery having a surface area of the electrode plate group facing the spacer ) of 0.38 or more. 前記スペーサーの少なくとも一部が前記電池ケースに接合されている請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein at least a part of the spacer is joined to the battery case. 前記スペーサーが極板群中央部に対向している請求項1または2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the spacer is opposed to a central part of the electrode plate group. 前記スペーサーの厚みが0.2mm以上である請求項1から3のいずれかに記載の非水電解質二次電池   The non-aqueous electrolyte secondary battery according to claim 1, wherein the spacer has a thickness of 0.2 mm or more. 前記スペーサーの材質が前記電池ケースの材質と同一である請求項1から4のいずれかに記載の非水電解質二次電池   The non-aqueous electrolyte secondary battery according to claim 1, wherein a material of the spacer is the same as a material of the battery case.
JP2004168172A 2004-06-07 2004-06-07 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4576891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168172A JP4576891B2 (en) 2004-06-07 2004-06-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168172A JP4576891B2 (en) 2004-06-07 2004-06-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005347195A JP2005347195A (en) 2005-12-15
JP4576891B2 true JP4576891B2 (en) 2010-11-10

Family

ID=35499369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168172A Expired - Fee Related JP4576891B2 (en) 2004-06-07 2004-06-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4576891B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002537A1 (en) * 2020-11-18 2022-05-25 Enovix Operations Inc. Spacers for electrodes, electrode stacks and batteries and systems and methods therefor
KR20240021849A (en) 2021-06-15 2024-02-19 에노빅스 코오퍼레이션 Spacer for providing protection of electrochemical battery enclosure and system and method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090897A (en) * 1998-09-17 2000-03-31 Japan Storage Battery Co Ltd Battery and battery pack
JP2003031202A (en) * 2001-07-18 2003-01-31 Furukawa Battery Co Ltd:The Square storage battery
JP2003297303A (en) * 2002-03-28 2003-10-17 Tdk Corp Electrochemical device module
JP2003346877A (en) * 2002-05-24 2003-12-05 Japan Storage Battery Co Ltd Battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090897A (en) * 1998-09-17 2000-03-31 Japan Storage Battery Co Ltd Battery and battery pack
JP2003031202A (en) * 2001-07-18 2003-01-31 Furukawa Battery Co Ltd:The Square storage battery
JP2003297303A (en) * 2002-03-28 2003-10-17 Tdk Corp Electrochemical device module
JP2003346877A (en) * 2002-05-24 2003-12-05 Japan Storage Battery Co Ltd Battery

Also Published As

Publication number Publication date
JP2005347195A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP5165482B2 (en) Winding type secondary battery
JP5257700B2 (en) Lithium secondary battery
JP5818116B2 (en) Sealed lithium secondary battery and manufacturing method thereof
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
KR101707335B1 (en) Nonaqueous electrolyte secondary battery
JP2010108732A (en) Lithium secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2011070932A (en) Lithium secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
KR101858334B1 (en) Non-aqueous electrolyte secondary battery
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
US20140023915A1 (en) Non-aqueous electrolyte secondary cell
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
CN111435729B (en) Lithium ion secondary battery
JP4576891B2 (en) Nonaqueous electrolyte secondary battery
JP2004234994A (en) Lithium secondary battery, battery pack of same, and electrode of same
JPH11238500A (en) Roll type cylindrical battery
JP2021082479A (en) Nonaqueous electrolyte secondary battery
JP4736380B2 (en) Secondary battery and secondary battery aging treatment method
JP3709965B2 (en) Cylindrical lithium ion battery
JP5776948B2 (en) Lithium secondary battery and manufacturing method thereof
JP7164509B2 (en) lithium ion battery
JP2015018598A (en) Nonaqueous electrolyte secondary battery
US20240014440A1 (en) Gel polymer electrolyte with sulfolene additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140903

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees