JP4736380B2 - Secondary battery and secondary battery aging treatment method - Google Patents

Secondary battery and secondary battery aging treatment method Download PDF

Info

Publication number
JP4736380B2
JP4736380B2 JP2004260094A JP2004260094A JP4736380B2 JP 4736380 B2 JP4736380 B2 JP 4736380B2 JP 2004260094 A JP2004260094 A JP 2004260094A JP 2004260094 A JP2004260094 A JP 2004260094A JP 4736380 B2 JP4736380 B2 JP 4736380B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
positive electrode
negative electrode
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004260094A
Other languages
Japanese (ja)
Other versions
JP2006079857A (en
Inventor
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004260094A priority Critical patent/JP4736380B2/en
Publication of JP2006079857A publication Critical patent/JP2006079857A/en
Application granted granted Critical
Publication of JP4736380B2 publication Critical patent/JP4736380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質にリチウム複合酸化物を用いた電極板をセパレータを介して積層し、当該積層された電極板及びセパレータが電池外装に収容されて封止され、電極板に接続された電極端子が電池外装から導出した二次電池及び二次電池のエージング処理方法に関する。   In the present invention, an electrode plate using a lithium composite oxide as a positive electrode active material is laminated via a separator, and the laminated electrode plate and separator are accommodated in a battery exterior and sealed and connected to the electrode plate. The present invention relates to a secondary battery in which an electrode terminal is led out from a battery exterior and an aging treatment method for the secondary battery.

製造されたばかりの二次電池に初充電を行い、その際に発生したガスを除去した後に、当該二次電池を1週間〜1ヶ月程度放置するエージング処理が従来から知られている(例えば、特許文献1参照)。このエージング処理は、初期劣化の除去及び電池性能の安定化を目的として行われるが、これは二次電池の寿命にも影響を与える。   2. Description of the Related Art Conventionally, an aging process is known in which a secondary battery just manufactured is initially charged, gas generated at that time is removed, and then the secondary battery is left for about one week to one month (for example, a patent) Reference 1). This aging process is performed for the purpose of removing initial deterioration and stabilizing battery performance, but this also affects the life of the secondary battery.

二次電池は一般的に充電/放電を繰り返して利用されるため、上記のエージング処理における諸条件の最適化を行って、度重なる充放電サイクルに耐え得る更なる長寿命化を図ることが望まれている。
国際公開第97/30487号パンフレット
Since secondary batteries are generally used repeatedly by charging / discharging, it is desirable to optimize the various conditions in the above aging process to further extend the life to withstand repeated charge / discharge cycles. It is rare.
WO 97/30487 pamphlet

本発明は、長寿命化を図ることが可能な二次電池及び二次電池のエージング処理方法を提供することを目的とする。
上記目的を達成するために、本発明によれば、正極活物質としてLiMn を用い、負極活物質として炭素系材料を用いた電極板をセパレータを介して積層し、当該積層された電極板及びセパレータが電池外装に収容されて封止され、前記電極板に接続された電極端子が前記電池外装から導出した二次電池に対して、その製造後にエージング処理を行う二次電池のエージング処理方法であって、リチウムに対する電極電位が、SOC(State Of Charge)60%時の電極電位以上で、且つ、SOC90%時の電極電位以下、かつ前記二次電池の電圧が、3.9[V]〜4.0[V]となるように充電し、前記充電の後に、前記二次電池の内部に発生したガスを排出し、前記ガスを排出した後に、1週間〜1ヶ月放置してエージング処理を行う二次電池のエージング処理方法が提供される。
An object of the present invention is to provide a secondary battery and a secondary battery aging treatment method capable of extending the service life.
To achieve the above object, according to the present invention, an electrode plate using LiMn 2 O 4 as a positive electrode active material and a carbon-based material as a negative electrode active material is laminated through a separator, and the laminated electrode An aging process for a secondary battery in which a plate and a separator are accommodated in a battery exterior and sealed, and an electrode terminal connected to the electrode plate is subjected to an aging process after manufacturing the secondary battery derived from the battery exterior. In this method, an electrode potential with respect to lithium is equal to or higher than an electrode potential at 60% SOC (State Of Charge) and equal to or lower than an electrode potential at 90% SOC, and the voltage of the secondary battery is 3.9 [V ] To 4.0 [V], and after the charging, the gas generated inside the secondary battery is discharged, and after the gas is discharged, it is left for one week to one month for aging. Process Aging process the following methods cell is provided.

本発明では、正極活物質としてLiMn を用いた二次電池に対して、リチウムに対する電極電位を、SOC60%〜90%時に対応する範囲内の電極電位で、かつ前記二次電池の電圧が、3.9[V]〜4.0[V]となるように初充電し、前記充電の後に、前記二次電池の内部に発生したガスを排出し、前記ガスを排出した後に、1週間〜1ヶ月放置した後にエージング処理を行う。このような範囲の電極電位で初充電することにより、初充電の電圧が、エージング処理において初期劣化を適切に進行させるような電圧に最適化されるので、二次電池の長寿命化を図ることが可能となる。 In the present invention, with respect to a secondary battery using LiMn 2 O 4 as a positive electrode active material, the electrode potential relative to lithium is an electrode potential within a range corresponding to SOC 60% to 90%, and the voltage of the secondary battery. Is initially charged to be 3.9 [V] to 4.0 [V], and after the charging, the gas generated inside the secondary battery is discharged, and after the gas is discharged, 1 The aging treatment is performed after leaving for one week to one month . By initially charging with an electrode potential in such a range, the voltage of the initial charging is optimized to a voltage that appropriately proceeds with initial deterioration in the aging process, so that the life of the secondary battery can be extended. Is possible.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(A)は本発明の実施形態に係る薄型の二次電池(以下、単に「薄型電池」とも称する。)の全体を示す平面図、図1(B)は図1(A)のB-B線に沿った断面図である。図1は一つの薄型電池(単位電池)を示し、この薄型電池10を複数積層することにより所望の電圧、容量の組電池が構成される。   FIG. 1A is a plan view showing the entirety of a thin secondary battery (hereinafter also simply referred to as “thin battery”) according to an embodiment of the present invention, and FIG. 1B is a BB in FIG. It is sectional drawing along a line. FIG. 1 shows one thin battery (unit battery), and an assembled battery having a desired voltage and capacity is formed by stacking a plurality of thin batteries 10.

図1を参照しながら、本発明の実施形態に係る薄型電池10の全体構成について説明すると、本例の薄型電池10はリチウム系の薄型二次電池であり、3枚の正極板101と、7枚のセパレータ102と、3枚の負極板103と、正極端子104と、負極板105と、上部電池外装106と、下部電池外装107と、特に図示しない電解質とから構成されている。正極板101、セパレータ102、及び、負極板103の枚数には何ら限定されず、1枚の正極板101、3枚のセパレータ102、及び、1枚の負極板103でも良いし、また必要に応じて正極板101、負極板103及びセパレータ102の枚数を選択して構成することが出来る。   Referring to FIG. 1, the overall configuration of a thin battery 10 according to an embodiment of the present invention will be described. The thin battery 10 of this example is a lithium-based thin secondary battery, and includes three positive electrode plates 101 and 7. The sheet separator 102, the three negative electrode plates 103, the positive electrode terminal 104, the negative electrode plate 105, the upper battery outer casing 106, the lower battery outer casing 107, and an electrolyte (not shown) are included. The number of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 is not limited at all, and may be one positive electrode plate 101, three separators 102, and one negative electrode plate 103, and if necessary. Thus, the number of the positive electrode plate 101, the negative electrode plate 103, and the separator 102 can be selected and configured.

図2は、3枚の正極板101と、7枚のセパレータ102と、3枚の負極板103と、を有する薄型電池10の内部を具体的に示す。同図に示すように、本実施形態の正極板101は、正極端子104へと正極リード104cを介して接続される正極側集電体104aと、この正極側集電体104aの両主面に形成された正極層104bと、を有する。同じく、負極板103は、負極端子105へと負極リード105cを介して接続される負極側集電体105aと、この負極側集電体105aの両主面に形成された負極層105bと、を有する。また、正極板101の正極層104bと、負極板103の負極層105bとの間には、セパレータ102がそれぞれ介在している。   FIG. 2 specifically shows the inside of the thin battery 10 having three positive plates 101, seven separators 102, and three negative plates 103. As shown in the figure, the positive electrode plate 101 of the present embodiment is connected to the positive electrode current collector 104a connected to the positive electrode terminal 104 via the positive electrode lead 104c, and both main surfaces of the positive electrode current collector 104a. A positive electrode layer 104b formed. Similarly, the negative electrode plate 103 includes a negative electrode side current collector 105a connected to the negative electrode terminal 105 via a negative electrode lead 105c, and a negative electrode layer 105b formed on both main surfaces of the negative electrode side current collector 105a. Have. Further, a separator 102 is interposed between the positive electrode layer 104 b of the positive electrode plate 101 and the negative electrode layer 105 b of the negative electrode plate 103.

本実施形態では、リチウム含有複合酸化物に属するLiMnを正極活物質とし、炭素系材料に属するカーボンブラックを導電材とし、ポリフッ化ビニリデン(PVDF)を結着剤として採用する。正極活物質と導電材とを混合し、ポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン(NMP)中に、混合した正極活物質と導電材とを均一に分散させてスラリーを作製し、このスラリーを正極側集電体104aとなる厚さ20μmのアルミ金属箔上に均一に塗布し,NMPを蒸発させ、ロールプレス機により圧延し、アルミ金属箔104a上に正極層104bを作製する。混合されるLiMnと、カーボンブラックと、ポリフッ化ビニリデン(PVDF)との重量比は、75〜85:10〜20:5〜10であり、好ましくは85:10:5乃至75:20:5である。正極層104bが作製された後、所定の大きさ(幅70mm、長さ120mm、厚さ0.18mm)に切断し正極板102を得る。 In this embodiment, LiMn 2 O 4 belonging to a lithium-containing composite oxide is used as a positive electrode active material, carbon black belonging to a carbon-based material is used as a conductive material, and polyvinylidene fluoride (PVDF) is used as a binder. A positive electrode active material and a conductive material are mixed, and a slurry is prepared by uniformly dispersing the mixed positive electrode active material and the conductive material in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride is dissolved. The slurry is uniformly applied onto a 20 μm-thick aluminum metal foil serving as the positive electrode side current collector 104a, NMP is evaporated, and rolled with a roll press to produce the positive electrode layer 104b on the aluminum metal foil 104a. . The weight ratio of LiMn 2 O 4 to be mixed, carbon black, and polyvinylidene fluoride (PVDF) is 75 to 85:10 to 20: 5 to 10, preferably 85: 10: 5 to 75:20. : 5. After the positive electrode layer 104b is fabricated, the positive electrode plate 102 is obtained by cutting into a predetermined size (width 70 mm, length 120 mm, thickness 0.18 mm).

上述のリチウム複合酸化物は、出力の面ではその平均粒径rが0.1μm<r<1μmであることが好ましく、さらに、0.1μm<r<0.5μmであることが好ましい。ここで平均粒径とは、50%累積粒径であり、粒度分布図において、それぞれ0μmから積分した体積が50%となったときの粒径である。この測定においては、マイクロトラック粒度分布分析計を用い、レーザ光の散乱により粒子個数nおよび粒子1個あたりの直径dを測定する。勿論、他の粒径分析装置を利用することも出来る。   In terms of output, the above-mentioned lithium composite oxide preferably has an average particle size r of 0.1 μm <r <1 μm, and more preferably 0.1 μm <r <0.5 μm. Here, the average particle size is a 50% cumulative particle size, and is a particle size when the volume integrated from 0 μm is 50% in the particle size distribution diagram. In this measurement, a microtrack particle size distribution analyzer is used to measure the number n of particles and the diameter d per particle by scattering of laser light. Of course, other particle size analyzers can be used.

また、リチウム複合酸化物の粒子構造は、単結晶乃至難結晶に近い性状である一次粒子であることが好ましい。このとき一次粒子が凝集して形成された二次粒子が含まれる場合もあるが、その含有量は少ないことが好ましく、具体的にはリチウム複合酸化物中の二次粒子の含有量が50%以下であることが好ましい。また、寿命の面では単結晶であることが好ましい。   Further, the particle structure of the lithium composite oxide is preferably primary particles having properties close to single crystals or difficult crystals. At this time, secondary particles formed by aggregation of the primary particles may be included, but the content is preferably small. Specifically, the content of the secondary particles in the lithium composite oxide is 50%. The following is preferable. In terms of life, it is preferably a single crystal.

また、本実施形態では、炭素系材料に属するハードカーボンを負極活物質とし、ポリフッ化ビニリデン(PVDF)を結着剤として採用した。ハードカーボンとポリフッ化ビニリデン(PVDF)とを90:10の重量比で混合し、これをN−メチル−2−ピロリドン(NMP)に分散させてスラリーを作製し、このスラリーを負極側集電体105aとなる厚さ10μmの銅金属箔105b上に負極層105bを作製する。作製された負極層105bは所定の大きさ(幅70mm、長さ120mm、厚さ0.11mm)に切断し、負極板103を得る。   In this embodiment, hard carbon belonging to a carbon-based material is used as the negative electrode active material, and polyvinylidene fluoride (PVDF) is used as the binder. Hard carbon and polyvinylidene fluoride (PVDF) are mixed at a weight ratio of 90:10 and dispersed in N-methyl-2-pyrrolidone (NMP) to produce a slurry. A negative electrode layer 105b is formed on a copper metal foil 105b having a thickness of 10 μm to be 105a. The produced negative electrode layer 105b is cut into a predetermined size (width 70 mm, length 120 mm, thickness 0.11 mm) to obtain the negative electrode plate 103.

負極活物質としては、ハードカーボンをはじめとする非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のように、正極活物質のリチウムイオンを吸蔵及び放出する材料を挙げることが出来る。   Examples of the negative electrode active material include materials that occlude and release lithium ions of the positive electrode active material, such as amorphous carbon including hard carbon, non-graphitizable carbon, graphitizable carbon, or graphite. I can do it.

また、セパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えても良い。セパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔膜であり、過電流が流れると、その発熱によって膜の空孔が閉塞され電流を遮断する機能をも有する。なお、本発明のセパレータ102は、ポリオレフィン等の単層膜のみに限られず、ポリプロピレン層をポリエチレン層でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布等を積層したものを用いることも出来る。セパレータ102を複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することが出来る。また、セパレータ102の代わりにゲル電解質又は真性ポリマー電解質等を用いることも出来る。   The separator 102 prevents the short-circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and may have a function of holding an electrolyte. The separator 102 is a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP), for example, and when an overcurrent flows, the pores of the membrane are blocked by the heat generation, thereby blocking the current. Also have. The separator 102 of the present invention is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene layer is sandwiched between polyethylene layers, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can also be used. . By forming the separator 102 in multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (stiffness improvement) function can be provided. Further, instead of the separator 102, a gel electrolyte or an intrinsic polymer electrolyte can be used.

以上の正極板101と負極板103とが交互に、且つ、当該正極板101と負極板103との間にセパレータ102が位置するような順序で積層され、さらに、その最上部及び最下部にセパレータ102が一枚ずつ積層されている。そして、2枚の正極板101のそれぞれは、正極側集電体104aが正極リード104cを介して、金属箔製の正極端子104に接続される一方で、2枚の負極板103は、負極側集電体105aが負極リード105cを介して、同じく金属箔製の負極端子105に接続されている。なお、正極端子104も負極端子105も電気化学的に安定した金属材料であれば特に限定されないが、正極端子104としてはアルミニウムやアルミニウム合金等を挙げることが出来、負極端子105としてはニッケル、銅又はステンレス等を挙げることが出来る。また、本例の正極側集電体104aも負極側集電体105aの何れも、正極板101及び負極板103の集電体を構成するアルミニウム箔やニッケル箔、銅箔を延長して構成されているが、別途の材料や部品により当該集電体104a、105aを構成することも出来る。   The positive electrode plates 101 and the negative electrode plates 103 are alternately stacked in such an order that the separators 102 are positioned between the positive electrode plates 101 and the negative electrode plates 103, and further, the separators are provided at the uppermost and lowermost parts. 102 are stacked one by one. In each of the two positive plates 101, the positive current collector 104a is connected to the positive terminal 104 made of metal foil via the positive lead 104c, while the two negative plates 103 are connected to the negative electrode side. A current collector 105a is connected to a negative electrode terminal 105 made of metal foil through a negative electrode lead 105c. The positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. Examples of the positive electrode terminal 104 include aluminum and an aluminum alloy, and examples of the negative electrode terminal 105 include nickel and copper. Or stainless steel etc. can be mentioned. In addition, both the positive electrode side current collector 104a and the negative electrode side current collector 105a of this example are configured by extending the aluminum foil, nickel foil, or copper foil constituting the current collector of the positive electrode plate 101 and the negative electrode plate 103. However, the current collectors 104a and 105a can be formed of separate materials and parts.

以上の正極板101、負極板103及びセパレータ102等は、上部電池外装106及び下部電池外装107により封止されている。これら上部電池外装106及び下部電池外装107は、例えば、ポリエチレンやポリプロピレン等の樹脂フィルムや、アルミニウム等の金属箔の内側面をポリエチレンやポリプロピレン等の樹脂でラミネートし、外側面をえばポリアミド系樹脂やポリエステル系樹脂等でラミネートした、樹脂−金属薄膜ラミネート材等の柔軟性を有する材料で構成されている。   The positive electrode plate 101, the negative electrode plate 103, the separator 102, and the like are sealed by the upper battery casing 106 and the lower battery casing 107. The upper battery outer casing 106 and the lower battery outer casing 107 are made of, for example, a resin film such as polyethylene or polypropylene, or an inner surface of a metal foil such as aluminum laminated with a resin such as polyethylene or polypropylene. It is made of a flexible material such as a resin-metal thin film laminate material laminated with a polyester resin or the like.

そして、これらの上部電池外装106及び下部電池外装107によって、上述した正極板101、負極板103、セパレータ102、正極側集電体104a、正極端子104の一部、負極側集電体105a及び負極端子105の一部を包み込み、当該電池外装106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム(LiClO)やホウフッ化リチウム(LiBF)、六フッ化リン酸リチウム(LiPF)等のリチウム塩を溶質とした液体電解質を注入した後、上部電池外装106及び下部電池外装107の外周縁を熱融着等の手法により封止する。 The upper battery casing 106 and the lower battery casing 107 allow the positive electrode plate 101, the negative electrode plate 103, the separator 102, the positive electrode side current collector 104a, a part of the positive electrode terminal 104, the negative electrode side current collector 105a, and the negative electrode. A part of the terminal 105 is wrapped, and in a space formed by the battery casings 106 and 107, an organic liquid solvent is lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), or lithium hexafluorophosphate (LiPF). 6 ) After injecting a liquid electrolyte having a lithium salt as a solute, the outer peripheral edges of the upper battery outer casing 106 and the lower battery outer casing 107 are sealed by a technique such as heat sealing.

電池外装に封入される液体電解質の有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)等のエステル系溶媒を挙げることが出来るが、本発明の有機液体溶媒はこれにのみ限定されることはなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒を用いることも出来る。   Examples of the organic liquid solvent of the liquid electrolyte enclosed in the battery exterior include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC). It is not limited only to this, The organic liquid solvent which mixed and prepared ether solvents, such as (gamma) -butylactone ((gamma) -BL), dietoshietane (DEE), etc. can also be used for ester solvent.

なお、封止された電池外装106、107の一方の端部から正極端子104が導出するが、正極端子104の厚さ分だけ上部電池外装106と下部電池外装107との接合部に隙間が生じるので、薄型電池10内の封止性を維持するために、当該正極端子104と電池外装106、107とが接触する部分に、ポリエチレンやポリプロピレンから構成されたシールフィルムを熱融着等の手法により介在させることも出来る。同様に、封止された電池外装106、107の他方の端部からは、負極端子105が導出することとなるが、ここにも正極端子104側と同様に、当該負極端子105と電池外装106、107とが接触する部分にシールフィルムを介在させることも出来る。なお、正極端子104及び負極端子105に何れにおいても、シールフィルムは電池外装106、107を構成する樹脂と同系統の樹脂から構成することが熱融着性の観点から望ましい。   Note that the positive terminal 104 is led out from one end of the sealed battery casings 106 and 107, but a gap is generated at the joint between the upper battery casing 106 and the lower battery casing 107 by the thickness of the positive terminal 104. Therefore, in order to maintain the sealing performance in the thin battery 10, a seal film made of polyethylene or polypropylene is applied to a portion where the positive electrode terminal 104 and the battery exterior 106, 107 are in contact with each other by a technique such as heat fusion. It can also be interposed. Similarly, the negative electrode terminal 105 is led out from the other end portion of the sealed battery casings 106 and 107. Here, similarly to the positive electrode terminal 104 side, the negative electrode terminal 105 and the battery casing 106 are also connected. , 107 can also be interposed with a seal film. Note that, in any of the positive electrode terminal 104 and the negative electrode terminal 105, it is desirable from the viewpoint of heat-fusibility that the seal film is made of a resin of the same system as the resin constituting the battery casings 106 and 107.

図3は本発明の実施形態における正極活物質(LiMn)のリチウムに対する電極電位と二次電池のDODとの関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the electrode potential of the positive electrode active material (LiMn 2 O 4 ) with respect to lithium and the DOD of the secondary battery in the embodiment of the present invention.

以上のように作製された薄型電池10は、初期劣化を除去すると共に電池性能の安定化を図るために、通常、エージング処理が行われる。このエージング処理では、先ず初充電を行い、その際に発生したガスを排出した後に、その状態で約1週間〜1ヶ月間放置することにより行う。   The thin battery 10 produced as described above is usually subjected to an aging process in order to remove initial deterioration and stabilize battery performance. In this aging process, first charging is performed, and the gas generated at that time is discharged, and then left in that state for about one week to one month.

本実施形態では、このエージング処理に際して、リチウムに対する電極電位が、DOD(放電深度:Depth Of Discharge)40%時の電極電位以上で、且つ、DOD10%時の電極電位以下となるように、即ち、SOC(充電状態:State Of Charge)60%時の電極電位以上で、且つ、SOC90%時の電極電位以下となるように、初充電を行う。なお、本発明におけるリチウムに対する電極電位とは、正極にリチウム複合酸化物を用いた場合において、負極をリチウム金属とした電位であり、開路状態における電極電位を意味する。   In the present embodiment, during this aging treatment, the electrode potential with respect to lithium is not less than the electrode potential at 40% DOD (Depth Of Discharge) and not more than the electrode potential at 10% DOD, that is, Initial charging is performed so that the electrode potential is at or above the SOC (State Of Charge) 60% and below the electrode potential at the SOC 90%. In addition, the electrode potential with respect to lithium in the present invention is a potential in which a lithium metal is used as a negative electrode when a lithium composite oxide is used as a positive electrode, and means an electrode potential in an open circuit state.

リチウムに対する電極電位がDOD40%時の電極電位未満となるように初充電を行うと、図3に示すように、DOD40%〜50%付近に存在する電極電位の大きな変曲点で、エージング処理に際して十分な電圧を印加出来なくなり、エージング処理において初期劣化が十分に進行せず電池性能が安定しないおそれがある。   When the initial charge is performed so that the electrode potential with respect to lithium is less than the electrode potential at 40% DOD, as shown in FIG. 3, at the inflection point of the electrode potential existing in the vicinity of 40% to 50% DOD, the aging process is performed. Sufficient voltage cannot be applied, and initial deterioration does not proceed sufficiently in the aging process, and battery performance may not be stable.

これに対し、リチウムに対する電極電位がDOD10%時の電極電位より大きくなるように初充電を行うと、同図に示すように、DOD10%以下で電極電位が急激に上昇しているため、エージング処理に際して大きな電圧が印加され、エージング処理中に電池が劣化するおそれがある。   On the other hand, when the initial charge is performed so that the electrode potential with respect to lithium is larger than the electrode potential at the time of DOD 10%, as shown in the figure, the electrode potential rapidly rises below DOD 10%. At this time, a large voltage is applied, and the battery may be deteriorated during the aging process.

従って、エージング処理に際して、DOD10%〜40%時に対応する範囲内の電極電位で初充電を行うことにより、エージング処理において初期劣化を適切に進行させるように初充電の電圧を最適化され、二次電池10の長寿命化を図ることが可能となる。   Therefore, in the aging process, the initial charge is performed at an electrode potential within a range corresponding to the DOD of 10% to 40%, thereby optimizing the voltage of the initial charge so that the initial deterioration proceeds appropriately in the aging process. It becomes possible to extend the life of the battery 10.

図4は本発明の実施形態における二次電池の開路電圧と当該二次電池のDODとの関係を示すグラフである。負極活物質として上述のような炭素系材料を用いている場合には、図4に示すように、エージング処理に際して、二次電池10の電圧を3.9[V]〜4.0[V]の電圧で初充電を行うことにより、上記範囲のリチウムに対する電極電位を確保することが出来る。なお、図3の縦軸は、リチウムに対する電極電位[V]を示すのに対し、図4の縦軸は、二次電池の電圧[V]を示す。   FIG. 4 is a graph showing the relationship between the open circuit voltage of the secondary battery and the DOD of the secondary battery in the embodiment of the present invention. When the above-described carbon-based material is used as the negative electrode active material, the voltage of the secondary battery 10 is set to 3.9 [V] to 4.0 [V] during the aging treatment as shown in FIG. By performing the initial charge at a voltage of, it is possible to ensure an electrode potential for lithium in the above range. In addition, the vertical axis | shaft of FIG. 3 shows the electrode potential [V] with respect to lithium, while the vertical axis | shaft of FIG. 4 shows the voltage [V] of a secondary battery.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

以下、本発明をさらに具体化した実施例及び比較例により本発明の効果を確認した。以下の実施例及び比較例は、上述した実施形態で用いた二次電池の効果を確認するためのものである。   Hereinafter, the effects of the present invention were confirmed by examples and comparative examples that further embody the present invention. The following examples and comparative examples are for confirming the effects of the secondary batteries used in the above-described embodiments.

実施例1
LiMn(正極活物質)にカーボンブラック(導電剤)及びポリフッ化ビニリデン(PVDF)を混合した粉末をN−メチル−2−ピロリドン(NMP)に分散してスラリーとし、当該スラリーをアルミニウム箔(正極側集電体)の両主面に均一に塗布して乾燥させた後、圧縮及び裁断して正極板を作成した。
Example 1
A powder obtained by mixing carbon black (conductive agent) and polyvinylidene fluoride (PVDF) with LiMn 2 O 4 (positive electrode active material) is dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry, and the slurry is made of aluminum foil. After coating uniformly on both main surfaces of the (positive electrode side current collector) and drying, compression and cutting were performed to prepare a positive electrode plate.

ハードカーボン(負極活物質)にポリフッ化ビニリデン(PVDF)を混合した粉末をN−メチル−2−ピロリドン(NMP)に分散してスラリーとし、当該スラリーを銅箔(負極側集電体)の両主面に均一に塗布して乾燥させた後、圧縮及び裁断して負極板を作成した。   A powder obtained by mixing polyvinylidene fluoride (PVDF) with hard carbon (negative electrode active material) is dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry, and the slurry is used as both copper foil (negative electrode side current collector). After uniformly applying to the main surface and drying, compression and cutting were performed to prepare a negative electrode plate.

