JP2002216843A - Manufacturing method of lithium polymer cell - Google Patents

Manufacturing method of lithium polymer cell

Info

Publication number
JP2002216843A
JP2002216843A JP2001014153A JP2001014153A JP2002216843A JP 2002216843 A JP2002216843 A JP 2002216843A JP 2001014153 A JP2001014153 A JP 2001014153A JP 2001014153 A JP2001014153 A JP 2001014153A JP 2002216843 A JP2002216843 A JP 2002216843A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
solvent
lithium polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001014153A
Other languages
Japanese (ja)
Inventor
Hironori Ishii
弘徳 石井
Yasuo Yoshihara
康雄 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001014153A priority Critical patent/JP2002216843A/en
Publication of JP2002216843A publication Critical patent/JP2002216843A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a lithium polymer cell with excellent reliability, small variation of a thickness during the storage for long time at high temperature, and high discharge capacity keeping ratio. SOLUTION: A copolymer of Vinylidene fluoride-hexafluoropyrene P(VDF-HFP) is used as a polymer retaining nonaqueous electrolyte liquid, and a mixed solvent, containing at least one kind of solvent with boiling point of not less than 120 deg.C, is used as a solvent of the electrolyte. A uniform and fine gel is formed by keeping it in the state of reduced pressure of less than 15 Pa, at the temperature of 90 deg.C-100 deg.C, for 30 minutes-one hour, and by further keeping it for 30 minutes-3 hours while keeping above temperature, under normal pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムポリマー電
池の製造方法に関し、さらに詳しくは、最適なゲルを製
造することにより、特に高温長期保存での電池の膨れと
容量劣化を抑制することが可能なリチウムポリマー電池
の製造方法に関するものである。
[0001] The present invention relates to a method for producing a lithium polymer battery, and more particularly, it is possible to suppress swelling and capacity deterioration of a battery, particularly during high-temperature long-term storage, by producing an optimum gel. The present invention relates to a method for manufacturing a lithium polymer battery.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量かつエネルギー密度が高く、更に繰り返し充放電が可
能な二次電池の開発が要望されている。このような二次
電池としては、リチウム金属又はリチウム合金を活物質
とする負極と、モリブデン、バナジウム、チタンあるい
はニオブなどの酸化物、硫化物もしくはセレン化物を活
物質とする正極とを具備したリチウム二次電池が知られ
ている。しかしながら、リチウム金属又はリチウム合金
を活物質とする負極を備えた二次電池は、充放電を繰り
返すと負極にリチウムのデンドライトが析出するため、
充放電サイクル寿命が短いという問題点がある。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. As such a secondary battery, a lithium battery including a negative electrode using lithium metal or a lithium alloy as an active material, and a positive electrode using an oxide, sulfide, or selenide such as molybdenum, vanadium, titanium, or niobium as an active material is used. Secondary batteries are known. However, a secondary battery provided with a negative electrode using lithium metal or a lithium alloy as an active material, lithium dendrites precipitate on the negative electrode when charging and discharging are repeated,
There is a problem that the charge / discharge cycle life is short.

【0003】このようなことから、負極に、例えばコー
クス、黒鉛、炭素繊維、樹脂焼成体、熱分解気相炭素の
ようなリチウムイオンを吸蔵放出する炭素質材料を用
い、LiPF6のような電解質をエチレンカーボネー
ト、プロピレンカーボネートのような溶媒に溶解させた
非水電解液を用いたリチウム二次電池が提案されてい
る。前記リチウム二次電池は、デンドライト析出による
負極特性の劣化を改善することができるため、充放電サ
イクル寿命と安全性を向上させることができる。
[0003] For this reason, the negative electrode, for example coke, graphite, carbon fiber, resin fired body, a lithium ion, such as pyrolytic vapor carbon using a carbonaceous material for absorbing and releasing, electrolytes such as LiPF 6 A lithium secondary battery using a non-aqueous electrolyte in which is dissolved in a solvent such as ethylene carbonate or propylene carbonate has been proposed. In the lithium secondary battery, the deterioration of the negative electrode characteristics due to dendrite deposition can be improved, so that the charge and discharge cycle life and safety can be improved.

【0004】一方、電解質を固化させると漏液の心配の
無い電池が得られることから、究極の電池と目されてき
たが、イオン伝導度が溶液系のものに比べて数桁低いな
どの問題があったため、汎用性のある電池の出現までに
は至らなかった。
On the other hand, since solidification of the electrolyte provides a battery free from liquid leakage, it has been regarded as the ultimate battery. However, it has a problem that the ionic conductivity is several orders of magnitude lower than that of the solution type. However, it did not lead to the emergence of a versatile battery.

【0005】ところが、ポリマーを有機溶媒系の電解液
と共にゲル化させると、イオン伝導度が10-3S/cm
程度に向上し、イオン伝導度の高いポリマー電解質が得
られるようになり、これを電池のセパレータとして使用
することにより特性の良い電池が得られるようになった
ことから、ポリマー電池が脚光を浴びるようになった。
However, when the polymer is gelled together with an organic solvent-based electrolyte, the ionic conductivity becomes 10 −3 S / cm.
As a result, polymer electrolytes with high ionic conductivity can be obtained, and by using this as a battery separator, batteries with good characteristics can be obtained. Became.

【0006】米国特許第5296318号公報には正
極、負極の結着剤及びセパレータにポリマーを用いるこ
とにより柔軟性が付与されたハイブリットポリマー電解
質を有する充放電が可能なリチウムインターカレーショ
ン電池、即ちリチウムポリマー電池が開示されている。
US Pat. No. 5,296,318 discloses a chargeable / dischargeable lithium intercalation battery having a hybrid polymer electrolyte provided with flexibility by using a polymer for a binder for a positive electrode, a negative electrode, and a separator, that is, lithium. A polymer battery is disclosed.

【0007】正極は例えば、リチウムコバルト複合酸化
物からなる活物質と、フッ化ビニリデン−ヘキサフルオ
ロピレンの共重合体P(VDF−HFP)からなるポリ
マーと、DBP(フタル酸ジブチル)などの可塑剤とを
含む正極用ペーストをアルミニウム製の集電体に塗布、
乾燥、圧延した後、所定の寸法に切断して正極が作製さ
れる。
The positive electrode is made of, for example, an active material composed of a lithium-cobalt composite oxide, a polymer composed of a copolymer P (VDF-HFP) of vinylidene fluoride and hexafluoropyrene, and a plasticizer such as DBP (dibutyl phthalate). A positive electrode paste containing: is applied to an aluminum current collector,
After being dried and rolled, it is cut into predetermined dimensions to produce a positive electrode.

【0008】そして、負極は例えば、リチウムイオンを
吸蔵放出が可能な黒鉛のような炭素質材料からなる活物
質と、フッ化ビニリデン−ヘキサフルオロピレンの共重
合体P(VDF−HFP)からなるポリマーと、DBP
(フタル酸ジブチル)などの可塑剤とを含む負極用ペー
ストを銅製の集電体に塗布、乾燥、圧延した後、所定の
寸法に切断して負極が作製される。
The negative electrode is, for example, an active material composed of a carbonaceous material such as graphite capable of inserting and extracting lithium ions, and a polymer composed of a copolymer P (VDF-HFP) of vinylidene fluoride-hexafluoropyrene. And DBP
A negative electrode paste containing a plasticizer such as (dibutyl phthalate) is applied to a copper current collector, dried and rolled, and then cut into predetermined dimensions to produce a negative electrode.

【0009】次に、前記正極及び負極の間に電解液を未
含浸のP(VDF−HFP)からなるポリマー製セパレ
ータを介在させ、加熱した剛性ロールにて加熱圧着して
積層化する。次に前記積層膜中に含まれる可塑剤をキシ
レンなどの有機溶剤を用いて抽出し、真空減圧下で乾燥
する。このようにして得られた発電要素を、樹脂フィル
ムの間にアルミニウム箔を配して全体を積層一体化した
ラミネートシートからなる袋状外装ケース(以下これを
外装ケースという)の内部に収容し、非水電解液を注入
し、加温処理を施して正極板、負極板中のポリマー及び
セパレータをゲル化させて、非水電解液を保持させる方
法である。
Next, a polymer separator made of P (VDF-HFP) not impregnated with an electrolytic solution is interposed between the positive electrode and the negative electrode, and is laminated by heating and pressing with a heated rigid roll. Next, the plasticizer contained in the laminated film is extracted using an organic solvent such as xylene, and dried under reduced pressure. The power generation element thus obtained is housed in a bag-shaped outer case (hereinafter referred to as an outer case) made of a laminated sheet in which an aluminum foil is disposed between resin films and the whole is laminated and integrated, In this method, a non-aqueous electrolyte is injected, and a heating process is performed to gel the polymer and the separator in the positive electrode plate and the negative electrode plate, thereby retaining the non-aqueous electrolyte.

【0010】ゲル化させる方法としては、特開平11−
297357号公報にプロピレンカーボネートを電解液
溶媒として含む非水電解液を用い、かつポリフッ化ビニ
リデンをポリマーとして用いて、90℃〜120℃の温
度でゲル化させる方法が、特開2000−12076号
公報に開路電圧が3.6V以下、60℃〜90℃の温度
でゲル化させる方法が開示されている。
As a method for gelling, Japanese Patent Laid-Open No.
Japanese Patent Application Laid-Open No. 2000-12076 discloses a method of gelling at a temperature of 90 ° C. to 120 ° C. by using a non-aqueous electrolyte containing propylene carbonate as an electrolyte solvent and using polyvinylidene fluoride as a polymer. Discloses a method of gelling at a temperature of 60 ° C. to 90 ° C. with an open circuit voltage of 3.6 V or less.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、このよ
うなゲル化の条件では、電池全体に渡って非水電解液を
均一に浸透することが困難であり、ゲル化されない非水
電解液が残存するため、例えば、90℃の高温状態に電
池を長期保存した場合、前記の如くゲル化されない電解
液中の溶媒もしくは電解質が容易に分解反応を起こしガ
スを発生するために、電池の膨れを引き起こす問題があ
ることが分かった。さらに、ゲル構造が不均一なため、
高温保存時にその構造が破壊され、電池の容量維持が困
難になることも分かった。
However, under such gelling conditions, it is difficult to uniformly penetrate the non-aqueous electrolyte throughout the battery, and the non-aqueous electrolyte which does not gel remains. Therefore, for example, when the battery is stored at a high temperature of 90 ° C. for a long period of time, the solvent or the electrolyte in the non-gelled electrolyte solution easily undergoes a decomposition reaction to generate gas, thereby causing the battery to swell. It turned out that there was. Furthermore, due to the uneven gel structure,
It was also found that the structure was destroyed during high-temperature storage, making it difficult to maintain the capacity of the battery.

【0012】そこで、本発明においてはフッ化ビニリデ
ン−ヘキサフルオロピレン)の共重合体P(VDF−H
FP)を用いて、電解液の電池全体への均一な浸透とゲ
ル化を同時に行いより緻密なゲル構造を作ることで、高
温長期保存特性に優れたリチウムポリマー電池の製造方
法を提供することを目的とする。
Therefore, in the present invention, a copolymer P (VDF-H) of vinylidene fluoride-hexafluoropyrene) is used.
To provide a method for producing a lithium polymer battery having excellent high-temperature long-term storage characteristics by using FP) to simultaneously make the electrolyte uniformly penetrate into the entire battery and to gel the electrolyte to form a denser gel structure. Aim.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
め本発明は、前記外装ケース内に、正極板と負極板とが
セパレータを介して絶縁されている発電要素を収容し、
この発電要素に非水電解液を保持させるとともに、前記
正極板および負極板のそれぞれの一端が接続された正極
リードおよび負極リードを、前記外装ケースのシール部
より外部に引き出した状態で封口する工程、所定の電池
電圧を発生するまで充電処理を施して初期のガス発生を
済ませる第1充電工程、真空減圧状態の90℃〜100
℃の環境下で30分〜1時間保存し、次いで前記温度に
保持したまま常圧に戻してさらに30分〜3時間保存す
る第1エージング工程、必要電気量だけ充電処理し、更
に発電要素からガスを発生及び電池特性を安定化させる
第2充電工程、この充電状態のまま約60℃〜70℃の
環境下に保存する第2エージング工程、外装ケースの一
部を開封して内部にたまったガスを排出する工程と、外
装ケースを再度封口する工程の順に前記各工程を実施す
るリチウムポリマー電池の製造方法である。
In order to achieve the above object, the present invention provides a power generation element in which a positive electrode plate and a negative electrode plate are insulated from each other through a separator in the outer case,
A step of holding the non-aqueous electrolyte in the power generation element and sealing the positive electrode lead and the negative electrode lead to which one ends of the positive electrode plate and the negative electrode plate are connected, respectively, in a state where the positive electrode lead and the negative electrode lead are drawn out from the sealing portion of the outer case. A first charging step in which a charging process is performed until a predetermined battery voltage is generated to complete the initial gas generation;
A first aging step of storing for 30 minutes to 1 hour in an environment of ° C., then returning to normal pressure while maintaining the above temperature, and storing for another 30 minutes to 3 hours. A second charging step for generating gas and stabilizing the battery characteristics, a second aging step for storing the charged state in an environment of about 60 ° C. to 70 ° C., and a part of the outer case is opened and accumulated inside. This is a method for manufacturing a lithium polymer battery in which the above-described steps are performed in the order of the step of discharging gas and the step of resealing the outer case.

【0014】正極や負極内部の非水電解液を保持するポ
リマーにフッ化ビニリデン−ヘキサフルオロピレンP
(VDF−HFP)の共重合体を用い、かつ電解液溶媒
組成として、沸点が120℃以上である溶媒を少なくと
も1種類含む混合溶媒を用い、15Pa以下の真空減圧
状態の90℃〜100℃の環境下で30分〜3時間保存
して発電要素から前記発電要素内に残存したガスを完全
に除去させ、次いで常圧に戻して前記環境下でさらに3
0分〜1時間保存しゲル化させることにより、電池全体
に均一かつ緻密なゲルを形成し、特に高温長期保存時の
電池膨れと容量劣化を抑制し信頼性に優れたリチウムポ
リマー電池が可能となる。
The polymer holding the non-aqueous electrolyte inside the positive electrode and the negative electrode is vinylidene fluoride-hexafluoropyrene P
Using a copolymer of (VDF-HFP) and a mixed solvent containing at least one solvent having a boiling point of 120 ° C. or higher as an electrolyte solution solvent composition, a pressure of 90 ° C. to 100 ° C. under a vacuum reduced pressure of 15 Pa or less is used. It is stored for 30 minutes to 3 hours under the environment to completely remove the gas remaining in the power generation element from the power generation element, and then returns to normal pressure to further remove the gas for 3 hours under the environment.
By storing and gelling from 0 minutes to 1 hour, a uniform and dense gel is formed over the entire battery, and it is possible to suppress lithium battery swelling and capacity deterioration especially during long-term storage at high temperatures, and to achieve a highly reliable lithium polymer battery. Become.

【0015】なお、真空減圧状態は15Pa以下が好ま
しく、15Paを超えると極板中のガスを完全に除去す
ることが困難で、真空減圧の明確な効果が認められない
ので好ましくない。
The vacuum pressure is preferably 15 Pa or less. If it exceeds 15 Pa, it is difficult to completely remove the gas from the electrode plate, and a clear effect of the vacuum pressure is not recognized.

【0016】また、真空減圧時間は30分〜3時間の範
囲が好ましく、30分未満の場合には発電要素中のガス
を完全に除去する効果が小さくなり、1時間を超えると
非水電解液中の電解質の分解が発生するため好ましくな
い。
The vacuum decompression time is preferably in the range of 30 minutes to 3 hours. If it is less than 30 minutes, the effect of completely removing the gas in the power generating element is small. It is not preferable because decomposition of the electrolyte therein occurs.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1および図2は本発明の製造方法による
リチウムポリマー電池の上面図および断面図である。正
極1は正極活物質と導電剤および結着剤兼電解液保持剤
としてのポリマーを有機溶剤に混練分散させたペースト
をアルミニウム箔製集電体1aの両面に塗着、乾燥、圧
延して、正極活物質層1bとしたものである。
FIGS. 1 and 2 are a top view and a sectional view, respectively, of a lithium polymer battery according to the manufacturing method of the present invention. The positive electrode 1 is formed by applying a paste obtained by kneading and dispersing a positive electrode active material, a polymer as a conductive agent and a binder and an electrolyte retainer in an organic solvent, to both sides of an aluminum foil current collector 1a, drying and rolling, This is a positive electrode active material layer 1b.

【0019】この2枚の正極の間に、前記のフィルムか
らなるポリマー製セパレータ3を配設し、このセパレー
タ3間に炭素質材料と前記結着剤兼電解液保持剤として
のポリマーを有機溶剤に混練分散させたペーストを銅箔
製集電体2aの両面に塗着、乾燥、圧延して、負極活物
質層2bを形成した負極2があり、全体が図2に示すよ
うに積層されている発電要素4が構成される。
A polymer separator 3 made of the above-mentioned film is disposed between the two positive electrodes, and a carbonaceous material and the polymer as a binder and an electrolyte retainer are placed between the separators 3 with an organic solvent. There is a negative electrode 2 in which a paste kneaded and dispersed in is coated on both sides of a copper foil current collector 2a, dried and rolled to form a negative electrode active material layer 2b, and the whole is laminated as shown in FIG. Power generation element 4 is configured.

【0020】1cは正極の集電体に設けたリード取り付
け部であり、ここには正極リード5が溶接されている。
2cは負極の集電体に設けたリード取り付け部であり、
ここには負極リード6が溶接されている。7は金属箔を
中間の一層とし、その内側に樹脂フィルムを、外側にも
樹脂フィルムを積層一体化したラミネートフィルムから
なる外装ケースである。この外装ケース7の内部に収容
された発電要素4は、正極のリード5および負極のリー
ド6が外装ケース7の外部へ引き出され、その先端が出
入力端子8、9である。10、11はリード5、6の中
間部分に設けられた絶縁保護フィルムであり、外装ケー
ス7の開口部を熱融着などで封口する際にリード5、6
の電気的絶縁と気密を確保するものである。尚、外装ケ
ース7は、前記ラミネートフィルムを帯状に切断し、そ
の長さ方向の中央部Tで2つ折りし、上下の2辺P1と
P2を予め熱融着したものであり、開口している残り1
辺のP3部分から発電要素4を挿入し、所定量の非水電
解液を注入する。
Reference numeral 1c denotes a lead mounting portion provided on the current collector of the positive electrode, to which a positive electrode lead 5 is welded.
2c is a lead attachment portion provided on the current collector of the negative electrode,
The negative electrode lead 6 is welded here. Reference numeral 7 denotes an outer case made of a laminated film in which a metal foil is used as an intermediate layer, a resin film is laminated on the inner side, and a resin film is laminated and integrated on the outer side. In the power generation element 4 housed inside the outer case 7, the positive electrode lead 5 and the negative electrode lead 6 are drawn out of the outer case 7, and the leading ends are input / output terminals 8,9. Reference numerals 10 and 11 denote insulating protective films provided at intermediate portions of the leads 5 and 6, which are used to seal the openings of the outer case 7 by heat sealing or the like.
This ensures electrical insulation and airtightness. The outer case 7 is formed by cutting the laminate film into a strip shape, folding the laminate film at the center T in the length direction thereof, and heat-sealing the upper and lower sides P1 and P2 in advance, and has an opening. 1 remaining
The power generating element 4 is inserted from the side P3, and a predetermined amount of the non-aqueous electrolyte is injected.

【0021】このときの非水電解液は、120℃以上の
高い沸点を有する溶媒を少なくとも1種類含む混合溶媒
にLiPF6、LiBF4等の電解質を溶解させて調整し
たものを用いる。120℃以上の高沸点を有する溶媒と
しては例えばエチルカーボネート(EC)やプロピレン
カーボネート(PC)、ブチレンカーボネート(B
C)、ジエチルカーボネート(DEC)などを用いるこ
とができる。なお、前記高沸点溶媒と低沸点溶媒を混合
し、適切な粘度にすることにより極板全体に均一に行き
渡らせるとともに電解液の安定性を確保できるが、沸点
が120℃以上の溶媒の割合は体積比で5割以上が好ま
しい。高沸点溶媒の比率が体積比で5割未満の場合に
は、後述する第1エージング工程の真空減圧状態におい
て、揮発してしまい電解液組成の変化が起こるので好ま
しくない。
The non-aqueous electrolyte used here is prepared by dissolving an electrolyte such as LiPF 6 or LiBF 4 in a mixed solvent containing at least one solvent having a high boiling point of 120 ° C. or higher. Examples of the solvent having a high boiling point of 120 ° C. or higher include ethyl carbonate (EC), propylene carbonate (PC), and butylene carbonate (B
C), diethyl carbonate (DEC) and the like can be used. The high-boiling point solvent and the low-boiling point solvent are mixed to make the viscosity appropriate so that the electrolyte can be uniformly spread over the entire electrode plate and the stability of the electrolytic solution can be ensured. The volume ratio is preferably 50% or more. If the ratio of the high boiling point solvent is less than 50% by volume, the composition will be undesirably volatilized in a vacuum depressurized state in a first aging step described later, causing a change in the electrolyte composition.

【0022】そして、前記開口している残り1辺のP3
部分を熱融着して封口する。
The remaining one side P3 of the opening
The part is heat-sealed and sealed.

【0023】ついで、第1充電工程は、所定の電池電圧
を発生するまで充電処理を施して初期のガス発生を済ま
せる工程である。この工程における所定の電池電圧は
3.7V以上必要である。
Next, the first charging step is a step of performing a charging process until a predetermined battery voltage is generated to complete the initial gas generation. The predetermined battery voltage in this step needs to be 3.7 V or more.

【0024】3.7V以上の電池電圧があれば、後述す
る第1エージング工程の高温環境下での電池電圧の低
下、即ち容量劣化が最小限に抑えられるからである。
This is because if there is a battery voltage of 3.7 V or more, a decrease in the battery voltage in a high-temperature environment in a first aging step, which will be described later, that is, a deterioration in capacity is minimized.

【0025】第1エージング工程は、前記所定の電池電
圧の状態で15Pa以下の真空減圧した状態で90℃〜
100℃の環境下で30分〜3時間エージングして、発
電要素内の正極板、負極板中のポリマー及びセパレータ
内部の残留ガスを除去し、次に同じ温度に保ったまま常
圧に戻して、ゲル化させると同時に発電要素からさらに
ガスを発生させる工程である。
The first aging step is performed at 90 ° C. under a reduced pressure of 15 Pa or less at the predetermined battery voltage.
Aging was performed in an environment of 100 ° C. for 30 minutes to 3 hours to remove the polymer in the positive electrode plate and the negative electrode plate in the power generating element and the residual gas in the separator, and then returned to normal pressure while maintaining the same temperature. This is a step of generating gas from the power generation element at the same time as gelation.

【0026】第2充電工程は、必要電気量だけ充電処理
し、更に発電要素からガスを発生及び電池特性を安定化
させる工程である。充電処理は、電池容量の95%〜1
05%の範囲が好ましい。
The second charging step is a step of charging only the required amount of electricity, generating gas from the power generating element, and stabilizing the battery characteristics. The charging process is performed at 95% to 1% of the battery capacity.
A range of 05% is preferred.

【0027】第2エージング工程は、この充電状態のま
ま約60℃〜70℃の環境下に保存し、発電要素から更
なるガスを発生させ、ガスを出し切らせるとともに、電
池特性を安定化させる工程である。温度が60℃未満の
場合には、ガスを出し切るのが不十分で、70℃を超え
ると電池特性が劣化するので好ましくない。エージング
時間は、60℃の環境下では、50時間〜72時間の範
囲が好ましく、70℃の環境下では40時間〜55時間
の範囲が好ましい。
In the second aging step, the battery is stored in an environment of about 60 ° C. to 70 ° C. in this charged state, and further gas is generated from the power generating element, the gas is completely discharged, and the battery characteristics are stabilized. It is a process. If the temperature is lower than 60 ° C., the discharge of gas is insufficient, and if the temperature is higher than 70 ° C., the battery characteristics deteriorate, which is not preferable. The aging time is preferably in a range of 50 hours to 72 hours in an environment of 60 ° C, and is preferably in a range of 40 hours to 55 hours in an environment of 70 ° C.

【0028】次に、外装ケースの一部を開封して内部に
溜まったガスを排出した後、外装ケースを再度封口する
工程とからなるリチウムポリマー電池の製造方法であ
る。
Next, there is provided a method for manufacturing a lithium polymer battery, comprising the steps of: opening a part of an outer case, discharging gas accumulated inside, and sealing the outer case again.

【0029】[0029]

【実施例】本発明を実施例、比較例を用いて更に詳細に
説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0030】正極1はコバルト酸リチウムを主成分とす
る正極活物質100重量部と導電剤としてのアセチレン
ブラック5重量部および結着剤兼電解液保持剤としての
ポリマーであるフッ化ビニリデン(VDF)とヘキサフ
ルオロプロピレン(HFP)との共重合体P(VDF−
HFP)8重量部と可塑剤のDBP(フタル酸ジブチ
ル)10重量部をNMP(N−メチル−2−ピロリド
ン)からなる有機溶剤に混練分散させたペーストをラス
加工した厚さ40μmのアルミニウム箔製集電体1aの
両面に塗着、乾燥、圧延した後、所定の寸法に切断し
て、正極活物質層1bとしたものである。この2枚の正
極活物質層の間に、前記のP(VDF−HFP)のフィ
ルムからなるポリマー製セパレータ3を配設させ、この
セパレータ3間にカーボン粉末100重量部と前記結着
剤兼電解液保持剤としてのポリマーであるP(VDF−
HFP)の粉末15重量部と可塑剤のDBP(フタル酸
ジブチル)30重量部をアセトンとシクロヘキサノンか
らなる混合有機溶剤に混練分散させたペーストをラス加
工した銅箔製集電体2aの両面に塗着、乾燥、圧延した
後、所定の寸法に切断して、負極活物質層2bを形成し
た負極2があり、全体が図2に示すように積層一体化さ
れて発電要素4が構成される。次に前記発電要素中に含
まれる可塑剤のDBPをキシレンなどの有機溶剤を用い
て抽出し、温度100℃の真空減圧下で乾燥する。
The positive electrode 1 is composed of 100 parts by weight of a positive electrode active material containing lithium cobalt oxide as a main component, 5 parts by weight of acetylene black as a conductive agent, and vinylidene fluoride (VDF) which is a polymer as a binder and an electrolyte retainer. P (VDF-) with hexafluoropropylene (HFP)
HFP) 8 parts by weight of a plasticizer and 10 parts by weight of DBP (dibutyl phthalate) are kneaded and dispersed in an organic solvent composed of NMP (N-methyl-2-pyrrolidone). After coating, drying and rolling on both surfaces of the current collector 1a, the current collector 1a is cut into a predetermined size to form a positive electrode active material layer 1b. A polymer separator 3 made of the P (VDF-HFP) film is disposed between the two positive electrode active material layers, and 100 parts by weight of carbon powder and the binder and The polymer P (VDF-
HFP) powder and 30 parts by weight of a plasticizer, DBP (dibutyl phthalate), are kneaded and dispersed in an organic solvent mixture of acetone and cyclohexanone, and are coated on both sides of a lath-processed copper foil current collector 2a. After being deposited, dried, and rolled, there is a negative electrode 2 having a predetermined size and a negative electrode active material layer 2b formed thereon. The entirety of the negative electrode 2 is laminated and integrated as shown in FIG. Next, DBP as a plasticizer contained in the power generating element is extracted using an organic solvent such as xylene, and dried under reduced pressure at a temperature of 100 ° C.

【0031】1cは正極の集電体に設けたリード取り付
け部であり、ここにはアルミニウム製正極リード5が溶
接されている。2cは負極の集電体に設けたリード取り
付け部であり、ここには銅箔製負極リード6が溶接され
ている。
Reference numeral 1c denotes a lead mounting portion provided on the current collector of the positive electrode, to which an aluminum positive electrode lead 5 is welded. Reference numeral 2c denotes a lead mounting portion provided on the current collector of the negative electrode, to which a negative electrode lead 6 made of copper foil is welded.

【0032】このようにして作製した発電要素4はアル
ミニウム箔を中間の一層とし、その内側にポリプロピレ
ンフィルムを、外側にポリエチレンテレフタレートフィ
ルムとナイロンフィルムを積層一体化したアルミラミネ
ートフィルムからなる外装ケース7の内部に収容されて
おり、正極のリード5および負極のリード6が外装ケー
ス7の外部へ引き出され、その先端が出入力端子8、9
である。
The power generation element 4 thus manufactured has an outer case 7 made of an aluminum laminate film having an aluminum foil as an intermediate layer, a polypropylene film on the inner side, and a polyethylene terephthalate film and a nylon film on the outer side. The lead 5 of the positive electrode and the lead 6 of the negative electrode are housed inside, and are drawn out of the exterior case 7.
It is.

【0033】次に、沸点が242℃のプロピレンカーボ
ネート(PC)と沸点が90℃のジメチルカーボネート
(DMC)の体積比が7:3の混合溶媒にLiPF6
1.0モルの濃度で溶解させた非水電解液を用いて注液
した後、熱溶着部P3部分を熱溶着して封口した。
Next, LiPF 6 was dissolved at a concentration of 1.0 mol in a mixed solvent of propylene carbonate (PC) having a boiling point of 242 ° C. and dimethyl carbonate (DMC) having a boiling point of 90 ° C. at a volume ratio of 7: 3. After the injection using the non-aqueous electrolyte, the heat-welded portion P3 was heat-sealed and sealed.

【0034】10、11はリード5、6の中間部分に設
けられた絶縁保護フィルムであり、外装ケース7の開口
部を熱融着などで封口する際にリード5、6の電気的絶
縁と気密を確保するものである。
Reference numerals 10 and 11 denote insulating protective films provided at intermediate portions of the leads 5 and 6, which are used to electrically insulate and airtighten the leads 5 and 6 when the opening of the outer case 7 is sealed by heat sealing or the like. Is to ensure.

【0035】第1充電工程では、3.75Vの電池電圧
を発生するまで充電処理を施して初期のガス発生を済ま
せた。
In the first charging step, a charging process was performed until a battery voltage of 3.75 V was generated, thereby completing the initial gas generation.

【0036】第1エージング工程では、3.75Vの電
池電圧の状態で95℃の温度で1時間、真空減圧装置を
用いて15Pa、5Pa、2Paの各圧力に設定してエ
ージングを行った後、圧力だけ常圧に戻し、1時間さら
に保存し、発電要素内の正極板、負極板中のポリマー及
びセパレータをゲル化させると同時に発電要素からガス
を発生させた。
In the first aging step, aging is carried out at a temperature of 95 ° C. for 1 hour at a battery voltage of 3.75 V at a pressure of 15 Pa, 5 Pa, and 2 Pa using a vacuum decompression device. The pressure was returned to normal pressure, and the system was further stored for 1 hour, and the polymer in the positive electrode plate and the negative electrode plate in the power generating element and the separator were gelled, and at the same time, gas was generated from the power generating element.

【0037】第2充電工程では、電池容量の100%の
電気量で充電処理し、更に発電要素からガスを発生及び
電池特性を安定化させた。
In the second charging step, the battery was charged with 100% of the battery capacity, and gas was generated from the power generating element and the battery characteristics were stabilized.

【0038】第2エージング工程では、この充電状態の
まま約60℃の環境下に65時間保存し、発電要素から
更なるガスを発生させ、ガスを出し切らせるとともに、
電池特性を安定化させた。
In the second aging step, the battery is kept in this charged state in an environment of about 60 ° C. for 65 hours, and further gas is generated from the power generating element, and the gas is completely discharged.
Stabilized battery characteristics.

【0039】ドライ雰囲気中で外装ケースの一部を開封
して0.4MPaの荷重で1秒間押さえて、内部に溜ま
ったガスを排出した後、外装ケースを再度封口して、電
池容量が1000mAhのリチウムポリマー電池を得
た。
In a dry atmosphere, a part of the outer case was opened and pressed with a load of 0.4 MPa for 1 second to discharge gas accumulated inside. Then, the outer case was closed again and the battery capacity was 1000 mAh. A lithium polymer battery was obtained.

【0040】(比較例)第1エージング工程で、常圧の
みでエージングする以外は、実施例1と同様にして電池
容量1000mAhのリチウムポリマー電池を得た。
Comparative Example A lithium polymer battery having a battery capacity of 1000 mAh was obtained in the same manner as in Example 1 except that in the first aging step, aging was performed only at normal pressure.

【0041】(ゲル化圧力条件と高温保存時の電池厚み
の変化量)実施例、比較例でそれぞれ得られた各電池
を、0.2CmA(200mA)の充電電流で4.2V
になるまで充電した後、90℃の高温状態に保存し、電
池厚みを測定した。電池厚みは、正確に測定するため
に、マイクロメータを用いて、0.2MPaの荷重をか
け、かつ90℃の温度下で測定した結果を表1に示す。
なお、表中の数字は保存前の電池厚みからの変化量をm
m単位で示す。
(Geling Pressure Condition and Change in Battery Thickness During Storage at High Temperature) Each of the batteries obtained in the Examples and Comparative Examples was charged with 4.2 V at a charging current of 0.2 CmA (200 mA).
After the battery was charged until the temperature reached, the battery was stored at a high temperature of 90 ° C., and the battery thickness was measured. Table 1 shows the results of measuring the battery thickness at a temperature of 90 ° C. under a load of 0.2 MPa using a micrometer in order to measure accurately.
The numbers in the table represent the amount of change from the battery thickness before storage as m.
Shown in m units.

【0042】[0042]

【表1】 [Table 1]

【0043】表1から、第1エージング時の圧力条件が
15Pa以下の真空減圧状態で作製した電池厚みの変化
量は、常圧で作製した電池と比較して、電池が膨れない
ので約1/10と大幅に少なくなっており、真空減圧下
でエージングすることにより、電池全体を均一でかつ緻
密なゲルで形成できていることを示している。
From Table 1, it can be seen that the change in the thickness of the battery prepared under a reduced pressure of 15 Pa or less at the time of the first aging is about 1/100 since the battery does not swell as compared with the battery prepared under normal pressure. The value is significantly reduced to 10, indicating that the entire battery can be formed of a uniform and dense gel by aging under reduced pressure in a vacuum.

【0044】(ゲル化圧力条件と高温長期保存後の容量
維持率)実施例、比較例でそれぞれ得られた各電池を、
0.2CmA(200mA)の充電電流で4.2Vにな
るまで充電した後、90℃の高温状態に電池を保存し、
放電容量を測定した。保存後の電池を0.2CmA(2
00mA)の充電電流で4.2Vになるまで充電した
後、0.2CmA(200mA)の電流値で3.0Vま
で放電したときの放電容量維持率の結果を表2に示す。
なお、表中の数字は初期の放電容量を100%とした時
の放電容量の比率を%で示す。
(Geling Pressure Conditions and Capacity Retention after Long-Term Storage at High Temperature) Each of the batteries obtained in Examples and Comparative Examples was
After charging to 4.2 V with a charging current of 0.2 CmA (200 mA), the battery was stored at a high temperature of 90 ° C.
The discharge capacity was measured. The battery after storage was charged at 0.2 CmA (2
Table 2 shows the results of the discharge capacity retention ratio when the battery was charged to 4.2 V at a charging current of 00 mA) and then discharged to 3.0 V at a current value of 0.2 CmA (200 mA).
The numbers in the table indicate the percentage of the discharge capacity when the initial discharge capacity is 100%.

【0045】[0045]

【表2】 [Table 2]

【0046】表2から、第1エージング時の圧力条件が
15Pa以下の真空減圧状態で作製した電池の高温保存
後での放電容量の維持率は、常圧で作製した電池よりも
高い値を示している。このことから、真空減圧状態で作
られたゲルが高温保存時でも構造破壊を起こさず、高い
容量維持率を保持することがわかった。
From Table 2, it can be seen that the retention rate of the discharge capacity after high-temperature storage of the battery prepared under a reduced pressure condition of 15 Pa or less during the first aging is higher than that of the battery prepared under normal pressure. ing. From this, it was found that the gel produced in a vacuum depressurized state did not cause structural destruction even during high-temperature storage, and maintained a high capacity retention rate.

【0047】[0047]

【発明の効果】以上のように本発明のリチウムポリマー
の製造方法によれば、正極や負極内部の非水電解液を保
持するポリマーにフッ化ビニリデン−ヘキサフルオロピ
レンP(VDF−HFP)の共重合体を用い、かつ電解
液の溶媒組成として沸点が120℃以上である溶媒を少
なくとも1種類含む混合電解液組成を用い、15Pa以
下の真空減圧状態で90℃〜100℃の環境下で30分
〜1時間保存し、次いで前記温度に保持したまま常圧に
戻してさらに30分〜3時間保存してゲル化させること
により、高温長期保存においても電池厚みの変化が小さ
く、かつ高い放電容量維持率を有する信頼性に優れたリ
チウムポリマー電池を提供することができる。
As described above, according to the method for producing a lithium polymer of the present invention, vinylidene fluoride-hexafluoropyrene P (VDF-HFP) is added to the polymer holding the nonaqueous electrolyte inside the positive electrode and the negative electrode. Using a polymer, and using a mixed electrolyte composition containing at least one solvent having a boiling point of 120 ° C. or more as a solvent composition of the electrolyte, 30 minutes in an environment of 90 ° C. to 100 ° C. under a vacuum reduced pressure of 15 Pa or less. Storage for about 1 hour, then return to normal pressure while maintaining the above temperature, and further store for 30 minutes to 3 hours to gel, so that the change in battery thickness is small even during long-term storage at high temperature and high discharge capacity is maintained. It is possible to provide a highly reliable lithium polymer battery having a high efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における電池の上面図FIG. 1 is a top view of a battery according to an embodiment of the present invention.

【図2】同電池の断面図FIG. 2 is a sectional view of the battery.

【符号の説明】[Explanation of symbols]

1 正極 1a 正極集電体 1b 正極活物質層 1c 正極リード取り付け部 2 負極 2a 負極集電体 2b 負極活物質層 2c 負極リード取り付け部 3 セパレータ 4 発電要素 5 正極リード 6 負極リード 7 外装ケース 8 正極出力端子 9 負極出力端子 10 正極リード絶縁保護フィルム 11 負極リード絶縁保護フィルム P1 外装ケース熱溶着部 P2 外装ケース熱溶着部 P3 外装ケース熱溶着部 T 外装ケース折り曲げ部 DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 1b Positive electrode active material layer 1c Positive electrode lead attaching part 2 Negative electrode 2a Negative electrode collector 2b Negative electrode active material layer 2c Negative electrode lead attaching part 3 Separator 4 Power generating element 5 Positive electrode lead 6 Negative electrode lead 7 Outer case 8 Positive electrode Output terminal 9 Negative electrode output terminal 10 Positive electrode lead insulating protective film 11 Negative electrode lead insulating protective film P1 Outer case heat welded part P2 Outer case heat welded part P3 Outer case heat welded part T Outer case bent part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ04 AJ05 AJ11 AK03 AL07 AM03 AM05 AM07 AM16 BJ04 BJ12 CJ02 CJ05 CJ12 CJ16 CJ28 DJ02 EJ01 EJ14 HJ00 HJ14 HJ15 HJ18  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 5H029 AJ03 AJ04 AJ05 AJ11 AK03 AL07 AM03 AM05 AM07 AM16 BJ04 BJ12 CJ02 CJ05 CJ12 CJ16 CJ28 DJ02 EJ01 EJ14 HJ00 HJ14 HJ15 HJ18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 樹脂フィルムの間に金属箔を配して全体
を積層一体化したラミネートシートからなる袋状外装ケ
ース内に、正極板と負極板とがセパレータを介して絶縁
されている発電要素を収容し、この発電要素に非水電解
液を保持させるとともに、前記正極板および負極板のそ
れぞれの一端が接続された正極リードおよび負極リード
を、前記外装ケースのシール部より外部に引き出した状
態で封口する工程、所定の電池電圧を発生するまで充電
処理を施して初期のガス発生を済ませる第1充電工程、
真空減圧状態の90℃〜100℃の環境下で30分〜1
時間保存し、次いで前記温度に保持したまま常圧に戻し
てさらに30分〜3時間保存する第1エージング工程、
必要電気量だけ充電処理し、更に発電要素からガスを発
生及び電池特性を安定化させる第2充電工程、この充電
状態のまま約60℃〜70℃の環境下に保存する第2エ
ージング工程、外装ケースの一部を開封して内部に溜ま
ったガスを排出する工程、外装ケースを再度封口する工
程の順に前記各工程を実施するリチウムポリマー電池の
製造方法。
1. A power generating element in which a positive electrode plate and a negative electrode plate are insulated via a separator in a bag-shaped outer case made of a laminated sheet in which a metal foil is disposed between resin films and the whole is laminated and integrated. While the non-aqueous electrolyte is held in the power generating element, and the positive electrode lead and the negative electrode lead to which one ends of the positive electrode plate and the negative electrode plate are connected are drawn out from the sealing portion of the outer case. A first charging step of performing a charging process until a predetermined battery voltage is generated to finish initial gas generation;
30 minutes to 1 in an environment of 90 ° C to 100 ° C under vacuum and reduced pressure
A first aging step of storing for a period of time, then returning to normal pressure while maintaining the temperature, and further storing for 30 minutes to 3 hours;
A second charging step of charging only the required amount of electricity, generating gas from the power generating element and stabilizing the battery characteristics, a second aging step of storing the charged state in an environment of about 60 ° C to 70 ° C, exterior A method for manufacturing a lithium polymer battery, in which the above steps are performed in the order of a step of opening a part of the case to discharge gas accumulated inside and a step of resealing the outer case.
【請求項2】 前記所定の電池電圧が3.7V以上であ
る請求項1に記載のリチウムポリマー電池の製造方法。
2. The method for manufacturing a lithium polymer battery according to claim 1, wherein the predetermined battery voltage is 3.7 V or more.
【請求項3】 前記発電要素がフッ化ビニリデン−ヘキ
サフルオロピレンの共重合体P(VDF−HFP)から
なるポリマーを含み、かつ非水電解液の溶媒組成として
沸点が120℃以上である溶媒を少なくとも1種類含む
混合溶媒である請求項1に記載のリチウムポリマー電池
の製造方法。
3. The method according to claim 1, wherein the power generation element includes a polymer comprising a copolymer P (VDF-HFP) of vinylidene fluoride-hexafluoropyrene and a solvent having a boiling point of 120 ° C. or higher as a solvent composition of the non-aqueous electrolyte. The method for producing a lithium polymer battery according to claim 1, wherein the mixed solvent contains at least one kind of solvent.
【請求項4】 前記真空減圧状態が15Pa以下である
請求項1に記載のリチウムポリマー電池の製造方法。
4. The method for producing a lithium polymer battery according to claim 1, wherein the reduced pressure in vacuum is 15 Pa or less.
JP2001014153A 2001-01-23 2001-01-23 Manufacturing method of lithium polymer cell Pending JP2002216843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001014153A JP2002216843A (en) 2001-01-23 2001-01-23 Manufacturing method of lithium polymer cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014153A JP2002216843A (en) 2001-01-23 2001-01-23 Manufacturing method of lithium polymer cell