このように作成した正極板と負極板とを、それらの間にセパレータを挟みながら交互に積層して電極積層体とした。各電極板の積層枚数は、所定の電池容量が確保出来るように設定した。   The positive electrode plate and the negative electrode plate thus prepared were alternately laminated with a separator interposed therebetween to form an electrode laminate. The number of stacked electrode plates was set so as to ensure a predetermined battery capacity.

この電極積層体から延びている各正極側集電体をアルミニウム製の正極端子にそれぞれ溶接すると共に、当該積層体から延びている各負極側集電体をニッケル製の負極端子にそれぞれ溶接した。   Each positive current collector extending from the electrode laminate was welded to an aluminum positive terminal, and each negative current collector extending from the laminate was welded to a nickel negative terminal.

次いで、電極端子に接続された電極積層体を、2枚の電池外装の間に収容し、電極端子の一部を外周縁から導出させながら当該電池外装の短辺側二辺と長辺側一辺の合計三辺を熱融着し、当該開口から所定量の電解液を注入した後に、電池外装により形成された空間内を減圧した状態で、残る一辺を熱融着して実施例1の電池サンプルを作成した。   Next, the electrode stack connected to the electrode terminals is accommodated between the two battery casings, and a part of the electrode terminals are led out from the outer peripheral edge while the two short sides and one long side of the battery casing are taken out. The total three sides of the battery were heat-sealed, a predetermined amount of electrolyte was injected from the opening, and the remaining one side was heat-sealed in a state where the space formed by the battery exterior was decompressed. A sample was created.

電池外装には、アルミニウム箔の内側層をポリエチレンでラミネートし、外側層をナイロンでラミネートした樹脂−金属薄膜ラミネート材を用いた。   For the battery exterior, a resin-metal thin film laminate in which the inner layer of aluminum foil was laminated with polyethylene and the outer layer was laminated with nylon was used.

また、電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)及びジエチルカーボネート(DMC)の混合溶媒に、支持電解質として六フッ化リン酸リチウム(LiPF)を溶解したものを使用した。 As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) as a supporting electrolyte in a mixed solvent of propylene carbonate (PC), ethylene carbonate (EC), and diethyl carbonate (DMC) was used.

このように作製された実施例1の二次電池を、3.9[V]の電圧で初充電し、その際に発生したガスを排出した後に、約2週間放置することによりエージング処理を行った。この実施例1の初充電の電圧値を表1に示す。

Figure 0004736380
The secondary battery of Example 1 manufactured in this way was initially charged at a voltage of 3.9 [V], the gas generated at that time was discharged, and then left for about two weeks to perform an aging treatment. It was. Table 1 shows the voltage values of the initial charging in Example 1.
Figure 0004736380

この実施例1の電池サンプルについて、以下の充放電サイクル試験により電池寿命の評価を行った。この充放電サイクル試験では、1サイクルが、充電→充電休止→放電→放電休止の4ステップから構成される充放電サイクルを45℃の環境下で繰り返し、各サイクル毎に放電容量[Ah](=放電電流[A]×放電時間[h])を測定し、放電容量維持率[%](=各サイクル時の放電容量/1サイクル目の放電容量)を算出した。そして、1000サイクル後の放電容量維持率が高い程、電池寿命が長いと評価し、当該放電容量維持率が低い程、電池寿命が短いと評価した。   The battery life of the battery sample of Example 1 was evaluated by the following charge / discharge cycle test. In this charge / discharge cycle test, one cycle is a charge / discharge cycle composed of four steps of charge → charge stop → discharge → discharge stop under an environment of 45 ° C., and the discharge capacity [Ah] (= Discharge current [A] × discharge time [h]) was measured, and discharge capacity retention ratio [%] (= discharge capacity at each cycle / discharge capacity at the first cycle) was calculated. And it was evaluated that the battery life was longer as the discharge capacity maintenance rate after 1000 cycles was higher, and the battery life was shorter as the discharge capacity maintenance rate was lower.

なお、充放電サイクルの充電ステップでは、電流値1CA(60分で全容量を放電させる電流値)で充電を行い、電圧値が4.2[V]となったら充電を終了した。また、充放電サイクルの放電ステップでは、電流値1CAで放電を行い、電圧値が2.5[V]となったら放電を終了した。さらに充放電サイクルの各休止ステップでは、10分間の休止時間をそれぞれ設けた。実施例1の充放電サイクル試験の試験結果を図5に示す。   In the charging step of the charging / discharging cycle, charging was performed at a current value of 1CA (current value that discharges the entire capacity in 60 minutes), and the charging was terminated when the voltage value reached 4.2 [V]. In the discharging step of the charge / discharge cycle, discharging was performed at a current value of 1 CA, and discharging was terminated when the voltage value reached 2.5 [V]. Further, each pause step of the charge / discharge cycle was provided with a pause time of 10 minutes. The test results of the charge / discharge cycle test of Example 1 are shown in FIG.

実施例2
実施例2の二次電池は、エージング処理に当たり3.95[V]の電圧で初充電を行ったこと以外は、実施例1と同様の条件で電池サンプルを作製した。この実施例2の初充電の電圧値を表1に示す。この実施例2の電池サンプルについて、実施例1と同様の条件で、充放電サイクル試験により電池寿命の評価を行った。実施例2の充放電サイクル試験の試験結果を図5に示す。
Example 2
For the secondary battery of Example 2, a battery sample was produced under the same conditions as in Example 1 except that the initial charging was performed at a voltage of 3.95 [V] during the aging treatment. Table 1 shows the voltage values of the initial charging in Example 2. The battery life of the battery sample of Example 2 was evaluated by a charge / discharge cycle test under the same conditions as in Example 1. The test results of the charge / discharge cycle test of Example 2 are shown in FIG.

実施例3
実施例3の二次電池は、エージング処理に当たり4.0[V]の電圧で初充電を行ったこと以外は、実施例1と同様の条件で電池サンプルを作製した。この実施例3の初充電の電圧値を表1に示す。この実施例3の電池サンプルについて、実施例1と同様の条件で、充放電サイクル試験により電池寿命の評価を行った。実施例3の充放電サイクル試験の試験結果を図5に示す。
Example 3
For the secondary battery of Example 3, a battery sample was produced under the same conditions as in Example 1 except that the initial charging was performed at a voltage of 4.0 [V] during the aging treatment. Table 1 shows the voltage values of the initial charge in Example 3. The battery life of the battery sample of Example 3 was evaluated by a charge / discharge cycle test under the same conditions as in Example 1. The test results of the charge / discharge cycle test of Example 3 are shown in FIG.

比較例1
比較例1の二次電池は、エージング処理に当たり3.85[V]の電圧で初充電を行ったこと以外は、実施例1と同様の条件で電池サンプルを作製した。この比較例1の初充電の電圧値を表1に示す。この比較例1の電池サンプルについて、実施例1と同様の条件で、充放電サイクル試験により電池寿命の評価を行った。比較例1の充放電サイクル試験の試験結果を図5に示す。
Comparative Example 1
For the secondary battery of Comparative Example 1, a battery sample was produced under the same conditions as in Example 1 except that the initial charging was performed at a voltage of 3.85 [V] during the aging treatment. Table 1 shows the voltage values of the initial charge in Comparative Example 1. The battery life of the battery sample of Comparative Example 1 was evaluated by a charge / discharge cycle test under the same conditions as in Example 1. The test results of the charge / discharge cycle test of Comparative Example 1 are shown in FIG.

比較例2
比較例2の二次電池は、エージング処理に当たり4.05[V]の電圧で初充電を行ったこと以外は、実施例1と同様の条件で電池サンプルを作製した。この比較例2の初充電の電圧値を表1に示す。この比較例2の電池サンプルについて、実施例1と同様の条件で、充放電サイクル試験により電池寿命の評価を行った。比較例2の充放電サイクル試験の試験結果を図5に示す。
Comparative Example 2
For the secondary battery of Comparative Example 2, a battery sample was produced under the same conditions as in Example 1 except that the initial charging was performed at a voltage of 4.05 [V] during the aging treatment. Table 1 shows the voltage values of the initial charge in Comparative Example 2. The battery life of the battery sample of Comparative Example 2 was evaluated by a charge / discharge cycle test under the same conditions as in Example 1. The test results of the charge / discharge cycle test of Comparative Example 2 are shown in FIG.

考察
充放電サイクル試験の結果より、エージング処理に当たり3.9[V]〜4.0[V]の電圧で初充電を行った実施例1〜3の電池サンプルが長寿命であることが分かる。特に、その中でも4.0[V]の電圧で初充電を行った実施例3の電池サンプルが最も長寿命であることが分かる。
Consideration From the results of the charge / discharge cycle test, it can be seen that the battery samples of Examples 1 to 3 that were initially charged at a voltage of 3.9 [V] to 4.0 [V] during the aging treatment have a long life. In particular, it can be seen that, among these, the battery sample of Example 3 that was initially charged at a voltage of 4.0 [V] has the longest life.

これに対し、3.85[V]で初充電を行った比較例1の電池サンプル、及び、4.05[V]で初充電を行った比較例2の電池サンプルは、電池寿命が短いことが分かる。これは、3.9[V]未満の電圧で初充電を行うと、エージング処理において初期劣化が十分に行われず、充放電サイクル中にも劣化が進行し、充放電特性が悪化するためと考えられる。また、4.0[V]より大きな電圧で初充電を行うと、エージング処理中に電池が劣化し、初期容量が減少するためと考えられる。   In contrast, the battery sample of Comparative Example 1 that was initially charged at 3.85 [V] and the battery sample of Comparative Example 2 that was initially charged at 4.05 [V] had a short battery life. I understand. This is considered to be because when initial charge is performed at a voltage lower than 3.9 [V], initial deterioration is not sufficiently performed in the aging process, and deterioration proceeds during the charge / discharge cycle, and charge / discharge characteristics deteriorate. It is done. In addition, it is considered that when the initial charge is performed at a voltage higher than 4.0 [V], the battery deteriorates during the aging process, and the initial capacity decreases.

図1(A)は、本発明の実施形態に係る薄型の二次電池の全体を示す平面図であり、図1(B)は、図1(A)のB-B線に沿った断面図である。FIG. 1A is a plan view showing an entire thin secondary battery according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line BB in FIG. . 図2は、本発明の実施形態に係る薄型電池の内部を詳細に示す断面図である。FIG. 2 is a cross-sectional view showing in detail the inside of the thin battery according to the embodiment of the present invention. 図3は、本発明の実施形態におけるリチウムに対する電極電位と二次電池のDODとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the electrode potential with respect to lithium and the DOD of the secondary battery in the embodiment of the present invention. 図4は、本発明の実施形態における二次電池の開路電圧と当該二次電池のDODとの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the open circuit voltage of the secondary battery and the DOD of the secondary battery in the embodiment of the present invention. 図5は、実施例における二次電池の放電容量と充放電サイクル回数との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the discharge capacity of the secondary battery and the number of charge / discharge cycles in the example.