Publications (1)

Publication Number Publication Date
JP2002216843A true JP2002216843A (en) 2002-08-02

Family

ID=18880888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014153A Pending JP2002216843A (en) 2001-01-23 2001-01-23 Manufacturing method of lithium polymer cell

Country Status (1)

Country Link
JP (1) JP2002216843A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311103A (en) * 2003-04-03 2004-11-04 Toshiba Corp Method for manufacturing non-aqueous electrolyte secondary battery
JP2006079857A (en) * 2004-09-07 2006-03-23 Nissan Motor Co Ltd Secondary battery and aging treatment method of secondary battery
JP2010225498A (en) * 2009-03-25 2010-10-07 Panasonic Corp Organic electrolyte battery
JP2010232469A (en) * 2009-03-27 2010-10-14 Fuji Heavy Ind Ltd Accumulator device and method of manufacturing the same
WO2012077504A1 (en) * 2010-12-10 2012-06-14 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the power storage device
WO2012111545A1 (en) 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery
WO2012111547A1 (en) 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery and method for producing same
JP2013258422A (en) * 2013-08-12 2013-12-26 Fuji Heavy Ind Ltd Electricity storage device and method for manufacturing the same
WO2015159019A1 (en) * 2014-04-17 2015-10-22 Renault S.A.S Method for forming a li-ion battery cell comprising an lnmo cathode material
US9331361B2 (en) 2011-08-26 2016-05-03 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and production method thereof
JP2021150168A (en) * 2020-03-19 2021-09-27 株式会社東芝 Secondary battery, battery pack and vehicle

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311103A (en) * 2003-04-03 2004-11-04 Toshiba Corp Method for manufacturing non-aqueous electrolyte secondary battery
JP4564238B2 (en) * 2003-04-03 2010-10-20 株式会社東芝 Method for producing non-aqueous electrolyte secondary battery
JP2006079857A (en) * 2004-09-07 2006-03-23 Nissan Motor Co Ltd Secondary battery and aging treatment method of secondary battery
JP2010225498A (en) * 2009-03-25 2010-10-07 Panasonic Corp Organic electrolyte battery
JP2010232469A (en) * 2009-03-27 2010-10-14 Fuji Heavy Ind Ltd Accumulator device and method of manufacturing the same
WO2012077504A1 (en) * 2010-12-10 2012-06-14 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the power storage device
US9509013B2 (en) 2011-02-18 2016-11-29 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery
US9923192B2 (en) 2011-02-18 2018-03-20 Kabushiki Kaihsa Toshiba Non-aqueous electrolyte secondary battery and production method thereof
USRE49306E1 (en) 2011-02-18 2022-11-22 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery
US11139465B2 (en) 2011-02-18 2021-10-05 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
US10490808B2 (en) 2011-02-18 2019-11-26 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
WO2012111547A1 (en) 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery and method for producing same
WO2012111545A1 (en) 2011-02-18 2012-08-23 株式会社 東芝 Non-aqueous electrolyte secondary battery
EP3373365A1 (en) 2011-02-18 2018-09-12 Kabushiki Kaisha Toshiba Electrode for non-aqueous electrolyte secondary battery
EP3373366A1 (en) 2011-02-18 2018-09-12 Kabushiki Kaisha Toshiba Electrode for non-aqueous electrolyte secondary battery
US9331361B2 (en) 2011-08-26 2016-05-03 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and production method thereof
JP2013258422A (en) * 2013-08-12 2013-12-26 Fuji Heavy Ind Ltd Electricity storage device and method for manufacturing the same
JP2017511584A (en) * 2014-04-17 2017-04-20 ルノー エス.ア.エス. Method for manufacturing Li-ion battery cell containing LNMO cathode material
CN106463719A (en) * 2014-04-17 2017-02-22 雷诺两合公司 Method for forming a li-ion battery cell comprising an lnmo cathode material
FR3020181A1 (en) * 2014-04-17 2015-10-23 Renault Sas METHOD FOR FORMING LI-ION BATTERY CELL COMPRISING LNMO-BASED CATHODE MATERIAL
US10749219B2 (en) 2014-04-17 2020-08-18 Renault S.A.S. Method for forming a Li-ion battery cell comprising an LNMO cathode material
CN106463719B (en) * 2014-04-17 2021-06-15 雷诺两合公司 Methods of forming lithium ion battery cells including LNMO-based cathode materials
WO2015159019A1 (en) * 2014-04-17 2015-10-22 Renault S.A.S Method for forming a li-ion battery cell comprising an lnmo cathode material
JP2021150168A (en) * 2020-03-19 2021-09-27 株式会社東芝 Secondary battery, battery pack and vehicle
JP7163335B2 (en) 2020-03-19 2022-10-31 株式会社東芝 Secondary battery, battery pack, and vehicle

Similar Documents

Publication Publication Date Title
US11430994B2 (en) Protective coatings for lithium metal electrodes
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP3554155B2 (en) Lithium secondary battery and method of manufacturing the same
KR20130126365A (en) Manufacturing method of lithium secondary battery
US20020023339A1 (en) Gel electrolyte battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2002216843A (en) Manufacturing method of lithium polymer cell
JP2000315481A (en) Nonaqueous electrolyte secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JP2000331715A (en) Nonaqueous secondary battery
JP2020102309A (en) Lithium ion secondary battery
CN112673503A (en) Nonaqueous electrolyte electricity storage element and electricity storage device
JP4880879B2 (en) Non-aqueous electrolyte secondary battery inspection method and non-aqueous electrolyte secondary battery manufacturing method
JPH11339856A (en) Manufacture of sheet-type lithium-ion secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3283213B2 (en) Lithium secondary battery
JP4476379B2 (en) Nonaqueous electrolyte secondary battery
JP4513160B2 (en) Method for producing lithium polymer battery
JP3778805B2 (en) Secondary battery
JPH11214036A (en) Polymer electrolyte separator, lithium secondary battery and manufacture thereof
JPH11260417A (en) Polymer electrolyte lithium secondary battery
JP6807703B2 (en) Manufacturing method of lithium ion secondary battery
JP2001189167A (en) Non-aqueous electrolyte secondary cell
JPH11233145A (en) Laminated type organic electrolyte battery
JP2000223159A (en) Nonaqueous electrolyte secondary battery, and its manufacture