符号の説明Explanation of symbols

10…薄型電池
101…正極板
102…セパレータ
103…負極板
104a…正極側集電体
104b…正極層
104c…正極リード
105a…負極側集電体
105b…負極層
105c…負極リード
106…上部電池外装
107…下部電池外装
DESCRIPTION OF SYMBOLS 10 ... Thin battery 101 ... Positive electrode plate 102 ... Separator 103 ... Negative electrode plate 104a ... Positive electrode side collector 104b ... Positive electrode layer 104c ... Positive electrode lead 105a ... Negative electrode side collector 105b ... Negative electrode layer 105c ... Negative electrode lead 106 ... Upper battery exterior 107 ... lower battery exterior

Claims (2)

正極活物質としてLiMn を用い、負極活物質として炭素系材料を用いた電極板をセパレータを介して積層し、当該積層された電極板及びセパレータが電池外装に収容されて封止され、前記電極板に接続された電極端子が前記電池外装から導出した二次電池に対して、その製造後にエージング処理を行う二次電池のエージング処理方法であって、
リチウムに対する電極電位が、SOC(State Of Charge)60%時の電極電位以上で、且つ、SOC90%時の電極電位以下、かつ前記二次電池の電圧が、3.9[V]〜4.0[V]となるように充電し、
前記充電の後に、前記二次電池の内部に発生したガスを排出し、
前記ガスを排出した後に、1週間〜1ヶ月放置してエージング処理を行う二次電池のエージング処理方法。
An electrode plate using LiMn 2 O 4 as a positive electrode active material and a carbon-based material as a negative electrode active material is laminated through a separator, and the laminated electrode plate and separator are accommodated in a battery exterior and sealed, An aging treatment method for a secondary battery in which an electrode terminal connected to the electrode plate is subjected to an aging treatment after the production of the secondary battery derived from the battery exterior,
The electrode potential with respect to lithium is equal to or higher than the electrode potential at 60% SOC (State Of Charge) and equal to or lower than the electrode potential at 90% SOC, and the voltage of the secondary battery is 3.9 [V] to 4.0. Charge to be [V],
After the charging, exhaust the gas generated inside the secondary battery,
A secondary battery aging treatment method of performing aging treatment by leaving the gas discharged for 1 week to 1 month.
前記二次電池の電圧が、実質的に4.0[V]となるように充電してエージング処理を行う請求項1記載の二次電池のエージング処理方法。   The secondary battery aging treatment method according to claim 1, wherein the aging treatment is performed by charging the secondary battery so that a voltage thereof is substantially 4.0 [V].
JP2004260094A 2004-09-07 2004-09-07 Secondary battery and secondary battery aging treatment method Expired - Fee Related JP4736380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260094A JP4736380B2 (en) 2004-09-07 2004-09-07 Secondary battery and secondary battery aging treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260094A JP4736380B2 (en) 2004-09-07 2004-09-07 Secondary battery and secondary battery aging treatment method

Publications (2)

Publication Number Publication Date
JP2006079857A JP2006079857A (en) 2006-03-23
JP4736380B2 true JP4736380B2 (en) 2011-07-27

Family

ID=36159145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260094A Expired - Fee Related JP4736380B2 (en) 2004-09-07 2004-09-07 Secondary battery and secondary battery aging treatment method

Country Status (1)

Country Link
JP (1) JP4736380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252839A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
JP2015056390A (en) * 2013-09-13 2015-03-23 新神戸電機株式会社 Lithium ion battery and method for manufacturing the same
KR101823175B1 (en) * 2013-10-30 2018-01-29 주식회사 엘지화학 Method for manufacturing secondary battery
JP6457272B2 (en) * 2015-01-07 2019-01-23 積水化学工業株式会社 Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229964A (en) * 2000-02-15 2001-08-24 Asahi Kasei Corp Nonaqueous secondary battery
JP2002216843A (en) * 2001-01-23 2002-08-02 Matsushita Electric Ind Co Ltd Manufacturing method of lithium polymer cell
JP2004030939A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Manufacturing method of lithium secondary battery

Also Published As

Publication number Publication date
JP2006079857A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US9972844B2 (en) Lithium-ion secondary battery
JP5100143B2 (en) Battery unit
US20080311475A1 (en) Charging a lithium ion battery
KR101903913B1 (en) Non-aqueous secondary battery
JP6466161B2 (en) Anode material for lithium ion batteries
JP2014035877A (en) Nonaqueous electrolyte secondary battery manufacturing method
KR20160134808A (en) Nonaqueous electrolyte secondary battery
EP3035419A1 (en) Lithium ion secondary battery
CN114982035A (en) Battery pack, battery pack, electrical device, and method and apparatus for manufacturing battery pack
JP2011070932A (en) Lithium secondary battery
US20180198120A1 (en) Lithium secondary battery
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP4736380B2 (en) Secondary battery and secondary battery aging treatment method
JP5741942B2 (en) Capacity recovery method for lithium secondary battery
WO2021100272A1 (en) Secondary battery and method for producing same
JP2005116304A (en) Secondary battery
JP5776948B2 (en) Lithium secondary battery and manufacturing method thereof
JP2021077531A (en) Non-aqueous electrolyte secondary battery
JP6399095B2 (en) Control method of non-aqueous electrolyte secondary battery
JP2014241267A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP4576891B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees